
c© Birkhäuser Verlag, Basel, 2007
NoDEA
Nonlinear differ. equ. appl. 14 (2007) 29—55
1021–9722/07/020029–27
DOI 10.1007/s00030-006-4030-z

On absolutely minimizing lipschitz
extensions and PDE ∆∞(u) = 0

E. LE GRUYER
Institut National des Sciences Appliquées

20 Avenue des Buttes de coësmes
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1 Introduction

To produce an optimal solution to Tietze’s extension problem in general metrically
convex compact metric space, we have introduced a class Hh of extension schemes
which solve the problem [7].

In this paper we first prove in section 3 that, for any continuous Dirichlet’s
condition f , there exists a subsequence (Hh(n)(f))n∈N which converges to an
AMLE of f . Therefore, assuming Jensen’s hypotheses [4], Hh(f) approachs the
solution of viscosity of ∆∞(u) = 0 under Dirichlet’s condition f when h tends to 0.

Unfortunately it is generally hopeless to obtain a numerical approximation
of this solution on, say, a regular grid of step h by discretisation of Hh on this grid.
In fact, by such a discretisation we obtain an extension which is Lipschitz-optimal
not for euclidean metric but only for the geodesic metric on the grid.

To overcome this difficulty we introduce in this paper an explicit scheme of
extension valid on any finite network contained in the considered metrically convex
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compact metric space and prove that the extension converges to an AMLE when
the network suitably densifies the metric space. As a consequence, assuming
Jensen’s hypotheses [4], we obtain numerical approximations of the solution of
viscosity of ∆∞(u) = 0 under Dirichlet’s condition. Note here that A. Oberman
[9] has obtained very similar numerical approximations in R

n, based upon the
same numerical scheme, proposing a proof of the convergence of the scheme based
upon the ∆∞−approach of the problem.

In the whole paper (E, d) denotes a metrically convex compact metric space
that is a compact lenght space with the terminology of ([2], appendix). We denote
by δ the Hausdorff metric induced by d on compact non-empty subsets of E.
The second part of the paper is organized as follows.

In section 4 we prove that solutions of (1.1) (see below) satisfy the maximum
principle and, as a corollary, uniqueness of the solution.

In section 5 we prove the existence of the solution of (1.1) and we study the
stability of this solution.

In section 6 we prove the existence of an AMLE as the limit of solutions of
(1.1) for sequences ((Gn, Vn))n∈N which suitably densify E.

Definition 1.1 A network on E is a couple (G, V ) where G ⊂ E denotes a finite
non-empty subset of E and V a mapping x ∈ G → V (x) ⊂ G, (V (x) is the
neighbourhood of x) which satisfies

(P1) for any x ∈ G, x ∈ V (x);

(P2) for any x,y ∈ G, x ∈ V (y) iff y ∈ V (x);

(P3) for any x,y ∈ G, there exists x1, x2, ..., xn−1, xn ∈ G such that x1 = x,
xn = y and xi ∈ V (xi+1) for i = 1, ..., n − 1;

(P4) for any x ∈ G, any y ∈ G − V (x) there exists z ∈ V (x) such that d(z, y) <
d(x, y).

To any chain such as in (P3) we associate its lenght
∑n−1

i=1 d(xi, xi+1). We
define the geodesic metric dg on (G, V ) by letting dg(x, y) be the infimum of the
lenght of chains connecting x and y.

It follows from (P1),(P2),(P3) that dg is a metric, that d(x, y) ≤ dg(x, y)
for x,y ∈ G and that d(x, y) = dg(x, y) for x,y ∈ G, x ∈ V (y). It follows from
(P2),(P3) that if G has at least two elements (assumed from now on) then V (x)−
{x} �= ∅ for any x ∈ G. We shall denote Ṽ (x) := V (x) − {x}. Extra-condition
(P4), crucial in this paper (see the end of theorem 4.1 and theorem 6.3 iii), will
be used as follows:
for any x ∈ G, D non-empty subset of G, d(x, D) > 0, there exists y ∈ V (x) such
that d(y, D) < d(x, D).

We consider the following functional equation with Dirichlet’s condition :{
u(x) = µ(u; x) ∀x ∈ G − S;
u(s) = f(s) ∀s ∈ S. (1.1)
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Here S denotes a non-empty subset of G, function f is the Dirichlet’s condition
defined on S, u is the numerical unknown function defined on G and

µ(u; x) = inf
z∈Ṽ (x)

sup
q∈Ṽ (x)

M(u; z, q)(x) ; (1.2)

where

M(u; z, q)(x) :=
d(x, z)u(q) + d(x, q)u(z)

d(x, z) + d(x, q)
. (1.3)

Remark 1.2 It can be checked that

µ(u; x) = sup
z∈Ṽ (x)

inf
q∈Ṽ (x)

M(u; z, q)(x) . (1.4)

It can also be checked that

J(µ(u; x)) = inf
µ∈R

J(µ)

where

J(µ) = sup
z∈Ṽ (x)

| u(z) − µ |
d(x, z)

.

Therefore µ(u; x) is the explicit solution of the problem of minimization
considered by A.Oberman.

2 Basics

Let f be any function from dom(f) ⊂ E to R. We define κ(f) by

κ(f) := sup
x,y∈dom(f),x �=y

f(x) − f(y)
d(x, y)

.

We call concave modulus of continuity any mapping ω : R
+ → R

+ which
satisfies the following:

(i) ω(0) = 0 and ω is continuous at 0;

(ii) ω is increasing: h1 ≤ h2 ⇒ ω(h1) ≤ ω(h2);

(iii) ω is concave.

We say that f is Ω−continuous iff there exists a concave modulus of conti-
nuity ω such that, for any x, y ∈ dom(f),

| f(x) − f(y) |≤ ω(d(x, y)). (2.1)
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For such a function f , we denote by ω(f) the lower bound of those concave
moduli of continuity which satisfy (2.1).

For any A ⊂ dom(f), we have obviously ω(f | A) ≤ ω(f) (symbol | denotes
restriction to).

Let us restate here results of [6] which are of constant use in this paper.

Proposition 2.1 Let f , g be any two Ω-continuous real-valued functions of domain
S and let A and B be any two compact non-empty subsets of S. Then

‖ ω(f) − ω(g) ‖∞,R+≤ 2 ‖ f − g ‖∞,S ; (2.2)

‖ ω(f | A) − ω(f | B) ‖∞,R+≤ 4ω(f ; δ(A, B)). (2.3)

Note that (2.2) and (2.3) have been established in [6] for weak moduli of
continuity. It is immediate that these inequalities hold for concave moduli of
continuity with the same constants.

Remark 2.2 So, aside the obvious fact that AMΩE (see below) are more general
than AMLE, the true reason why we adopt the modulus of continuity approach
rather than the Lipschitz approach in this paper is that there is no equivalent of
(2.2) and (2.3) for Lipschitz functions.

Now we recall Aronsson’s definition of an AMLE [1]. Let e be a Lipschitz
extension of a Lipschitz function f of compact domain.

Definition 2.3 We say that e is an Absolutely Minimizing Lipschitz Extension
of f if for every non empty open D ⊂ E, D ∩ dom(f) = ∅ we have

κ(e | D) = κ(e | ∂D),

where ∂D denotes the boundary of D.

Characterisation below has been noticed by Aronsson [1].

Proposition 2.4 An extension e of f is AMLE iff for any non empty open D ⊂ E,
D ∩ dom(f) = ∅ we have

e(x) ≤ inf
y∈∂D

(e(y) + κ(e | ∂D)d(x, y)),∀x ∈ D, (2.4)

and

sup
y∈∂D

(e(y) − κ(e | ∂D)d(x, y)) ≤ e(x),∀x ∈ D. (2.5)

In this paper we use a slightly more general definition (see remark 2.2). Let
e be a continuous extension of a Ω-continuous function f .
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Definition 2.5 We say that e is an Absolutely Minimizing Ω Extension of f if
for every non empty open subset D of E, D ∩ dom(f) = ∅ we have

ω(e | D) = ω(e | ∂D),

where ∂D denotes the boundary of D.

The analogue of proposition 2.4 is:

Proposition 2.6 An extension e of f is AMΩE iff for any non empty open
D ⊂ E, D ∩ dom(f) = ∅ we have

e(x) ≤ inf
y∈∂D

(e(y) + ω(e | ∂D; d(x, y))),∀x ∈ D, (2.6)

and

sup
y∈∂D

(e(y) − ω(e | ∂D; d(x, y))) ≤ e(x),∀x ∈ D. (2.7)

It follows from these definitions that, if f is Lipschitz and e is an AMΩE of
f , then e is an AMLE of f .

3 Convergence of harmonious extensions to an
AMΩE

Let f be a continuous function of closed domain dom(f) ⊂ E.
For any h > 0, for any x ∈ E we denote by Vh(x) the closed ball of center

x, radius r(x) = inf(h, d(x, dom(f))).
By the [Theorem 3.3 of [7]], there exists a unique continuous extension Hh(f)

from E to R which satisfies functional equation

g(x) =
1
2

sup
z∈Vh(x)

g(z) +
1
2

inf
z∈Vh(x)

g(z), ∀x ∈ E. (3.1)

Moreover, as noticed in remark 3.4 of [7], the proof of [Theorem 3.3 of [7]]
shows that

ω(Hh(f)) = ω(f).

Lemma 3.1 below shows that Hh(f) is close to an AMΩE of f . Its proof
uses the arguments of Proposition 3.9 of [7].

Lemma 3.1 For any non empty open subset D of E , D ∩ dom(f) = ∅, we have

Hh(f)(x) ≤ inf
y∈∂D

(Hh(f)(y) + ω(Hh(f) | ∂D; d(x, y))) + 2ω(f ; h),∀x ∈ D, (3.2)

and

sup
y∈∂D

(Hh(f)(y) − ω(Hh(f) | ∂D; d(x, y))) − 2ω(f ; h) ≤ Hh(f)(x),∀x ∈ D. (3.3)



34 E. Le Gruyer NoDEA

Proof. Since the arguments are symmetric we prove only (3.2).
Since E is a compact metrically convex metric space, by Theorem 3.3 [7]

there exists a unique extension v of Hh(f) | ∂D in E such that

v(x) =
1
2

sup
z∈Wh(x)

v(z) +
1
2

inf
z∈Wh(x)

v(z), ∀x ∈ E. (3.4)

where Wh(x) := {z ∈ E : d(x, z) ≤ inf(h, d(x, ∂D))}.
Moreover
v(x) − v(y) ≤ ω(Hh(f) | ∂D; d(x, y)), ∀x, y ∈ E.
In particular we have

v(x) − v(y) ≤ ω(Hh(f) | ∂D; d(x, y)), ∀y ∈ ∂D, ∀x ∈ D. (3.5)

Now, let us bound supx∈D | Hh(f)(x) − v(x) |. By symmetry we have only
to bound from above: ∆ = supx∈D(Hh(f)(x) − v(x)). Let

F = {x ∈ D : Hh(f)(x) − v(x) = ∆}, M = sup
x∈F

Hh(f)(x),

and
F̃ = {x ∈ F : Hh(f)(x) = M}.

Let x ∈ F̃ be such that

d(x, ∂D) = inf
y∈F̃

d(y, ∂D). (3.6)

Let us first show that we cannot have d(x, ∂D) > h. Towards a contradiction
let us assume it is the case.

Then we have Wh(x) = {z ∈ E : d(x, z) ≤ h}.
Since dom(f) ∩ D = ∅ we infer that d(x, S) ≥ d(x, ∂D) > h, that is Vh(x) =

{z ∈ E : d(x, z) ≤ h}. Therefore Vh(x) = Wh(x).
Now, using a similar argument to this of theorem 3.3-uniqueness- of [7], we

infer that Vh(x) ⊂ F̃ . It follows that there exists z ∈ F̃ such that d(z, ∂D) <
d(x, ∂D) which is a contradiction with definition (3.6) of x.

Now, since d(x, ∂D) ≤ h, there exists y ∈ ∂D such that d(x, y) ≤ h and
Hh(f)(y) = v(y).

By Ω-stability of both v and Hh(f) we have:
Hh(f)(x) − v(x) = Hh(f)(x) − Hh(f)(y) − v(y) − v(x) ≤ 2ω(f ; h).Therefore

∆ ≤ 2ω(f ; h). (3.7)

Now let x ∈ D and y ∈ ∂D. We have
Hh(f)(x) − Hh(f)(y) − ω(Hh(f) | ∂D; d(x, y)) = A1 + A2
where
A1 = Hh(f)(x) − v(x),
and
A2 = v(x) − v(y) − ω(Hh(f) | ∂D; d(x, y)).

From inequalities (3.5) and (3.7), we obtain A1 + A2 ≤ 2ω(f ; h) + 0. �
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Now we prove the existence of AMΩE in any metrically convex compact
metric space.

Theorem 3.2 Let (h(n))n∈N be a sequence of positive reals which converges to 0.
If sequence (Hh(n)(f))n∈N converges uniformly to a continuous extension g of f
then g is an AMΩE of f .

Proof. By symmetry we prove only (2.6).
Let D be non empty open subset of E such that D ∩ dom(f) �= ∅. For any

ε > 0, there exists N > 0 such that ∀n ≥ N , ‖ Hh(n)(f) − g ‖∞,E≤ ε. For any
x ∈ D, y ∈ ∂D, n > N we have
g(x) − g(y) − ω(g | ∂D; d(x, y)) ≤ A1 + A2 + A3 + A4, where
A1 =| g(x) − Hh(n)(f)(x) |≤ ε;
A2 =| Hh(n)(f)(x) − Hh(n)(f)(y) − ω(Hh(n)(f) | ∂D; d(x, y)) |≤ 2ω(f ; h(n));
A3 =| ω(Hh(n)(f) | ∂D; d(x, y)) − ω(g | ∂D; d(x, y)) |≤ 2ε;
A4 =| Hh(n)(f)(y) − g(y) |≤ ε.

The second inequality follows from Lemma 3.1 and the third one from (2.2).
We obtain g(x) − g(y) − ω(g | ∂D; d(x, y)) ≤ 4ε + 2ω(f ; h(n)).

By letting n → ∞ we have

g(x) − g(y) − ω(g | ∂D; d(x, y)) ≤ 4ε, ∀y ∈ ∂D,

and we obtain the stated result. �

Theorem 3.3 For any continuous real-valued function f whose domain is a
compact non-empty subset of E, there exists an AMΩE of f .

Proof. The set {Hh(f), h > 0} is equicontinuous and equibounded. Therefore,
by Ascoli’s theorem, there exists a subsequence (Hh(n)(f))n∈N which converges
uniformly to a continuous extension of f which is an AMΩE of f by theorem 3.2.

�

Remark 3.4 Moreover if, for any f , there exists a unique AMΩE of f denoted
by H(f) then limh→0 Hh(f) = H(f). In this case it follows from proposition 3.9
of [7] that

‖ H(f | A) − H(f | B) ‖∞,E≤ 4ω(f ; δ(A, B)),

for any non-empty compact subsets A,B of dom(f).

Remark 3.5 We can summarize the difference between Jensen’s proof [4] of the
existence of an AMLE and our own proof as follows. Jensen obtains the desired
AMLE as a limit of local (because solutions of PDE) extensions which become
more and more optimally Lipschitz. We obtain the desired AMLE as a limit of
optimally Lipschitz extensions which become more and more local.
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Aronsson [1] (see also [5] and [8] ) proves the existence of AMLE by giving
two explicit solutions:

u = sup{w : w AMLE of f from above },
v = inf{w : w AMLE of f from below }.

Our proof leads to less explicit but, assuming uniqueness, more constructive
solutions than Aronsson’s one.

Remark 3.6 Note the formal analogy between the process u → Φh(u) of harmo-
nious regularization defined by

Φh(u)(x) =
1
2
( sup
y∈Bh(x)

u(y) + inf
y∈Bh(x)

u(y))

which deals with PDE ∆∞u = 0 and the process u → Ψh(u) of harmonic regu-
larization defined by

Ψh(u)(x) =

∫
Bh(x) u(y)dy∫

Bh(x) dy

which deals with PDE ∆u = 0.
It is known since Gauss that any harmonic function satisfies Ψh(u) = u for

any h > 0. The analog of this result does not hold in general for the process of
harmonious regularization : it can be seen by numerical tests that Φh(u) �= u for
u(x, y) = x4/3 − y4/3 even in subdomains where this function is analytic.

However some functions u solutions of ∆∞u = 0 have this property : for
example linear functions, (x2

1 + x2
2)

1/2, arctan(x1/x2), in euclidean plane, x2
1 − x2

2
in the plane equipped with sup norm.

Remark 3.7 When (E, d) is (Ω̄, ‖ ‖2) with Ω open convex non empty sub-
set of euclidean R

n, dom(f) = ∂Ω, it can be shown directly (that is whithout
using theorem 3.3 and the equivalence between AMLE and solution of viscosity of
∆∞u = 0) that Hh(f) converges, when h tends to 0, to the solution of viscosity
of ∆∞u = 0, u | ∂Ω = f . It is a consequence of Jensen’s uniqueness results [4]
and of a Barles-Souganidis’s result [3] : see Appendix.

Remark 3.8 The results of [7] and of this section hold for spaces more general
than compact metrically convex metric spaces. They hold in compact metric
spaces (E, d) having the following properties:

i)
1
2

sup
q∈Bh(x)

inf
r∈Bh(y)

d(q, r)+
1
2

sup
r∈Bh(y)

inf
q∈Bh(x)

d(r, q) ≤ d(x, y), for any x, y ∈ E

ii) For any x ∈ E and y �∈ Bh(x) there exist z ∈ Bh(x) such that d(y, z) <
d(y, x).
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It follows that the condition of convexity on Ω assumed in remark 3.7 can
be removed.

Note that conditions i) and ii) can hold in metric spaces which can be very far
from metrically convex metric spaces (some finite metric spaces satisfy conditions
i) and ii)) : we have therefore established a theorem of existence of an AMLE
under weaker hypotheses than those of Milman [8] and Juutinen [5] (however our
result holds only for compact spaces).

4 Uniqueness theorem for functional
equation (1.1)

As usual, we first prove a maximum principle.

Theorem 4.1 Let f , g be any two real-valued functions both of domain S. Let u,v
be two solutions of (1.1) with Dirichlet’s conditions f and g respectively. Then

sup
x∈G

(u(x) − v(x)) ≤ sup
s∈S

(f(s) − g(s)). (4.1)

Proof. Let us set ∆ = supx∈G(u(x) − v(x)), F = {x ∈ G : u(x) − v(x) = ∆},
Λ = supx∈F u(x) and F̃ = {x ∈ F : u(x) = Λ}.

We start our proof by choosing x ∈ F̃ such that d(x, S) = infy∈F̃ d(y, S).

If d(x, S) = 0 then equality (4.1) is true.

Else, let z1 ∈ Ṽ (x) such that

sup
q∈Ṽ (x)

M(v; z1, q)(x) = µ(v; x) .

We have
∆ ≤ sup

q∈Ṽ (x)
M(u; z1, q)(x) − sup

q∈Ṽ (x)
M(v; z1, q)(x) .

Let q1 ∈ Ṽ (x) such that

M(u; z1, q1) = sup
q∈Ṽ (x)

M(u; z1, q) .

We have

∆ ≤ d(x, z1)(u(q1) − v(q1))
d(x, z1) + d(x, q1)

+
d(x, q1)(u(z1) − v(z1))

d(x, z1) + d(x, q1)
≤ ∆ ,

from which it follows that z1, q1 ∈ F .
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Since
u(x) = µ(u; x) ≤ sup

q∈Ṽ (x)
M(u; z1, q)(x) = M(u; z1, q1) ≤ u(q1),

we have q1 ∈ F̃ and u(q1) = u(x).
Since

u(x) ≤ d(x, z1)u(q1) + d(x, q1)u(z1)
d(x, z1) + d(x, q1)

,

we have u(z1) = u(x).
Since

u(x) = u(q1) = sup
q∈Ṽ (x)

M(u; z1, q) (4.2)

and

∀q ∈ Ṽ (x) , u(x) ≥ M(u; z1, q) =
d(x, z1)u(q) + d(x, q)u(z1)

d(x, z1) + d(x, q)

with u(z1) = u(x),
we have

∀z ∈ Ṽ (x) , u(z) ≤ u(x). (4.3)

We finish the proof of our assertion by prooving that u is constant in V (x).
Towards a contradiction let q ∈ Ṽ (x) such that u(q) < u(x). We have

u(x) ≤ sup
t∈Ṽ (x)

M(u; q, t) = sup
t∈Ṽ (x)

d(x, t)u(q) + d(x, q)u(t)
d(x, t) + d(x, q)

.

Using (4.3), we obtain

u(x) ≤ sup
t∈Ṽ (x)

d(x, t)u(q) + d(x, q)u(x)
d(x, t) + d(x, q)

.

Let c > 0 such that u(q) = u(x) − c, we have

u(x) ≤ sup
t∈Ṽ (x)

d(x, t)(u(x) − c) + d(x, q)u(x)
d(x, t) + d(x, q)

.

On the other hand, we can write

u(x) ≤ sup
t∈Ṽ (x)

(u(x) − d(x, t)c
d(x, t) + d(x, q)

) ,

that is

inf
t∈Ṽ (x)

d(x, t)c
d(x, t) + d(x, q)

≤ 0.
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Since

inf
t∈Ṽ (x)

d(x, t)
d(x, t) + d(x, q)

> 0 , and c > 0,

we obtain the desired contradiction.
Now, using inequality

∆ ≤ sup
q∈Ṽ (x)

M(u; z1, q) − sup
q∈Ṽ (x)

M(v; z1, q) ,

and u = constant in V (x), we have

∀q ∈ Ṽ (x), ∆ ≤ d(x, z1)(u(q) − v(q))
d(x, z1) + d(x, q)

+
d(x, q)(u(z1) − v(z1))

d(x, z1) + d(x, q)
.

Therefore ∆ ≤ u(q) − v(q) ≤ ∆, ∀q ∈ Ṽ (x), that is Ṽ (x) ⊂ F .
Since u is constant on V (x) we have V (x) ⊂ F̃ .

Since V satisfies (P4), we have
d(x, S) = infy∈F̃ d(y, S) and infq∈Ṽ (x) d(q, S) < d(x, S)
which is a contradiction with V (x) ⊂ F̃ . So (4.1) is proved. �

As immediate consequences of theorem 4.1 we obtain Theorem 4.2 and
corollary 4.3:

Theorem 4.2 Functional equation (1.1) has a unique solution.

Corollary 4.3 Let u a solution of (1.1) then

inf
s∈S

f(s) ≤ u(x) ≤ sup
s∈S

f(s) ,∀x ∈ G. (4.4)

5 Existence and stability of solutions of (1.1)

To prove the existence of a solution of (1.1), we introduce a process of evolution
u → Φ(u) whose the stationary state u = Φ(u) is solution of (1.1). Precisely
Φ(u) = Ψ(u; xN ) ◦Ψ(u; xN−1) ◦ ... ◦Ψ(u; x1) where {x1, ..., xN} is an enumeration
of G − S and Ψ(u; x), x ∈ G − S is defined as follows:{

Ψ(u; x)(y) = u(y) if y ∈ G − {x};
Ψ(u; x)(x) = µ(u; x) if y = x

(5.1)

We need three lemmas useful for existence and stability.

Lemma 5.1 For any two scalar-valued functions u,v of domain G, we have the
following properties :

u ≤ v =⇒ Ψ(u; x) ≤ Ψ(v; x) , ∀x ∈ G − S ; (5.2)
| Ψ(u; x)(y) − Ψ(u; x)(z) |≤ ω(u; dg(y, z)) , ∀x ∈ G − S ,∀y, z ∈ G ; (5.3)
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and

sup
y∈G

(Ψ(u; x)(y) − Ψ(v; x)(y)) ≤ sup
y∈G

(u(y) − v(y)) . (5.4)

Proof. Let us show (5.2). Let u, v scalar-valued functions of domain G such that
u ≤ v. Let x ∈ G − S. We have
Ψ(u; x)(y) = u(y) ≤ v(y) = Ψ(v; x)(y) for y ∈ G − {x}.

Since ∀z, q ∈ Ṽ (x) we have M(u; z, q)(x) ≤ M(v; z, q)(x), therefore µ(u; x) ≤
µ(v; x)

Let us show (5.3).
It suffices to prove that | Ψ(u; x)(x) − u(y) |≤ ω(u; dg(x, y)) , ∀y ∈ G.

Let y ∈ G − {x} we have two case :
First case : suppose that y ∈ G − Ṽ (x).

Let z1 ∈ Ṽ (x) such that dg(x, y) = dg(x, z1) + dg(z1, y).
We have

Ψ(u; x)(x) − u(y) ≤ sup
q∈Ṽ (x)

d(x, z1)(u(q) − u(y)) + d(x, q)(u(z1) − u(y))
d(x, z1) + d(x, q)

.

By definition of ω(u) we have

Ψ(u; x)(x) − u(y) ≤ sup
q∈Ṽ (x)

(
d(x, z1)ω(u; dg(q, y)) + d(x, q)ω(u; dg(z1, y)))

d(x, z1) + d(x, q)
).

By concavity of ω(u) we have

Ψ(u; x)(x) − u(y) ≤ sup
q∈Ṽ (x)

ω(u;
d(x, z1)dg(q, y) + d(x, q)dg(z1, y)

d(x, z1) + d(x, q)
),

Since

d(x, z1)dg(q, y) + d(x, q)dg(z1, y) = d(x, z1)(dg(q, y) − d(x, q)) + d(x, q)dg(x, y)

by the triangle inequality, we have

d(x, z1)dg(q, y) + d(x, q)dg(z1, y)
d(x, z1) + d(x, q)

≤ dg(x, y) .

Second case. Suppose that y ∈ Ṽ (x). We have

Ψ(u; x)(x) − u(y) ≤ sup
q∈Ṽ (x)

(M(u; y, q) − u(y)) ≤ sup
q∈Ṽ (x)

d(x, y)ω(u; dg(q, y))
d(x, y) + d(x, q)

.

By concavity we have

Ψ(u; x)(x) − u(y) ≤ sup
q∈Ṽ (x)

ω(u;
dg(x, y)dg(q, y)

dg(x, y) + dg(x, q)
) .
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Since
dg(q, y)

dg(x, y) + dg(x, q)
≤ 1 ,

we conclude that Ψ(u; x)(x) − u(y) ≤ ω(u; dg(d(x, y))) . The arguments to prove
that u(y) − Ψ(u; x)(x) ≤ ω(u; dg(d(x, y))) are symmetric using (1.4) instead of
(1.2). Inequality (5.3) is therefore proved.

Inequality (5.4) holds because we have µ(u; x) − µ(v; x) ≤ supz∈Ṽ (x)
(u(z) − v(z)). �

Lemma 5.2 For any scalar-valued functions u,v of domain G, we have the fol-
lowing properties :

u ≤ v =⇒ Φ(u) ≤ Φ(v) , ∀x ∈ G − S ; (5.5)

| Φ(u)(y) − Φ(u)(z) |≤ ω(u; dg(y, z)) , ∀x ∈ G − S , ∀y, z ∈ G ; (5.6)

and

inf
z∈G

u(z) ≤ Φ(u)(x) ≤ sup
z∈G

u(z) , ∀x ∈ G . (5.7)

Proof. The proof is a consequence of Lemma 5.1. �

Now let U0 be defined by

U0(x) = inf
s∈S

(f(s) + ω(f ; dg(x, s))) , ∀x ∈ G .

Function U0 looks like classical M cShane maximal Lipschitz-optimal exten-
sion of f on G. But here U0 is defined with both d (in ω(f)) and dg (in dg(x, s)).
Therefore we have to check that U0 is an extension of f .

Lemma 5.3 We have

U0(s) = f(s), for s ∈ S ; (5.8)
| U0(x) − U0(y) |≤ ω(f ; dg(x, y)), for x, y ∈ G ; (5.9)

inf
s∈S

f(s) ≤ U0(x) ≤ sup
s∈S

f(s), for x ∈ G . (5.10)

Proof. Let s̃ ∈ S we have

U0(s̃) − f(s̃) ≤ f(s̃) − ω(f ; dg(s̃, s̃)) − f(s̃) ≤ 0 ;

and
f(s̃) − U0(s̃) = sup

s∈S
(f(s̃) − f(s) − ω(f ; dg(s̃, s))) ,
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therefore
f(s̃) − U0(s̃) ≤ sup

s∈S
(ω(f ; d(s̃, s)) − ω(f ; dg(s̃, s))) .

Since d ≤ dg we have f(s̃) − U0(s̃) ≤ 0 and f(s̃) = U0(s̃).
Let x,y ∈ G we have

U0(x) − U0(y) ≤ sup
s∈S

(f(s) + ω(f ; dg(x, s)) − f(s) − ω(f ; dg(y, s))) ,

Therefore

U0(x) − U0(y) ≤ sup
s∈S

(ω(f ; dg(x, s)) − ω(f ; dg(y, s))) ≤ ω(f ; dg(x, y)) .

Let x ∈ G we have

U0(x) ≤ inf
s∈S

f(s) + sup
s∈S

ω(f ; dg(x, s)) .

since ω(f ; dg(x, s)) ≤ sups1,s2∈S(f(s1) − f(s2)), we have

U0(x) ≤ inf
s∈S

f(s) + sup
s1,s2∈S

(f(s1) − f(s2)) ≤ sup
s∈S

f(s).

Since ω(f ; dg(x, s) ≥ 0, we have U0(x) ≥ infs∈S f(s). �

Now we are ready to prove the existence of a solution of (1.1).

Theorem 5.4 Let (Un)n∈N the sequence defined inductively by Un+1 = Φ(Un),
∀n ∈ N. This sequence converges to a solution of (1.1) denoted by K(f):

K(f)(s) = f(s) , ∀s ∈ S (5.11)

K(f)(x) = µ(K(f); x) , ∀x ∈ G − S. (5.12)

Moreover we have

| K(f)(x) − K(f)(y) |≤ ω(f ; dg(x, y)) , ∀x,y ∈ G . (5.13)

Proof. Let us show that (Un)n∈N is decreasing. By Lemma 5.2, it is sufficient to
prove that U1 ≤ U0. Given an arbitrary k ∈ {1, ..., , N}, we have

Ψ(U0; xk)(xk) − U0(xk) = µ(U0; xk) − U0(xk).

Let sk ∈ S such that

f(sk) + ω(f ; dg(xk, sk)) = inf
s∈S

(f(s) + ω(f ; dg(xk, s))).
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By lemma 5.1, we have

Ψ(U0; xk)(xk) − f(sk)

≤ inf
z∈Ṽ (xk)

sup
q∈Ṽ (xk)

(
dg(xk, z)ω(f ; dg(q, sk)) + dg(xk, q)ω(f ; dg(z, sk))

dg(xk, z) + dg(xk, q)
.

By concavity we have

Ψ(U0; xk)(xk) − f(sk)

≤ inf
z∈Ṽ (xk)

sup
q∈Ṽ (xk)

ω(f ;
dg(xk, z)dg(q, sk) + dg(xk, q)dg(z, sk)

dg(xk, z) + dg(xk, q)
).

First case. If sk �∈ Ṽ (xk), then ∃z′ ∈ Ṽ (xk) such that dg(xk, sk) = dg(xk, z′) +
dg(z′, sk).
We have

Ψ(U0; xk)(xk) − f(sk) ≤ sup
q∈Ṽ (xk)

ω(f ;
dg(xk, z′)dg(q, sk) + dg(xk, q)dg(z′, sk)

dg(xk, z′) + dg(xk, q)
).

Since

dg(xk, z′)dg(q, sk) + dg(xk, q)dg(z′, sk)
= dg(xk, z′)(dg(q, sk) − dg(xk, q)) + dg(xk, q)dg(xk, sk)

by the triangle inequality we have

Ψ(U0; xk)(xk) − f(sk)

≤ ω

(
f ;

dg(xk, z′)dg(sk, xk) + dg(xk, q)dg(xk, sk)
dg(xk, z′) + dg(xk, q)

)
= ω(f ; dg(sk, xk)).

This last inequality clearly implies Ψ(U0; xk)(xk) ≤ U0(xk).

Second case. if sk ∈ Ṽ (xk), then

Ψ(U0; xk)(xk) − f(sk) ≤ sup
q∈Ṽ (xk)

ω

(
f ;

dg(xk, sk)dg(q, sk)
dg(xk, sk) + dg(xk, q)

)
.

Since
dg(q, sk)

dg(xk, sk) + dg(xk, q)
≤ 1

we have also Ψ(U0; xk)(xk) ≤ U0(xk). We conclude that

∀k = 1, ..., N , Ψ(U0; xk) ≤ U0 . (5.14)

By Lemma 5.1 and this last inequality, we prove inductively that
∀k = 1, ..., N − 1 , Ψ(U0; xk+1),..., ◦ Ψ(U0; x1) ≤ U0.
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Therefore we have U1 ≤ U0 and we deduce from Lemma (5.2) that sequence
(Un)n∈N is decreasing.

By Lemmas 5.1,5.2,5.3 we prove inductively that

Un ≥ inf
s∈S

U0(s).

The sequence (Un)n∈N is lower bounded and decreasing and therefore converges
to a function denoted by K(f). It remains to check that (5.11),(5.12) and (5.13)
hold.
For any ε > 0 there exists N ∈ N such that

0 ≤ sup
y∈G−S

(Un(y) − K(f)(y)) ≤ ε , ∀n ≥ N .

For xk ∈ G − S and n > N we have

Un+1(xk) = µ(Ψ̃;xk)

with
Ψ̃ = Ψ(Un; xk−1) ◦ Ψ(Un; xk−2) ◦ ... ◦ Ψ(Un; x1).

Since Ψ̃(y) ≤ Un(y), ∀y ∈ G − S we have

0 ≤ Ψ̃(y) − K(f)(y) ≤ ε.

We can write

| µ(K(f); xk)−K(f)(xk) |≤| µ(K(f); xk)−µ(Ψ̃;xk) | + | Un+1(xk)−K(f)(xk) | .

Since
| µ(K(f); xk) − µ(Ψ̃;xk) |≤ sup

y∈V (xk)
| Ψ̃(y) − K(f)(y) |≤ ε,

we obtain
| µ(K(f); xk) − K(f)(xk) |≤ 2ε.

By lemma 5.3, we have U0(s) = f(s), ∀s ∈ S and Un(s) = f(s), ∀s ∈ S, and
∀n ∈ N. Therefore K(f) is an extension of f and we obtain the stated result. �

Now, combining theorems 5.4 and 4.2, functional equation (1.1) has K(f)
as unique solution.

As a consequence of lemmas 5.1, 5.2, 5.3 and of theorems 4.1, 4.2 and 5.4
we have the following properties of stability of the extension scheme K:

Theorem 5.5 Let f , g any two real-valued functions both of domain S. Then

| K(f)(x) − K(f)(y) |≤ ω(f ; dg(x, y)) , ∀x,y ∈ G ; (5.15)
sup
x∈G

(K(f)(x) − K(g)(x)) ≤ sup
s∈S

(f(s) − g(s)) ; (5.16)
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for any non-empty subsets A, B of S, we have

sup
x∈G

(K(f | A)(x) − K(f | B)(x)) ≤ 4ω(f ; δg(A, B)) , (5.17)

where f | A and f | B denote the restrictions of f to A and B and δg Haussdorff
metric constructed on geodesic metric dg.

6 Approximation of an AMLE

Let f denote any Ω-continuous real-valued function whose domain is a compact
non-empty subset S of E.

In this section we shall consider sequences (Gn, Vn)n∈N of networks having
the following properties:
(Q1) limn→∞ rn = 0
where rn := sup(δ(Gn, E), δ(Sn, S)) and Sn := S ∩ Gn;
(Q2) limn→∞ ρn = 0 where

ρn = sup
x∈Gn

sup
y∈Vn(x)

d(x, y);

(Q3) limn→∞ ‖ dn − d ‖= 0
where dn denotes geodesic metric on (Gn, Vn) and

‖ dn − d ‖:= sup
x,y∈Gn

| dn(x, y) − d(x, y) | .

We note bn(x) the open ball of center x ∈ E, radius rn, and Bn(x) the closed
ball of center x ∈ E, radius ρn.

Lemma 6.1 shows that such sequences (Gn, Vn)n∈N exist in any metrically
convex metric space.

Lemma 6.1 Sequences (Gn, Vn)n∈N exist which satisfy properties (Q1),(Q2),(Q3).

Proof. Let (rn)n∈N and (ρn)n∈N be any two sequences of positive reals such that:

rn ≤ ρn, n ∈ N; (6.1)

lim
n→∞ ρn = 0; (6.2)

lim
n→∞

rn

ρn
= 0. (6.3)

For any x ∈ E, n ∈ N, let us set bn(x) := {y ∈ E : d(x, y) < rn}, Bn(x) :=
{y ∈ E : d(x, y) ≤ ρn}. Define (Gn, Vn) as follows. Since S is a compact subset of
E, S is covered by balls bn(x), x ∈ S. Therefore there exists x1, ..., xk ∈ S such
that bn(xi), i = 1, ..., k cover S. Now E − ∪k

i=1bn(xi) is a compact subset of E.
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Let xk+1, ..., xm ∈ E − ∪k
i=1bn(xi) such that ∪m

i=k+1bn(xi) cover E − ∪k
i=1bn(xi).

Set Gn := {x1, ..., xm} and, for x ∈ Gn, set Vn(x) := Gn ∩ Bn(x). Note that,
by construction, we have δ(Sn, S) ≤ rn and δ(Gn, E) ≤ rn. Therefore properties
(Q1), (Q2) are obviously satisfied.
Now let us show that for n ∈ N sufficiently large we have

i) (Gn, Vn) is a network;

ii) limn→∞ ‖ dn − d ‖= 0.

Properties (P1) and (P2) are immediate. To prove (P4) let x, y ∈ Gn

y �∈ Vn(x). By metrical convexity of E there exists t ∈ E such that d(x, t) = ρn−rn

and d(x, y) = d(y, t) + d(t, x). Let z ∈ Gn such that d(z, t) ≤ rn. One has
d(x, z) ≤ d(x, t) + d(t, z) ≤ ρn − rn + rn = ρn. Therefore z ∈ Vn(x). Moreover
d(y, z) ≤ d(y, t) + d(t, z) ≤ rn + d(x, y) − ρn + rn. Since for n sufficiently large we
have 2rn − ρn < 0, we infer that d(x, z) < d(x, y).

Now let us prove both (P3) and ii). Let N ∈ N, N ≥ 1, and x, y ∈ Gn.
By metrical convexity there exists elements of E y0 = x, y1, ..., yN = y such that
d(yi, yi+1) = d(x, y)/N and d(x, y) =

∑N−1
i=0 d(yi, yi+1).

For each i = 1, ..., N − 1, choose zi ∈ Gn such that d(zi, yi) ≤ rn. We have

d(zi, zi+1) ≤ d(zi, yi) + d(yi, yi+1) + d(yi+1, zi+1) ≤ d(x, y)/N + 2rn.

Now, choosing N such that

d(x, y)
N

+ 2rn ≤ ρn, (6.4)

we have zi ∈ Vn(zi+1). Property (P3) is therefore proved. Moreover dg(x, y) ≤∑N−1
i=0 d(zi, zi+1). It follows that

dg(x, y) − d(x, y) ≤
N−1∑
i=0

(d(zi, zi+1) − d(yi, yi+1)) ≤
N−1∑
i=0

2rn = 2Nrn.

Now, for n sufficiently large, one has ρn > 2rn. Therefore (6.4) is satisfied
by taking N = the smaller integer larger than d(x, y)/(ρn − 2rn). It follows that

2Nrn ≤ 2d(x, y)/((ρn/rn) − 2) + 2rn.

Therefore ‖ dn −d ‖≤ 2∆/((ρn/rn)−2)+2rn where ∆ denotes the diameter
of (E, d). Since limn→∞ rn = 0 and limn→∞ rn/ρn = 0, lemma 6.1 is proved. �

For each n ∈ N, let us define:
1) the real-valued function fn of domain Sn by

fn(s) = f(s), x ∈ Sn; (6.5)
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2) the real-valued function Wn of domain E by

Wn(x) = inf
s∈Gn

(Kn(fn)(s) + ω(f ; d(s, x))), x ∈ E ; (6.6)

where Kn(fn) (Kn for short) denotes the solution of (1.1) for network (Gn, Vn)
under Dirichlet’s condition fn.

Lemma 6.2 We have

| Wn(x) − Wn(y) |≤ ω(f ; d(x, y)), ∀x, y ∈ E ; (6.7)

∀x ∈ E , inf
s∈dom(f)

f(s) ≤ Wn(x) ≤ sup
s∈dom(f)

f(s) + ω(f ; rn) ; (6.8)

and

Kn(s) − sup
t∈Gn

ω(f ; dn(t, s) − d(t, s)) ≤ Wn(s) ≤ Kn(fn)(s), ∀s ∈ Gn ; (6.9)

from which we infer

Kn(s) − ω(f ; ‖ dn − d ‖) ≤ Wn(s) ≤ Kn(s), ∀s ∈ Gn. (6.10)

Proof. For any x, y ∈ E, we have

Wn(x) − Wn(y) ≤ sup
s∈Gn

(ω(f ; d(s, x)) − ω(f ; d(s, y))).

By triangular inequality we have d(s, x) ≤ d(s, y) + d(y, x).
By growth and subadditivity of ω(f) we have:
ω(f ; d(s, x)) ≤ ω(f ; d(s, y) + d(y, x)) ≤ ω(f ; d(s, y)) + ω(f ; d(x, y)).
Therefore Wn(x) − Wn(y) ≤ ω(f ; d(x, y)).
For any x ∈ E we have
Wn(x) ≤ infs∈Gn Kn(fn)(s) + sups∈Gn

ω(f ; d(x, s)).
By property of moduli of continuity we have
Wn(x) ≤ infs∈Gn

Kn(fn)(s) + sups∈S f(s) − infs∈S f(s).
Using (5.16) we have infs∈Gn

Kn(fn)(s) = infs∈Sn
f(s).

Therefore
Wn(x) ≤ sups∈S f(s) + infs∈Sn f(s) − infs∈S f(s)
and Wn(x) ≤ sups∈S f(s) + ω(f ; rn).
Moreover
Wn(x) ≥ infs∈Gn Kn(fn)(s).
Using (5.16) again we have infs∈Gn Kn(fn)(s) = infs∈Sn f(s).
Therefore
Wn(x) ≥ infs∈S f(s). So (6.8) is proved.

Let any s0 ∈ Gn we have
Wn(s0) − Kn(fn)(s0) ≤ Kn(fn)(s0) + ω(f ; d(s0, s0)) − Kn(fn)(s0) ≤ 0,
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and
Kn(fn)(s0) − Wn(s0) ≤ sups∈Gn

(Kn(fn)(s0) − Kn(fn)(s) − ω(f ; d(s0, s))).
By Ω-stabilyty of Kn(fn) we have Kn(fn)(s) − Kn(fn)(s0)) ≤ ω(f ; dn(s0, s))
Therefore Kn(fn)(s0) − Wn(s0) ≤ sups∈Gn

(ω(f ; dn(s0, s)) − ω(f ; d(s0, s)))
and

Kn(fn)(s0) − Wn(s0) ≤ sup
s∈Gn

ω(f ; dn(s0, s) − d(s0, s)) ≤ ω(f ; ‖ dn − d ‖).

So (6.9) and (6.10) are proved. �

Indeed, from Lemma 6.2, sequence (Wn)n∈N is equicontinuous and equi-
bounded. Therefore, by Ascoli’s theorem, there exists a subsequence (Wα(n))n∈N

which converges to a continuous function denoted by u.

Theorem 6.3 The function u is an AMΩE of f .

Proof. We must prove that :
(i) u is an extension of f

u(s) = f(s) ,∀s ∈ dom(f) ; (6.11)

(ii) u is Ω− optimaly continuous

| u(x) − u(y) |≤ ω(f ; d(x, y)) ,∀x, y ∈ E ; (6.12)

(iii) for any open D ⊂ E, such that D ∩ dom(f) = ∅, for any x ∈ D, we have

sup
y∈δD

(u(y) − ω(u |∂D; d(x, y))) ≤ u(x) ≤ inf
y∈δD

(u(y) + ω(u |∂D; d(x, y))). (6.13)

For typographical convenience let us assume in the proof that subsequence
(Wα(n))n∈N is sequence (Wn)n∈N itself (the true proof can easily be restated:
replace n by α(n) almost everywhere).

Let us show (i).
For any ε > 0, there exists N ∈ N such that ∀n ≥ N , ‖ Wn − u ‖∞,E≤ ε.
For any n ≥ N and s ∈ dom(f) there exists by (Q1) sn ∈ Sn such that d(s, sn) ≤
rn. We have
| u(s) − f(s) |≤ A1 + A2 + A3,
where
A1 =| u(s) − Wn(s) |, A2 =| Wn(s) − Kn(s) |,
A3 =| Kn(s) − Kn(sn) | + | f(sn) − f(s) |.
We have A1 ≤ ε. Using (6.10) we have A2 ≤ ω(f ; ‖ dn − d ‖). Using (5.13) we
have
| Kn(s) − Kn(sn) |≤ ω(f ; dn(sn, s)) ≤ ω(f ; rn) + ω(f ; ‖ dn − d ‖).



Vol. 14, 2007 On absolutely minimizing lipschitz extensions 49

In definitive we have
| u(s) − f(s) |≤ ε + 2ω(f ; rn) + 2ω(f ; ‖ dn − d ‖).

Since this inequality is true ∀n ≥ N and ∀ε > 0 then, using (Q1),(Q3) and
letting n tend to ∞, we conclude that u(s) = f(s) so we have proved (i).

The proof of (ii) is immediate by letting n tend to ∞ in inequality (6.7).

Let us show the right inequality of (iii). Let D an open subset of E such that
D ∩ dom(f) = ∅. For any ε > 0, there exists N ∈ N such that ∀n ≥ N ‖
Wn − u ‖∞,E≤ ε.
Let n ≥ N , x ∈ D and y ∈ ∂D.
Using (2.2) we have
ω(Wn |∂D; d(x, y)) − ω(u |∂D; d(x, y)) ≤ 2 ‖ Wn − u ‖∞,E .
Now, setting
A := u(x) − u(y) − ω(u |∂D; d(x, y)),
we have
A ≤ 4ε + A1,
where
A1 := Wn(x) − Wn(y) − ω(Wn |∂D; d(x, y)).
Let Dn := {z ∈ Gn : bn(z) ∩ D �= ∅} and ∂Dn = {z ∈ Gn : bn(z) ∩ ∂D �= ∅}.

Since D ⊂ ∪z∈Dnbn(z) and ∂D ⊂ ∪z∈∂Dnbn(z), we have δ(∂D, ∂Dn) ≤ rn

and there exists x̃ ∈ Dn,ỹ ∈ ∂Dn such that
d(x̃, x) ≤ δ(Gn, E) ≤ rn and d(ỹ, y) ≤ δ(Gn, E) ≤ rn.
By lemma 6.2, we have

Wn(x) − Kn(x̃) ≤ ω(f ; rn) + ω(f ; ‖ dn − d ‖) ,

and
Wn(y) − Kn(ỹ) ≤ ω(f ; rn) + ω(f ; ‖ dn − d ‖).

By (2.3), we have

ω(Wn |∂D; d(x, y)) − ω(Wn |∂Dn ; d(x, y)) ≤ 4ω(Wn; δ(∂D, ∂Dn)),

Since from Lemma 6.2, we have ω(Wn) ≤ ω(f), then

ω(Wn |∂D; d(x, y)) − ω(Wn |∂Dn
; d(x, y)) ≤ 4ω(f ; δ(∂D, ∂Dn)) ≤ 4ω(f ; rn).

Therefore
A1 ≤ A2 + 6ω(f ; rn) + 2ω(f ; ‖ dn − d ‖).

where
A2 := Kn(x̃) − Kn(ỹ) − ω(Wn |∂Dn ; d(x, y)) .

Now let us bound A2 from above. We write A2 := A3 + A4 where
A3 := ω(Kn |∂Dn

; d(x̃, ỹ)) − ω(Wn |∂Dn
; d(x, y)) and

A4 := Kn(x̃) − Kn(ỹ) − ω(Kn |∂Dn ; d(x̃, ỹ)).
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We have d(x̃, ỹ) − d(x, y) ≤ d(x̃, x) + d(ỹ, y) ≤ 2rn.
Using the subadditivity of ω(Wn |∂Dn

), we infer that
ω(Wn |∂Dn ; d(x̃, ỹ)) − ω(Wn |∂Dn

; d(x, y)) ≤ 2ω(Wn |∂Dn ; rn) ≤ 2ω(f ; rn).
Furthermore, using (2.2) we have

‖ ω(Kn |∂Dn
) − ω(Wn |∂Dn

) ‖∞,R+≤ 2 ‖ Kn − Wn ‖∞,∂Dn
≤ 2 ‖ Kn − Wn ‖∞,Gn

.

Now, using (6.10) we have
‖ Kn − Wn ‖∞,Gn≤ ω(f ; ‖ dn − d ‖). Therefore

A3 ≤ A4 + 2ω(f ; rn) + ω(f ; ‖ dn − d ‖).

Now, we bound A4 from above. By theorems 5.4 and 4.2, there exists a
unique extension v of Kn |∂Dn in Gn such that

{
v(z) = µ(v; z) ∀z ∈ Gn − ∂Dn;
v(z) = Kn(z) ∀z ∈ ∂Dn. (6.14)

Moreover
v(z) − v(q) ≤ ω(Kn |∂Dn

; dn(z, q)), ∀z, q ∈ Gn.
In particular we have

v(z) − v(q) − ω(Kn |∂Dn
; dn(z, q)) ≤ 0, ∀q ∈ ∂Dn, ∀z ∈ Dn. (6.15)

Now, we bound supz∈Dn
| Kn(z) − v(z) |. By symmetry we have only to

bound ∆ = supz∈Dn
(Kn(z) − v(z)) frome above. Let

F = {z ∈ Dn : Kn(z) − v(z) = ∆}, M = sup
z∈F

Kn(z),

and
F̃ = {z ∈ F : Kn(z) = M}.

Let z0 ∈ F̃ be such that

d(z0, (Sn ∪ ∂Dn)) = inf
z∈F̃

d(z, (Sn ∪ ∂Dn)). (6.16)

Let us first show that we cannot have d(z0, (Sn ∪ ∂Dn)) > 0. Towards a
contradiction let us assume it is the case. We have
v(z0) = µ(v; z0) and Kn(z0) = µ(Kn; z0). Using a similar argument to this of
theorem 4.1, we infer that Vn(z0) ⊂ F̃ . Using property (P4) there exists y ∈ Vn(z0)
such that
d(y, (Sn ∪ ∂Dn)) < d(z0, (Sn ∪ ∂Dn))
which is a contradiction with definition (6.16) of z0.

Now, d(z0, (Sn ∪ ∂Dn)) = 0. If z0 ∈ ∂Dn, since Kn(z0) = v(z0) we have
∆ = 0.
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If z0 ∈ Sn we remark that z0 ∈ Dn. Since z0 ∈ Sn ∩ Dn, Sn ∩ D = ∅ and
Dn := {z ∈ Gn : bn(z) ∩ D �= ∅} there exists y0 ∈ D such that d(z0, y0) ≤ rn.

Moreover since z0 �∈ D, and by metrical convexity of E there exists p0 ∈ ∂D
such that d(z0, y0) = d(z0, p0) + d(p0, y0) ≤ rn.

By definition of ∂Dn there exists q0 ∈ ∂Dn such that d(p0, q0) ≤ rn.
Therefore d(z0, q0) ≤ d(z0, p0) + d(p0, q0) ≤ 2rn.
We conclude that

∆ = Kn(z0) − Kn(q0) + v(q0) − v(z0) ≤ 4ω(f ; rn). (6.17)

From inequalities (6.15) and (6.17), we obtain A4 ≤ 4ω(f ; rn).
Finally we obtain

A ≤ 4ε + 12ω(f ; rn) + 3ω(f ; ‖ dn − d ‖).

Since this inequality is true ∀n ≥ N then, using (Q1),(Q2),(Q3) and letting
n tend to ∞, we conclude that

A ≤ 4ε ,

which proves the right inequality of (iii). The proof of the left inequality of (iii)
is similar but not symmetric because of choice of Wn. However it leads to similar
bounds. �

7 Numerical tests

The tests of this section are done for the following network: Gn is the set of points
(i.h, j.h) i, j = 0, ..., n, h = 1/n which densifies Ω = [0, 1] × [0, 1] (eventually
zoomed and shifted), bn(x) is the ball of center x ∈ Gn radius h, Vn(x) the ball
of center x ∈ Gn radius k.h. Since norms on R

2 are equivalent, balls bn(x) and
Vn(x) can (and will for convenience of implementation), be choosen to be those
corresponding to ‖ . ‖∞ or ‖ . ‖1. Note that, for fixed n, geodesic metric on
(Gn, Vn) will approach euclidean metric on Ω better and better when k increases.
The errors in the following tables are

en,k = sup
x,y∈Gn

| un,k(x, y) − u(x, y) |

where un,k is the solution of 1.1 of section 1 for S = Sn = ∂Ω∩Gn and f = u | Sn.
We first test the algorithm in situations where the solution of the continuous
problem is unique and known. u(x, y) = r, θ, r1/2eθ/2 in polar coordinates, x4/3 −
y4/3, in euclidean plane. It is seen that, for a fixed k, error becomes stationnary
when n increases.
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Table 7.1: u(x, y) = r

k/n 8 16 32 64 128 256
1 0.023 0.023 0.023 0.023 0.023 0.02
2 0.0063 0.0063 0.0066 0.0069 0.007 0.0067
3 0.0062 0.0031 0.0031 0.0031 0.0032 0.0032
4 0.007 0.0037 0.00205 0.0018 0.0018 0.0018
5 0.0074 0.0037 0.0021 0.001143 0.00118 0.0018
6 0.0074 0.004 0.0022 0.001135 0.000822 0.00082
7 0.0079 0.004 0.0023 0.001178 0.000602 0.000571

(7.1)

Table 7.2: u(x, y) = θ

k/n 8 16 32 64 128 256
1 0.0251 0.0141 0.0139 0.0138 0.0138 0.0138
2 0.165 0.125 0.0347 0.00867 0.00556 0.00421
3 0.236 0.154 0.0814 0.0203 0.0054 0.00236
4 0.244 0.191 0.0958 0.0347 0.0088 0.0012

(7.2)

Table 7.3: u(x, y) = r1/2eθ/2

k/n 8 16 32 64 128
1 0.156 0.112 0.0792 0.0557 0.0402
2 0.22 0.159 0.1123 0.0812 0.0557
3 0.22 0.195 0.1377 0.0971 0.068

(7.3)

Note that we obtain better approximations if we give “thickness kh” to the
boundary that is if we approach the solution of PDE ∆∞u = 0 under Dirichlet’s
condition u |∂khΩ= u0 where ∂εΩ = [0, 1] × [0, 1]−]ε, 1 − ε[×]ε, 1 − ε[.

Table 7.4: u(x, y) = r

k/n 8 16 32 64 128
2 0.0037 0.0040 0.0047 0.0057 0.0057
3 0.0014 0.0015 0.0015 0.0018 0.0023
4 0.0000 0.0008 0.0008 0.0008 0.00088
5 0.0000 0.0004 0.0005 0.0005 0.0005

(7.4)

Next we test the algorithm in situations where uniqueness of the solution of
the continuous problem is not known: u1(x, y) = x2 − y2 for ‖ ‖∞,
u2(x, y) =| x | − | y | for ‖ ‖1.

We note that, in these cases, geodesic metric on Gn coincides, for any k,
with metric on [0, 1] × [0, 1]. So, in these cases, we can take k = 1. Numerical
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tests 7.5 show that the algorithm computes exactely u2 and that error is linear in
h for u1 (see Table 7.5).

Table 7.5: u1(x, y) = x2 − y2, u2(x, y) =| x | − | y |.
n 8 16 32 64 128 256
e1 0.06 0.03 0.015 0.0076 0.0038 0.0019
e2 0. 0. 0. 0. 0. 0.

(7.5)
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Figure 7.1: u0(x, y), n = 100

To finish we consider the following two examples. In these examples the
metrically convex metric space (E, d) is E = [0, 1]× [0, 1]−]1/4−ε, 3/4+ε[×]1/2−
ε, 1/2 + ε[ for ε > 0 small and metric d on E is the geodesic metric constructed
from local euclidean metric. We set u0(x, y) = d((1/2, 0), (x, y)). Figure 7.1
shows function u0 in restriction to Gn In the first example we compute the unique
solution of ∆∞u = 0, u | Γ = u0 where Γ is the union of the boundaries of internal
and external rectangles. Numerical tests show that the solution in E is different
from u0: this observation corroborates the fact that geodesic cones are not AMLE
in general metrically convex metric space (see [2], appendix).

In the second example we compute ∆∞u = 0, u | Γ = u0 where Γ is now the
boundary of the external rectangle alone. We obtain a solution which is different
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from u0 and from the solution of the first example. Note the difference between the
two examples. In the first one we really compute the solution of PDE ∆∞u = 0
because E−Γ is locally euclidean. It is not the case in the second example because
the space (E, d) is not locally euclidean at points of the “free internal boundary”.
In fact, in this second example it is likely (we are not insured of the convergence
of sequence (Wn)n∈N in Theorem 6.3) that we compute a AMLE of u0.

8 Appendix

As announced in Remark 3.7 we prove that

(
1
2

sup
y∈Bh(x)

u(y) +
1
2

inf
y∈Bh(x)

u(y) − u(x))/h2 =
1
2
∆∞u(x) + o(h)

when u is smooth and Du(x) �= 0.
Here ∆∞u = D2u(D∗u, D∗u) and D∗u = Du/ | Du |.
Since Du(x) �= 0 then, for h sufficiently small, we have Du(y) �= 0 for

any y ∈ Bh(x). Therefore u attains its maximum u+ and its minimum u− on
the boundary of Bh(x). Let us denote x+ and x− any points of this boundary
such that u(x+) = u+, u(x−) = u−. Since x+ is a maximum of u(y) under the
constraint | y − x |= h, vectors x+ − x and Du(x+) have the same direction that
is x+ − x = hD∗u(x+). For the same reason vectors x− − x and Du(x−) have
opposite direction that is x− − x = −hD∗u(x−).

Now, using these expressions of x+ − x and x− − x and Taylor formula at
x+ and x− we obtain

2u(x) = u(x+) + u(x−) + A + B + h2o(h)

where A = h(− | Du | (x+)+ | Du | (x−)) and
B = 1

2h2(D2u(x+; D∗(x+), D∗(x+)) + D2u(x−; D∗(x−), D∗(x−))).
Now, using Taylor formula at x for | Du | (x+) we have

| Du | (x+) =| Du | (x) + hD(| Du |)(x; D∗u(x+)) + ho(h).

By continuity of y → D∗u(y), it follows that

| Du | (x+) =| Du | (x) + hD(| Du |)(x; D∗u(x)) + ho(h).

Similarly,

| Du | (x−) =| Du | (x) − hD(| Du |)(x; D∗u(x)) + ho(h).

Since a straightforward computation shows that D(| Du |)(x; D∗u(x)) =
∆∞u(x), and since maps y → D∗u(y) and y → D2u(y) are continuous we obtain
in definitive

2u(x) = u(x+) + u(x−) − 2h2∆∞u(x) + h2∆∞u(x) + h2o(h),

which is the announced formula.
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