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Abstract. This paper investigates the calibration of a model with a time-
homogeneous local volatility function to the market prices of the perpetual
American Call and Put options. The main step is the derivation of a Call–Put
duality equality for perpetual American options similar to the equality which
is equivalent to Dupire’s formula (Dupire in Risk 7(1):18–20, 1994) in the
European case. It turns out that in addition to the simultaneous exchanges
between the spot price and the strike and between the interest and dividend
rates which already appear in the European case, one has to modify the local
volatility function in the American case. To show this duality equality, we
exhibit non-autonomous nonlinear ODEs satisfied by the perpetual Call and
Put exercise boundaries as functions of the strike variable. We obtain unique-
ness for these ODEs and deduce that the mapping associating the exercise
boundary with the local volatility function is one-to-one onto. Thanks to
this Dupire-type duality result, we design a theoretical calibration procedure
of the local volatility function from the perpetual Call and Put prices for a
fixed spot price x0. The knowledge of the Put (resp. Call) prices for all strikes
enables to recover the local volatility function on the interval (0, x0) (resp.
(x0, +∞)). We last prove that equality of the dual volatility functions only
holds in the standard Black-Scholes model with constant volatility.
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0. Introduction

The motivation of this paper is the calibration of the local volatility function
σ(t, x) of the stock model with constant interest rate r and dividend rate δ{

dSxt = σ(t, Sxt )Sxt dWt + (r − δ)Sxt dt, t ≥ 0
Sx0 = x

(1)
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to the market prices of the American Call and Put options written on this stock.
Here (Wt)t≥0 is a standard one-dimensional Brownian motion. When the local
volatility model is calibrated either to the market prices (P (T, y), T, y > 0) of
the European Put options with maturity T and strike y or to the market prices
(C(T, y), T, y > 0) of the European Call options, the local volatility function is
obtained thanks to Dupire’s formula [7]

∀T, y > 0, σ(T, y) =

√
2
∂TO(T, y) + (r − δ)y∂yO(T, y) + δO(T, y)

y2∂2
yyO(T, y)

. (2)

where O ∈ {P,C} (by the Call–Put parity equality: C(T, y) −P (T, y) = xe−δT −
ye−rT , the right-hand-side does not depend on O ∈ {C,P}). Extensions to some
exotic European options have been investigated in [17], but, to our knowledge,
no significant progress has been made to get a similar formula when the options
used for the calibration are of American type.

In the fourth part of the paper, we explain how a time-homogeneous volatil-
ity function σ(x) can be recovered from the prices of the perpetual American Call
and Put options written on an underlying evolving according to the correspond-
ing time-homogeneous local volatility model. Although restricted to the perpetual
case, our methodology is more complicated than Dupire’s formula. It is based on a
Call–Put duality equality for perpetual American options related to the Call–Put
duality equality equivalent to Dupire’s formula in the European case. Indeed, (2)
implies that for each T > 0, cT (t, y) = P (T − t, y) solves the Partial Differential
Equation

∂tcT (t, y) +
σ2(T − t, y)y2

2
∂2
yycT (t, y) + (δ − r)y∂ycT (t, y) − δcT (t, y) = 0

for (t, y) ∈ [0, T )× (0,+∞) with terminal condition cT (T, y) = (y−x)+ for y > 0.
One recognizes the pricing PDE for the Call option with strike x and maturity T
in the model

dS̄Tt = σ(T − t, S̄Tt )S̄Tt dWt + (δ − r)S̄Tt dt (3)

with local volatility function σ(T−t, y), interest rate δ and dividend rate r. There-
fore, denoting by (S̄y,Tt )t∈[0,T ] the solution of (3) starting from S̄y,T0 = y, one has
cT (0, y) = E[e−δT (S̄y,TT − x)+]. One deduces the following Dupire-type Call–Put
duality equality

∀T ≥ 0, ∀x, y > 0, E
[
e−rT (y − SxT )+

]
= E

[
e−δT (S̄y,TT − x)+

]
. (4)

This equality is different from the one which can be derived by the change of
numéraire approach [10] with the numéraire (eδtSxt )t≥0, see [12,18]:

∀y, x > 0, ∀T ≥ 0, E
[
e−rT (y − SxT )+

]
= E

[
e−δT (Ŝy,xT − x)+

]
(5)
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when uniqueness in law holds for the following SDE{
dŜy,xt = σ

(
t, xy

Ŝy,x
t

)
Ŝy,xt dWt + (δ − r)Ŝy,xt dt, t ∈ [0, T ]

Ŝy,x0 = y.
(6)

In both equalities, the spot price and the strike price (resp. the interest rate and
the dividend rate) are interchanged when going from the Put option in the left-
hand-side to the Call option in the right-hand-side. In the equality (4) derived
from Dupire’s formula, the local volatility function σ(T − t, z) of the underlying
model in the right-hand-side depends on the maturity T but not on the spot
and strike variables x, y. It is obtained by time-reversal of the primal volatil-
ity function. In contrast, in the equality (5) derived by the change of numéraire
approach, the local volatility function σ(t, xyz ) of the underlying model in the right-
hand-side depends on the spot and strike variables x, y but not on the maturity
T . It is obtained by some logarithmic spatial reversal of the primal volatility func-
tion. Therefore, even when the volatility function only depends on the time or on
the spot variable, the functions σ(T − t, z) and σ(t, xyz ) are a priori different and
so are the duality formulas (4) and (5).

To compare the interest of these duality equalities in terms of calibration,
let us denote by (S̄s,yt )t∈[s,T ] the solution of (3) starting from S̄s,ys = y. Writing
at s = 0 the pricing PDE satisfied by E[e−δs(S̄s,yT − x)+] in the variables (s, y),
remarking that the expectation only depends on (s, T ) through the difference
T − s, one recovers (2) for O = P from (4). In contrast, it is not clear at all
how (5) could be used to recover the local volatility function from the European
Put prices. The dependence on y of the local volatility function in (6) makes the
derivation of a PDE in the variables (T, y) from E[e−δT (Ŝy,xT − x)+] non trivial.

The duality equality (5) can be generalized as detailed in [6,18] to time and
spot dependent interest and dividend rates, non Markovian underlying models
and American options. For instance, Proposition 6 in [6] implies that for each
T ∈ [0,+∞],

sup
τ≤T

E
[
e−rτ (y − Sxτ )+

]
= sup
τ≤T

E

[
e−δτ (Ŝy,xτ − x)+

]
where τ is any stopping time of the Brownian filtration. To our knowledge, (4)
has only been generalized in the European case to time-dependent interest and
dividend rates and to models involving a very specific form of jumps [2,9,14].
In particular, it does not seem possible to generalize this equality when interest
and dividend rates depend on the spot. Moreover, the American case remains
open. The main contribution of the paper is the derivation of such a Call–Put
Dupire-type duality equality

sup
τ

E
[
e−rτ (y − Sxτ )+

]
= sup

τ
E
[
e−δτ (S̄yτ − x)+

]
(7)

for perpetual (T = +∞) American options when the original volatility function
σ(x) is time-homogeneous. Whereas time-homogeneous volatility functions are
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preserved in the European case, it turns out that in addition to the exchanges
between the spot price of the underlying and the strike and between the interest
and dividend rates, the volatility function is modified:

dS̄yt = η(S̄yt )S̄
y
t dWt + (r − δ)S̄yt dt.

Although in general different from σ, the function η still does not depend on
x, y > 0.

The paper is organized as follows. In the first part, we recall results con-
cerning the pricing of the perpetual Put and Call options in such models. For a
given strike y > 0, we introduce the exercise boundary x∗(y) of the perpetual Put
option such that the perpetual Put price is equal to its payoff (y−x)+ if and only
if the initial value x of the underlying is smaller or equal to x∗(y).

In the second part of the paper, we derive new results concerning the exercise
boundary. Considering the exercise boundaries as functions of the strike variable,
we characterize them as the unique solutions of some non-autonomous ordinary
differential equations.

The third part is dedicated to our main result. We prove the perpetual Amer-
ican Dupire-type duality equality (7) where the dual volatility function η has an
explicit expression in terms of σ and x∗. To do so, we take advantage of a very
nice feature: in the continuation region, the price of the perpetual option writes
as the product of a function of the underlying spot price by another function of
the strike price.

The fourth part addresses calibration issues. It turns out that for a given
initial value x0 > 0 of the underlying one recovers the restriction of the time-
homogeneous volatility function σ(x) to (0, x0] (resp. [x0,+∞)) from the perpet-
ual Put (resp. Call) prices for all strikes.

In the last part, we show that at least when δ < r in the class of volatility
functions σ analytic in a neighborhood of the origin, the only ones invariant by
our Dupire-type duality result (i.e. such that η = σ) are the constants. This means
that the case of the standard Black-Scholes model is very specific regarding that
duality.

Last, we extend in Appendix B our results to spot-dependent dividend rates.
Then, because of additional technicalities, our theory is not so nice as in the con-
stant dividend rate case.

1. Perpetual American put and call pricing

1.1. Framework and notations

For a function f : R
∗
+ → R

∗
+, we denote f = infx∈R

∗
+
f(x) and f = supx∈R

∗
+
f(x).

We consider a constant interest spot-rate r that is assumed to be nonneg-
ative and an asset St which pays a constant dividend rate δ ≥ 0 and is driven
by a homogeneous volatility function σ : R

∗
+ → R

∗
+ that satisfies the following

hypothesis.
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Hypothesis (Hvol): σ is continuous on R
∗
+ and such that 0 < σ ≤ σ < +∞.

In other words, St is assumed to follow under the risk-neutral measure the
SDE:

dSt = St((r − δ)dt+ σ(St)dWt). (8)

With the assumption made on σ, we know that for any initial condition x ∈ R
∗
+,

there is a unique solution denoted by (Sxt , t ≥ 0) in the sense of probability law
(see for example Theorem 5.15 in [15], using a log transformation). Moreover, The-
orem 4.20 in [15] ensures that the strong Markov property holds for (Sxt , t ≥ 0).
Under that model, we denote by

Pσ(x, y) = sup
τ∈T0,∞

E
[
e−rτ (y − Sxτ )+

]
and Cσ(x, y) = sup

τ∈T0,∞
E
[
e−rτ (Sxτ − y)+

]
respectively the prices of the American perpetual Put and Call options with strike
y > 0 and spot x. Here, T0,∞ simply denotes the set of the stopping times with
respect to the natural filtration of (Sxt , t ≥ 0). This setting will be called primal
world in the sequel. The pricing of American options is an optimal stopping prob-
lem and we refer to [16] for a review of known results concerning such problems.
The perpetual optimal stopping problem of regular one-dimensional diffusion pro-
cesses with reward functions more general than the Call and Put payoffs has been
recently considered in [5]. The authors characterize the value function as the small-
est concave, in a generalized sense, majorant of the reward function. To obtain our
Call–Put duality equality we rather use a characterization of the pricing function
based on ODEs and take advantage of the specificity of the Call and Put payoffs.

We now introduce the dual world. It is mathematically identical to the pri-
mal one, but the variables have a different meaning in it. Namely, δ plays the role
of the interest rate and r of the dividend rate; x plays the role of the strike and y
is the spot value of the underlying. Let η : R

∗
+ → R

∗
+ be an homogeneous volatility

function that is also assumed to satisfy (Hvol). We consider then (S
y

t , t ≥ 0) the
solution of dSt = St((δ − r)dt + η(St)dWt) that starts from y at time 0. Under
that model, we denote respectively by

pη(y, x) = sup
τ∈T0,∞

E

[
e−δτ (x− S

y

τ )
+
]

and cη(y, x) = sup
τ∈T0,∞

E

[
e−δτ (S

y

τ − x)+
]

the prices of the perpetual Put and Call options with strike x > 0 and spot y.
For the primal world, we introduce the following ODE which is satisfied

by x �→ Pσ(x, y) and x �→ Cσ(x, y) in the continuation region (see the proof of
Theorem 1.2):

1
2
σ2(x)x2f ′′(x) + (r − δ)xf ′(x) − rf(x) = 0, x > 0. (9)

According to [4, p. 18], there are two noticeable solutions to this ODE that
we denote f↑ and f↓: f↑ (resp. f↓) is the unique up to a multiplicative constant
positive increasing (resp. positive decreasing (non-increasing when r = 0)) solu-
tion to (9). Thanks to the continuity of σ, these solutions are C2 on R

∗
+. In the
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same manner for the dual world, we introduce g↓ and g↑ as the unique decreasing
(non-increasing when δ = 0) and increasing positive solutions to

1
2
η2(x)x2g′′(x) + (δ − r)xg′(x) − δg(x) = 0. (10)

Moreover, g↑ (resp. g↓) is the unique solution of (10) up to a multiplicative con-
stant such that limx→0 g(x) = 0 (resp. lim supx→+∞|g(x)| < ∞).

The aim of this paper is to put in evidence a Dupire-type duality relation
and interpret Put (resp. Call) prices in the primal world as Call (resp. Put) prices
in the dual world for a specific volatility function η = σ̃ (resp. η = σ̂). When r = 0
(resp. δ = 0), this is trivial because we can show that Pσ(x, y) = cη(y, x) = y
(resp. Cσ(x, y) = pη(y, x) = x) but not really fruitful, and we take thus the
following convention in the sequel.

Convention 1.1. We will always assume r > 0 (resp. δ > 0) to state properties on
Pσ and cη (resp. Cσ and pη).

Both worlds being mathematically equivalent, we will work with the Put
price in the primal world and the Call price in the dual world in order not to do
the things twice. Following the Convention 1.1, we will consider a positive interest
rate. We also denote from now on:

f = f↓ and g = g↑.

1.2. Pricing and free boundaries

In that section, we turn to the existence of an optimal stopping time and to the
pricing issue.

Theorem 1.2. For any strike y > 0, there is a unique x∗
σ(y) < y such that τPx =

inf{t ≥ 0, Sxt ≤ x∗
σ(y)} (convention inf ∅ = +∞) is an optimal stopping time for

the Put and:

∀x ≤ x∗
σ(y), Pσ(x, y) = (y − x)+,

∀x > x∗
σ(y), Pσ(x, y) =

y − x∗
σ(y)

f(x∗
σ(y))

f(x) > (y − x)+. (11)

The smooth-fit principle holds: ∂xPσ(x∗
σ(y), y) = −1. In addition, we have

f ′(x∗
σ(y)) < 0 and:

x∗
σ(y) − y =

f(x∗
σ(y))

f ′(x∗
σ(y))

. (12)

Last, there are constants 0 < c1 ≤ c2 < min(1, r/δ) such that:

∀y > 0, c1y ≤ x∗
σ(y) ≤ c2y. (13)
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Theorem 1.3. For any strike x > 0, there is a unique y∗
η(x) > x such that τ cy =

inf{t ≥ 0, S
y

t ≥ y∗
η(x)} is an optimal stopping time for the Call and:

∀y ≥ y∗
η(x), cη(y, x) = (y − x)+,

∀y < y∗
η(x), cη(y, x) =

y∗
η(x) − x

g(y∗
η(x))

g(y) > (y − x)+. (14)

The smooth-fit principle holds: ∂ycη(y∗
η(x), x)=1. In addition, we have g′(y∗

η(x)) >
0 and:

y∗
η(x) − x =

g(y∗
η(x))

g′(y∗
η(x))

. (15)

Last, there are constants +∞ > d2 ≥ d1 > max(1, δ/r) such that:

∀x > 0, d1x ≤ y∗
η(x) ≤ d2x. (16)

Let us define α(y) = y−x∗
σ(y)

f(x∗
σ(y)) and β(x) = y∗

η(x)−x
g(y∗

η(x)) . We get then that α and
β are positive functions and:

∀y > 0, ∀x ≥ x∗
σ(y), Pσ(x, y) = α(y)f(x) (17)

∀x > 0, ∀y ≤ y∗
η(x), cη(y, x) = β(x)g(y). (18)

This product form will play an important role in the derivation of the duality.
The proofs of these theorems are similar and postponed in Appendix A. To

get the upper and lower bounds satisfied by the exercise boundary, we use the
following convexity result derived from [8,13] and the explicit formulas obtained
in the Black Scholes framework (see [11] and Section 25 in [16]).

Proposition 1.4. Let us consider two volatility functions σ1 and σ2 (resp. η1 and
η2) such that ∀x > 0, σ1(x) ≤ σ2(x) (resp. ∀y > 0, η1(y) ≤ η2(y)) and that
satisfy (Hvol). Then, we have

∀x, y > 0, Pσ1(x, y) ≤ Pσ2(x, y) (resp. cη1(y, x) ≤ cη2(y, x)),

and the functions x �→ Pσ1(x, y) and y �→ cη1(y, x) are convex.

Proposition 1.5. For ς > 0, let

a(ς) =
δ − r + ς2/2 −

√
(δ − r + ς2/2)2 + 2rς2

ς2
< 0,

b(ς) =
r − δ + ς2/2 +

√
(δ − r − ς2/2)2 + 2δς2

ς2
= 1 − a(ς) > 1.

When σ ≡ ς (resp. η ≡ ς), Pσ (resp. cη) is given by the formula (11) (resp. (14))
with f(x) = xa(ς) (resp. g = xb(ς)) and the exercise boundary x∗

ς (y) = a(ς)
a(ς)−1y

(resp. y∗
ς (x) = b(ς)

b(ς)−1x)).
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2. ODEs for the exercise boundaries

Our main result concerning the exercise boundaries considered as functions of the
strike is the following theorem.

Theorem 2.1. Let us assume that the volatility functions σ and η satisfy (Hvol).
Then, the boundaries x∗

σ(y) and y∗
η(x) are respectively the unique increasing solu-

tions defined on (0,+∞) of the ODEs

(x∗
σ)

′(y) =
x∗
σ(y)

2σ(x∗
σ(y))

2

2(y − x∗
σ(y))(ry − δx∗

σ(y))
, (19)

(y∗
η)

′(x) =
η2(y∗

η(x))y
∗
η(x)

2

2(y∗
η(x) − x)(ry∗

η(x) − δx)
(20)

satisfying ∀y > 0, cy ≤ x∗
σ(y) < y and ∀x > 0, x < y∗

η(x) ≤ dx with 0 < c < 1 <
d < +∞.

Proof. We have seen in Theorems 1.2 and 1.3 that the exercise boundaries satisfy

x∗
σ(y) − y = f(x∗

σ(y))/f
′(x∗

σ(y)) (resp. y∗
η(x) − x = g(y∗

η(x))/g
′(y∗

η(x))). (21)

According to the technical Lemma A.1 stated and proved in Appendix A, x∗
σ(y)

and y∗
η(x) are C1 functions on R

∗
+. Differentiating (21) with respect to y (resp. x),

we obtain that 1 = (x∗
σ)

′(y) f(x∗
σ(y))f ′′(x∗

σ(y))
f ′(x∗

σ(y))2 (resp. 1 = (y∗
η)

′(y) g(y
∗
η(y))g′′(y∗

η(y))

g′(y∗
η(y))2 ).

Using (21) and equation (9) written at x = x∗
σ(y) (resp. (10) written at x = y∗

η(x)),
we deduce (19) and (20).

Let us now remark that the uniqueness result for (19) is equivalent to the
uniqueness result for (20). Indeed, it is easy to see that x∗

σ(y) is solution of (19)
if and only if ŷ(x) := 1/(x∗

σ(1/x)) is solution of (20) with the volatility func-
tion η(x) = σ(1/x). This new volatility function also satisfies (Hvol). Moreover,
d1x ≤ ŷ(x) ≤ d2x with d1 > max(1, δ/r) if and only if 0 ≤ c1y ≤ x∗

σ(y) ≤ c2y
with 0 < c1 ≤ c2 < min(1, r/δ).

Let us suppose then that y(x) is an increasing function that solves (20) and
satisfies x < y(x) ≤ dx for some d > 1. We have:

d

dx
y−1(y∗

η(x))

=
y∗
η(x)

2η(y∗
η(x))

2

2(y∗
η(x) − x)(ry∗

η(x) − δx)
×

2(y∗
η(x) − y−1(y∗

η(x)))(ry
∗
η(x) − δy−1(y∗

η(x)))
y∗
η(x)2η(y∗

η(x))2

=
(y∗
η(x) − y−1(y∗

η(x)))(ry
∗
η(x) − δy−1(y∗

η(x))
(y∗
η(x) − x)(ry∗

η(x) − δx)
.
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Thus, the function ψ(x) = y−1(y∗
η(x))/x solves

ψ′(x) =
1
x

[
y∗
η(x) − ψ(x)x
y∗
η(x) − x

×
ry∗
η(x) − δxψ(x)
ry∗
η(x) − δx

− ψ(x)
]

=
1
x

[(
1 − ψ(x) − 1

y∗
η(x)/x− 1

)(
1 − ψ(x) − 1

ry∗
η(x)/(δx) − 1

)
− ψ(x)

]
. (22)

The estimation (16) and x < y(x) ≤ dx imply that:

∃A > 0, ∀x > 0, 1/A ≤ ψ(x) ≤ A, (23)

∀x > 0, ψ(x) <
y∗
η(x)
x

,
y∗
η(x)
x

− 1 > 0 and
ry∗
η(x)
δx

− 1 > 0. (24)

Since local uniqueness holds for (22) by the Cauchy Lipschitz theorem, the
only solution ϕ such that ϕ(1) = 1 is the constant ϕ ≡ 1. Therefore checking
that (23) does not hold for solutions ϕ satisfying (24) and such that ϕ(1) �= 1 is
enough to conclude that ψ ≡ 1.

Let ϕ be a solution to (22) satisfying (24). If ϕ(1) > 1, by local uniqueness
for (22), for all x ∈ R

∗
+, ϕ(x) > 1. By (24), one deduces that for all x ∈ R

∗
+,

ϕ′(x) < 1−ϕ(x)
x < 0. Therefore, ϕ′(x) ≤ (1 − ϕ(1))/x for x ∈ (0, 1], and we have

ϕ(x) ≥ ϕ(1) + (1 − ϕ(1)) ln(x) →
x→0

+∞

which is contradictory to (23). In the same manner, if ϕ(1) < 1, ϕ(x) < 1 for
x ∈ R

∗
+ and ϕ is strictly increasing. In particular, for x ≤ 1, ϕ′(x) ≥ (1 −ϕ(1))/x

and therefore ϕ(1) − ϕ(x) ≥ (1 − ϕ(1)) ln(1/x) →
x→0

+∞ and this yields another
contradiction. �

Corollary 2.2. Let us denote C̃ = {f ∈ C1(R∗
+), s.t. f(0) = 0, ∃0 < a < b,

∀x ≥ 0, a ≤ f ′(x) ≤ b}. The application σ �→ x∗
σ (resp. η �→ y∗

η) is one-to-
one between the set {σ ∈ C(R∗

+) that satisfies (Hvol)} and the set of function
C̃x = {x ∈ C̃, s.t. ∃0 < c1 ≤ c2 < min(1, r/δ),∀y > 0, c1y ≤ x(y) ≤ c2y} (resp.
C̃y = {y ∈ C̃, s.t. ∃max(1, δ/r) < d1 ≤ d2,∀x > 0, d1x ≤ y(x) ≤ d2x}.)

Proof. If σ is a continuous function satisfying (Hvol), by (19) and (13), x∗
σ belongs

to C̃x. The one to one property is easy to get. If x∗
σ1

≡ x∗
σ2

with σ1 and σ2 sat-
isfying (Hvol), the ODE (19) ensures that σ2

1(x∗
σ1

(y)) = σ2
2(x∗

σ2
(y)) for y > 0.

Therefore σ1 ≡ σ2.
Let us check the onto property and consider x∗(y) ∈ C̃x. The function σ

defined by

σ(x∗(y)) =

√
2(y − x∗(y))(ry − δx∗(y))x∗′(y)

x∗(y)
(25)

is well defined thanks to the hypothesis made on x∗. As x∗
σ satisfies (13) and

solves the same ODE (19) as x∗, we have x∗ ≡ x∗
σ using Theorem 2.1.
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The proof for η �→ y∗
η is the same and gives incidentally the expression of η in

function of the exercise boundary y∗(x):

η(y∗(x)) =

√
2(y∗(x) − x)(ry∗(x) − δx)y∗′(x)

y∗(x)
. (26)

�

3. The Call–Put Dupire-type duality

This section is devoted to the key result of the paper: for related local volatility
functions σ and η, we can interpret a Put price in the primal world as a Call price
in the dual world.

3.1. The main result

Theorem 3.1. (Dupire-type duality) The following conditions are equivalent:
1.

∀x, y > 0, Pσ(x, y) = cη(y, x). (27)

2. x∗
σ and y∗

η are reciprocal functions: ∀x > 0, x∗
σ(y

∗
η(x)) = x.

3. η ≡ σ̃ where

σ̃(y) =
2(y − x∗

σ(y))(ry − δx∗
σ(y))

yx∗
σ(y)σ(x∗

σ(y))
. (28)

4. σ ≡
˜
η where

˜
η(x) =

2(y∗
η(x) − x)(ry∗

η(x) − δx)
y∗
η(x)xη(y∗

η(x))
. (29)

Remark 3.2. Thanks to relation (13) (resp. (16)), if σ (resp. η) satisfies (Hvol) then
the dual volatility function σ̃ defined by (28) (resp.

˜
η defined by (29)) satisfies

(Hvol).

Proof. 1 =⇒ 2: We have on the one hand Pσ(x, y) = y−x on {(x, y), x ≤ x∗
σ(y)}

and Pσ(x, y) > y−x outside, and on the other hand cη(y, x) = y−x on {(x, y), y ≥
y∗
η(x)} and cη(y, x) > y − x outside. The duality relation (27) imposes then that

{(x, y), x ≤ x∗
σ(y)} = {(x, y), y ≥ y∗

η(x)} and so y∗
η(x

∗
σ(y)) = y.

2 =⇒ 3, 4: Taking the derivative of the last relation, we get thanks to (19)
and (20) x∗

σ(y)2σ(x∗
σ(y))2

2(y−x∗
σ(y))(ry−δx∗

σ(y)) ×
η2(y)y2

2(y−x∗
σ(y))(ry−δx∗

σ(y)) = 1 and deduce (28) and (29).

3 =⇒ 2 (resp. 4 =⇒ 2): By (19) (resp. (20)) and (28) (resp. (29)), x∗
σ

−1

(resp. y∗
η

−1) satisfies (20) (resp. (19)). Since by (13) (resp. (16)) this function
satisfies (16) (resp. (13)), one concludes by Theorem 2.1.

2 =⇒ 1: The equality (27) is clear in the exercise region since {(x, y), x ≤
x∗
σ(y)} = {(x, y), y ≥ y∗

η(x)}. Let us check that it also holds in the continuation
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region. Using the product form (18), and the smooth-fit principle (Theorem 1.3)
we get for all y ∈ R

∗
+ {

y − x∗
σ(y) = β(x∗

σ(y))g(y)
1 = −β(x∗

σ(y))g
′(y).

Differentiating the first equality with respect to y, one gets 1 − x∗
σ(y)

′ = x∗
σ(y)

′

β′(x∗
σ(y))g(y) + β(x∗

σ(y))g
′(y), which combined with the second equality gives

−1 = β′(x∗
σ(y))g(y).

Dividing by the first equality and using (21), one deduces β′

β (x∗
σ(y)) = f ′

f (x∗
σ(y)).

Since x∗
σ : R

∗
+ → R

∗
+ is a bijection, there is a constant C �= 0 such that β ≡

Cf . Since ∀y > 0, α(y)f(x∗
σ(y)) = y − x∗

σ(y) = β(x∗
σ(y))g(y), one has α ≡ Cg.

From (17) and (18), one concludes that (27) holds. �

3.2. An analytic example of dual volatility functions

By (29) and (20), if y∗ ∈ C̃y (where C̃y is defined in Corollary 2.2), then the
reciprocal function of y∗ is the Put exercise boundary x∗

σ associated to the local
volatility function

σ(x) =

√
2(ry∗(x) − δx)(y∗(x) − x)

x
√
y∗(x)′

.

Now by (26), y∗ is the Call exercise boundary associated with the dual volatility
function:

σ̃(y) =

√
2(y − x∗

σ(y))(ry − δx∗
σ(y))y∗′(x∗

σ(y))
y

.

Let us consider the family of exercise boundaries

y∗(x) = x
x+ a

bx+ c

where a, b, c are positive constants such that max(c/a, b) < min(1, r/δ) (condition
ensuring y∗ ∈ C̃y). Since y∗(x)′ = (bx2 + 2cx+ ac)/(bx+ c)2, one has

σ(x) =

√
2
((r − δb)x+ ra− δc)((1 − b)x+ a− c)

bx2 + 2cx+ ac
, x > 0.

Moreover, the function x∗
σ(y) is the only positive root of the polynomial function:

X2 +X(a− by) − cy, that is:

x∗
σ(y) =

1
2

(
by − a+

√
(by − a)2 + 4cy

)
and

∀y > 0, σ̃(y) =

√
2(y − x∗

σ(y))(ry − δx∗
σ(y))(bx∗

σ(y)2 + 2cx∗
σ(y) + ac)

y(bx∗
σ(y) + c)

.
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Figure 1. Pσ(T, x, y) and cσ̃(T, y, x), and Cσ(T, x, y) and pσ̃(T,
y, x) as functions of the maturity T for x = 0.5, y = 0.4, r = 0.2,
δ = 0.1 and the volatility parameters (a, b, c) = (1, 0.4, 0.1)

This example enables us to check numerically the duality. We have plotted in
Fig. 1, the prices of an American Put Pσ(T, x, y) in the primal world for the local
volatility σ(x) and an American Call cσ̃(T, y, x) in the dual world for the local
volatility σ̃(x) as functions of the maturity T . These prices have been computed
using the Crank-Nicholson finite difference method. We can see at T = 10 that the
limit value is quite reached and both prices are equal. The plots are nonetheless
distinct which means that the same duality does not hold for finite maturities. We
have also plotted, in function of T , Cσ(T, x, y) in the primal world and pσ̃(T, y, x)
in the dual world to check numerically whether the volatility function σ̃ is such
as Cσ(x, y) = pσ̃(y, x). As we can see, the curves do not seem to converge toward
the same limit when T is large. This means that the volatility function σ̂ such
that ∀x, y > 0, Cσ(x, y) = pσ̂(y, x) (obtained from σ as

˜
η is obtained from η but

with exchange of r and δ) is different from σ̃.

4. Exact calibration of the local volatility σ(x)

In that section, we will explain how the Dupire-type duality enables us to achieve
our primary goal: the calibration of the local volatility function to the prices of
perpetual American options. We suppose that we know the short interest rate r,
the price x0 of the underlying stock, its dividend rate δ, and the market prices of
the perpetual American Put and Call options written on this stock for any strike
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K > 0. We name respectively p(K) and c(K) these prices and denote:

X = sup
{
K > 0, c(K) = (x0 −K)+

}
and

Y = inf
{
K > 0, p(K) = (K − x0)+

}
. (30)

Since we need to make use of the Dupire-type duality with the Call in the primal
world and the Put in the dual world, we introduce:

• the exercise boundary Υ∗
σ(y) of Cσ: [Υ∗

σ(y),+∞) = {x ∈ R
∗
+, Cσ(x, y) =

(y − x)+},
• the exercise boundary ξ∗

η(x) of pη: (0, ξ∗
η(x)] = {y ∈ R

∗
+, pη(y, x) = (x−y)+}.

We will first suppose that the Put and Call prices derive from a time-homogeneous
local volatility model before relaxing this assumption.

4.1. The calibration procedure

Let us assume that there is a volatility function σ satisfying (Hvol) such that for
all K > 0, p(K) = Pσ(x0,K) and c(K) = Cσ(x0,K). The following proposition
says that these prices characterize σ and its proof gives a constructive way to
retrieve the volatility function from the prices.

Proposition 4.1. Let us consider x0 > 0. The map

σ �→ ((Pσ(x0,K), Cσ(x0,K)),K > 0)

is one-to-one on the set of volatility functions satisfying (Hvol).

Proof. We first consider the Put case. The differential equation satisfied by the
Put prices in the continuation region makes only appear the values and the deriv-
atives in x, K being fixed. Hence, we cannot exploit directly the prices. But the
Dupire-type duality relation enables to get a differential equation in the strike var-
iable. Thanks to the duality Theorem, we have Pσ(x0,K) = cσ̃(K,x0) for some σ̃
satisfying (Hvol). It is then easy to calibrate σ̃(.). Indeed, one has K2σ̃(K)2

2 p′′(K)+
K(δ − r)p′(K) − δp(K) = 0 for K < Y = y∗

σ̃(x0). Since the differential equation
is valid only for K < Y , we only get σ̃ on (0, Y ] by continuity:

∀K ≤ Y, σ̃(K) =
1
K

√
2(δp(K) +K(r − δ)p′(K))

p′′(K)

which is well defined since p′′(K) = ∂2
Kcσ̃(K,x) > 0 thanks to Lemma A.1 and

Theorem 1.3. Then, we can calculate the exercise boundary y∗
σ̃(x), for x ∈ (0, x0],

solving (20) supplemented with the final condition y∗
σ̃(x0) = Y backward. This

step only requires the knowledge of σ̃ only on the interval (0, Y ]. Finally, we can
recover the desired volatility σ(x) for x ≤ x0 thanks to (28):

∀x ∈ (0, x0], σ(x) =
2(y∗

σ̃(x) − x)(ry∗
σ̃(x) − δx)

xy∗
σ̃(x)σ̃(y∗

σ̃(x))
. (31)

Now let us consider the calibration to the Call prices. This relies on the same
principle, but we have to be careful because the duality Theorem is stated given
to the Call interest rate δ and dividend rate r. So we have to interchange these
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variables when we apply that theorem. There is a function σ̂ satisfying (Hvol) such
that: ∀K > 0, Cσ(x0,K) = pσ̂(K,x0). We have

1
2
K2σ̂(x)2c′′(K) + (δ − r)Kc′(K) − δc(K) = 0

for K > X = ξ∗
σ̂(x0). Thus, we get

∀K ≥ X, σ̂(K) =
1
K

√
2(δc(K) +K(r − δ)c′(K))

c′′(K)

which is well defined for analogous reasons. We can then obtain as before the
exercise boundary solving (19) forward

∀y ≥ x0, ξ∗
σ̂(y)

′ =
ξ∗
σ̂(y)

2σ̂(ξ∗
σ̂(y))

2

2(y − ξ∗
σ̂(y))(δy − rξ∗

σ̂(y))
, ξ∗

σ̂(x0) = X

and we finally get the volatility σ(y) for y ≥ x0 using the duality Theorem. More
precisely, we interchange r and δ in (28) to get

σ(y) =
2(y − ξ∗

σ̂(y))(δy − rξ∗
σ̂(y))

yξ∗
σ̂(y)σ̂(ξ∗

σ̂(y))
. (32)

�

This calibration method, although being theoretical, sheds light on a striking
and interesting result: the perpetual American Put prices only give the restric-
tion of σ(x) to (0, x0] and the Call prices only the restriction of σ(x) to [x0,+∞).
This has the following economical interpretation: long-term American Put prices
mainly give information on the downward volatility while long-term American Call
prices give information on the upward volatility. This dichotomy is remarkable. In
comparison, according to Dupire’s formula [7], there is no such phenomenon for
European options: the knowledge of the Call prices gives the whole local volatility
surface, not only one part. In other words, the European Call and Put prices give
the same information on the volatility while the perpetual American Call and Put
prices give complementary information.

Thus, one may think that the perpetual American Call and Put prices only
depend on a part of the volatility curve. This is precised by the Proposition below
that gives necessary and sufficient conditions on the volatility functions to observe
the same Put prices (resp. Call prices).

Proposition 4.2. Let us consider x0 > 0 and σ1(.), σ2(.) two volatility functions
satisfying (Hvol). Then, the following properties are equivalent:
(i) ∀y > 0, Pσ1(x0, y) = Pσ2(x0, y) (resp. ∀y > 0, Cσ1(x0, y) = Cσ2(x0, y))
(ii) ∀y ≤ y∗

σ̃2
(x0), σ̃1(y) = σ̃2(y). (resp. ∀x ≥ ξ∗

σ̂1
(x0), σ̂1(x) = σ̂2(x) where

σ̂j denotes the local volatility function such that ∀x, y > 0, Cσj
(x, y) =

pσ̂j
(y, x).)

(iii) ∀x ∈ (0, x0], σ1(x) = σ2(x) and y∗
σ̃1

(x0) = y∗
σ̃2

(x0). (resp. ∀x ∈ [x0,+∞),
σ1(x) = σ2(x) and ξ∗

σ̂1
(x0) = ξ∗

σ̂2
(x0).)
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(iv) ∀x ∈ (0, x0], σ1(x) = σ2(x) and
f ′

↓,σ1
(x0)

f↓,σ1 (x0)
=

f ′
↓,σ2

(x0)

f↓,σ2 (x0)
. (resp. ∀x ∈ [x0,+∞),

σ1(x) = σ2(x) and
f ′

↑,σ1
(x0)

f↑,σ1 (x0)
=

f ′
↑,σ2

(x0)

f↑,σ2 (x0)
.)

(v) f↓,σ1 and f↓,σ2 (resp. f↑,σ1 and f↑,σ2) are proportional on (0, x0] (resp.
[x0,+∞)).

(vi) ∀x ≤ x0,∀y > 0, Pσ1(x, y) = Pσ2(x, y) (resp. ∀x ≥ x0,∀y > 0, Cσ1(x, y) =
Cσ2(x, y)).

Remark 4.3. • Among these many conditions, let us remark that condition
(ii) on the dual volatility is much simpler than condition (iii) on the primal
volatility since the latter requires the equality of the dual exercise boundaries
at x0.

• When δ = 0, one has an explicit form for the solutions of (9):

f↓(x) =
ϕ(x)
ϕ(1)

where ϕ(x) = x

∫ +∞

x

(
1
v2

exp
[
−
∫ v

1

2r
uσ2(u)

du

])
dv, f↑(x) = x.

Then, condition (iv) also writes in the Put case ∀x ∈ (0, x0], σ1(x) = σ2(x)
and∫ +∞

x0

(
1
v2

exp
[
−
∫ v

x0

2r
uσ2

1(u)
du

])
dv =

∫ +∞

x0

(
1
v2

exp
[
−
∫ v

x0

2r
uσ2

2(u)
du

])
dv.

Proof. We consider for example the Put case.
(i) =⇒ (ii): See the proof of Theorem 4.1.
(ii) =⇒ (iii): Let us define ψ(x) = (y∗

σ̃1
)−1(y∗

σ̃2
(x))/x. We can show as in

the proof of Theorem 2.1 that ψ(x0) = 1 and then ψ ≡ 1 on (0, x0], otherwise it
would go to 0 or +∞ when x → 0, which is not possible thanks to (16). We get
then ∀x ∈ (0, x0], σ1(x) = σ2(x) using (29) that express σj in function of y∗

σ̃j
and

σ̃j , j ∈ {1, 2}.

(iii) =⇒ (iv): Thanks to (21) and Theorem 3.1, we have
f ′

↓,σ1
(x0)

f↓,σ1 (x0)
=

−1
y∗

σ̃1
(x0)−x0

= −1
y∗

σ̃2
(x0)−x0

=
f ′

↓,σ2
(x0)

f↓,σ2 (x0)
.

(iv) =⇒ (v):
The set of solutions to 1

2σ
2
1(x)x2f ′′(x) + (r− δ)xf ′(x) − rf(x) = 0 on (0, x0]

is a two-dimensional vector space, but thanks to the relation
f ′

↓,σ1
(x0)

f↓,σ1 (x0)
=

f ′
↓,σ2

(x0)

f↓,σ2 (x0)
,

f↓,σ1 and f↓,σ2 are proportional on (0, x0]:

∀x ≤ x0, f↓,σ1(x) =
f↓,σ1(x0)
f↓,σ2(x0)

f↓,σ2(x). (33)

(v) =⇒ (vi): The proportionality implies that ∀x ∈ (0, x0],
f↓,σ1 (x)′

f↓,σ1 (x) =
f↓,σ2 (x)′

f↓,σ2 (x) , and then (y∗
σ̃1

(x) − x)−1 = (y∗
σ̃2

(x) − x)−1 using (21) and Theorem 3.1.
Therefore

∀x ∈ (0, x0], y∗
σ̃1

(x) = y∗
σ̃2

(x).
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We have ασ1(y
∗
σ̃1

(x))f↓,σ1(x) = ασ2(y
∗
σ̃2

(x))f↓,σ2(x) using (17), and obtain
from (33) that

∀x ≤ x0, ∀y ≤ y∗
σ̃1

(x0), ασ1(y) =
f↓,σ2(x0)
f↓,σ1(x0)

ασ2(y) =
f↓,σ2(x)
f↓,σ1(x)

ασ2(y). (34)

Thus, we deduce from (17), (33) and (34) the equality of the Put prices for the
low strikes

∀x ≤ x0, ∀y ≤ y∗
σ̃1

(x), Pσ1(x, y) = Pσ2(x, y).

For y > y∗
σ̃1

(x) = y∗
σ̃2

(x), the equality is clear since both prices are equal to y−x.
(vi) =⇒ (i): clear. �

Let us observe that the point (ii) of the last proposition allows to exhibit
different volatility functions with analytic expressions that give the same Put (or
Call) prices. Let us consider the same family as in Sect. 3.2 coming from the
Call exercise boundary y∗

1(x) = x x+a
bx+c (assuming a, b, c > 0 and max(c/a, b) <

min(1, r/δ)). For x0 > 0, we introduce the exercise boundary:

y∗
2(x) = y∗

1(x) for x ≤ x0 and y∗
2(x) = y∗

1(x0) + (y∗
1)′(x0)(x− x0) for x ≥ x0.

The condition (y∗
2 ∈ C̃y) is satisfied provided that (y∗

1)′(x0) > max(1, δ/r). This
is automatically ensured by the assumptions made on a, b, c since (y∗

1)′(x0) =
(bx2

0 + 2cx0 + ac)/(b2x2
0 + 2bcx0 + c2). That family is such that σ̃1(y) = σ̃2(y) for

y ≤ y∗
2(x0). We can then calculate σ2 as in Sect. 3.2 using the relation σ2(x) =√

2(ry∗
2 (x)−δx)(y∗

2 (x)−x)
x
√
y∗
2 (x)′ . This gives σ2(x) = σ(x) for x ≤ x0 and for x ≥ x0,

σ2(x)

=

√
2
[(r(y∗

1)′(x0)−δ)x + r(y∗
1(x0)−x0(y∗

1)′(x0))][((y∗
1)′(x0)−1)x+y∗

1(x0)−x0(y∗
1)′(x0)]

x2(y∗
1)′(x0)

.

In Fig. 2, we have plotted the same example as in Fig. 1 (x = 0.5 and
y = 0.4), adding the graph of T �→ Pσ2(T, x, y). The volatility function σ2 has
been calculated with the formula above with x0 = 0.5. According to Proposi-
tion 4.2 and the duality, the three prices are equal when T is large. In the second
example (x = 3 and y = 1), we still observe that Pσ(T, x, y) and cσ̃(T, y, x) con-
verge toward the same value when T is large. On the contrary, the limit price of
Pσ2(T, x, y) is significantly different. To observe the same price, we should have
taken, according to Proposition 4.2, x0 ≥ 3.

4.2. Calibration to “real” Call and Put prices

In that subsection, we address some problems that arise if one tries to apply the
calibration procedure when the prices p(K) and c(K) do not derive from a time-
homogeneous model. For arbitrage-free reasons, the function p (resp. c) must be
non-decreasing (resp. non-increasing). We assume moreover that they are smooth
functions of the strike K, and focus for example on the calibration to Put prices.
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Figure 2. Pσ(T, x, y) (solid line), Pσ2(T, x, y) (dashed line with
crosses) and cσ̃(T, y, x) (dashed line) in function of the time T
for a = 1, b = 0.4, c = 0.1, x0 = 0.5, r = 0.2 and δ = 0.1

Firstly, let us observe that the arbitrage-free theory allows to define a dual
volatility as previously by (0, Y ]:

∀K < Y, ηp(K) =
1
K

√
2(δp(K) +K(r − δ)p′(K))

p′′(K)
. (35)

Indeed, the payoff convexity in K ensures the positivity of p′′(K) and the arbi-
trage-free assumption ensures that δp(K) + K(r − δ)p′(K) is nonnegative, so
that the square-root is well defined. Let us prove the last point and suppose the
contrary (i.e. ∃y > 0 such that d

dy e
δyp(e(r−δ)y) < 0) to exhibit an arbitrage oppor-

tunity. In that case, there is z > y such that eδyp(e(r−δ)y) > eδzp(e(r−δ)z). We
then sell one Put with strike e(r−δ)y and buy eδ(z−y) Puts with strike e(r−δ)z.
This initial transaction generates a positive flow. The hedging works as follows:
naming τ the time at which the Put sold is exercised, we have to pay e(r−δ)y−Sτ .
In other words, we receive one share and borrow e(r−δ)y in cash. We keep this
position until time τ + z − y. At this time, we have exactly eδ(z−y) shares and
Puts with strike e(r−δ)z. Thus, we obtain at least eδ(z−y)e(r−δ)z = e(r−δ)yer(z−y)

and we cancel the debt.
The next proposition gives sufficient conditions that allow to construct an

homogeneous volatility which is consistent to the observed prices.

Proposition 4.4. Let us assume that K ∈ R
∗
+ �→ p(K) is a C1 function, C2 on

R
∗
+\{Y } with Y = inf{K > 0 : p(K) = K − x0} < +∞. Let us also assume that

ηp defined by (35) is bounded from below and above by two positive constants and
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admits a left-hand limit in Y . Then, if we extend ηp in any continuous function
on (0,+∞) satisfying (Hvol) still denoted by ηp, we have

∀K > 0, P
˜
ηp(x0,K) = p(K).

Notice that once we choose the extended function ηp, we obtain
˜
ηp by first

solving (20) on R
∗
+ starting from x0 with the condition y∗

ηp
(x0) = Y and then

using (29).

Proof. The functions K �→ p(K) and K �→ cηp
(K,x0) solve (10). Since we have

0 ≤ p(K) ≤ K for arbitrage-free reasons, both functions go to 0 when K → 0.
As recalled in Sect. 1.1, g↑ is the unique solution to (10) up to a multiplicative
constant that satisfies limx→0 g(x) = 0. Therefore, there is λ > 0 such that:

∀K ≤ Y, p(K) = λcηp
(K,x0).

The C1 assumption made on p ensures p(Y ) = Y − x0 and p′(Y ) = 1. This
gives g↑(Y )/g′

↑(Y ) = Y − x0 and therefore Y = y∗
ηp

(x0) using Lemma A.1. Thus,
cηp

(Y, x0) = Y − x0 = p(Y ) and λ = 1. One concludes with Theorem 3.1. �

In the same manner, we obtain the following result from the Call prices.

Proposition 4.5. Let us assume that K ∈ R
∗
+ �→ c(K) is a C1 function, C2 on

R
∗
+\{X} with X = sup{K > 0, c(K) = x0 −K} > 0. Let us also assume that ηc

defined by

∀K > X, ηc(K) =
1
K

√
2(δc(K) +K(r − δ)c′(K))

c′′(K)

is bounded from below and above by two positive constants and admits a right-
hand limit in X. Then, if we extend ηc in any continuous function on (0,+∞)
satisfying (Hvol) still denoted by ηc, we have

∀K > 0, Cηc
ˇ
(x0,K) = c(K)

where ηc
ˇ

is obtained from ηc like σ from σ̂ in the end of the proof of Proposi-

tion 4.1.

Therefore, we are able to find volatility functions that give exactly the Put
prices and others that give exactly the Call prices. Now, the natural question is
whether one can find a volatility function σ that is consistent to both the Put and
Call prices. According to Proposition 4.2, all the volatility functions

˜
ηp (resp. ηc

ˇ
)

giving the Put (resp. Call) prices coincide on (0, x0) (resp. (x0,+∞)). The only
volatility function possibly giving both the Put and Call prices is

σ(x) =

⎧⎨
⎩ ˜
ηp(x) if x < x0

ηc
ˇ
(x) if x > x0

.

We deduce from Proposition 4.2:
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Proposition 4.6. Assume that
˜
ηp(x−

0 ) = ηc
ˇ
(x+

0 ). Then,

∀K > 0, p(K) = Pσ(x0,K) and c(K) = Cσ(x0,K)
iff x∗

σ(Y ) = x0 and Υ∗
σ(X) = x0.

5. The Black-Scholes model: the unique model invariant through
this Dupire-type duality

The purpose of that section is to put in evidence the particular role played by the
Black-Scholes model for the perpetual American Call–Put Dupire-type duality.
We have recalled in the introduction that in the European case, the Call–Put
Dupire-type duality holds for all maturities without any change of the volatility
function when it is time-homogeneous. Here, on the contrary, we are going to
prove that if the duality holds for the perpetual American options with the same
volatility:

∀x, y > 0, Pσ(x, y) = cσ(y, x) (36)

then, under some technical assumptions, necessarily σ(.) is a constant function.

Proposition 5.1. Let us consider a positive interest rate r and a nonnegative div-
idend rate δ < r. We suppose that the volatility function σ satisfies (Hvol), and is
analytic in a neighborhood of 0, i.e.

∃ρ > 0,∀x ∈ [0, ρ), σ(x) =
∞∑
k=0

σkx
k. (37)

Then, (36) holds if and only if ∀x ≥ 0, σ(x) = σ0.

We have already shown in the introduction that (36) holds in the Black-
Scholes case. So we only have to prove the necessary condition. We decompose
the proof into the three following lemmas.

Lemma 5.2. Let us consider a volatility function that satisfies (Hvol). If the dual
volatility function σ̃ is analytic in a neighborhood of 0, then the boundaries x∗

σ

and y∗
σ̃ are also analytic in a neighborhood of 0.

Lemma 5.3. Let us suppose that σ satisfies (Hvol) and is analytic in a neighbor-
hood of 0. Let us assume moreover that r > δ. If the equality (36) holds, σ is
constant in a neighborhood of 0:

∃ρ > 0,∀y ∈ [0, ρ], σ(y) = σ0.

Lemma 5.4. Let us suppose that σ is a constant function on [0, ρ] for ρ > 0 sat-
isfying (Hvol) and (36). Then, σ is constant on R+ (and x∗

σ and y∗
σ̃ are linear

functions).
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Proof of Lemma 5.2. Let us first show that x∗
σ is analytic in 0. Thanks to the

relation (21), we have g(y∗
σ̃(x))

g′(y∗
σ̃(x)) = y∗

σ̃(x) − x, and therefore g(y)
g′(y) = y − x∗

σ(y).

Thus, x∗
σ(y) is analytic in 0 iff φ(y) = g(y)

g′(y) is analytic in 0. Using (10) and

φ′ = 1 − g′′

g′ φ, we get that φ is solution of

φ′(y) = 1 +
2

σ̃2(y)
(
(δ − r)φ(y)/y − δ(φ(y)/y)2

)
. (38)

Notice that φ(y) = y−x∗
σ(y) and (13) imply that if φ is analytic in 0 then the coef-

ficient of order 0 in its expansion vanishes and the coefficient of order 1 belongs
to (0, 1).

To complete the proof we are first going to check that if ψ(y) =
∑∞
k=1 φky

k

with φ1 ∈ (0, 1) solves (38) in a neighborhood of 0 then φ ≡ ψ in this neigh-
borhood. Then we will prove existence of such an analytic solution ψ. We have
ψ(0) = 0, and the function ψ being analytic with φ1 �= 0, its zeros are isolated
points. There is therefore a neighborhood of 0, (0, 2ε) where ψ does not van-
ish. Let us consider γ a solution of γ′ − 1

ψγ = 0 starting from γ(ε) �= 0 in ε:
γ(x) = γ(ε) exp(

∫ x
ε

1
ψ(u)du). Since ψ solves (38), it is not hard to check that γ is

solution of (10) with η = σ̃. The limit condition γ(x) →
x→0

0 is satisfied since we

have 1
ψ(u) ∼

u→0

1
φ1u

and so
∫ x
ε

1
ψ(u)du →

x→0
−∞. As g is the unique solution to (10)

up to a multiplicative constant that satisfies limx→0 g(x) = 0 (see Sect. 1.1), there
is c �= 0 such that γ(y) = cg(y), and thus ψ(y) = g(y)/g′(y) = φ(y) = y − x∗

σ(y).
We can then write x∗

σ(y) = (1 −φ1)y−
∑∞
k=2 φky

k in the neighborhood of 0 with
1 − φ1 > 0. It is well-known that in that case, the reciprocal function y∗

σ̃ is also
analytic in 0.

Let us turn to the existence of ψ. Since σ0 ≥ σ > 0, y → 2
σ̃2(y) is an analytic

function in the neighborhood of 0. Thus, there is ρ0 > 0 and a0 > 0 such that

∀y ∈ [0, ρ0],
2

σ̃2(y)
=

∞∑
k=0

aky
k and

∞∑
k=0

|ak|ρk0 < ∞.

The analytic function
∑
k≥1 φky

k solves (38) if and only if

∞∑
k=0

(k + 1)φk+1y
k = 1 + (δ − r)

∞∑
k=0

⎛
⎝ ∑
i+j=k

aiφj+1

⎞
⎠ yk

− δ

∞∑
k=0

⎛
⎝ ∑
i+j+l=k

aiφj+1φl+1

⎞
⎠ yk.

Identifying the terms of order 0, we get that φ1 solves P (φ1) = 0 where P (x) =
δa0x

2 + (1 − (δ − r)a0)x − 1. Since P (0) = −1 < 0 and P (1) = ra0 > 0, the
polynomial P admits a unique root on (0, 1) and we choose φ1 equal to this root.
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Then, by identification of the terms with order k, we define the sequence (φk)k≥1

inductively by

φk+1 =
(δ − r)

∑
i+j=k,j 
=k aiφj+1 − δ

∑
i+j+l=k,j 
=k,l 
=k aiφj+1φl+1

k + 1 + (r − δ)a0 + 2δa0φ1
.

This ratio is well defined since (r − δ)a0 + 2δa0φ1 = δa0φ1 + 1/φ1 − 1 > 0.
We still have to check that the series

∑
k≥1 φky

k is defined in a neighborhood
of 0. To do so, we are going to show that there is ρ > 0 such that the sequence
(|φk|ρk)k≥1 is bounded. We have for 1 ≤ k ≤ n:

|φk+1|ρk ≤

|δ − r|
k−1∑
j=0

|ak−j |ρk−j |φj+1|ρj + δ
k∑
i=0

⎛
⎜⎝ ∑
j+l=k−i
j 
=k,l 
=k

|φj+1|ρj |φl+1|ρl

⎞
⎟⎠ |ai|ρi

k + 1
.

Let us suppose that for 1 ≤ j < k, |φj+1|ρj ≤ 1/(j + 1). Then,

|φk+1|ρk ≤
|δ − r|ρ

∑k
j=1 |aj |ρj−1 + δ

k∑
i=0

( ∑
j+l=k−i

1
j+1

1
l+1

)
|ai|ρi

k + 1
.

We remark that
∑
j+l=k−i

1
j+1

1
l+1 = 1

k−i+2

∑
j+l=k−i

1
j+1 + 1

l+1 ≤ 2 ln(k−i+1)+1
k−i+2 ,

and we finally get:

|φk+1|ρk ≤
2δ|a0| ln(k+1)+1

k+2 + ρ(|δ − r| + 2δ)
∑k

j=1 |aj |ρj−1

k + 1
(39)

since ln(k−i+1)+1
k−i+2 ≤ 1. Let us now consider k0 such that ∀k ≥ k0, 2δ|a0| ln(k+1)+1

k+2 <

1/2. Now, we chose ρ ∈ (0, ρ0) small enough such that ∀k ≤ k0, |φk+1|ρk ≤
1/(k + 1) and ρ(|δ − r| + 2δ)

∑∞
j=1 |aj |ρj−1 < 1/2. Then we get by induction

from (39) that ∀k ≥ k0, |φk+1|ρk ≤ 1/(k + 1). �

Proof of Lemma 5.3. On the one hand, thanks to the assumption, σ = σ̃ is ana-
lytic in 0, and therefore x∗

σ is analytic in 0 thanks to Lemma 5.2:

∃ρ > 0, ∀y ∈ [0, ρ), x∗
σ(y) =

∞∑
i=1

xiy
i and σ(y) =

∞∑
i=0

σiy
i.

On the other hand, it is not hard then to deduce from (28), σ = σ̃ and the
differential equation (19) that

x∗
σ(y)

′ =
2(y − x∗

σ(y))(ry − δx∗
σ(y))

y2σ(y)2
. (40)

From Corollary 2.2 and (25), we get

x∗
σ(y)

′ =
(y − x∗

σ(y))(ry − δx∗
σ(y))((x

∗
σ)

−1)′(y)
((x∗

σ)−1(y) − y)(r(x∗
σ)−1(y) − δy)

. (41)



544 A. Alfonsi and B. Jourdain NoDEA

Now, we consider n = inf{i ≥ 2, xi �= 0} and suppose it finite. We can get eas-
ily that:

x∗
σ(y) = x1y + xny

n + . . . x∗
σ(y)

′ = x1 + nxny
n−1 + . . .

(x∗
σ)

−1(y) = 1
x1
y − xn

xn+1
1

yn + . . . ((x∗
σ)

−1)′(y) = 1
x1

(1 − nxn

xn
1
yn−1) + . . .

and then

(1−x∗
σ(y)/y)(r−δx∗

σ(y)/y) = (1 − x1)(r − δx1)+xn(2δx1−(r + δ))yn−1 + · · ·(
(x∗
σ)

−1(y)
y

−1
)(

r
(x∗
σ)

−1(y)
y

−δ
)

=
1
x2

1

{
(1 − x1)(r − δx1)

+
xn
xn1

((r + δ)x1 − 2r)yn−1

}
+ · · ·

The right hand side of (41) has then the following expansion:

x1

{
1 +

xn
(1 − x1)(r − δx1)

[
2δx1−(r + δ) +

2r
xn1

− r + δ

xn−1
1

]
yn−1−nxn

xn1
yn−1

}
+ · · ·

The equality of the terms of order n− 1 in (41) then leads to:

nxnx
n−1
1 =

xn
(1 − x1)(r − δx1)

[
2δxn+1

1 − (r + δ)xn1 − (r + δ)x1 + 2r
]
− nxn.

Since xn �= 0 and with a simplification we get

n(1 + xn−1
1 ) =

1
r − δx1

[
−2δxn1 + (r − δ)

n−1∑
k=1

xk1 + 2r

]
. (42)

In the case δ = 0 this gives n(1+xn−1
1 ) = xn−1

1 + · · ·+x1 +2 which is not possible
because x1 ∈ (0, 1). When 0 < δ < r, we denote α = r/δ > 1 and rewrite (42):

n(1 + xn−1
1 )(α− x1) = −2xn1 + (α− 1)xn−1

1 + · · · + (α− 1)x1 + 2α

= α− xn1 + (α− x1)
1 − xn1
1 − x1

.

Therefore, n(1 + xn−1
1 ) = α−xn

1
α−x1

+ 1−xn
1

1−x1
< 2 1−xn

1
1−x1

because β �→ β−xn
1

β−x1
is decreas-

ing on (1, α) (xn1 < x1). To show that this is impossible, we consider Pn(x) =
n(1 + xn−1) − 2

∑n−1
k=0 x

k. We have Pn(1) = 0 and for x < 1, P ′
n(x) = n(n − 1)

xn−2 − 2
∑n−1
k=1 kx

k−1 = 2
∑n−1

k=1 k(x
n−2 −xk−1) < 0. Thus Pn is positive on [0, 1)

and Pn(x1) > 0 which is a contradiction. �

Proof of Lemma 5.4. It is easy to get from (19) and σ = σ̃ that

x∗
σ(y)

′ =
x∗
σ(y)σ(x∗

σ(y))
yσ(y)

. (43)

We have σ(x) = σ0 for x ∈ [0, ρ]. Since x∗
σ(y) solves (43) and x∗

σ(y) ≤ y, x∗
σ(y)

′ =
x∗
σ(y)/y on [0, ρ]. Therefore, x∗

σ(y) = x1y for y ∈ [0, ρ]. Thanks to (19), x1 is the
unique root in (0,min(1, r/δ)) of

x1σ
2
0 = 2(1 − x1)(r − δx1).
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Now let us observe that (19) gives for y ∈ (0, y∗
σ̃(ρ)], x

∗
σ(y)

′ = x∗
σ(y)2σ2

0
2(y−x∗

σ(y))(ry−δx∗
σ(y))

with x∗
σ(ρ) = x1ρ. Since y → x1y solves this ODE, for which local uniqueness

holds thanks to the Cauchy Lipschitz theorem, we then have x∗
σ(y) = x1y on

[ρ, y∗
σ̃(ρ)] and so y∗

σ̃(ρ) = (x∗
σ)

−1(ρ) = ρ/x1. Then, (43) gives σ0/σ(y) = 1 on
[ρ, ρ/x1]. Thus, we prove by induction on n that x∗

σ(y) = x1y and σ(y) = σ0 for
y ∈ [0, ρ/(x1)n]. This shows the desired result. �

6. Conclusion

In this paper, we have derived a Dupire-type Put Call duality equality for perpet-
ual American options. Like Dupire’s formula for European options, this equality
permits the calibration of the time-homogeneous local volatility function in the
underlying model from the prices of perpetual Put and Call options. For a given
value x0 > 0 of the underlying, one respectively recovers the restrictions of the
volatility function to (0, x0] and to [x0,+∞) from the prices of the perpetual Put
options and the prices of the perpetual Call options.

Addressing Dupire like Call–Put duality for American options with finite
maturity in models with time-dependent local volatility functions like (1) would
be of great interest for calibration purposes. If P (T, x, y) denotes the initial price
of the American Put option with maturity T and strike y in the model (1) and
x∗(T, y) stands for the corresponding exercise boundary such that P (T, x, y) =
(y − x)+ if and only if x ≤ x∗(T, y), then the smooth-fit principle writes{

P (T, x∗(T, y), y) = y − x∗(T, y)
∂xP (T, x∗(T, y), y) = −1

.

Differentiating the former equality with respect to y yields

∂xP (T, x∗(T, y), y)∂yx∗(T, y) + ∂yP (T, x∗(T, y), y) = 1 − ∂yx
∗(T, y).

With the second equality, one deduces that ∂yP (T, x∗(T, y), y) = 1. Therefore the
smooth-fit principle automatically holds for the dual Call option if there exists
any. In spite of this encouraging remark, we have not been able so far to treat the
finite maturity case. According to our numerical experiments (see Fig. 2), Ameri-
can Put and Call prices computed in infinite maturity dual models may differ for
finite maturities. This means that in the case of a time-homogeneous primal local
volatility function ς(t, x) = σ(x), if there exists a dual local volatility function for
some finite maturity T , then this volatility function is either time-dependent or
depends on the maturity T .

We have not been more successful in the a priori simpler case of an expo-
nentially distributed random maturity independent from (Wt)t≥0. Then, unlike
in the perpetual case, the price of the option no longer writes as the product of
a function of the underlying spot price by another function of the strike price in
the continuation region. As a consequence, we did not succeed in generalizing our
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first key result for the perpetual case: the derivation of an ODE for the exercise
boundary considered as a function of the strike variable.

So the only two generalizations of the theory presented in this paper that
we have been able to work out are limited to the perpetual maturity case. First,
in [1], we extend our Dupire-type duality by replacing the Put-Call payoff func-
tion (y − x)+ by a nonnegative and continuous payoff function φ(x, y) such that
Φ = {(x, y) : φ(x, y) > 0} �= ∅, φ is C2 on Φ and

∀(x, y) ∈ Φ, ∂xφ(x, y) < 0, ∂yφ(x, y) > 0, ∂2
xxφ(x, y) ≤ 0 and ∂2

yyφ(x, y) ≤ 0.

Unfortunately, for such general payoff functions, it may happen that no dual local
volatility function η can be associated with σ. Secondly, in the Appendix B of the
present paper, we briefly explain how to deal with a dividend rate δ(x) depending
on the underlying spot price under reinforced regularity assumptions on the local
volatility functions. Essentially, we are able to generalize our theory when the
function δ is nonincreasing and such that x �→ xδ(x) is increasing.
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Appendix A: Proofs of technical results

Proof of Theorem 1.2. We give here a direct proof that generalizes the approach
developed by Beibel and Lerche [3] in the Black-Scholes case. Let us define:

∀z > 0, h(z) =
(y − z)+

f(z)
and h∗ = sup

z>0
h(z).

The function h is continuous such that h(z) = 0 for z ≥ y and that h(0+) = 0 since
we know from [4] that lim0+ f = +∞. Therefore, x∗

σ(y)
def= sup{z > 0, h(z) = h∗}

belongs to (0, y) and is such that h(x∗
σ(y)) = h∗. Since the function h is C2 on

(0, y), we have h′(x∗
σ(y)) = 0 and h′′(x∗

σ(y)) ≤ 0. These conditions give easily

f(x∗
σ(y)) + (y − x∗

σ(y))f
′(x∗

σ(y)) = 0 and f ′′(x∗
σ(y)) ≥ 0.

Since f is positive and x∗
σ(y) < y, we have f ′(x∗

σ(y)) < 0 and deduce (12). The
second order condition and Eq. (9) then give x∗

σ(y)(r−δ)f ′(x∗
σ(y))−rf(x∗

σ(y)) ≤ 0
and so

ry − δx∗
σ(y) ≥ 0. (44)
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Now let us check the optimality of τPx and consider τ ∈ T0,∞. By Fatou’s
lemma and Doob’s optional sampling theorem, we have

E[e−rτ (y − Sxτ )+] ≤ lim inf
t→+∞

E
[
e−rτ∧t(y − Sxτ∧t)

+
]

= lim inf
t→+∞

E
[
e−rτ∧tf(Sxτ∧t)h(S

x
τ∧t)
]

≤ h(x∗
σ(y))lim inf

t→+∞
E
[
e−rτ∧tf(Sxτ∧t)

]
≤ h(x∗

σ(y))f(x)

since e−rtf(Sxt ) = f(x) +
∫ t
0
e−ruσ(Sxu)Sxuf

′(Sxu)dWu is a nonnegative local mar-
tingale and therefore a supermartingale. If x ≥ x∗

σ(y), we have

E[e−rτP
x (y − SxτP

x
)+] = (y − x∗

σ(y))E[e−rτP
x ] = h(x∗

σ(y))f(x).

Indeed, the latter expectation is equal to f(x)/f(x∗
σ(y)) by Doob’s optional sam-

pling theorem applied to the non-negative martingale (e−rt∧τP
x f(Sxt∧τP

x
))t≥0 which

is bounded by f(x∗
σ(y)) since f is non-increasing. Thus, τPx is optimal for x ≥

x∗
σ(y). Since x∗

σ(y) = sup{z > 0, h(z) = h∗}, we have (y − x)+ = h(x)f(x) <
f(x)h(x∗

σ(y)) for x > x∗
σ(y), and finally deduces (11) for x ≥ x∗

σ(y).
We consider now the complementary case x ∈ (0, x∗

σ(y)), and set τ ∈ T0,∞.
Using the strong Markov property and the optimality result when the initial spot
is x∗

σ(y), we get

E[e−rτ (y − Sxτ )+] ≤ E[e−rτ∧τ̃ (y − Sxτ∧τ̃ )
+], where τ̃ = inf {t ≥ 0, Sxt = x∗

σ(y)}.
On {t < τ̃}, we have Sxt < x∗

σ(y), de
−rt(y−Sxt ) = e−rt(δSxt −ry)dt−e−rtσ(Sxt )Sxt

dWt, where the first term in the right-hand-side is non positive by (44). Thus,
E[e−rτ∧τ̃ (y − Sxτ∧τ̃ )

+] ≤ lim inf
t→+∞

E[e−rτ∧τ̃∧t(y − Sxτ∧τ̃∧t)
+] ≤ (y − x).

It remains to show (13). By (Hvol), 0 < σ ≤ σ(x) ≤ σ < +∞. Thanks to
Proposition 1.4, we have:

∀x > 0, (y − x)+ ≤ Pσ(x, y) ≤ Pσ(x, y) ≤ Pσ(x, y). (45)

Thanks to Proposition 1.5, Pσ(x, y) = (y − x) for x ≤ a(σ)
a(σ)−1y and Pσ(x, y) >

(y − x)+ for x > a(σ)
a(σ)−1y. Since x∗

σ(y) = sup{x > 0, Pσ(x, y) = (y − x)+}, we get

from (45) that x∗
σ(y) ∈ [ a(σ)

a(σ)−1y,
a(σ)
a(σ)−1y]. Let us observe now that a(σ)

a(σ)−1 is a
root of Q(z) = δz2 − (r+ δ+σ2/2)z+ r. As Q(z) = 0 ⇐⇒ σ2z = 2(1− z)(r− δz)
and since a(σ)/(a(σ)−1) ∈ (0, 1), we then deduce that a(σ)/(a(σ)−1) < r/δ. �

Proof of Theorem 1.3. The proof works like for the Put, and we just hint the
differences. We define

∀z > 0, h(z) =
(z − x)+

g(z)
and h∗ = sup

z>0
h(z).

Let us admit for a while that lim
z→+∞

h(z) = 0. Then, since h(z) = 0 for z ≤ x and

h is continuous, h reaches its maximum in y∗
η(x)

def= inf{z > 0, h(z) = h∗}, and
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y∗
η(x) ∈ (x,∞). Then h′(y∗

η(x)) = 0 and h′′(y∗
η(x)) ≤ 0 give (15) and ry∗

η(x) −
δx ≥ 0. Optimality of τ cy is obtained like in the Put case.

Now, let us check that lim
z→+∞

h(z) = 0. It’s Formula gives

de−δt(S̄1
t )

1+a = e−δt(S̄1
t )

1+a
{
(a+ 1)η(S̄1

t )dWt + [a(δ + (a+ 1)η2(S̄1
t )/2)

−(a+ 1)r]dt}.
When a > 0, the drift term is bounded from above by a(δ + (a+ 1)η2/2) − (a+
1)r and we can find a > 0 such that this bound is negative since a(δ + (a +
1)η2/2) − (a + 1)r →

a→0
−r < 0. Let y ≥ 1. Defining τ̄y = inf{t ≥ 0, S̄1

t ≥ y}, we

have E[e−δτ̄y∧t(S̄1
τ̄y∧t)

1+a] ≤ 1 thanks to Doob’s optional sampling theorem. The
Fatou lemma then gives E[e−δτ̄y (S̄1

τ̄y
)1+a] ≤ 1. Therefore, E[e−δτ̄y ] ≤ 1/y1+a

where by convention E[e−δτ̄y ] = P(τ̄y < ∞) if δ = 0. This expectation is equal to
g(1)/g(y) by Doob’s optional sampling theorem applied to the non-negative mar-
tingale (e−δt∧τ̄yg(S̄1

t∧τ̄y
))t≥0 which is bounded by g(y) since g is non-decreasing.

This shows lim
z→+∞

h(z) = 0. �

Lemma A.1. The function f ′ (resp. g′) is negative (resp. positive) and f ′′

(resp. g′′) is positive on (0,+∞). Moreover, the boundaries x∗
σ(y) and y∗

η(x) are
respectively the unique solution to y−x+f(x)/f ′(x) = 0 and y−x−g(y)/g′(y) = 0.
Last, x∗

σ(y), α(y), y∗
η(x) and β(x) are C1 functions on R

∗
+.

Proof. We only give the proof in the Put case, the argument being similar for the
Call (When δ = 0, g′ is positive since this function is equal to exp(

∫ x
1

2r
yη2(y)dy)

up to a positive constant factor). By (9), for x > 0, f ′′(x) has the same sign
as h(x) = rf(x) + (δ − r)xf ′(x). If for some x > 0, f ′(x) = 0, then since f is
positive, f ′′(x) > 0. Therefore x is a local minimum point of f which contradicts
the decreasing property of this function. Hence f ′ is a negative function.

When δ ≤ r, h and therefore f ′′ are positive functions. When δ > r, we
remark that if f ′′(x) = 0 then h′(x) = δf ′(x) < 0. Since the continuous function
f ′′ and h have the same sign, this implies that

∀x > inf {z > 0 : f ′′(z) ≤ 0} , f ′′(x) < 0. (46)

Now for y > 0, by (9) then (21), we have

x∗
σ(y)

2σ(x∗
σ(y))

2

2
f ′′(x∗

σ(y))
f ′(x∗

σ(y))
= r

f(x∗
σ(y))

f ′(x∗
σ(y))

− (r − δ)x∗
σ(y) = δx∗

σ(y) − ry. (47)

By (13), the right-hand-side is negative and moreover limy→+∞ x∗
σ(y) = +∞.

Hence sup{z > 0 : f ′′(z) > 0} = +∞ and with (46), we conclude that f ′′ > 0.
According to (21), F (x∗

σ(y), y) = 0 where

F (x, y) = y − x+ f(x)/f ′(x).

The function F is C1 on (0,+∞) × (0,+∞) and such that

∀x, y > 0, ∂xF (x, y) = −f(x)f ′′(x)/f ′(x)2 < 0.
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Therefore for fixed y > 0, x∗(y) is the unique solution to F (x, y) = 0. Moreover,
y → x∗(y) is C1 by the implicit function theorem. Last, one deduces from (21)
that α(y) is a C1 function. �

Appendix B: Extension to spot-dependent dividend rates

In this section, we extend the Dupire-type duality result for perpetual American
Options when the stock follows the following dynamics with a spot-dependent
dividend rate:

dSxt = Sxt ((r − δ(Sxt ))dt+ σ(Sxt )dWt), Sx0 = x > 0. (48)

Let Pσ(x, y) = sup
τ∈T0,∞

E[e−rτ (y − Sxτ )+] denote the perpetual Put price. Our pur-

pose is to find a dual volatility function η such that

∀x, y > 0, Pσ(x, y) = cη(y, x)

where cη(y, x) = sup
τ∈T0,∞

E[e−
∫ τ
0 δ(S

y
t )dt(S

y

τ − x)+] denotes the perpetual Call price

in the dual model: dS
y

t = S
y

t ((δ(S
y

t ) − r)dt+ η(S
y

t )dWt), S
y

0 = y.
We also define

x∗
σ(y) = sup

{
x > 0, Pσ(x, y) = (y − x)+

}
≤ y, (49)

y∗
η(x) = inf

{
y > 0, cη(y, x) = (y − x)+

}
≥ x. (50)

At this stage, it is not clear that Pσ(x, y) (resp. cη(y, x)) is equal to (y − x)+ for
all x ∈ (0, x∗

σ(y)] (resp. y ∈ [y∗
η(x),+∞)).

We make the following assumptions:

σ, η ∈
{
f : R

∗
+ → R

∗
+, C1, f < ∞

}
(51)

δ : R
∗
+ → R+, C1,∀x > 0, xδ′(x) + δ(x) > 0, (52)

δ − δ < r, (53)

but no longer suppose σ > 0.
Let P(x, y) (resp. c(y, x)) be the price of a perpetual American Put (resp.

Call) option with spot x (resp. y), strike y (resp. x), volatility function σ (resp. η),
interest rate r (resp. δ) and dividend rate δ (resp. r − (δ − δ)). Let also x∗(y)
(resp. y∗(x)) denote the corresponding exercise boundary. We have the following
comparison result.

Proposition B.1. Under assumptions (51)–(53), one has

∀x, y > 0, Pσ(x, y) ≤ P(x, y) and cη(y, x) ≤ c(y, x), (54)
∃c ∈ (0, 1),∀y > 0, x∗

σ(y) ≥ x∗(y) ≥ cy and ∀x > 0, y∗
η(x) ≤ y∗(x) ≤ x/c.

(55)
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Proof. Let (Sxt , t ≥ 0) (resp. (S
y

t , t ≥ 0)) denote the solution of dSt = St((r −
δ)dt + σ(St)dWt) starting from x (resp. dSt = St((δ − r)dt + η(St)dWt) start-
ing from y). Thanks to (51) and (52), by an easy adaptation of Proposition 2.18
[15, p. 293] to the case of locally Lipschitz continuous coefficients, we have a.s.
∀t ≥ 0, Sxt ≥ Sxt (resp. S

y

t ≤ S
y

t ). Therefore, for any stopping time τ :

e−rτ (y − Sxτ )+ ≤ e−rτ (y − Sxτ )
+, a.s.

(resp. e−
∫ τ
0 δ(S

y
t )dt(S

y

τ − x)+ ≤ e−δτ (S
y

τ − x)+, a.s.).

Thanks to (53), we deduce immediately (54) and thus ∀y > 0, x∗
σ(y) ≥ x∗(y)

(resp. ∀x > 0, y∗
η(x) ≤ y∗(x)). We conclude using the inequality that is derived

from the upper bound of the volatility function in (13) (resp. (16)). �
Thanks to this result, the exercise regions are non empty. Following [4], we

introduce f (resp. g) the unique, up to a multiplicative constant, positive decreas-
ing (resp. increasing) solution to 1

2σ
2(x)x2f ′′(x) + (r − δ(x))xf ′(x) − rf(x) = 0,

x > 0 (resp. 1
2η

2(x)x2g′′(x) + (δ(x) − r)xg′(x) − δ(x)g(x) = 0, x > 0). Following
the second part of the proof of Theorem 1.2, we obtain the two first statements
in the following proposition.

Proposition B.2. The pricing formula (11) in Theorem 1.2 (resp. (14) in Theo-
rem 1.3) holds for x ≥ x∗

σ(y) (resp. y ≤ y∗
η(x)). Moreover, (12) and (15) hold.

Last, f ′′(x∗
σ(y)) ≥ 0, g′′(y∗

η(x)) ≥ 0.

Proof. Let us check that f ′′(x∗
σ(y)) ≥ 0. Setting h(x) = y−x

f(x) , we have h(x∗
σ(y)) ≥

h(x) for x ≥ x∗
σ(y) because Pσ(x, y) ≥ y − x. An easy computation using (12)

gives h′(x∗
σ(y)) = 0. We deduce h′′(x∗

σ(y)) ≤ 0, which combined with (12) leads
to f ′′(x∗

σ(y)) ≥ 0. �
From now on, we make the additional assumption

∀x > 0, rg′(x) + δ′(x)(g(x) − xg′(x)) > 0, (56)

which is automatically satisfied when δ′(x) ≤ 0 thanks to the next result.

Corollary B.3. We have ∀y > 0, g(y) − yg′(y) < 0.

Proof. Let us introduce the function z(y) = g(y)/y. We have z′(y) = (yg′(y) −
g(y))/y2, and it is sufficient to show that z′ > 0. Thanks to the ODE satisfied
by g, when z′(y) = 0 then 1

2y
3η(y)2z′′(y) = ryz(y) > 0. Therefore, z′ can vanish

at most one time on (0,+∞) and z′ is positive on (inf{y > 0 : z′(y) > 0},+∞).
By (15), z′(y∗

η(x)) = xg′(y∗
η(x))/(y

∗
η(x))

2 > 0. With (55), one concludes that
inf{y : z′(y) > 0} = 0. �
Lemma B.4. The functions −f ′, g′, f ′′ and g′′ are positive on (0,+∞). Moreover,
the boundaries x∗

σ(y) and y∗
η(x) are respectively the unique solution to

y − x + f(x)/f ′(x) = 0 and y − x − g(y)/g′(y) = 0. Last, x∗
σ(y), y

∗
η(x) are C1

functions on R
∗
+ and satisfy:

∀y > 0, ry > δ(x∗
σ(y))x

∗
σ(y), ∀x > 0, ry∗

η(x) > δ(y∗
η(x))x. (57)
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Proof. The positivity of g′ is a consequence of Corollary B.3 and the negativity
of f ′ is obtained like in the first step of the proof of Lemma A.1. The function
f ′′ (resp. g′′) has the same sign as h(x) = rf(x) + (δ(x) − r)xf ′(x) (resp. k(x) =
δ(x)g(x) + (r − δ(x))xg′(x)). The proof is similar to the one of Lemma A.1 (the
nonnegativity of f ′′(x∗

σ(y)) and g′′(y∗
η(x)) being given by the Proposition B.2),

and the Assumption (52) (resp. (56)) just ensures that when f ′′(x) = 0 (resp.
g′′(x) = 0), h′(x) = f ′(x)(δ(x) + xδ′(x)) < 0 (resp. k′(x) = rg′(x) + δ′(x)g(x) −
δ′(x)xg′(x) > 0). Last, (57) comes immediately from the positivity of f ′′ and g′′,
writing respectively the ODEs satisfied by f and g at the points x∗

σ(y) and y∗
η(x).

�

Corollary B.5. For x ≤ x∗
σ(y) (resp. y ≥ y∗

η(x)), we have Pσ(x, y) = y − x (resp.
cη(y, x) = y − x). In particular x �→ Pσ(x, y) (resp. y �→ cη(y, x)) is a convex
function.

Proof. For any y > 0, x∗
σ(y) is the unique solution to y−x+f(x)/f ′(x) = 0, which

excludes any other point where the smooth-fit holds. Therefore {x > 0, Pσ(x, y) =
(y−x)+} is either equal to (0, x∗

σ(y)] or {x∗
σ(y)}, but the latter case is not possible

according to (54). The proof is similar for the Call. �

Theorem B.6. The boundaries x∗
σ(y) and y∗

η(x) are respectively the unique increas-
ing solutions defined on (0,+∞) of the ODEs

(x∗
σ)

′(y) =
x∗
σ(y)

2σ(x∗
σ(y))

2

2(y − x∗
σ(y))(ry − δ(x∗

σ(y))x∗
σ(y))

,

(y∗
η)

′(x) =
η2(y∗

η(x))y
∗
η(x)

2

2(y∗
η(x) − x)(ry∗

η(x) − δ(y∗
η(x))x)

(58)

satisfying ∀y > 0, cy ≤ x∗
σ(y) < y and ∀x > 0, x < y∗

η(x) ≤ dx with 0 < c < 1 <
d < +∞.

Proof. The proof is similar to the one of Theorem 2.1, but the uniqueness of x∗
σ

cannot be deduced as easily as before from the uniqueness of y∗
η. Let us con-

sider x(y) another increasing solution of the ODE satisfied by x∗
σ(y) that satisfies

the required bounds. The function φ(y) = x−1(x∗
σ(y))/y solves:

φ′(y) =
1
y

[
φ(y) − x∗

σ(y)/y
1 − x∗

σ(y)/y
× rφ(y)y − δ(x∗

σ(y))x
∗
σ(y)

ry − δ(x∗
σ(y))x∗

σ(y)
− φ(y)

]
.

Thanks to the Cauchy-Lipschitz theorem, three cases are possible: φ ≡ 1, φ > 1
and φ < 1. If φ > 1, according to (57), the second fraction is greater than 1 and we
have: φ′(y) > 1

y [φ(y)−x∗
σ(y)/y

1−x∗
σ(y)/y −φ(y)] = φ(y)−1

y
x∗

σ(y)/y
1−x∗

σ(y)/y ≥ cφ(y)−1
y > 0, using (55).

Therefore, φ is increasing and we have for y ≥ 1, φ(y)−φ(1) ≥ c(φ(1)−1) ln(y) →
+∞ when y → +∞. This is in contradiction with the bounds on x and x∗

σ. We
get a similar contradiction when φ < 1, and deduce that φ ≡ 1. �

We are now able to state a Dupire-type duality result similar to Theorem 3.1.
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Theorem B.7. Under assumptions (51)–(53) and (56), the following conditions
are equivalent:
1.

∀x, y > 0, Pσ(x, y) = cη(y, x). (59)

2. x∗
σ and y∗

η are reciprocal functions: ∀x > 0, x∗
σ(y

∗
η(x)) = x.

3. ∀y > 0, x∗
σ(y) < ry/δ(y) and

η(y) =
2(y − x∗

σ(y))
√

(ry − δ(x∗
σ(y))x∗

σ(y))(ry − δ(y)x∗
σ(y))

yx∗
σ(y)σ(x∗

σ(y))
. (60)

4. ∀x > 0, y∗
η(x) > δ(x)x/r and

σ(x) =
2(y∗

η(x) − x)
√

(ry∗
η(x) − δ(x)x)(ry∗

η(x) − δ(y∗
η(x))x)

xy∗
η(x)η(y∗

η(x))
. (61)

Remark B.8. In the proportional dividend rate case, according to Remark 3.2,
existence of a dual volatility function η satisfying (Hvol) is guaranteed as soon as σ
satisfies (Hvol). Here, in the general case, either the existence of the right-hand-side
of (60) may fail (if for some y > 0, x∗

σ(y) > ry/δ(y)) or this right-hand-side may
not satisfy (51). Nonetheless, if δ is a nonincreasing function, then (57) implies
x∗
σ(y) < ry/δ(y) for all y > 0. If moreover σ > 0, then the function defined by

the right-hand-side of (60) satisfies (51). Therefore under both assumptions, the
duality holds and it is possible to calibrate the local volatility function σ under
the spot level from the perpetual Put prices like in the proportional dividend rate
case.

Remark B.9. In contrast with the proportional dividend case, the duality between
Cσ(x, y) = sup

τ∈T0,∞
E[e−rτ (Sxτ − y)+] and pη(y, x) = sup

τ∈T0,∞
E[e−

∫ τ
0 δ(S

y
t )dt(x−S

y

τ )
+]

is not mathematically the same as the one between Pσ(x, y) and cη(y, x). Let g↓
denote the positive nonincreasing solution to 1

2η
2(x)x2g′′(x) + (δ(x) − r)xg′(x) −

δ(x)g(x) = 0, x > 0 ([4]). Let us assume (51), (52) and

δ > 0, ∀x > 0, rg′
↓(x) + δ′(x)(g↓(x) − xg′

↓(x)) < 0. (62)

Then, we can show that Cσ(x, y) ≤ C(x, y) (resp. pη(y, x) ≤ p(y, x)) where
C(x, y) (resp. p(y, x)) is the perpetual American Call (resp. Put) price with inter-
est rate r (resp. δ), dividend rate δ (resp. r), spot x (resp. y), strike y (resp x) and
volatility function σ (resp. η). Similarly, the exercise boundary Υ∗

σ(y) (resp. ξ∗
η(x))

exists for Cσ(x, y) (resp. pη(y, x)) and solves the ODE:

Υ∗
σ(y)

′ =
Υ∗
σ(y)

2σ(Υ∗
σ(y))

2

2(Υ∗
σ(y) − y)(δ(Υ∗

σ(y))Υ∗
σ(y) − ry)(

resp. ξ∗
η(x)

′ =
ξ∗
η(x)

2η(ξ∗
η(x))

2

2(x− ξ∗
η(x))(δ(ξ∗

η(x))x− rξ∗
η(x))

)
.
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Last, we obtain equivalence between:
1.

∀x, y > 0, Cσ(x, y) = pη(y, x). (63)

2. Υ∗
σ and ξ∗

η are reciprocal functions: ∀x > 0, Υ∗
σ(ξ

∗
η(x)) = x.

3. ∀y > 0,Υ∗
σ(y) > ry/δ(y) and

η(y) =
2(Υ∗

σ(y) − y)
√

(δ(y)Υ∗
σ(y) − ry)(δ(Υ∗

σ(y))Υ∗
σ(y) − ry)

yΥ∗
σ(y)σ(Υ∗

σ(y))
. (64)

4. ∀x > 0, ξ∗
η(x) < xδ(x)/r and

σ(x) =
2(x− ξ∗

η(x))
√

(δ(ξ∗
η(x))x− rξ∗

η(x))(δ(x)x− rξ∗
η(x))

xξ∗
η(x)η(ξ∗

η(x))
. (65)

When δ in nonincreasing and σ > 0, then the right-hand-side of (64) exists and
satisfies (52). As a consequence, the duality holds, and it is possible to calibrate
the local volatility function σ above the spot level from the perpetual Call prices.

Example B.10. Let δ(x) = δ0 + α/(x + 1) with 0 < δ0, 0 ≤ α < r. The func-
tion δ is decreasing, satisfies conditions (51)–(53), (56) and (62). When σ > 0, the
Dupire-type duality holds for Pσ and Cσ and it is possible to calibrate exactly
the whole volatility function σ from the perpetual Put and Call prices.
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