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1. Introduction

In this paper, we investigate the large-time behavior of solutions of the Cauchy-
Dirichlet problem for the Hamilton-Jacobi equation:

(CD)



ut(x, t) +H(x,Du(x, t)) = 0 in Q, (1.1)
u(x, t) = f(x) in Ω × {0}, (1.2)
u(x, t) = g(x) on ∂Ω × (0,∞), (1.3)

where Ω is a bounded domain of R
n, Q := Ω×(0,∞), H = H(x, p) is a real-valued

function on Ω×R
n which is coercive and convex in the variable p, u : Ω× [0,∞) →

R is the unknown function, ut := ∂u/∂t,Du := (∂u/∂x1, . . . , ∂u/∂xn), and
f : Ω → R, g : ∂Ω → R are given functions. The function H will be called the
Hamiltonian. We will be dealing only with viscosity solutions of Hamilton-Jacobi
equations in this paper and thus we mean by “solutions”, “subsolutions” and
“supersolutions” viscosity solutions, viscosity subsolutions, and viscosity superso-
lutions, respectively.

In recent years, many researchers have investigated the large-time behavior
of the solution u(x, t) of (1.1) as t → ∞ and established convergence results which
state that under appropriate hypotheses

u(x, t) + ct− v(x) → 0 locally uniformly for x ∈ Ω as t → ∞, (1.4)
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for some solution (v, c) ∈ C(Ω) × R of the additive eigenvalue problem for H:

H(x,Dv(x)) = c in Ω. (1.5)

Here the additive eigenvalue problem for H is a problem of finding a pair of
v ∈ C(Ω) and c ∈ R such that v is a solution of (1.5). If (v, c) is such a pair, we
call v an additive eigenfunction and c an additive eigenvalue. A simple observation
related to this is that, for any (v, c) ∈ C(Ω)×R, the function v(x)−ct is a solution
of (1.1) if and only if (v, c) is a solution of the additive eigenvalue problem for H.
We call such a function v(x) − ct an asymptotic solution of (1.1).

The study of this asymptotic problem goes back to the works of Kružkov
[17], Lions [18] and Barles [1], who studied the case where Ω = R

n and H = H(p)
does not depend on the variable x. In the case where H = H(x, p) depends
both on x and p, the first general results were obtained by Namah-Roquejoffre
[20] and Fathi [8]. One of their results assures that (1.4) holds, provided Ω is
a compact manifold without boundary and H = H(x, p) is smooth in (x, p) and
superlinear and strictly convex in p. For this result Fathi [9] took an approach
based on Aubry-Mather theory. Afterwards Roquejoffre [21] and Davini-Siconolfi
[6] has refined the approach. By another approach based on the theory of partial
differential equations and viscosity solutions, this type of results has been obtained
by Barles-Souganidis [3]. More recently the large-time asymptotic problem of the
same kind has been studied in the case where Ω = R

n by Fujita-Ishii-Loreti [13],
Barles-Roquejoffre [2], Ishii [15], and Ichihara-Ishii [14]. The convergence rate in
(1.4) has been investigated by Fujita [11] and Fujita-Uchiyama [12].

Regarding boundary value problems, the author has recently studied the
large-time asymptotic problem for Hamilton-Jacobi equations under the state
constraint boundary condition (see [22, 5]) in [19]. The large-time asymptotic
problem under the Dirichlet boundary condition has been treated in [1, 21]. In
one of these papers, the problem{

ut(x, t) +H(x,Du(x, t)) = 0 in Q,
u(x, t) = h(x) on ∂pQ,

where ∂pQ = ∂Ω×(0,∞)∪Ω×{0} and h ∈ C(Ω) is a given function, is considered,
where the function h is assumed to satisfy the compatibility condition

h(x) − h(y) ≤ inf




t∫
0

L(γ(λ), γ̇(λ)) dλ | t > 0, γ ∈ C(y, 0;x, t; Ω)


 (1.6)

for any x, y ∈ Ω, where L is the Lagrangian of H, i.e, L(x, ξ) := supp∈R
n{p ·

ξ −H(x, p)} and C(y, 0;x, t; Ω) denotes the spaces of those curves γ which satisfy
γ(s) ∈ Ω for all s ∈ [0, t] as well as γ(0) = y and γ(t) = x. In this case, solutions
of (CD) satisfy the boundary condition in the pointwise sense.
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In this paper, we do not assume the compatibility condition on our initial
and boundary data f, g. This gives a viewpoint which unifies the state constraint
and Dirichlet boundary conditions. Another consequence is that we do not expect
any more that “solutions” of (CD) satisfy the Dirichlet condition pointwise, and
therefore we have to understand the boundary condition in a generalized sense.
We define (viscosity) solutions of (CD) by the following. (See [4], for example.)

Definition 1.1. Let u ∈ C(Ω × [0,∞)). (i) We call u a viscosity subsolution
(resp., supersolution) of (CD) if the following conditions (1)-(3) hold: (1) u is
a viscosity subsolution (resp., supersolution) of (1.), (2) u(x, 0) ≤ f(x) (resp.,
u(x, 0) ≥ f(x) ) for all x ∈ Ω, and (3) for any φ ∈ C1(Ω × (0,∞)) and any
(x0, t0) ∈ ∂Ω × (0,∞) such that u − φ takes a local maximum (resp., minimum)
at (x0, t0),

min{(u− g)(x0, t0), φt(x0, t0) +H(x0, Dφ(x0, t0))} ≤ 0
(resp., max{(u− g)(x0, t0), φt(x0, t0) +H(x0, Dφ(x0, t0))} ≥ 0).

(ii) We call u a viscosity solution of (CD) if it is a viscosity subsolution and a
viscosity supersolution of (CD).

For any a ∈ R, we consider the Dirichlet problem,

(D)a

{
H(x,Du(x)) = a in Ω, (1.7)

u(x) = g(x) on ∂Ω. (1.8)

Proposition 3.2 below states that there exist solutions of (D)a if and only if cH ≤ a,
where

cH := inf{a ∈ R | (1.7) has a solution}. (1.9)

As our main theorem, Theorem 2.2, shows, the large-time behavior of solu-
tions of (CD) changes depending on the sign of cH . To put it more precisely, in
the case where cH > 0, for any solution u of (CD), there exists a solution v ∈ C(Ω)
of the state constraint problem of the Hamilton-Jacobi equation,

(SC)

{
H(x,Du(x)) ≤ cH in Ω, (1.10)

H(x,Du(x)) ≥ cH on Ω, (1.11)

such that

u(x, t) + cHt− v(x) → 0 uniformly for x ∈ Ω as t → ∞; (1.12)

and in the case where cH ≤ 0, for any solution u of (CD), there exists a solution
w ∈ C(Ω) of (D)0 such that

u(x, t) − w(x) → 0 uniformly for x ∈ Ω as t → ∞. (1.13)
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We give representation formulas for the functions v, w in (1.12) and (1.13),
respectively.

Our proof of the convergence results (1.12), (1.13) is based on the Aubry-
Mather theory, which was developed recently by Fathi [7, 9] and Fathi-Siconolfi
[10]. (See also Ishii-Mitake [16].)

This paper is organized as follows: in Section 2, we state our main results,
Theorem 2.2, as well as the precise assumptions on H, f, g and Ω. In Section 3,
we prove the existence of solutions for (D)a for any a ≥ cH and any g ∈ C(∂Ω).
In Section 4, we prove the existence of a solution of (CD) and examine its basic
properties. We prepare some propositions concerning Aubry sets in Section 5. In
Section 6, we prove Theorem 2.2. In Section 7, we give representation formulas
for asymptotic solutions.

2. Assumptions and main result

Let A ⊂ R
k, B ⊂ R

l, where k, l ∈ N, and r > 0. We write U(x, r) = {y ∈ R
n |

|x − y| < r}. We denote by C(A,B) the sets of continuous functions on A with
values in B. When the set B is clear by the context, we may omit writing B in
the above notation. For given −∞ < a < b < ∞ and x, y ∈ B, we use the symbol
AC([a, b], B) to denote the set of absolutely continuous functions on [a, b] with
values in B and we set

C(x, b;B) := {γ ∈ AC([a, b], B) | γ(b) = x},
C(x, a; y, b;B) := {γ ∈ AC([a, b], B) | γ(a) = x and γ(b) = y}.

We call a function m : [0,∞) → [0,∞) a modulus if it is continuous and nonde-
creasing on [0,∞) and vanishes at the origin.

We make throughout the following assumptions:

(A1) H ∈ C(Ω × R
n).

(A2) The function p �→ H(x, p) is strict convex for each x ∈ Ω.

(A3) The function H is coercive, i.e.

lim
r→∞ inf{H(x, p) | x ∈ Ω, p ∈ R

n \ U(0, r)} = ∞.

(A4) f ∈ C(Ω) and g ∈ C(∂Ω).

(A5) f(x) ≤ g(x) for all x ∈ ∂Ω.

(B) For each z ∈ ∂Ω, there are a constant r > 0, a C1-diffeomorphism Φ : R
n →

R
n and a function b ∈ C(Rn−1) such that

Φ(Ω ∩ U(z, r)) = {(x′, xn) ∈ R
n−1 × R | xn > b(x′)} ∩ Φ(U(z, r)).



Vol. 15 (2008) The large-time behavior 351

Remark 2.1. As in [14], we can replace (A2) in our main hypotheses by the
following condition which is weaker than (A2): the function p �→ H(x, p) is convex
and there is a modulus ω with ω(r) > 0 for all r > 0 such that for any (x, p) ∈
Ω × R

n and for any ξ ∈ D−
p H(x, p), q ∈ R

n if H(x, p) = cH , then

H(x, p+ q) ≥ H(x, p) + ξ · q + ω(max{ξ · q, 0}),

where D−
p H(x, p) stands for the subdifferential of H with respect to the variable p.

We now state our main theorem.

Theorem 2.2. Let u ∈ C(Q) be the solution of (CD). (i) If cH > 0, then there
exists a solution v ∈ C(Ω) of (SC) such that

u(x, t) + cHt− v(x) → 0 uniformly for x ∈ Ω as t → ∞.

(ii) If cH ≤ 0, then there exists a solution w ∈ C(Ω) of (D)0 such that

u(x, t) − w(x) → 0 uniformly for x ∈ Ω as t → ∞.

Remark 2.3. (1) Existence and uniqueness of a solution of (CD) will be estab-
lished in Theorems 4.1 and 4.3. (2) We can generalize Theorem 2.2 slightly. We
consider the Cauchy-Dirichlet problem,

(CD′)



ut +H(x,Du(x, t)) = 0 in Q, (2.1)

u(x, t) = f(x) in Ω × {0}, (2.2)

u(x, t) = h(x, t) on ∂Ω × (0,∞), (2.3)

where h(x, t) = g(x)−at for a given constant a ∈ R. Then we have: (i′) if cH > a,
then there exists a solution v of (SC) such that u(x, t)+ cHt−v(x) → 0 uniformly
on Ω as t → ∞, and (ii′) if cH ≤ a, then there exists a solution w of (D)a such that
u(x, t) + at−w(x) → 0 uniformly on Ω as t → ∞. Thus the threshold 0 in terms
of cH for the asymptotic behavior of solutions of (CD) turns into the value a for
that of (CD′). (3) We refer to Theorem 7.1 in Section 7 for a characterization of
functions v and w in Theorem 2.2.

The following example gives a simple illustration of what our main theorem
asserts.

Example. Consider the one-dimensional Cauchy-Dirichlet problem{
ut(x, t) + |Du(x, t)|2 + a = 0 in Q,

u(x, t) = 0 on ∂pQ,
(2.4)
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where Ω = (0, 1) and a ∈ R is a given constant. Formula (4.1) below gives the
unique solution of (CD). Accordingly, for the solution u of (2.4), we have

u(x, t) = inf




t∫
τ


1

4

∣∣∣∣∣γ̇(s)
∣∣∣∣∣
2

− a


 ds | γ ∈ C(x, t; [0, 1]), τ ∈ [0, t], (γ(τ), τ) ∈ ∂pQ




= min{−at, fa(x)},

where fa(x) := |a|1/2 min{x, 1 − x} for x ∈ [0, 1]. It is easy to see that cH = a,
where H(x, p) = |p|2 + a, that any constant function on [0, 1] is a solution of
problem (SC), with Ω = (0, 1), and that if a ≤ 0, then fa is a solution of (D)0,
with Ω = (0, 1). The above formula tells us that if cH > 0, then u(x, t) + cHt → 0
uniformly for x ∈ [0, 1] as t → ∞ and that if cH ≤ 0, then u(x, t) → fa(x)
uniformly for x ∈ [0, 1] as t → ∞, which are exactly what Theorem 2.2 claims.

3. Problem (D)a

In this section, we prove the existence of solutions of (D)a for any a ≥ cH .

Proposition 3.1. ([16, Proposition A. 1]). For any M > 0 there exists a modulus
ω such that if u ∈ C(Ω) is a solution of |Du(x)| ≤ M in Ω, then |u(x) − u(y)| ≤
ω(|x− y|) for all x, y ∈ Ω.

Proposition 3.2. Problem (D)a has a solution if and only if a ≥ cH .

Proof. In the case where cH > a, it is clear that (D)a has no solutions due to the
definition of cH . Thus we need only show that (D)a has a solution in the case
where cH ≤ a.

We prove this by using Perron’s method and it is thus sufficient to construct
a supersolution ψ1 and a subsolution ψ2 of (D)a such that ψ2 ≤ ψ1 on Ω.

Due to (A3), there exists a p0 ∈ R
n such that H(x, p0) ≥ a for all x ∈ Ω. We

set ψ1(x) = p0 · x + C1, where C1 > 0 is a constant chosen so that ψ1(x) ≥ g(x)
for all x ∈ ∂Ω. Since a ≥ cH , there exists a subsolution ψ2 ∈ C(Ω) of (1.7).
Subtracting a sufficiently large constant from ψ2 if necessary, we may assume that
ψ2 ≤ ψ1 on Ω. We define the function w on Ω by

w(x) = sup{v ∈ C(Ω) | v is a subsolution of (1.7) and ψ2 ≤ v ≤ ψ1 on Ω}.

In view of Proposition 3.1, we see w ∈ C(Ω) and conclude as a consequence of
Perron’s method that w is a solution of (D)a. �
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4. Problem (CD)

We introduce the function u : Ω × [0,∞) → R defined by

u(x, t) : = inf

{ t∫
τ

L(γ(s), γ̇(s)) ds+ h(γ(τ), τ) |

γ ∈ C(x, t; Ω), 0 ≤ τ ≤ t, (γ(τ), τ) ∈ ∂pQ

}
, (4.1)

where h : ∂pQ → R denotes the function given by h(x, 0) = f(x) for x ∈ Ω and
h(x, t) = g(x) for (x, t) ∈ ∂Ω × (0,∞).

Theorem 4.1. The function u is a solution of (CD) and it is uniformly contin-
uous on Q.

Remark 4.2. Assumption (A5) is used to assure that the function u defined by
(4.1) is continuous on Q. In fact, (A5) is a necessary condition as well for u to be
continuous at points in ∂Ω × {0}.

Theorem 4.3. Let T > 0 and set QT := Ω × (0, T ). Let u, v ∈ C(QT ) be a
subsolution and a supersolution of (1.1) and (1.3), respectively. Assume u ≤ v on
Ω × {0}. Then u ≤ v on QT .

Theorem 4.1 can be proved as in [19, Section 5] and the proof of Theorem 4.3. is
similarly to that for [16, Theorem 7.3], respectively, so we do not give here the
details of proofs of the above theorems.

It follows from Theorems 4.1 and 4.3 that the function given by (4.1) is a
unique solution of (CD).

The following theorem gives a bound on the solution of (CD).

Theorem 4.4. Let cH be the constant defined by (1.9). (i) If cH > 0, then there
exists a constant M1 > 0 such that |u(x, t) + cHt| ≤ M1 for all (x, t) ∈ Q. (ii)
If cH ≤ 0, then there exists a constant M2 > 0 such that |u(x, t)| ≤ M2 for all
(x, t) ∈ Q.

Proof. We first consider the case where cH > 0. By [19, Theorem 3.4], there exists
a solution ψ ∈ C(Ω) of (SC). We set v±(x, t) := ψ(x) − cHt ± C1, where C1 > 0
is a constant chosen so that v−(x, 0) ≤ f(x) ≤ v+(x, 0) for all x ∈ Ω, and observe
that v+ and v− are a supersolution and a subsolution of (CD), respectively. We
then apply Theorem 4.3, to obtain v− ≤ u ≤ v+ on Q, from which we conclude
that |u(x, t) + cHt| ≤ M1 for all (x, t) ∈ Q and for some constant M1 > 0.

Next we consider the case where cH ≤ 0. In view of Proposition 3.2, we
may choose a solution φ ∈ C(Ω) of (D)0. We set w±(x, t) = φ(x) ± C2, where
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C2 > 0 is chosen so that w−(x, 0) ≤ f(x) ≤ w+(x, 0) for all x ∈ Ω. We see easily
that w+ and w− are a supersolution and a subsolution of (CD), respectively, and
by Theorem 4.3, we get w− ≤ u ≤ w+ on Q. Consequently, we find a constant
M2 > 0 such that |u(x, t)| ≤ M2 for all (x, t) ∈ Q. The proof is now complete. �

5. The Aubry set

We define AcH
as the set of those y ∈ Ω such that

inf




0∫
−t

LcH
(γ(s), γ̇(s)) ds | t ≥ δ, γ ∈ C(y, 0; y,−t; Ω)


 = 0 for all δ > 0, (5.1)

where LcH
(x, ξ) = L(x, ξ)+ cH for all (x, ξ) ∈ Ω×R

n. Following [10], we call AcH

the Aubry set for the Hamiltonian H. We give here a few properties of the Aubry
set, for which we refer the reader to [10, 16, 19].

Proposition 5.1. ([19, Proposition 6.4]). AcH
is a nonempty compact set.

Theorem 5.2. ([16, Theorem 7.3]). Let u, v ∈ C(Ω) be solutions of (SC). If
u ≤ v on AcH

, then u ≤ v on Ω.

Theorem 5.3. Let a ≥ cH and let u, v ∈ C(Ω) be a subsolution and a supersolu-
tion of (D)a, respectively. If a > cH , then u ≤ v on Ω. Also, if a = cH and u ≤ v
on AcH

, then u ≤ v on Ω.

The proof of Theorem 5.3 is similar to [16, Theorem 7.3], so we omit it here.

6. Convergence

This section will be devoted to the proof of Theorem 2.2. In order to prove
Theorem 2.2, we follow the generalized dynamical approach as in [6].

Let u be the solution of (CD). We first consider the case where cH = 0. In
view of Theorems 4.1 and 4.4 (ii), we may define the functions w± ∈ C(Ω) by
w+(x) = lim supt→∞ u(x, t) and w−(x) = lim inft→∞ u(x, t), respectively. Noting
that

w+(x) = lim
t→∞ sup{u(y, s) | y ∈ Ω, |x− y| ≤ 1/t, s > t},

w−(x) = lim
t→∞ inf{u(y, s) | y ∈ Ω, |x− y| ≤ 1/t, s > t},

we see that w+ and w− are a subsolution and a supersolution of (D)0, respectively.
Moreover, since the functions H(x, ·) are convex, we see that w− is a solution of
(D)0. As is now standard, in order to prove Theorem 2.2 in the case where cH = 0,
it is enough to show that w+(x) ≤ w−(x) for all x ∈ Ω.
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Lemma 6.1. ([19, Proposition 5.2]). Let φ ∈ C(Ω) be a solution of (1.10) and
a, b ∈ R with a < b. Then, for any γ ∈ AC([a, b],Ω),

φ(γ(b)) − φ(γ(a)) ≤
b∫

a

LcH
(γ(t), γ̇(t))dt.

Proposition 6.2. Let φ ∈ C(Ω) be a solution of (1.) and y ∈ AcH
. Then there

exists a curve γ ∈ C((−∞, 0],Ω) such that γ(0) = y and for any [a, b] ⊂ (−∞, 0],

γ ∈ AC([a, b],Ω) and

b∫
a

LcH
(γ(s), γ̇(s)) ds = φ(γ(b)) − φ(γ(a)). (6.1)

Following [21, 15], we call curves satisfying (6.1) extremal curves for φ and
hereinafter we write E(φ) to denote the set of all extremal curves for φ and we
also write E(φ, y) to denote the set of all γ ∈ E(φ) such that γ(0) = y.

Proof. By the definition of AcH
, for each k ∈ N, we may choose tk ≥ k and

ηk ∈ C(y, 0; y,−tk; Ω) such that

0∫
−tk

LcH
(ηk(s), η̇k(s)) ds ≤ 2−k. (6.2)

Let a, b ∈ (−∞, 0] satisfy a < b. If k is sufficiently large, we have −tk ≤ a
and by Lemma 6.1,

φ(ηk(0)) − φ(ηk(b)) ≤
0∫

b

LcH
(ηk(s), η̇k(s)) ds, (6.3)

φ(ηk(a)) − φ(ηk(−tk)) ≤
a∫

−tk

LcH
(ηk(s), η̇k(s)) ds. (6.4)

Adding (6.3) and (6.4) and noting (6.2) and ηk(0) = ηk(−tk) = y, we obtain

φ(ηk(a)) − φ(ηk(b)) +

b∫
a

LcH
(ηk(s), η̇k(s)) ds ≤

0∫
−tk

LcH
(ηk(s), η̇k(s)) ds ≤ 2−k.

As in the proof of [15, Lemma 6.3], we may assume by passing to a subse-
quence if necessary that the sequence {ηk} converges to a function γ ∈ C((−∞, 0],Ω)
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in the topology of uniform convergence on bounded sets. Moreover we have
γ ∈ AC([−T, 0]) for any T > 0 and

b∫
a

LcH
(γ(s), γ̇(s)) ds ≤ lim inf

k→∞

b∫
a

LcH
(ηk(s), η̇k(s)) ds.

From this we get

φ(γ(b)) − φ(γ(a)) ≥
b∫

a

LcH
(γ(s), γ̇(s)) ds. (6.5)

The opposite inequality is obtained directly by Lemma 6.1. Noting that γ(0) = y,
we complete the proof. �

Proposition 6.3. There exist a constant δ ∈ (0, 1) and a modulus ω for which if
φ is a solution of (1.10), any x ∈ AcH

, γ ∈ E(φ, x), 0 ≤ s ≤ t and s/(t− s) ≤ δ,
then

u(x, t) − u(γ(−t), s) + cH(t− s) ≤ φ(x) − φ(γ(−t)) +
ts

t− s
ω
( s

t− s

)
. (6.6)

Proof. We first observe by the dynamic programming principle that for any x ∈ Ω
and t, s ≥ 0,

u(x, t+ s) = inf

{ t∫
τ

L(γ(λ), γ̇(λ)) dλ+ u(γ(τ), s+ τ) |

γ ∈ C(x, t; Ω), 0 ≤ τ ≤ t, (γ(τ), τ) ∈ ∂pQ

}

≤ inf

{ t∫
0

L(γ(λ), γ̇(λ)) dλ+ u(γ(0), s) | γ ∈ C(x, t; Ω)

}
.

Then, using this inequality, we follow the proof of [19, Proposition 6.2], to obtain
(6.6). �

Now, we fix any x ∈ AcH
. Choose an extremal curve γ ∈ E(w−, x) and a

divergent sequence {tj}j∈N such that u(x, tj) → w+(x). Since Ω is a compact
set, by replacing {tj}j∈N by its subsequence if necessary, we may assume that
γ(−tj) → y as j → ∞ for some y ∈ Ω. Fix any ε > 0 and choose s > 0 such that
w−(y)+ ε > u(y, s). Let δ ∈ (0, 1) and ω be those from Proposition 6.3. Let j ∈ N

be so large that s(tj − s)−1 ≤ δ. By Proposition 6.3, we get

u(x, tj) ≤ u(γ(−tj), s) + w−(x) − w−(γ(−tj)) +
stj
tj − s

ω

(
s

tj − s

)
.
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Sending j → ∞ yields

w+(x) ≤ u(y, s) + w−(x) − w−(y) < w−(y) + ε+ w−(x) − w−(y) = w−(x) + ε,

from which we get w+ ≤ w− on AcH
. By Theorem 5.3, we see that w+ ≤ w− on

Ω, which completes the proof of Theorem 2.2 in the case where cH = 0.
Next we turn to the case where cH > 0. The following proposition reduces

(CD) to the state constraint problem.

Proposition 6.4. Assume that cH > 0. Let v(x, t) = u(x, t) + cHt and M1 be
the constant given in Theorem 4.4 (i). For any T ≥ (1/cH)(M1 + 1 + max∂Ω |g|),

v(x, t+ T ) = inf




t∫
0

LcH
(γ(s), γ̇(s)) ds+ v(γ(0), T ) | γ ∈ C(x, t; Ω)


 . (6.7)

Proof. It follows that v satisfies

vt +H(x,Dv(x, t)) = cH in Q,
v(x, t) = f(x) in Ω × {0},
v(x, t) = g(x) + cHt on ∂Ω × (0,∞)

in the viscosity sense. The dynamic programming principle yields

v(x, t+ T ) = inf

{ t∫
τ

LcH
(γ(λ), γ̇(λ)) dλ+ hT (γ(τ), τ) |

γ ∈ C(x, t; Ω), τ ∈ [0, t], (γ(τ), τ) ∈ ∂pQ

}
, (6.8)

where hT (x, t) := g(x)+ cH(T + t) for (x, t) ∈ ∂Ω× (0,∞) and hT (x, 0) := v(x, T )
for x ∈ Ω. Since T ≥ (1/cH)(M1 + 1 + max∂Ω |g|), for any γ ∈ C(x, t; Ω) and any
τ ∈ (0, t], if (γ(τ), τ) ∈ ∂pQ, then

hT (γ(τ), τ) ≥ cHT − max
∂Ω

|g| ≥ M1 + 1 ≥ v(γ(0), T ) + 1

> v(γ(0), T ) = hT (γ(0), 0). (6.9)

Formula (6.8) and (6.9) together yield (6.7). �

By Proposition 6.4, we see that the function v(x, t) := u(x, t) + cHt is a
solution of the Cauchy problem with state constraints, with the initial time T > 0
sufficiently large. Thus Theorem 2.2 in the case where cH > 0 follow from [19,
Theorem 2.1].

Finally, we consider the case where cH < 0. Due to Theorem 5.3, the
uniqueness of solutions of (D)0 now holds, which makes the argument below easier
than the previous cases.



358 H. Mitake NoDEA

Here let {tn}n∈N be any diverging sequence. Set un(x) := u(x, tn) for all
x ∈ Ω, n ∈ N. Then {un}n∈N is equicontinuous and uniformly bounded in view of
Theorems 4.1 and 4.4 (ii), and therefore there exists a subsequence {un′}n′∈N ⊂
{un}n∈N such that {un′}n′∈N converges uniformly on Ω. Let w be the unique
solution of (D)0. It is now easy to see by the stability of viscosity property that
{un′} converges to w uniformly on Ω. Moreover, we may conclude from this that
u(·, t) converges to w uniformly on Ω as t → ∞. The proof of Theorem 2.2 is now
complete.

7. Representation formulas for asymptotic solutions

In this section, we give a representation formula for asymptotic solutions which
appear in Theorem 2.2.

For a ≥ cH , we introduce the function da : Ω × Ω → R by

da(x, y) = sup{v(x) − v(y) | v ∈ C(Ω) is a subsolution of (1.7)}. (7.1)

It is easily seen that da(x, x) = 0 for all x ∈ Ω, that if v ∈ C(Ω) is a subsolution of
(1.7), then v(x) − v(y) ≤ da(x, y) for all x, y ∈ Ω and that the functions da(·, y),
with y ∈ Ω, are subsolutions of (1.7). It is known (see [10, 15, 16]) that for any
y ∈ Ω, the function dcH

(·, y) is a solution of (1.11) in Ω \ {y} and that for any
y ∈ Ω, the inclusion y ∈ AcH

holds if and only if the function dcH
(·, y) is a solution

of (SC).
We next define the functions vi, wi, wb ∈ C(Ω) by

vi(x) = min{dcH
(x, z) + f(z) | z ∈ Ω},

wi(x) = min{dcH
(x, y) + dcH

(y, z) + f(z) | y ∈ AcH
, z ∈ Ω},

wb(x) = min{d0(x, y) + g(y) | y ∈ ∂Ω}.

It is easily seen that vi is a solution of (1.10), that wi(x) = min{vi(y)+dcH
(x, y) |

y ∈ AcH
} for all x ∈ Ω and hence wi is a solution of (SC), and that wb is a solution

of (D)0.
Let u : Ω× [0,∞) be the solution of (CD) and v, w : Ω → R be the functions

given in Theorem 2.2, i.e. v(x) = limt→∞(u(x, t) + cHt) if cH > 0 and w(x) =
limt→∞ u(x, t) if cH ≤ 0. The following theorem gives a characterization of the
functions v and w.

Theorem 7.1. (i) If cH > 0, then v = wi. (ii) If cH < 0, then w = wb. (iii) If
cH = 0, then w = min{wi, wb}, where min{wi, wb} denotes the function w ∈ C(Ω)
given by w(x) = min{wi(x), wb(x)}.
We need the next proposition in the following discussion.
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Proposition 7.2. Let x, y ∈ Ω. Then

da(x, y) = inf




t∫
0

La(γ(λ), γ̇(λ)) dλ | t > 0, γ ∈ C(x, t; y, 0; Ω)


 ,

where La(x, ξ) = L(x, ξ) + a for all (x, ξ) ∈ Ω × R
n.

For a proof of the above proposition we refer to [15, Proposition 8.2].

Proof of Theorem 7.1. We first prove assertion (ii). Assume that cH < 0.
According to Theorem 5.3., the uniqueness of solutions of (D)0 holds. Since wb

and w are solutions of (D)0, we see that w = wb.
Next we turn to (i) and assume that cH > 0. The functions u(x, t) + cHt

and vi(x) are a solution and a subsolution of


vt +H(x,Dv(x, t)) = cH in Q,
v(x, t) = f(x) in Ω × {0},
v(x, t) = g(x) + cHt on ∂Ω × (0,∞),

respectively. Hence, by Theorem 4.3, we get vi(x) ≤ u(x, t)+cHt for all (x, t) ∈ Q,
and therefore, vi(x) ≤ v(x) for all x ∈ Ω. Since wi(x) = vi(x) for all x ∈ AcH

, we
have wi(x) ≤ v(x) for all x ∈ AcH

. Moreover, by Theorem 5.2, we see that wi ≤ v
on Ω.

Now fix any x ∈ Ω and ε > 0. Noting the definition of wi and Proposition
7.2, we may choose y ∈ AcH

, z ∈ Ω, γ ∈ C(x, τ ; y, 0; Ω) and η ∈ C(y, σ; z, 0; Ω),
where τ > 0 and σ > 0, so that

wi(x) + ε >

τ∫
0

LcH
(γ(s), γ̇(s)) ds+

σ∫
0

LcH
(η(s), η̇(s)) ds+ f(z).

Since y ∈ AcH
, for each k ∈ N we may choose a ξk ∈ C(y, tk; y, 0; Ω), with tk > k,

so that

tk∫
0

LcH
(ξk(s), ξ̇k(s)) ds < ε.

We define ζk ∈ C(x, rk; z, 0; Ω), with rk := τ + σ + tk, by

ζk(s) =



η(s) for s ∈ [0, σ),
ξk(s− σ) for s ∈ [σ, σ + tk),
γ(s− σ − tk) for s ∈ [σ + tk, rk],
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and observe that

wi(x) + 2ε >

rk∫
0

LcH
(ζk(s), ζ̇k(s)) ds+ f(ζk(0))

=

rk∫
0

L(ζk(s), ζ̇k(s)) ds+ f(ζk(0)) + cHrk ≥ u(x, rk) + cHrk.

Sending k → ∞ yields wi(x) ≥ v(x) and we conclude that wi = v on Ω.
Now we deal with the case where cH = 0. The function wb is a solution

of (D)0 and vi is a subsolution of (SC). Therefore, noting that vi ≤ f in Ω, we
see that the function min{vi, wb} is a subsolution of (CD). By Theorem 4.3, we
get min{vi, wb}(x) ≤ u(x, t) for all (x, t) ∈ Q and consequently, min{vi, wb} ≤ w
on Ω. Moreover, we get min{wi, wb}(x) ≤ w(x) for all x ∈ AcH

. Noting that
min{wi, wb} ≤ g on ∂Ω, wi and wb satisfy a supersolution property of (D)0 and
H(x, ·) is convex, we have that min{wi, wb} is a solution of (D)0. In view of
Theorem 5.3, we see that min{wi, wb} ≤ w on Ω.

Arguing as in the previous case, we see that w(x) ≤ wi(x). Also, since the
function w is a solution of (D)0, we have w(x) − w(y) ≤ d0(x, y) for all x, y ∈ Ω.
Moreover, noting that u(x, t) ≤ g(x) for all x ∈ ∂Ω, we have w(x) ≤ d0(x, y)+g(y)
for all x ∈ Ω and y ∈ ∂Ω, from which we obtain w(x) ≤ wb(x). Consequently we
have w ≤ min{wi, wb} on Ω, and conclude that w = min{wi, wb} on Ω.
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