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Abstract
For a semisimple Lie algebra defined over a discrete valuation ring with field of
fractions K , we prove that any primitive ideal with rational central character in the
affinoid enveloping algebra, ̂U (g)K , is the annihilator of an affinoid highest weight
module. In the case n > 0, we characterise all the primitive ideals in the affinoid
algebra ̂U (g)n,K .
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1 Introduction

This is the final paper of the series [32, 33] that aims to answer Question A from [3]
regarding the classification of primitive ideals of the affinoid enveloping algebra of a
semisimple Lie algebra defined over a discrete valuation ring. We begin by reviewing
the classical results.

1.1 Classical Duflo’s theorem

Let K be a field of characteristic 0 and G be a connected, smooth, split-semisimple,
affine algebraic group over K withLie algebra gK = Lie (G). Fix gK := n−

K ⊕hK ⊕n+
K

a Cartan decomposition and let bK = hK ⊕ n+
K . In a seminal paper [7], the authors

define the BGG category O of representations for the algebra U (gK ). The building
blocks are given by Verma modules M(λ) = U (gK ) ⊗

U (bK )
Kλ for λ ∈ h∗

K . These

are highest weight modules with unique maximal submodule N (λ) and unique simple
quotient L(λ). Moreover, this category O is Artinian and the set of simple objects is
characterised exactly by L(λ) for λ ∈ h∗

K . An excellent exposition of category O can
be found in [21]. The importance of category O in the representation theory of the
ring U (gK ) can be seen in the following theorem:

Theorem 1.1 [17, Theorem 4.3] Let I be a primitive/prime ideal with K -rational
central character. Then

I = Ann (L(λ)) for some λ ∈ h∗
K .

Duflo’s original statement requires the ground field to beC. In their paper [8], Bern-
stein and Gelfand extend this result to all algebraically closed fields of characteristic
0 which in turn can be extended to the generality stated by a base change argument.
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Another purely algebraic proof of Duflo’s theorem can be found [23] and for a cate-
gorical proof see [18]. One should note that if K is algebraically closed, all primitive
ideals have K -rational central character, so the theorem gives a full classification of
the primitive spectrum.

1.2 Classical Beilinson–Bernstein localisation theorem

Fix B a Borel subgroup of G and let X = G/B denote the flag variety of G. For a
K -linear map λ : hK → K , we let χλ : Z(U (gK )) → K denote the corresponding
central character. Furthermore, let U (gK )λ be the quotient of U (gK ) by the two-
sided ideal generated by ker χλ, and let Dλ

X denote the sheaf of λ-twisted differential
operators on X as defined in [4].

Let L be a closed subgroup of G. In [4], the authors define the notion of L-
equivariant g and D-modules. A more detailed definition can be found in [19, Sect.
11.5].

Let � be the root system of g and �+ the subset of positive roots. For a root α, we
use α∨ to denote the corresponding coroot. We say that a weight λ ∈ h∗

K is dominant
if (λ + ρ)(α∨) ∈ Z

≤−1 for all α ∈ �+. We say that λ is regular if (λ + ρ)(α∨) 	= 0
for all λ ∈ �+.

Theorem 1.2 (Equivariant Beilinson–Bernstein localisation, [4]). Let λ : hK → K be
a K-linear dominant weight. Consider the functors:

Loc : Mod fg (U (gK )λ, L) → Coh (Dλ
X , L), Loc (M) := Dλ

X ⊗
U (gK )λ

M,

� : Coh (Dλ
X , L) → Mod fg (U (gK )λ, L), �(M) := M(X).

(1)

Then Loc and � induce quasi-inverse equivalences of categories between
Mod fg (U (gK )λ, L) and the quotient category Coh (Dλ

X , L)/ ker �. In case λ is also
regular, we have ker � = 0.

1.3 Classical approach to Duflo’s theorem

In his paper [23], Joseph proves Duflo’s theorem by proving:

Proposition 1.3 Let λ : hK → K be a K-linear dominant weight. Consider the
function J :{two-sided ideals in U (gK )λ} → {submodules of M(λ)} defined by

J (I ) := I M(λ).

Then J is injective.

This approach to prove Duflo’s theorem was suggested by Dixmier, see [16,
Problem 30]. In [11], Borho and Brylinski prove Proposition 1.3 using the Beilinson–
Bernstein localisation in the case λ = 0. The key step is proving that the category
of coherent G-equivariant DX×X -modules is equivalent to the category of coherent
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B-equivariant DX -modules. In [32], we obtained a geometric proof of this result for
an arbitrary dominant λ.

1.4 Affinoid enveloping algebras

Let R be a mixed characteristic (0, p) complete discrete valuation ring with uni-
formiser π , field of fractions K and residue field k; further let G denote a connected,
simply connected, split semisimple, smooth affine algebraic group scheme over
Spec R with Lie algebra g := Lie (G). We define ̂U (g) = lim←−U (g)/π iU (g) to be

the π -adic completion of U (g). We call ̂U (g)K := ̂U (g) ⊗
R
K the affinoid enveloping

algebra of g. In [3], the authors ask the following question:

Question 1.4 [3, Question A]. Is it the case that every primitive ideal of ̂U (g)K
with K -rational infinitesimal central character is the annihilator of a simple affinoid
highest weight module?

We should outline the strategy of answering this question. Let h be a Cartan subal-
gebra of g; for λ ∈ h∗, we may define the affinoid Verma module of weight λ, ̂M(λ),
see Definition 3.5.

Theorem 1.5 (Theorem 3.25). Let λ ∈ h∗. There is a one to one correspondence
between submodules of ̂M(λ) and submodules of M(λ). In particular, ̂M(λ) has a
unique simple quotient ̂L(λ).

We can now state the most important result of this article.

Theorem 1.6 (Theorem 7.7 and Corollary 7.8). Let R be a mixed characteristic (0, p)
complete discrete valuation ring and let G be a connected, simply-connected, split
semisimple, smooth affine algebraic group scheme over Spec R. Denote g := Lie (G)

the Lie algebra of G.
Any primitive ideal in the affinoid enveloping algebra ̂U (g)K with K -rational

infinitesimal central character is the annihilator of some ̂L(λ).

In fact, we prove a more general result classifying all the primitive ideals with K -
rational infinitesimal central character in ̂U (g)n,K := (lim←−U (g)/π inU (g)) ⊗

R
K . The

K -rationality condition for central characters occurs because K is not algebraically
closed, so there are maximal ideals of the centre of ̂U (g)n,K that do not correspond to
points in K . Fortunately, using the affinoid version of Quillen’s Lemma [2, Corollary
8.6] by Ardakov and Wadsley, we classify in Theorem 7.9 all the primitive ideals in
̂U (g)n,K when n > 0.
Let λ be a regular dominant weight. Using Theorem 7.7, we prove in Theorem

8.4 that any two-sided ideal in ̂U (g)n,K with χλ central character is controlled by a
two-sided ideal in the classical enveloping algebra U (gK ).

In order to prove Theorem 7.7, we enhance the affinoid Beilinson–Bernstein local-
isation [2, Theorem C] developed by Ardakov andWadsley to the equivariant setting,
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prove an affinoid version of the Borho–Brylinski equivalence, and prove an affinoid
version of Proposition 1.3.

We should also remark that our initial approach was to try to adapt one of the
classical proofs in [7, 17, 18, 23] to the affinoid setting.Unfortunately, these approaches
failed to produce results for g 	= sl2. It boils down to the fact that the weight spaces of
the ad -action of the Cartan subalgebra on the affinoid enveloping algebra are not finite
dimensional. This is in contrast to what happens in Theorem 3.25, where we can adapt
classical machinery to obtain a correspondence between the lattices of submodules of
̂M(λ) and M(λ), respectively.

1.5 Connection to the Iwasawa algebras

Assume that K is a finite extension of Qp and let G be a compact open subgroup of
G(R). Let

KG :=
(

lim←−
N�oG

R[G/N]
)

⊗
R
K

denote the Iwasawa algebra of G. It is known that there is an equivalence between
continuous K -representations of G and finitely generated KG-modules. Following
Jacobson, we aim to characterise simple KG-modules by classifying the primitive
ideals in KG. It is conjectured that all the non-zero primitive ideals in KG arise as
annihilators of finite dimensional simple modules. Ardakov and Wadsley claim in [3]
that our theorem 7.7 implies that the conjecture is true provided one can prove that
every affinoid highest weight module that is not finite-dimensional over K is faithful
as a KG-module.

Structure of the paper
The paper is organised as follows: in Sect. 2, we review the main constructions and
results in the previous papers of the series: [33] and [32]. Next, in Sect. 3, we intro-
duce affinoid enveloping algebras and affinoid Verma modules. We prove that for any
weight λ of the Cartan subalgebra, there is an explicit one-to-one correspondence
between submodules of affinoid Verma module of weight λ and the classical Verma
module of weight λ.

In [32], we have proven that there is an equivalence of categories between G-
equivariant (λ, μ)-twisted D-modules on the double flag variety and B-equivariant
λ-twistedD-modules on the flag variety for any all weights λ,μ. In Sect. 4, we prove
an affinoid version of this equivalence.

Next, we enhance the affinoid Beilinson–Bernstein equivalence proven by Ardakov
andWadsley in [2] to the equivariant setting.We further prove that any two-sided ideal
in the affinoid enveloping algebra is G-equivariant when viewed as a bimodule over
the affinoid enveloping algebra.

In Sect. 6, we compute global sections under the affinoid pullback functor defined
in Sect. 4. Finally, in Sect. 7, we prove an affinoid version of Duflo’s theorem and
Sect. 8 we prove that certain two-sided ideals in the affinoid enveloping algebra are
controlled by two-sided ideals in the classical enveloping algebra.
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Conventions
Throughout this document, except otherwise stated, R will denote a mixed charac-

teristic (0, p) complete discrete valuation ringwith uniformiserπ and field of fractions
K . We use || · || to denote the norm of an element in R or K .

Given an R-module M , we define MK := M ⊗
R
K . For any R-algebra A and for g a

R-Lie algebra, we define gA := g⊗
R
A; ifM is an R-module, we denoteMA := M⊗

R
A.

IfM is a sheaf of R-modules on a topological space Y , we define a sheaf of K vector
spaces on Y , MK , by MK (U ) := M(U ) ⊗

R
K for any U ⊂ Y open.

Following [2, definition 2.7], an R-module/sheaf of R-modulesM /Mof a K -vector
space/sheaf of K -vector spaces V /V will be called a lattice if

M ⊗
R
K ∼= V /M ⊗

R
K ∼= V and ∩n∈N∗ πnM = 0/ ∩n∈N∗ πnM = 0.

We will use ⊗̂ to denote the completed tensor product. We will assume that all the
filtrations appearing are exhaustive. Given a filtered A with filtration Fi A, i ∈ Z, we
will use gr A to denote the associated graded ringwith respect to the filtration. Further,
for any ring A, Z(A) will denote its centre. We will use the notation (Vi ) to denote a
set of objects indexed by the non-negative natural numbers.

Lastly, given f : X → Y a map of schemes, we will use f ∗ to denote the pullback
in the category of O and D-modules and f −1, f∗ to denote the inverse/direct image
sheaf.

2 Background

We recall the main results and construction from the first two papers in the series
[32, 33] that we will use throughout this document. For now, let R be a commutative
Noetherian ring.

2.1 Deformations

Definition 2.1 Let A be a positively ascending Z-filtered R-algebra such that F0A is
an R-subalgebra of A. We call A a deformable R-algebra if gr A is a flat R-module.
A morphism of deformable R-algebras is an R-linear filtered ring homomorphism.

Definition 2.2 Let A be a deformable R-algebra and let r ∈ R a regular element. The
r-th deformation of A is the following R-submodule of A:

Ar :=
∞

⊕

i=0

r i Fi A.

By construction, one can see that Ar is a R-subalgebra of A. Further, the definition
is functorial, and the following lemma states that we have a family of endofunctors
A �→ Ar .
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Lemma 2.3 Let A be a deformable R-algebra and r ∈ R a regular element. Then Ar

is also a deformable R-algebra and there is a natural isomorphism gr A ∼= gr Ar .

Proof We give Ar the subspace filtration Fi Ar = Fi A ∩ Ar . As gr A is flat over R, it
follows from similar arguments to [2, Sect. 3.5] that Fi Ar = ∑i

j=0 r
j Fj A. For i ≥ 1

define a R-linear map

f : Fi A/Fi−1A → Fi Ar/Fi−1Ar , f (x + Fi−1A) = r i x + Fi−1Ar .

To finish the proof, it is enough to check that f is bijective. First, we prove that f is
injective. Assume that r i x ∈ Fi−1Ar , so r i x ∈ Fi−1A which implies that x ∈ Fi−1A
since gr A is flat, so in particular R-torsion free. It is straightforward to see that f is
also surjective. ��

2.2 Deformed twisted differential operators

For the rest of the section, we let r ∈ R be a regular element.

Definition 2.4 We call an R-scheme X that is smooth, separated and locally of finite
type an R-variety.

Throughout this subsection, fix X an R-variety.WewriteTX for the sheaf of sections
of the tangent bundle T X .

Definition 2.5 [2, Definition 4.2] Let X be an R-variety. The sheaf of crystalline
differential operators is defined to be the enveloping algebra DX of the Lie algebroid
TX .

We can view DX as a sheaf of ring generated by OX and TX modulo the relations:

• f ∂ = f · ∂;
• ∂ f − f ∂ = ∂( f );
• ∂∂ ′ − ∂ ′∂ = [∂, ∂ ′],
for all f ∈ OX and ∂, ∂ ′ ∈ TX . The sheafDX comes equipped with a natural PBW

filtration:

0 ⊂ F0(DX ) ⊂ F1(DX ) ⊂ . . .

consisting of coherent OX -modules such that

F0(DX ) = OX , F1(DX ) = OX ⊕ TX , Fm(DX ) = F1(DX ) · Fm−1(DX ) for m > 1.

Since X is smooth, the tangent sheaf TX is locally free and the associated graded
algebra of DX is isomorphic to the symmetric algebra of TX :

gr (DX ) =
∞

⊕

m=1

Fm(DX )

Fm−1(DX )
∼= Sym OX

TX . (2)
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If q : T ∗X → X is the cotangent bundle of X defined by the locally free sheaf TX ,
then we can also identify gr (DX ) with q∗OT ∗X .

Let X be an R-variety and let U = Spec (A) ⊂ X be open affine. Further, we
consider M a sheaf of OX -bimodules quasi-coherent with respect to the left action.
We define a filtration F•M via

• F−1(M) = 0,
• Fn(M) = {m ∈ M | ad (a0) ad (a1)... ad (an)(m) = 0 for any a0, a1, . . . an ∈ A}
for n ≥ 0.

We say that M is differential if M = ∪Fn(M) and we call M a differential OX -
bimodule if there is an affine open cover (Ui )i∈I such that M(Ui ) is a differential
bimodule for all i ∈ I .

Let M,N be two quasi-coherent OX -modules. Then for any affine open U ⊂
X the set Hom R(M(U ),N (U )) has the structure of a OX (U )-bimodule. Let F ∈
Hom R(M,N ); we say thatF is a differential operator of degree ≤ n if for any affine
open U , F(U ) ∈ Fn(Hom R(M(U ),N (U )).

Definition 2.6 LetA be aOX -algebra. We say thatA is a differential algebra ifA is a
flat R-module and multiplication makes A a differential OX -bimodule. The filtration
F•(A) becomes a ring filtration andwith respect to this filtration, gr A is commutative.

Definition 2.7 An algebra of r-deformed twisted differential operators(tdo) is anOX -
differential algebra D such that:

(i) The natural map OX → F0(D) is an isomorphism.
(ii) The morphism gr 1D → TX = Der R(OX ,OX ) defined by ψ �→ ad ψ for ψ ∈

F1(D) induces an isomorphism gr 1D → rTX .
(iii) The morphism of OX -algebras Sym OX

(gr 1D) → gr D is an isomorphism.

It is easy to see by construction that if the base ring R is Noetherian, any r -deformed
tdo is a sheaf of Noetherian rings.

2.3 EquivariantO-modules

Throughout this subsection, we recall and adapt some notions of geometric invariant
theory following the ideas in [27]. Let G be an affine algebraic group scheme over
Spec R acting on a scheme X ; denote the action by σX : G × X → X . Furthermore,
we denote pX : G × X → X and p2X : G × G × X → X the projections on the X
factor, p23X : G × G × X → G × X the projection onto the second and third factor
and m : G × G → G the multiplication of the group G.

Definition 2.8 Let G an algebraic group scheme acting on a scheme X. A G-
equivariant OX -module is a pair (M, α) where M is a quasi-coherent OX -module
and α : σ ∗

XM → p∗
XM is an isomorphism of OG×X -modules such that the diagram

(1G × σX )∗ p∗
XM p∗

2XM

(1G × σX )∗σ ∗
XM (m × 1X )∗σ ∗

XM

p∗
23Xα

(1G×σX )∗α
id

(m×1X )∗α
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of OG×G×X -modules commutes (the cocycle condition) and the pullback

(e × 1X )∗α : M → M

is the identity map.

Lemma 2.9 [33, Lemma 2.2] Let G be an affine algebraic group acting on schemes
X and Y and let f : Y → X be a G-equivariant morphism. Then the pullback functor
f ∗ given by

(M, α) �→ ( f ∗M, (1G × f )∗α)

defines a functor from G-equivariant OX -modules to G-equivariant OY -modules.

Definition 2.10 Let G an affine algebraic group acting on a scheme X via σX . We
define the category of G-equivariant quasi-coherent OX -modules. Objects are given
by G-equivariant OX -modules.

A morphism of G-equivariant OX modules (M, αM ) and (N , αN ) is a map φ ∈
Hom OX (M,N ) such that the following diagram commutes:

σ ∗
XM p∗

XM

σ ∗
XN p∗

XN .

σ ∗
Xφ

αM

p∗
Xφ

αN

We call such a morphism G-equivariant. We denoteQCoh (OX ,G) the category of
G-equivariant OX -modules together with G-equivariant morphisms.

Proposition 2.11 [33, Proposition 2.4]. Let G an affine algebraic group acting on a
scheme X. Then the category QCoh (OX ,G) is Abelian.

From now on, when we use the notion of morphism of G-equivariantOX -modules,
we always view it as a morphism in the category QCoh (OX ,G).

A reformulation of equivariance
Wewish to reformulate the notion of an equivariantO-module. Until the end of the

section, we fix X a scheme defined over R acted on by an affine algebraic group G.
We start with a very simple observation: viewing OX as a left OX -module, (OX , id )

is a G-equivariant OX -module. We can reformulate this following ideas in [6]: for
each R-algebra A inducing a map s : Spec A → Spec R and for each geometric point
ig : Spec A → G which induces an automorphism g : XA → XA there exists an
isomorphism

qg : s∗O → (g−1)∗s∗O, satisfying

qe = id and qgh = (g−1)∗(qh)qg (3)

in such a way that (qg)’s are compatible with base change. Let rg = g∗ ◦ qg . For
eachU ⊂ XA affine open, rg is a mapOA(U ) → OA(g−1U ). The Eq. 3 translates as
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re = id and rgh = rhrg . Furthermore, the O-module compatibility requires that for
any f1, f2 ∈ OA(U ), we have rg( f1 f2) = rg( f1)rg( f2).

We define rg via rg( f )(x) = f (g−1x) for all R-algebras A, U ⊂ XA affine
open, x ∈ U , f ∈ OA(U ), g : XA → XA and it is easy to see that rg’s make
OX a G-equivariant OX -module. We may now make an abuse of notation: for each
ig : Spec A → G and each f ∈ OA(U ), we denote g. f = rg−1( f ) and we translate
the equivariance structure as

e. f1 = f , g.(h. f1) = (gh). f1, g.( f1 f2) = (g. f1)(g. f2) for g, h ∈ G, f1, f2 ∈ OX .

Lemma 2.12 [33, Lemma 2.5] A OX -module M is G-equivariant if and only if for
each R-algebra A, for each s : Spec A → Spec R and for each geometric point
ig : Spec A → G which induces an automorphism g : XA → XA there exists an
isomorphism of OA-modules

qg : s∗M → (g−1)∗s∗M

satisfying

qe = id and qgh = (g−1)∗(qh)qg (4)

in such a way that (qg)’s are compatible with base change.

Again by setting sg = g∗ ◦ qg , we may reformulate Eq. 4 as: for each R-algebra A
and for each ig : Spec A → G, we have an isomorphism ofO-modules sg : MXA →
MXA such that for each U ⊂ XA affine open:

se = id ,

sgh = shsg,

s′
gs are compatible with base change,

rg( f .m) = rg( f ).sg(m) for all f ∈ OYA(U ),m ∈ M(U ).

(5)

Again, we make an abuse of notation: for each ig : Spec A → G and each m ∈
MA(U ), we denote g.m = sg−1(m) and we translate the equivariance structure as:

e.m = m,

gh.m = g.(h.m),

g.( f .m) = (g. f ).(g.m).

(6)

for all g, h ∈ G, m ∈ M, f ∈ OX .

2.4 Deformed homogeneous twisted differential operators

Throughout this subsection, we will assume that G is a connected, smooth affine
algebraic group scheme over Spec R with Lie algebra g := Lie (G).



Primitive ideals in affinoid enveloping algebras… Page 11 of 60 70

Definition 2.13 Let D be a differential OX -algebra. We call D a sheaf r-deformed
G-homogeneous twisted differential operators (G-htdo) if D is G-equivariant as a
left OX -module, D is an r-deformed tdo and D is equipped with a Lie algebra map
ig : rg → D such that:

(i) g.1 = 1 and g.(d1d2) = (g.d1)(g.d2) for g ∈ G and d1, d2 ∈ D.
(ii) g.( f d) = (g. f )(g.d) for f ∈ OX and d ∈ D.
(iii) ig(g.ψ) = g.ig(ψ) for g ∈ G, ψ ∈ rg.
(iv) The derivative of the G-action induces a g-action and so a rg ⊂ g action. This

must coincide with the action d → [ig(ψ), d] for ψ ∈ rg and d ∈ D.
(v) ig(rg) ⊂ F1D.
(vi) η = ρ ◦ ig as maps from rg to rTX where η : g → TX is the infinitesimal map

and ρ : F1D → TX is the natural anchor map.

Let Y be another R-variety such that G acts on Y and f : Y → X is a G-equivariant
morphism. Then forD an r -deformedG-htdo on X , we defined in [33, Definition 7.5]
its pullback, f #D and proved in [33, Corollary 7.6] that it is an r -deformed G-htdo
on Y .

Assume further that f : Y → X is a locally trivial G-torsor (see [2, Sect. 4.3]
for the definition). Let us recall the the construction of the its descent f#AG . First we
consider the Picard Algebroid associated toA, L as defined in [33][Lemma 5.6], then
we apply the descent function for Picard Algebroids [33]Proposition 10.2 following
the ideas in [4] to obtain the descented Lie Algebroid f#LG and finally we take its
enveloping algebra to obtain f#AG ; we prove in [33, Lemma 10.10] that it is indeed
an r -deformed tdo on X .

The main proposition we need is:

Proposition 2.14 [33, Corollary 10.13] Let f : Y → X be a locally trivial G-torsor.
Let B be another smooth affine algebraic group acting on X and Y , such that G and
B on Y commute. The maps f#(−)G and f #(−) induce inverse bijections from the set
of r-deformed G × B-htdo’s on Y to the set of r-deformed B-htdo’s on X.

In particular, by setting B to be a trivial group we obtain a bijection between the
set of r -deformed G-htdo’s on Y and the set of r -deformed tdo’s on X .

Definition 2.15 Let (D, ig) be a r-deformed G-htdo and L be a closed subgroup of
G, with Lie algebra l. We call D-module M weakly L-equivariant if:

(i) M is an L-equivariant OX -module.
(ii) g.(D.m) = (g.D).(g.m) for any g ∈ L, d ∈ D,m ∈ M. We call M L-

equivariant if in addition:
(iii) The r l-action induced by the derivative of the L-action onM coincides with the

r l-action inducedby the restriction of ig to r l. Amorphismof (weakly) equivariant
D-modules is a D-linear morphism of L-equivariant OX -modules.

In case L = G, we recover [33, Definition 9.3], but we will need this more
general definition for explaining the localisation mechanism. We denote Coh (D,G)

the category of coherent G-equivariant coherent D-modules.
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Let Y be another R-variety such that G acts on Y , f : Y → X is a G-equivariant
morphism and let D be G-htdo on X . Given a G-equivariant D-module M, we may
endow theOY -module f ∗M with an action of the ring f #D and we call the resulting
module f #M. We prove in [33, Lemma 9.7] that this is G-equivariant.

We may redefine the notion of G-equivariance of an r -deformed G-htdo module.
Denote the G-action by σX : G× X → X . Furthermore, we denote pX : G× X → X
and p2X : G×G×X → X the projections on the X factor, p23X : G×G×X → G×X
the projection onto the second and third factor andm : G×G → G the multiplication
of the group G. Then we define a G-equivariant D-module as a pair (M, α), where
M is a D-module and α : σ #

XM → p#XM is an isomorphism of p#XD-modules such
that the diagram:

(1G × σX )# p#XM p#2XM

(1G × σX )#σ #
XM (m × 1X )#σ #

XM

p#23Xα

(1G×σX )#α

id

(m×1X )#α (7)

commutes and the pullback

(e × 1X )#α : M → M

is the identity map. We will ignore the equivariance structure when it is understood
from the context.

2.5 An equivalence a la Borho–Brylinski

Let G be a connected, simply-connected, smooth affine algebraic group scheme over
Spec R, B a closed subgroup of G; we make the following assumption:

Assumption 2.16 The quotient scheme X = G/B is an R-variety and the quotient
map dB : G → X given by dB(g) = gB is a locally trivial B-torsor with respect to
the action � given by b � g = gb−1.

This assumption is, in particular, satisfied when B is a Borel subgroup of a split
semisimple group G and X = G/B is the flag scheme.

We consider the diagonal action of G on X × X and the natural action by left
translation of B on X . Let ir , il : X → X × X , ir (x) = (eB, x), il(x) = (x, eB)

denote the inclusion of X into the right/left copy of X × X . We also fix (D, ig) an
r -deformed G-htdo on X × X with respect to the diagonal G-action.

Theorem 2.17 [32, Theorem 3.5,Corollary 3.11] The pullbacks i#r D, i#l D is an r-
deformed B-htdo and the functors

i#r : Coh (D,G) → Coh (i#r D, B), i#l : Coh (D,G) → Coh (i#l D, B),

are equivalences of categories. Let Hr and Hl the respective quasi-inverses.
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We will also need the following corollary:

Corollary 2.18 [32, Corollary 3.16] LetN ∈ Coh (D,G) with �(X , i#l N ) = 0. Then
�(X × X ,N ) = 0.

2.6 The localisationmechanism

Throughout this subsection, G will denote a connected, simply-connected, smooth
affine algebraic group over R, g = Lie (G) its Lie algebra, X will denote an R-variety
with a G-action and r ∈ R a regular element. We fix (D, ig) an r -deformed G-htdo
on X .

Fix r ∈ R a regular element and consider the r -th deformation of U (g) denoted
U (g)r . Using the PBW theorem we obtain that U (g)r ∼= U (rg). The enveloping
algebraU (g) is aG-representation via the Adjoint action, so by the module-comodule
duality we obtain a map ρ : U (g) → O(G) ⊗

R
U (g) making U (g) a comodule for the

Hopf algebraO(G). Furthermore, since the G action commutes with the R action, the
map ρ restricts to a map ρ : U (rg) → O(G) ⊗

R
U (rg).

Let L be a closed subgroup of G. Then L also acts on U (rg) via the restriction to
L of the Adjoint action of G. Again, by duality we obtain a comodule map ρrg,L :
U (rg) → O(L) ⊗

R
U (rg). Let M be a U (rg)-module that is also anO(L)-comodule.

The comodule structure induces an action of L; the derivative of the L-action induces
an action of the Lie algebra l = Lie (L), and so of r l, on M . Furthermore, sinceU (rg)
and M are O(L)-comodules, so is U (rg) ⊗

R
M , see [26, Sect. 1.8] for details.

Definition 2.19 A weakly L-equivariant U (rg)module is a triple (M, α, ρ), where M
is an R-module, α : U (rg) ⊗

R
M → M is a left U (rg)-action, ρ : M → O(L) ⊗

R
M

is a O(L) co-action such that α is a morphism of O(L)-comodules.
Furthermore, if the action of r l ⊂ l = Lie (L) induced by ρ by the derivation of the

L-action coincides with the restriction of the rg action to r l, we say that (M, α, ρ) is
L-equivariant. As for equivariantD-modules, we will omit the equivariance structure
when it is understood from the context.

A morphism of (weakly) L-equivariant U (g)-modules (M, α, ρ1) and (N , β, ρ2) is
a map f : M → N of Abelian groups that is U (g)-linear with respect to actions α, β

andO(L)-colinear with respect to ρ1 and ρ2. We call such a morphism L-equivariant.
DenoteMod (U (rg), L) the category of consisting of L-equivariantU (rg)-modules

together with L-equivariant morphisms.

We can reformulate the weakly equivariant condition in the following way: by
the module-comodule correspondence M can be viewed as a representation of the
algebraic group L . SinceU (rg) is also an L-representation we may rewrite condition
that the map α : U (rg) ⊗

R
M → M is a morphism of O(L)-comodules as:

l.(ψ.m) = (l.ψ).(l.m),
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for all R-algebras A, l ∈ L(A), ψ ∈ U (rg)A and m ∈ MA. By abuse of language we
define an equivalent notion of a weakly L-equivariant U (rg)-module by:

M is a representation of L ,

l.(ψ.m) = (l.ψ).(l.m) for all l ∈ L, ψ ∈ U (rg),m ∈ M . (8)

Proposition 2.20 [32, Proposition 5.1, Proposition 5.4] Let L be a closed subgroup
of G and let (D, ig) be an r-deformed G-htdo on X.

(i) Let M be an L-equivariant U (rg)-module. Then D ⊗
U (rg)

M is an L-equivariant

D-module.
(ii) Let M be an L-equivariant D-module. Then �(X ,M) is an L-equivariant

U (rg)-module.

We are interested to apply the localisation mechanism when X is the flag scheme of a
split semisimple group G. Let h be the Cartan subalgebra of g. Recall from [32, Sect.
5.2] that for each R-linear map λ : rh → R we constructed a sheaf of r -deformed
λ-twisted differential operators Dλ,r .

Proposition 2.21 [32, Corollary 5.15] There exists a map α : rg → Dλ,r such that
(Dλ,r , α) is an r-deformed G-htdo on X.

3 Affinoid enveloping algebras and Vermamodules

From now on, till the end of the document, we will assume that R is a complete mixed
characteristic (0, p) discrete valuation ring with field of fractions K , uniformiser π

and residue field k.
For a deformable R-algebra A and n ∈ N

∗, we denote An := Aπn the πn-th
deformation of A.

3.1 Background on affinoid enveloping algebras

In this subsection, we recall the main construction and results concerning affinoid
enveloping algebras.

Let G be a connected, simply connected, split semisimple, smooth affine algebraic
group scheme over Spec R. Denote g the Lie algebra of G. The Lie algebra g is
a linear G representation via the Adjoint action; see [22, II.1.12] for details. In
particular the functor of pointsG(R) acts on g. Using the functoriality one may extend
this action to the enveloping algebra U (g). For example, if we consider a monomial
x1x2 . . . xn ∈ U (g), with xi ∈ g, we get that for each g ∈ G(R) we have

g · x1x2 . . . xn = (g · x1)(g · x2) . . . (g · xn).

It follows that the action of G(R) preserves the standard PBW filtration on U (g).
Consider the corresponding comodule structure on O(G) induced by the action of
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G and let ρ : U (g) → O(G) ⊗ U (g) be the defining map. It follows from the
definition of the G(R) action that the comodule map satisfies ρ(ab) = ρ(a)ρ(b) for
any a, b ∈ U (g).

Let H be a fixed maximal torus for G and � the corresponding root system, and
xα : Ga → G and eα := ∂α(1) ∈ g be the root homomorphism and root vector
corresponding to a root α ∈ �.

Lemma 3.1 ([3], Lemma 4.1) Let r ∈ R and a ∈ �. Then the following hold:

1. Let M be a G-module; we may view M as Ga module via xα so as a module over

the distribution algebra Dist(Ga) which contains the elements
emα
m! . Then for every

y ∈ M we have emα
m! ∈ M.

2. For all b ∈ U (g), let ad (reα) · b := [reα, b]. Then there exists i ≥ 1 such that
ad (reα)i

i ! · b = 0.

3. xα(r) · a = ∑∞
m=0

ad (reα)m

m! (a) for all a ∈ U (g).

Definition 3.2 Let A be an R-algebra. The π -adic completion of the R-algebra A is
defined to be ̂A = lim←− A/π i A.

Let u1, u2, . . . ud be a free R-basis of g. Then as a vector space we have

̂U (g)n,K =
⎧

⎨

⎩

∑

α∈Nd

λαu
α : λα ∈ K , p−n|α|λα → 0 as |α| → ∞

⎫

⎬

⎭

. (9)

Here for a d-tuple α = (α1, α2, . . . αd), we define |α| = ∑d
i=1 αi and uα

= uα1
1 uα2

2 . . . uαd
d .

By functoriality, the Adjoint action ofG onU (g) extends to aG-action on ̂U (g)n,K .
The following proposition extends the classical results for enveloping algebras defined
over a field of characteristic 0.

Lemma 3.3 [3, Corollary 4.3]

(i) Every two sided ideal in ̂U (g)n,K is preserved by G(R).

(ii) For any z ∈ Z( ̂U (g)n,K ) and for any g ∈ G(R), we have g · z = z.

One may wonder if the converse of Lemma 3.3 i i) also holds. Classically, we have
Z(U (gK )) ∼= U (gK )G . The following theorem states that the result carries in the
affinoid setting:

Theorem 3.4 [3, Theorem 4.4] We have Z( ̂U (g)n,K ) ∼= ̂U (g)Gn,K .

Recall that H ⊂ B− is a split maximal torus in G contained in B−. The unipotent
radical N− of B− will be considered as generated by negative roots corresponding
to the adjoint action of H on G. Furthermore, let N+ be the unipotent radical of the
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opposite Borel group B+ containing H . Let h, b−, n−, n+, b+ be the Lie algebras
corresponding to the algebraic groups so that we have a decomposition

g = n− ⊕ h ⊕ n+.

Let λ : πnh → R be an R-linear character; extend this to an R-linear map πnb+ → R
by pulling along the projection map πnb+ → πnh. Similar to the classical case, we

denote Kλ the corresponding one dimensional module over ̂U (b+)n,K ; the Lie algebra
b+ acts on Kλ via the corresponding map πnb+ → R and we may extend this action

to the whole algebra ̂U (b+)n,K .

Definition 3.5 The affinoid Verma module with highest weight λ is defined to be

̂M(λ) := ̂U (g)n,K ⊗̂
U (b+)n,K

Kλ.

Notice that affinoid Vermamodules are non-trivial for hK -weights induced by weights
of πnh; for a general hK -weight, an unit in ̂U (g)n,K may annihilate the affinoid Verma
module. It is clear by construction that, similarly to the classical case, the affinoid
Verma modules are cyclic: ̂M(λ) is generated by vλ = 1 ⊗̂

U (b+)n,K

1.

The centre Z(gK ) ofU (gK ) acts on the classical Vermamodule defined byM(λ) :=
U (gK ) ⊗

U (b+
K )

Kλ by a character χλ : Z(gK ) → Kλ. As ̂M(λ) contains M(λ) as a dense

subset the action of Z(gK ) on ̂M(λ) also factors throughχλ. In [3], the authors compute
the annihilator of the affinoid Verma module ̂M(λ).

Theorem 3.6 [3, Theorem 4.6] If p is a very good prime for G then the annihilator
of the affinoid Verma module ̂M(λ) inside ̂U (g)n,K is

̂Iλ := ker χλ
̂U (g)n,K .

For the rest of section we fix a R-linear map λ : πnh → R and let ̂M(λ) and M(λ) be
the affinoid respectively classical Verma module of weight λ. In the next subsections,
we prove there is an explicit one-to-one correspondence between submodules of ̂M(λ)

and submodules of M(λ).

3.2 The height function

For the semisimple Lie algebra g, let � denote the set of simple positive roots and �+
the set of positive roots. For any root α, we will denote α∨ the corresponding coroot.
In the Killing form identification of h and h∗ the coroot α∨ corresponds to hα ∈ h.
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Definition 3.7 Let β ∈ �+ be a positive root. Then β = ∑

α∈� cαα, with cα ∈ Z

+
determined uniquely, see [21, Sect. 0.2] for details. We define the height of β to be

ht (β) :=
∑

α∈�

cα.

We now extend this definition to monomials in the universal enveloping algebra using
the correspondence between roots and root vectors. Fix an order between the positive
roots and let e1, e2 . . . , em the corresponding order between root vectors. For a root
vector ei , we define the height, ht (ei ), to be the height of the root corresponding to
ei .

Definition 3.8 For a1, a2 . . . am ∈ N, let eA := ea11 ea22 . . . eamm ∈ U (n+) be such that
ei ∈ n+. Then we define the height of eA to be

ht (eA) :=
m

∑

i=1

ai ht (ei ).

Let f B = f b11 f b22 . . . f bmm ∈ U (n−) such that fi ∈ n−. Then we define the height of
f B to be

ht ( f B) :=
m

∑

i=1

bi ht (ei ),

where ei is the positive root vector corresponding to fi .

Let ρ be the half sum of positive roots and δ = ρ∨ ∈ h the corresponding coroot.
Let α be a positive root; then by the roots-coroots duality we have α(δ) = ρ(α∨);
furthermore by [21, Sect. 0.6], we have ρ(α∨) = ht (α), therefore we obtain α(δ) =
ht(α).

Lemma 3.9 [3, Sect. 4.7] Let f B = f b11 f b22 · · · f bmm ∈ U (n−) for B ∈ N

m. Then for
any h ∈ h, we have:

h · f Bvλ =
⎛

⎝λ −
m

∑

j=1

b jα j

⎞

⎠ (h) f Bvλ.

For the ease of notation, denote � := λ(δ). Setting h = δ in the equation above we
get:

δ f Bvλ =
(

λ −
m

∑

i=1

biαi

)

(δ) f Bvλ =
(

� −
m

∑

i=1

bi ht (αi )

)

f Bvλ = (� − ht ( f B)) f Bvλ.

(10)

As an easy corollary we get:
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Corollary 3.10 Let a ∈ N, f B ∈ U (n−). Then:

(δ − � + a)( f B)vλ = (a − ht ( f B)) f Bvλ.

Definition 3.11 Let M be a U (h)-module andμ ∈ h∗
K . We say that m ∈ M has weight

μ if hm = μ(h)m for all h ∈ hK . The set of vectors of weight μ is denoted Mμ.

The following lemma follows easily from the construction of affinoid Verma mod-
ules:

Lemma 3.12 Let N a submodule of ̂M(λ). Then Nμ is a finite dimensional vector
space for any μ ∈ h∗

K .

Proof We have by construction that any element x ∈ M(λ) can be written as x =
∑

B∈Nm f Bvλ. The claim then follows as in the classical case using Lemma 3.9. ��

3.3 Submodules of affinoid Vermamodules

Throughout this subsection, we will make free use of the following well known facts:

• U (gK ) ∼= U (g)K = U (g) ⊗
R
K .

• ̂U (g)n is flat over U (g)n and ̂U (g)n,K is flat over U (g)K . The first claim follows
from [20, II 1.2 Theorem 4] and the second follows from the first by tensoring
with K .

• Given N a submodule of M(λ), we may view N as a subset of the topological
module ̂M(λ). Then we have by [20, II 1.2 Proposition 8] that the closure of N
inside ̂M(λ) is given by

N̂ := N = ̂U (g)n,K ⊗
U (g)K

N .

• The affinoid Vermamodule ̂M(λ) has a K -topological basis given by f Bvλ, where
f B ∈ U (n−); recall that vλ = 1 ⊗ 1.

We begin by extending our definition of the height function to homogeneous poly-
nomials, homogeneity being given by height. We say that a polynomial inU (n−

K ) has
height n if all the monomials appearing in its expansion have height n. We also let
M =max(ht (ei )), so that we have the inequality

M |B| ≥ ht ( f B) ≥ |B|. (11)

By construction, we know that as a vector space

̂U (n−)n,K =
{

∑

B∈Nm

aB f B, p−n|B|||aB || → 0 as |B| → ∞
}

.
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We can reformulate this in terms of height function using Eq. (11):

̂U (n−)n,K =
{

∑

B∈Nm

aB f B, p−n|B|||aB || → 0 as ht ( f B) → ∞
}

.

Let N be a closed submodule of ̂M(λ) and let ν ∈ h∗. We know by Eq. 10 that
δ f Bvλ = (� − ht ( f B)) f Bvλ so any element of Nν must be of the form Pvλ, where
P ∈ U (n−

K ) is a homogeneous polynomial of height � − ν(δ).

Proposition 3.13 Let N be a closed submodule of ̂M(λ). Then

N =
⊕

μ∈h∗
K

Nμ = N ∩ M(λ),

where M(λ) is the Verma module of weight λ.

Fix the closed submodule N and an element u ∈ N , which we write as

u =
∑

B∈Nm

aB f Bvλ,

with p−n|B|||aB || → 0 as ht ( f B) → ∞. Furthermore, fix Pvλ ∈ Nμ, with P 	= 0 of
height L appearing in the expansion of u. To prove Proposition 3.13, it is enough to
prove that Pvλ ∈ N . To do this, we begin by eliminating all the other terms of height
L appearing in the expansion of u. We write u as

u =
∑

B∈Nm ,ht ( f B ) 	=L

aB f Bvλ + Pvλ +
∑

s∈S
Qsvλ,

where S is a set such that Qs has height L and Qsvλ ∈ Nνs for some weight νs 	= μ.
By Lemma 3.12, the set S is finite.

Let s ∈ S. As νs 	= μ, there exists hs ∈ hK such that μ(hs) 	= νs(hs). So we
can define an operator HS := ∏

s∈S(hs − νs(hs)) ∈ U (hK ). Since Qs ∈ Nνs , we get
HS · Qsvλ = 0. Therefore applying the operator HS to u we obtain a new element
u′ ∈ N , which can be written as

u′ =
∑

B∈Nm ,ht ( f B ) 	=L

bB f Bvλ +
∏

s∈S
(μ(hs) − νs(hs))Pvλ,

with p−n|B|||bB || → 0 as ht ( f B) → ∞. By our construction
∏

s∈S(μ(hs)
− νs(hs)) 	= 0, so for the ease of notation we set P = ∏

s∈S(μ(hs) − νs(hs))P 	= 0,
so that

N � u′ =
∑

B∈Nm ,ht ( f B ) 	=L

bB f Bvλ + Pvλ.
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To complete the proof we need to define a new set of operators in U (hK ). We use the
convention that for x ∈ U (hK ) and i ∈ N the symbol

(x
i

)

will denote

i−1
∏

l=0

1

i ! (x − l) ∈ U (hK ).

Definition 3.14 For any i, j ∈ N define εi, j := (

δ−�+i+ j
i

) ∈ U (hK ).

Lemma 3.15 For any B ∈ N

m, we have that εi, j f Bvλ = (i+ j−ht ( f B )
i

)

f Bvλ.

Proof We have that

εi, j f
Bvλ = 1

i !
i−1
∏

l=0

(δ − � + i + j − l) f Bvλ

= 1

i !
i−1
∏

l=0

(i + j − l − ht ( f B)) f Bvλ (by Corollary 3.10)

=
(

i + j − ht ( f B)

i

)

f Bvλ.

��
We are now ready to prove Proposition 3.13; recall that it is enough to prove that

for u′ = ∑

B∈Nm ,ht ( f B ) 	=L bB f Bvλ + Pvλ, we have Pvλ ∈ N .

Proof of Proposition 3.13 Write u′ as

u′ =
∑

B∈Nm ,ht ( f B )<L

bB f Bvλ + Pvλ +
∑

B∈Nm ,ht ( f B )>L

bB f Bvλ.

Consider the operator εL−1,0 acting on u′. We get

N � u′′ : = εL−1,0 · u′

=
∑

B∈Nm ,ht ( f B )<L

(

L − 1 − ht ( f B)

L − 1

)

bB f Bvλ +
(

L − 1 − L

L − 1

)

Pvλ+

+
∑

B∈Nm ,ht ( f B )>L

(

L − 1 − ht ( f B)

L − 1

)

bB f Bvλ

= b0vλ + (−1)L−1Pvλ +
∑

B∈Nm ,ht ( f B )>L

(

L − 1 − ht ( f B)

L − 1

)

bB f Bvλ.

(12)
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Next, we apply the operator (−1)L (δ−�)
L . We have

N � u(3) := (−1)n(δ − �)

L
· u′′

= (−1)L

L

[

(� − �)b0vλ + (� − L − �)(−1)L−1Pvλ +

+ (by 3.10)
∑

B∈Nm ,ht ( f B )>L

(� − ht ( f B) − �)

(

(L − 1 − ht ( f B))

L − 1

)

bB f Bvλ

]

= Pvλ +
∑

B∈Nm ,ht ( f B )>L

cB f Bvλ, (13)

for some cB ∈ K with p−n|B|||cB || → 0 as ht ( f B) → ∞. Finally, we consider
the family of operators εi,L where i ∈ N varies. By Lemma 3.15, we have that

εi,L f Bvλ =
(

i + L − ht ( f B)

i

)

f Bvλ.

In particular, εi,L Pvλ = Pvλ and εi,L f Bvλ = 0, for L < ht ( f B) ≤ i + L .
Therefore, for any i ∈ N one has

N � ui = εi,L · u(3) = Pvλ +
∑

B∈Nm ,ht ( f B )>i+L

(

i + L − ht ( f B)

i

)

cB f Bvλ.

Since p−n|B|||cB || → 0 as ht ( f B) → ∞ and ||(i+L−ht ( f B )
i

)|| ≤ 1, we get

limi→∞ ui = Pvλ. Since we assumed that N is closed submodule of ̂M(λ), we
may conclude that Pvλ ∈ N , which is the desired result. ��

Recall that we aim to prove that there is a one-to-one correspondence between
submodules of affinoid Verma module ̂M(λ) and the corresponding classical Verma
module M(λ) where λ : πnh → R is a R-linear map. Define a function F from
submodules of ̂M(λ) to submodules of M(λ) sending the submodule N to N ∩ M(λ).

Lemma 3.16 The function F is injective.

Proof Let N1, N2 be submodules of ̂M(λ) such that

F (N1) = N1 ∩ M(λ) = N2 ∩ M(λ) = F (N2).

As the induced metric topology on ̂M(λ) is complete, any submodule of ̂M(λ) is
closed by [20, I.5.5]. Thus, applying Proposition 3.13, we obtain N1 = N1 ∩ M(λ) =
N2 ∩ M(λ) = N2, so N1 = N2. Therefore, the function F is injective. ��

We aim to prove that F is also surjective. For any ring A, S a subset of A and M
an A-module, we say that M is not S-torsion if there exists m ∈ M such that for all
s ∈ S, sm 	= 0.
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Proposition 3.17 Let λ : πnh → R be an R-linear map and let M be a U (gK )

subquotient of M(λ) that is not 1 + πU (g)-torsion. Then

̂U (g)n,K ⊗
U (gK )

M 	= 0.

To prove this proposition we will need a few additional results. We say that a right
ideal I in a right Noetherian ring A has the Artin-Rees property if for any right ideal
J , there exists n ∈ N

∗ such that J ∩ I n ⊂ J I .

Proposition 3.18 [24, Proposition 4.2.9] Let A be a right Noetherian ring and I an
ideal with the right Artin-Rees property. Then:

1. 1 − I is a right Ore set, so a right denominator set.
2. Writing S for 1 − I , we have IS ⊂ J (AS), where J (•) denotes the Jacobson

radical of a ring and IS and AS denote the sets S−1 I and S−1A, respectively.

Corollary 3.19 Consider the ideal I = πU (g)n of U (g)n. Then U (g)n1+I exists and is
non-zero; furthermore πU (g)n1+I ⊂ J (U (g)n1+I ).

Proof By [24, Proposition 4.2.6], any ideal generated by normal elements in a right
Noetherian ring has the Artin-Rees property, so in particular we get that the ideal
πU (g)n in U (g)n has the Artin-Rees property. The claim follows from Proposition
3.18. ��
Remark 3.20 Notice that as the ring U (g)n is both left and right Noetherian we get
the same results for the left localization. Thus for S = 1 + πU (g)n , we have by
[24, Corollary 2.1.4] that the left and right localisation with respect to S are equal:
SU (g)n = U (g)nS .

From now on, S will denote the set 1+ πU (g)n . The ringU (g)nS has a π -adically
negative filtration F• given by

FiU (g)nS = π−iU (g)nS , for i ≤ 0.

Denote ̂U (g)nS the π -adically completion of U (g)nS , i.e. the completion induced by
the filtration F•.

Proposition 3.21 ̂U (g)nS is a faithfully flat right U (g)nS -module.

Proof SinceU (g)n is left and right Noetherian, and S is an Ore set, we get that the ring
U (g)nS is also left and right Noetherian. Furthermore, we have that the ideal inducing
the π -adic filtration onU (g)S is generated by a central element, so by [28, Proposition

3.12], the Rees ring ˜U (g)nS is also left and right Noetherian. By Corollary 3.19, we
have F−1U (g)nS ⊂ J (F0U (g)nS ), therefore by combining the two statements, we get
that U (g)S is a left Zariski ring, see [20, II.2.2.1] for the definition of a Zariski ring.
The claim follows from [20, Theorem II.2.2.2]. ��
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Corollary 3.22 Let M be a non-zero U (g)n-module that is not S-torsion. Then

̂U (g)n ⊗
U (g)n

M 	= 0.

Proof of Proposition 3.13 Since M is not S-torsion, we have by localising

0 	= S−1M = S−1U (g)n ⊗
U (g)n

M = U (g)nS ⊗
U (g)n

M .

By Proposition 3.21, ̂U (g)nS is faithfully flat over U (g)nS , so

̂U (g)nS ⊗
U (g)nS

S−1M 	= 0.

Recall that all the elements of S are of the form 1+πx , with x ∈ U (g)n , but when

we π -adically complete U (g)nS everything in S becomes a unit, so ̂U (g)nS
∼= ̂U (g)n .

We then get:

0 	= ̂U (g)nS ⊗
U (g)nS

S−1M ∼= ̂U (g)n ⊗
U (g)nS

S−1M

∼= ̂U (g)n ⊗
U (g)nS

U (g)nS ⊗
U (g)n

M

∼= ̂U (g)n ⊗
U (g)n

M .

��
We now apply the results for objects in category O for the enveloping algebra

U (gK ). Let λ : πnh → R be an R-linear map and consider the simpleU (gK ) module
L(λ)-the unique simple quotient of M(λ)- and view it as a U (g)-module.

Lemma 3.23 Let the notations be as above. Themodule L(λ) is not 1+πU (g)-torsion.

Proof The module L(λ) is cyclic being generated by vλ + N (λ), where N (λ) is the
uniquemaximal submodule ofM(λ). It is enough to prove that vλ+N (λ) is 1+πU (g)
torsion-free.

Consider the Cartan Lie subalgebra h. We extend the character λ : h → R to an
R algebra homomorphism λ : U (h) → R. We use the decomposition of U (g) given
by U (g) = (n−U (g) + U (g)n+) ⊕ U (h). Notice that if x ∈ U (g)n+, then xvλ = 0.
Furthermore, if x ∈ n−U (g), then

xvλ ∈ n−
KU (n−

K )vλ. (14)

In fact, onemay prove that xvλ is in n−U (n−)vλ, but that requires amessy computation
and we do not need this in our argument. Next, for y ∈ U (h), we have

yvλ = λ(y)vλ, where λ(y) ∈ R. (15)
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Let z ∈ U (g), an element such that z = x + y with x ∈ n−U (g) + U (g)n+ and
y ∈ U (h). By Eq. (14) there exists s ∈ n−

KU (n−
K ) such that xvλ = svλ and by Eq.

(15), yvλ = λ(y)vλ. Therefore, we get

(1 + π z) · (vλ + N (λ)) = (1 + πs + πλ(y))vλ + N (λ).

Proving that (1+π z)vλ + N (λ) 	= 0 is equivalent to (1+π z)vλ /∈ N (λ). Assume for
a contradiction that (1 + π z)vλ ∈ N (λ). Then (1 + πλ(y))vλ + πsvλ ∈ N (λ). View
(1 + πλ(y))vλ + πsvλ as an element in M(λ). Consider the decomposition of M(λ)

given by

M(λ) = M(λ)λ ⊕ M(λ)<λ = Kvλ ⊕ M(λ)<λ,

where M(λ)<λ denotes the K -span of all vμ ∈ M(λ)μ with μ < λ. Notice that since
s ∈ n−

KU (n−
K ), we have πsvλ ∈ M(λ)<λ; furthermore, 1 + πλ(y)vλ ∈ M(λ)λ. Now

since the module N (λ) is itself hK -semisimple, we have

(1 + πλ(y))vλ ∈ N (λ).

By construction, λ(y) ∈ R, so ||πλ(y)|| < 1, thus 1+πλ(y) is a unit in R. Therefore,
multiplying by its inverse we conclude that vλ ∈ N (λ), so N (λ) = M(λ) which is the
desired contradiction. We conclude that L(λ) is indeed not 1 + πU (g)-torsion. ��

As an easy corollary we obtain:

Corollary 3.24 Let the notations as in the previous lemma.View L(λ)asU (g)n-module.
Then L(λ) is not 1 + πU (g)n-torsion.

We may now prove Proposition 3.17:

Proof of Proposition 3.13 Let M be a subquotient of M(λ) and view it as a U (g)n-
module. Any subquotient of the Verma module M(λ) has finite length and can be
viewed as extension ofmodules of the form L(μ). Each L(μ) is not 1+πU (g)n-torsion
by Corollary 3.24. As finite extension of modules that are not 1 + πU (g)n-torsion is
not 1+ πU (g)n-torsion, M is not 1+ πU (g)n-torsion. Therefore, by Corollary 3.22,
we have

̂U (g)n ⊗
U (g)n

M 	= 0.

As this space has no π -torsion we get

0 	= (̂U (g)n ⊗
U (g)n

M) ⊗
R
K = (̂U (g)n ⊗

R
K ) ⊗

(U (g)n⊗
R
K )

(M ⊗
R
K )

= ̂U (g)n,K ⊗
U (gK )

M .

��
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Theorem 3.25 Let λ be a weight in πnh∗ and extend this to a weight λ ∈ h∗
K .There is

a one to one correspondence between submodules of ̂M(λ) and submodules of M(λ).

Proof Recall the functionF going from submodules of ̂M(λ) to submodules of M(λ)

sending a submodule N to N ∩ M(λ). We have already proven in Lemma 3.16 that
F is injective, so we only need prove thatF is surjective.

Let N be a submodule of M(λ) and let N = ̂N = ̂U (g)n,K ⊗
U (gK )

N . Furthermore,

let N ′ = ̂N ∩ M(λ). We aim to prove that N = N ′ = F (̂N ). By construction we
have that N ⊂ N ′ and by Proposition 3.13, ̂N = ̂U (g)n,K ⊗

U (gK )
N ′. Assume for a

contradiction that N is strictly included in N ′. Consider the short exact sequence

0 → N → N ′ → N ′/N → 0.

As ̂U (g)n,K is flat over U (gK ) we get a short exact sequence

0 → ̂U (g)n,K ⊗
U (gK )

N → ̂U (g)n,K ⊗
U (gK )

N ′ → ̂U (g)n,K ⊗
U (gK )

N/N ′ → 0, so

0 → ̂N → ̂N → ̂U (g)n,K ⊗
U (gK )

N/N ′ → 0

is a short exact sequence, which implies that ̂U (g)n,K ⊗
U (gK )

N/N ′ = 0. Finally,

since N/N ′ is a subquotient of M(λ) that is not 1+ πU (g)n-torsion (being an exten-
sion of modules of type L(μ) and by Corollary 3.24), by Proposition 3.17, we have
̂U (g)n,K ⊗

U (gK )
N/N ′ 	= 0, which is the desired contradiction. ��

One might also try to prove the theorem above using [15, Korollar 1.3.12]; we
were not aware of the existence of this paper at the time of the proof.

Using the theorem above, we obtain immediately:

Proposition 3.26 Let λ : πnh → R be an R-linear map. The affinoid Verma module
̂M(λ) has finite length equal to the length of classical Verma module M(λ).

Proof By Theorem 3.25, there is a one to one correspondence between submodules of
̂M(λ) and submodules ofM(λ). As themoduleM(λ) has finite length by [21, Theorem
1.11], it follows that ̂M(λ) also has finite length. Furthermore, the correspondence is
1-1, so the lengths must be the same. ��

For λ as in Theorem 3.25 we get the following corollaries:

Corollary 3.27 An affinoid Vermamodule ̂M(λ) is simple if and only if the correspond-
ing classical Verma module M(λ) is simple.



70 Page 26 of 60 I. Stanciu

Corollary 3.28 Any affinoid Verma module has a unique maximal submodule and a
unique simple subquotient. The unique simple quotient ̂L(λ) of ̂M(λ) is given by

̂L(λ) := ̂U (g)n,K ⊗
U (gK )

L(λ),

where L(λ) denotes the unique simple quotient of M(λ).

Proof Let N (λ) denote the unique maximal submodule of M(λ). Consider the short
exact sequence

0 → N (λ) → M(λ) → L(λ) → 0.

Since ̂U (g)n,K is flat over U (gK ) we obtain a short exact sequence

0 → ̂U (g)n,K ⊗
U (gK )

N (λ) → ̂U (g)n,K ⊗
U (gK )

M(λ) → ̂U (g)n,K ⊗
U (gK )

L(λ) → 0.

(16)

By construction, ̂M(λ) ∼= ̂U (g)n,K ⊗
U (gK )

M(λ) and by Theorem 3.25, one obtains

̂N (λ) := ̂U (g)n,K ⊗
U (gK )

N (λ) is the unique maximal submodule of ̂M(λ). The claim

now follows from Eq. (16). ��

Proposition 3.29 Let M̂ be a subquotient of ̂M(λ). Then M̂ has a finite composition
series and all the simple quotients are of the form ̂L(μ) for some μ ∈ πnh∗.

Proof The first statement follows directly from Proposition 3.26. It is enough to prove
the second statement in the case M̂ = ̂M(λ). Let

0 = M̂0 ⊂ M̂1 ⊂ M̂2 ⊂ . . . M̂n = ̂M(λ),

be a composition series for ̂M(λ). By Theorem 3.25, there exists a composition series
of M(λ)

0 = M0 ⊂ M1 ⊂ M2 ⊂ . . . Mn = M(λ),

such that M̂i = ̂U (g)n,K ⊗
U (gK )

Mi for 0 ≤ i ≤ n.

Fix 1 ≤ j ≤ n; it is enough to prove that M̂ j/M̂ j−1 ∼= ̂L(μ) for some μ ∈ h∗.
Consider the short exact sequence:

0 → Mj−1 → Mj → Mj/Mj−1.
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Since ̂U (g)n,K is flat over U (gK ) we obtain by tensoring on the left a short exact
sequence

0 → M̂ j−1 → M̂ j → ̂U (g)n,K ⊗
U (gK )

Mj/Mj−1,

so M̂ j/M̂ j−1 ∼= ̂U (g)n,K ⊗
U (gK )

Mj/Mj−1. Since Mj/Mj−1 is a simple subquotient

of M(λ), we have Mj/Mj−1 ∼= L(μ) for some μ ∈ h∗
K by [21, Sect. 1.11]. This is

induced by some R-linear mapμ : πnh → R. The conclusion follows from Corollary
3.28. ��

4 An affinoid equivalence of categories a la Borho–Brylinski

Recall that G is a connected, simply connected smooth affine algebraic group scheme
defined over Spec R with Lie algebra g. We also let B a closed subgroup of G.
Throughout this section, we keep assumption 2.16; that is we assume that the quotient
scheme X = G/B is an R-variety and the quotient map dB : G → X given by
dB(g) = gB is a locally trivial B-torsor with respect to the action � given by b � g =
gb−1.

4.1 Introduction to ̂D-modules

We use the following convention, for a sheaf of R-modules M, we define its π -adic
completion ̂M := lim←− M/π iM.

Let Y be an R-variety and D be a sheaf of Noetherian rings on Y . Since π -adic
completion preserves Noetherianity we obtain that ̂D is a sheaf of Noetherian rings.
Thus, a module M over ̂D is coherent if and only if it is locally finitely generated.
Furthermore, we will use without further comments that ifM is a coherent ̂D-module,
thenM ∼= lim←− M/π iM; this follows from [2, Lemma 5.4]. We also use that for any

i ∈ N

∗, we have ̂D/π i
̂D ∼= D/π iD. For more background on ̂D-modules, the reader

is advised to consult [2, Sect. 5] and [9, Sect. 3].
In general, it is hard to determine whether a ̂D-moduleM is coherent. This is true

for example if M = ̂N for some coherent D-module N . In the following, we give a
more general set of sufficient conditions.

Proposition 4.1 [9, Lemme 3.2.2] Let D be a ring and I an ideal generated by
finitely many central elements, and let Di = D/I i D, i ∈ N

∗. Furthermore, suppose
there exists (Mi ) an inverse system of Di -modules such that for j ≥ 2 the canonical
morphisms M j/π

j−1Mj → Mj−1 are isomorphisms. We let M = lim←− Mi . Then:

1. For i ≥ 1 the canonical morphisms

M/I i M → Mi

are isomorphisms.
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2. If M1 is finitely generated over D1, then M is finitely generated over ̂D := lim←− Di .

Furthermore, a generating set for M can be obtained by lifting a generating set
for M1.

Corollary 4.2 Let (Mi ) be an inverse system of coherent modules over D/π iD and
suppose that the connecting maps induce isomorphisms Mi/π

i−1Mi ∼= Mi−1 for
all i ≥ 2. Define

M := lim←− Mi .

Then M is a coherent ̂D-module and Mi ∼= M/π iM for all i ≥ 1.

Proof The question is local; as ̂D is a sheaf of Noetherian rings, a module is coher-
ent if and only if it is locally finitely generated. Let U ⊂ Y be open affine and let
MiU := Mi (U ) and DiU := D(U )/π iD(U ). Then we have

M(U ) = lim←− MiU .

Since Mi is coherent as a D/π iD-module, we get that MiU is a finitely generated
DiU -module. By definition, we have MiU/π i−1M ∼= Mi−1U , so by the second part
of Proposition 4.1, we get that M(U ) is finitely generated as a ̂D(U )-module, so M
is indeed a coherent ̂D-module. For the second part of the statement we have by the
first part of Proposition 4.1 that

MiU ∼= M(U )/π iM(U ).

As this is true for any open affine and there is a mapM/π iM → Mi , we get the
desired conclusion. ��

4.2 Pullback of ̂D-modules

For the rest of this section, we fix n a deformation parameter. LetD be a πn-deformed
tdo on Y .

Definition 4.3 Let f : Z → Y be amap of smooth R-varieties and letM be a coherent
̂D-module on Y . Then we define the π -adic pullback of M to be

f̂ #(M) := lim←− f #(M/π iM).

Remark 4.4 The inverse limit is considered in the category of presheaves over Z . By
construction, we have thatMi := M/π iM is in particular a D-module, so f #(Mi )

is a f #D-module, where f #M〉 is defined as in Sect. 2.4. Since π iMi = 0, we obtain

π i f #(Mi ) = 0, thus f #(Mi ) is a f #D/π i f #D-module. Therefore, we obtain that

f̂ #(M) has the structure of a ̂f #D-module.
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Let L be a smooth affine algebraic group locally of finite type defined over Spec R
acting on Y and let D be a πn-deformed L-htdo on Y . We define the notion of L̂-
equivariant ̂D-modules.

Definition 4.5 A L̂-equivariant coherent ̂D-module is a triple (M, (Mi ), (αi )) such
that:

1. (Mi ) is an inverse system of D-modules and π iMi = 0.
2. For i ∈ N

∗, (Mi , αi ) ∈ Coh (D, L).
3. For i ≥ 2, the connecting map in the inverse system induces an isomorphism

Mi/π
i−1Mi ∼= Mi−1 of L-equivariant D-modules.

4. M ∼= lim←− Mi as ̂D-modules.

A L̂-equivariant morphism between L̂-equivariant ̂D-modules (M, (Mi ), (αi )),
(N , (Ni ), (βi )) is a ̂D-linear morphism φ : M → N such that there exist compatible
maps φi ∈ Hom Coh (D,L)(Mi ,Ni ) with φ = lim←− φi .

We define the category of L̂-equivariant ̂D-modules to consist of L̂-equivariant
objects and L̂-equivariant morphisms. As before, we will omit the equivariance struc-
ture when it is understood from the context. We denote Coh (̂D, L) the category of
L̂-equivariant coherent ̂D-modules.

Proposition 4.6 Let the notation be as above. The category Coh (̂D, L) is Abelian.

In order to prove this proposition, we will need the following lemma:

Lemma 4.7 Let A be a π -adically complete Noetherian R-algebra. Let (Mi )i∈N∗ and
(Ni )i∈N∗ be inverse systems of A-modules such that π i Mi = π i Ni = 0 for all
i ∈ N

∗ and assume that transition maps induce isomorphisms Mi/π
i−1Mi ∼= Mi−1

and Ni/π
i−1Ni ∼= Ni−1. Let ( fi ) : (Mi ) → (Ni ) be a map of inverse systems and

(Ki ) = ker( fi ). Then Ki/π
i−1Ki ∼= Ki−1.

Proof We follow the idea in [31, 0EHN]. Let M := lim←− Mi , N := lim←− Ni and

f : M → N the induced map; further let K = ker( f ). We have by Proposition 4.1
that for any j ∈ N

∗, Mj ∼= M/π j M and N j ∼= N/π j N , so we may assume that the
map f j : M/π j M → N/π j N is given by f j (m + π j M) = f (m) + π j N for all
m ∈ M .

Next, we know by [9, 3.2.3i)] that there exists c ∈ N such that for n ≥ c, we have
πnN ∩ f (M) ⊂ πn−c f (M). In particular, we obtain:

f −1(πnN ) ⊂ K + πn−cM . (17)

For s, t ∈ N, s ≥ t , we let K ′
s,t := im (ker( fs) → Mt ). We claim that for a fixed t ,

K ′
s,t is eventually constant and we denote K ′

t this value. We have that for s ≥ t + c

K ′
s,t = f −1(π s N ) + π t M/π t M

= K + π t M/π t M (by Eq. (17))
∼= K/K ∩ π t M .

(18)

https://stacks.math.columbia.edu/tag/0EHN
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Therefore K ′
t = K/K ∩ π t M is the constant value we seek. We claim that for any

n ∈ N the system (K ′
t/π

nK ′
t )t≥n is eventually constant with value K/πnK . Again,

we have by [9, 3.2.3i)] that there exists d ∈ N such that

K ∩ πuM ⊂ πu−d K for any u ≥ d. (19)

Therefore we obtain that for t ≥ n + d

K ′
t/π

nK ′
t
∼= K/K ∩ π t M/(πnK/K ∩ π t M)

∼= K/(K ∩ π t M + πnK )

∼= K/πnK (by Eq. (19)).

(20)

Finally, to prove that K/πnK ∼= Kn for all n ∈ N, we repeat the argument in [31,
0EHN] to prove that the inverse system (K/π i K ) is indeed the the kernel of ( fi ). ��

Proof of Proposition 4.6 Wehave by [33, p.18] that the categoryCoh (D, L) isAbelian.
We viewCoh (̂D, L) as a full subcategory of the Abelian category of towers consisting
of objects inCoh (D, L). It is easy to see that 0 ∈ Coh (̂D, L) and the category is closed
under direct sums. Therefore, we only need to prove that Coh (̂D, L) is closed under
kernels and cokernels.

Let φ : (M, (Mi ), (αi )) → (N , (Ni ), (βi )) be a map of objects in Coh (̂D, L).
For i ∈ N

∗, let φi : Mi → Ni be the corresponding map and Ki = ker(φi ). Since
Coh (D, L) is Abelian, we have Ki ∈ Coh (D, L); further by construction we have
π iKi = 0 and that (Ki ) forms an inverse system of D-modules. Finally, by working
locally and using Lemma 4.7, we obtain that for any i ∈ N

∗, Ki/π
i−1Ki ∼= Ki−1, so

K = ker φ = lim←− Ki ∈ Coh (̂D, L); the coherence of K follows form Corollary 4.2.

A similar argument proves that Coh (̂D, L) is closed under cokernels. ��

Recall that il : X → X × X denotes the inclusion of X into the left copy of
X × X . Further, recall from Theorem 2.17 that for a πn-deformed G-equivariant htdo
on X × X , the functor i#l induces an equivalence of categories between Coh (D,G)

and Coh (i#l D, B). We denoted Hl the quasi-inverse of i#l .

Proposition 4.8 Let D be a πn-deformed G-equivariant htdo on X × X. The functor

îl
#
induces an equivalence of categories between Coh (̂D,G) and Coh (̂i#l D, B). A

quasi-inverse is given ̂Hl defined by ̂Hl(N ) := lim←− H (N /π iN ).

Proof Let M ∈ Coh (̂D,G) and Mi := M/π iM for i ≥ 1. By construction Mi ∈
Coh (D,G), so applying Theorem 2.17, we obtain Ni := i#l Mi ∈ Coh (i#l D, B).
Further, we have π iNi = 0 since π iMi = 0. Since Ni/π

i−1Ni ∼= Ni−1, we obtain
by Corollary 4.2 that

̂N := îl
#M = lim←− Ni ∈ Coh (̂i#l D, B).

https://stacks.math.columbia.edu/tag/0EHN
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We have by Corollary 4.2 that Ni ∼= N /π iN , so we get:

̂Hl ◦ îl
#
(M) = ̂Hl(N )

∼= lim←− Hl(Ni )

∼= lim←− Mi (by Theorem 2.17)

∼= M.

(21)

Therefore ̂Hl is a left quasi-inverse for îl
#
. A similar argument shows that ̂Hl is also

a right quasi-inverse. ��

4.3 Some category theory lemmas

In order to prove an affinoid version of the Borho–Brylinski theorem, we need some
lemmas for R-linear Abelian categories.

Throughout this subsection we fix A an R-linear small Abelian category and let B
be the full A-subcategory of π -torsion elements, i.e. ob (B) = {A ∈ A| πn id A =
0, for some n ∈ N} (here id A denotes the identity morphism going from A to A).
We also call a morphism f ∈ Hom (A, B) π -torsion if there exists n ∈ N such that
πn f = 0.

Throughout this subsection we use that in an R-linear category, we have for f ∈
Hom (A, B), g ∈ Hom (B,C) and r ∈ R

r(g ◦ f ) = (rg) ◦ f = g ◦ (r f ).

Define a new category AK , where ob (AK ) = ob (A) and Hom AK (M, N ) :=
Hom A(M, N )⊗

R
K , for allM, N ∈ ob (A). Furthermore, denoteF the natural functor

A → AK .
The aim of this subsection is to establish the following theorem:

Theorem 4.9 There exists an equivalence of categories between the quotient category
A/B and the category AK .

One should notice that apriori it is not clear why the quotient category A/B is
well-defined, so we should begin by proving that B is a Serre subcategory of A. We
start by proving a very useful lemma:

Lemma 4.10 Let B ∈ B, C ∈ A and consider morphisms f ∈ Hom (B,C) and
g ∈ Hom (C, B). Then f and g are π -torsion.

Proof Let B ∈ B; there exists n ∈ N such that πn id B = 0. We have

πn f = πn(id B ◦ f ) = (πn id B) ◦ f = 0,

so f is indeed π -torsion. A similar argument shows that g is also π -torsion. ��
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Proposition 4.11 The category B is a Serre subcategory of A.

Proof Consider a short exact sequence:

0 → A
f−→ B

g−→ C → 0.

One needs to prove that B ∈ B if and only if A,C ∈ B. First assume that B ∈ B. By
Lemma 4.10, f is π -torsion so there exists n ∈ N such that πn f = 0, so that

0 = πn f = πn( f ◦ id A) = f ◦ πn id A .

Since f is a monomorphism, we can left cancel to get πn id A = 0, so A ∈ B. By
Lemma 4.10, g is π -torsion, so there exists n ∈ N such that πng = 0, so that

0 = πng = πn(id C ◦g) = πn id C ◦g.

As g is an epimorphism, we can right cancel to obtain πn id C = 0, so C ∈ B. Now
assume that A,C ∈ B. By Lemma 4.10, f , g are π -torsion so there exist n1, n2 ∈ N

such that πn1 f = πn2g = 0. Let n = max(n1, n2) and h := πn id B . We have

0 = πn f = πn(id B ◦ f ) = (πn id B) ◦ f = h ◦ f .

0 = πng = πn(g ◦ id B) = g ◦ (πn id B) = g ◦ h.
(22)

Since h ∈ Hom (B, B), we have by Lemma 4.12 below that h2 = 0, so π2n id B = 0.
Thus B ∈ B. ��
Lemma 4.12 Let C be a small Abelian category and let

0 → A
f−→ B

g−→ C → 0

be a short exact sequence. Let h ∈ Hom (B, B) such that h ◦ f = g ◦ h = 0. Then
h2 = 0.

Proof By the Freyd-Mitchell embedding we may assume that C = S-mod for some
ring S. In particular, we may assume that A, B and C are Abelian groups. Let b ∈ B;
then g(h(b)) = 0, so h(b) ∈ ker(g) = im ( f ). Thus, there exists a ∈ A with
f (a) = h(b). Then

0 = h( f (a)) = h(h(b)),

therefore h2 = 0. ��
Let S be the collection of B-isomorphisms, i.e. morphisms f inA such that ker( f )

and coker( f ) are in B. Then S is a multiplicative system in the sense defined in [34,
Appendix II]. Furthermore, by [34, Example A.1.2], the quotient category A/B is
equivalent to the localised category AS . Denote loc : A → AS the localisation
functor.
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Proof of Theorem 4.9 By the discussion above, it is enough to prove that there exists
an equivalence of categories between AS and AK . By construction, we have that for
any s ∈ S, F(s) is an isomorphism, so by the universal property of localisation there
exists a unique functor G : AS → AK ; it is defined by G(s−1 f ) = F(s)−1F( f ) for
any s−1 f in Hom AS (X ,Y ).

We claim that G is an equivalence of categories. It is clear that G is essentially
surjective, so we need to prove that it is fully faithful.

Let φ ∈ Hom AK (A, B) = Hom A(A, B) ⊗
R
K . Then there exists n ∈ N such that

φ = f ⊗π−n for some f ∈ Hom A(A, B). By construction, we have thatπn id B ∈ S,
so we get that

G((πn id B)−1 f ) = F(πn id B)−1 ◦ F( f )

= (id B ⊗π−n) ◦ ( f ⊗ 1)

= f ⊗ π−n

= φ.

(23)

Thus, G is indeed full. Lastly, we need to prove that G is faithful. As all the cate-
gories involved are Abelian it is enough to prove that for s−1 f ∈ Hom AS (X ,Y ),
if G(s−1 f ) = 0, then s−1 f = 0. Here we assume s ∈ Hom A(X ′, X), s ∈ S and
f ∈ Hom A(X ′,Y ).We have 0 = G(s−1 f )=F(s)−1◦F( f ), so F( f ) = 0. Therefore,
we get that f is π -torsion, so there exists n ∈ N such that πn f = 0. Then:

f ◦ πn id Y = πn f ◦ id Y = 0,

and since πn id Y ∈ S, we obtain by [25, Lemma 2.1.5] that s−1 f = 0. Thus, G is
indeed faithful. ��
We finish the subsection by proving a categorical proposition that we will need in the
next subsection.

Proposition 4.13 LetF : A → B bean equivalenceofAbelian categories. LetC andD
be Serre subcategories ofA andB, respectively such thatF restricts to an equivalence
F : C → D. Then F induce an equivalence between the quotient categoriesA/C and
B/D.

Proof Let qA : A → A/C and qB : B → B/D denote the localisation functors and let
H := qB ◦F . By assumptions, we have kerH = C, so by [29, Exercise 5, Sect. 4.4],
there exists a faithful and exact functorH : A/C such thatH◦qA = H = qB◦F . Since
qB ◦F is essentially surjective, we obtain thatH is also essentially surjective. Finally,
for any morphism f in B/D, there is a morphism g in A/C, such that H(g) = f , so
H is also full. ��

4.4 Affinoid equivariant equivalence a la Borho–Brylinski

Let Y be an R-variety and L a smooth affine algebraic group locally of finite type
defined over R and D a sheaf of πn-deformed L-equivariant htdo on Y . Recall that
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by Proposition 4.6 the category of L̂-equivariant coherent ̂D-modules, Coh (̂D, L), is
Abelian.

Definition 4.14 Let Y be a quasi-compact R-variety and L an algebraic group acting
on Y . Let Coh (̂D, L)π be the full subcategory of Coh (̂DY , L) consisting of π -torsion
objects. As Y is quasi-compact this is equivalent to the full subcategory ofCoh (̂DY , L)

such that all the sections are π -torsion.

Proposition 4.15 There is an equivalence of categories between the quotient category
Coh (̂D, L)/Coh (̂D, L)π and the category Coh (̂D, L)K .

Proof This follows directly from Theorem 4.9. ��
Definition 4.16 Let Y be a R-variety; recall that̂DK = ̂D ⊗

R
K . A coherent L̂K -

equivaraint̂DK -module is quadruple (M,M0, (Mi ), (αi )) such that:M0 is a lattice
of M and (M0, (Mi ), (αi )) ∈ Coh (̂D, L).

Let (M,M0, (Mi ), (αi )) and (N ,N0, (Ni ), (βi )) be two L̂K -equivariant̂DK -
modules and let φ : M → N be âDK -linear morphism. We have by the proof of [9,
Proposition 3.4.5] that

Hom
̂D(M0,N0) ⊗

R
K ∼= Hom D̂K

(M,N ),

so there exists a pair (φ0, x), φ0 Hom ̂D(M0,N0) and x ∈ K such that φ = φ0 ⊗ x.

We say that φ is L̂ K -equivariant if φ0 is L̂-equivariant.
We denote Coh (̂DK ,L) the category of coherent̂DK -modules consisting of L̂K -

equivariant objects together with L̂K -equivariant morphisms.

We will ignore the equivariance structure when it is well understood from the
context and just call M an L̂ K -equivariant ̂DK -module.

Lemma 4.17 Assume that Y is quasi-compact. Then there exists an explicit equivalence
of categories between Coh (̂D, L)K and Coh (̂DK , L).

Proof Define F : Coh (̂D, L)K → Coh (̂DK , L) by F(M) = M⊗
R
K for any object

M ∈ Coh (̂D, L)K and

F( f ⊗ x) = f ⊗ x , for all f ⊗ x ∈ Hom (M,N ) ⊗
R
K .

By construction, it is clear that F is essentially surjective and since the tensors in
Hom (M, N )⊗

R
K are all pure,F is also faithful. Furthermore, it follows by definition

of the morphisms in Coh (̂DK , H) that F is also full. ��
Until the end of the section, we assume thatD is a πn-deformedG-equivariant htdo

on X × X .
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Lemma 4.18 The functor îl
#
in Proposition 4.8 restricts to an equivalence between

Coh (̂D,G)π and Coh (̂i#l D, B)π . A quasi-inverse is given ̂Hl .

Proof LetM ∈ Coh (̂D,G)π and defineMi := M/π iM. By definition, there exists

m ∈ N

∗ such that for j ≥ m, M j = M. Let Ni = i#l Mi ; we have îl
#M = lim←− Ni

and by Corollary 4.2, Ni = îl
#M/π i îl

#M. Further by construction, we have that

for j ≥ m, N j = i#l M, therefore îl
#M ∈ Coh (̂i#l D, B)π . An analogous argument

proves that forN ∈ Coh (̂i#l D, B)π , we have ̂Hl(N ) ∈ Coh (̂D,G)π . The conclusion
follows from Proposition 4.8. ��
Theorem 4.19 There is an equivalence of categories between Coh (̂DK ,G) and

Coh ( ̂i#l DK , B).

Proof of Theorem 4.9 To simplify the proof, we use ∼= to denote an equivalence of
categories. Since G is affine and the quotient map G → G/B is surjective, we obtain
that X is quasi-compact, thus so is X × X . We have by Lemma 4.17:

Coh (̂DK ,G) ∼= Coh (̂D,G)K and Coh ( ̂i#l DK , B) ∼= Coh (̂i#l D, B)K . (24)

Furthermore, we have by Proposition 4.15 that

Coh (̂D,G)K ∼= Coh (̂D,G)/Coh (̂D,G)π ,

Coh (̂i#l D, B)K ∼= Coh (̂i#l D, B)/Coh (̂i#l D, B)π .
(25)

Next, we have by Proposition 4.8 that there is an equivalence of categories

îl
# : Coh (̂D,G) ∼= Coh (̂i#l D, B) and by Lemma 4.18 this restricts to an equiva-

lence Coh (̂D,G)π ∼= Coh (̂i#l D, B)π , so applying Proposition 4.13, we obtain an
equivalence between the quotient categories:

Coh (̂D,G)/Coh (̂D,G)π ∼= Coh ̂(i#l D, B)/Coh (̂i#l D, B)π . (26)

Therefore, by combining Eqs. (24), (25) and (26), we get

Coh (̂DK ,G) ∼= Coh ( ̂i#l DK , B). ��
Remark 4.20 Denote î#l,K the equivalence functor from the category Coh (̂DK ,G) to

the category Coh (i#l ̂DK , B). LetM ∈ Coh (̂DK ,G) and letM0 be the corresponding
lattice of M. Then under the equivalence of categories above we have that

î#l,KM = (îl
#M0) ⊗

R
K .

Let us finish the section by proving an affinoid version of Corollary 2.18.
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Corollary 4.21 Let M ∈ Coh (̂DK ,G) and assume that �(X , î#l,KM) = 0. Then
�(X ,M) = 0.

Proof LetM0 be the corresponding lattice ofM and defineMi := M0/π
iM0 and

Ni := i#l Mi . By construction, we have N := îl
#M = lim←− Ni and by Corollary 4.2,

Ni = N /π iN .
By assumption, we know that �(X , î#l,KM) = �(X ,N ) ⊗

R
K = 0. Since

N ∈ Coh (̂D, L), the sections of N are finitely generated over ̂D; in particular, there
exists m ∈ N such that πm�(X ,N ) = 0, so �(X , πmN ) = 0. Since �(X ,N ) =
lim←− �(X ,Ni ), we obtain that for j ≥ m,�(X ,N j ) = �(X ,N ), so�(X , πmN j ) = 0.

Therefore, by applying Corollary 2.18, we obtain �(X × X , πmM j ) = 0 for j ≥ m,
so πm�(X × X ,M j ) = 0. Thus, since �(X × X ,M0) = lim←− �(X × X ,M j ), we

conclude that πm�(X × X ,M0) = 0, so �(X × X ,M) = �(X × X ,M0)⊗
R
K = 0.

��
5 Affinoid equivariant Beilinson–Bernstein localisation

Throughout this section we let G be a connected, simply connected, smooth affine
algebraic group scheme locally of finite type defined over Spec R and we let g =
Lie (G) be its Lie algebra. We also let X be a quasi-compact R-variety on which G
acts.

5.1 Affinoid localisationmechanism

We fix L a closed subgroup of G and n a deformation parameter. We denote U (g)n
the πn-th deformation of U (g) and we let (D, ig) be a πn-deformed L-htdo on X .
Throughout this section we also make the following assumption:

Assumption 5.1 Throughout this section, we restrict to coherent D-modulesM such
that �(X ,M) is a finitely generated U (g)n-module.

Recall that ̂U (g)n denotes the π -adic completion of U (g)n ; further we denoted
̂U (g)n,K := ̂U (g)n ⊗

R
K . Similar to Definition 4.5, we define the notion L̂-equivariant

̂U (g)n-modules by extending Definition 2.19.

Definition 5.2 A L̂-equivariant ̂U (g)n -module is quadruple (M, (Mi ), (αi ), (ρi ))

such that M is a finitely generated ̂U (g)n-module, (Mi ) is an inverse system of U (g)n-
modules and

• (Mi , αi , ρi ) is a finitely generated L-equivariant U (g)n-module and π i Mi = 0.
• The transition maps induce isomorphisms Mi/π

i−1Mi ∼= Mi−1 of
L-equivariant U (g)n-modules.

• M ∼= lim←− Mi as ̂U (g)n-modules.
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A morphism between two L̂-equivariant ̂U (g)n-modules (M, (Mi ), (αi ), (ρMi ))

and (N , (Ni ), (βi ), (ρNi )) is a map of f : M → N of ̂U (g)n-modules such that
there is a family of compatible L-equivariant morphisms fi : Mi → Ni such that
f = lim←− fi . We call such a morphism L̂-equivariant and denoteMod fg (̂U (g)n, L) the

subcategory of Mod fg (̂U (g)n) consisting of L̂-equivariant modules and morphisms.
As for equivariant ̂D-modules, we will omit the equivariance structure when it is clear
in the context and just call M a L̂-equivariant ̂U (g)n-module.

We also define the notion of equivariant modules for the ring ̂U (g)n,K .

Definition 5.3 A L̂K -equivariant ̂U (g)n,K -module is a quintuple
(M, M0, (Mi ), (αi ), (ρMi )) such that M0 is a lattice for M and (M0, (Mi ), (αi ), (ρMi ))

∈ Mod fg (̂U (g)n, L).
Next, let (M, M0, (Mi ), (αi ), (ρMi )) and (N , N 0, (Ni ), (βi ), (ρNi )) be L̂K -

equivariant ̂U (g)n,K -modules, and let f : M → N be a ̂U (g)n,K linear morphism.
As M and N are finitely generated, we have

Hom
Û (g)n

(M0, N 0) ⊗
R
K ∼= Hom

Û (g)n,K
(M, N ),

so there exists f 0 : M0 → N 0 and x ∈ K such that f = f 0 ⊗ x. We say that f is
L̂ K -equivariant if f 0 is L̂-equivariant. Denote Mod fg ( ̂U (g)n,K , L) the subcategory

of finitely generated ̂U (g)n,K modules consisting of L̂K -equivariant objects along
with L̂K -equivariant morphisms. We will ignore the equivariance structure when it is
well understood from the context.

Before stating the affinoid localisation mechanism, we need one more lemma:

Lemma 5.4 Let B be a Noetherian R-algebra and A a finitely generated B-module.
Let Ai = A/π i A, Bi = B/π i B, Â = lim←− Ai , B̂ = lim←− Bi . Further, let Ci be a inverse

system of Bi -modules and C = lim←− Ci . Assume that Ci = C/π iC. Then:

lim←−(Ai ⊗
Bi
Ci ) ∼= Â ⊗̂

B
C .

Proof Viewing both sides as functors in A and using the fact that the projective limit
and the completed tensor product are right exact functors, it is enough to prove the
claim when A = B. The claim follows immediately. ��

Recall by Definition 2.13 that there exists a map ig : U (g)n → D. By functoriality,

the map ig : U (g)n → D induces a map ̂ig : ̂U (g)n → ̂D and thus a map ̂ig :
̂U (g)n,K → ̂DK .



70 Page 38 of 60 I. Stanciu

Definition 5.5 We define two functors:

Loc : Mod ( ̂U (g)n,K ) → Mod (̂DK ), Loc (M) =̂DK ⊗̂
U (g)n,K

M,

� : Mod (̂DK ) → Mod ( ̂U (g)n,K ), �(M) = �(X ,M).

(27)

Proposition 5.6

(i) Let M ∈ Mod fg ( ̂U (g)n,K , L). Then Loc (M) ∈ Coh (̂DK , L).

(ii) Let M ∈ Coh (̂DK , L). Then �(X ,M) ∈ Mod fg ( ̂U (g)n,K , L).

Proof Let M0 be the lattice of M such that M0 ∈ Mod (̂U (g)n, L). Then

(̂D ⊗̂
U (g)n

M0) ⊗
R
K ∼= ̂DK ⊗̂

U (g)n,K

M ∼= Loc (M),

soM := ̂D ⊗̂
U (g)n

M0 is a lattice for Loc (M), so we need to proveM is L-equivariant.

Let Mi = M0/π
i M0 and Mi := D ⊗

U (g)n

Mi . Then, we have by applying Lemma

5.4 that M ∼= lim←− Mi . Fix i ∈ N

∗; by construction we have π iMi = 0; next, by

definition we have that Mi is a L-equivariant finitely generatedU (g)n-module, soMi

is a quasi-coherent L-equivariant D-module by Proposition 2.20. Since Mi is finitely
generated as a U (g)n-module, by picking a presentation of Mi we obtain that Mi is
also coherent.

Finally, consider the short exact sequence:

Mi
·π−→ Mi → Mi−1 → 0.

Since tensor product is right exact, we get a short exact sequence:

D ⊗
U (g)n

Mi
·π−→ D ⊗

U (g)n

Mi → D ⊗
U (g)n

Mi−1 → 0,

so Mi/π
i−1Mi ∼= Mi−1. Thus, we proved that M is indeed L-equivariant, so

Loc (M) is also L-equivariant. This proves the first statement.
On the other hand, consider M ∈ Coh (̂DK , L) and let M = �(X ,M). Further,

let M0 ∈ Coh (̂D, L) be the corresponding lattice of M and M0 = �(X ,M0). By
construction M0 ⊗

R
K ∼= M , so it is enough to prove that M0 is L-equivariant. Let

Mi := M/π iM, Mi := �(X ,Mi ). Since M is coherent, we have M ∼= lim←− Mi ,

so M0 = lim←− Mi . Further, Mi/π
i−1Mi ∼= Mi−1 and π i Mi = 0 for all i ∈ N, so we

are left to prove that Mi ’s are L-equivariant finitely generated U (g)n-modules.
Since M0 ∈ Coh (̂D, L), we obtain by construction and Corollary 4.2 that for all

i ∈ N

∗, Mi is a L-equivariant coherent D-module. Then by Proposition 2.20 and
using the fact that we assume that Mi is a D-module such that �(X ,M) is finitely
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generated as aU (g)n-module(5.1), we obtain that for all i ∈ N

∗, Mi is a L-equivariant
finitely generated U (g)n-module. This concludes the proof. ��

5.2 Applications of the localisationmechanism

Throughout this subsection, we assume that G is a connected, simply connected, split
semisimple, affine algebraic group scheme over Spec R. We also let X = G/B denote
the flag schemewhich is a quasi-compact R-variety. Fix n a deformation parameter and
g = n−⊕h⊕n+ a Cartan decomposition of g = Lie (G). Further, we fix λ : πnh → R
an R-linear map and denote Rλ the corresponding U (h)n-module. By [2, Sect. 6.10]
we have an induced map (U (g)G)n → U (h)n and we view Rλ as a (U (g)G)n-module

via this map. We also let Kλ := Rλ ⊗
R
K the corresponding ̂U (g)Gn,K -module. We

make the following definitions:

• U (g)λn := U (g)n ⊗
(U (g)G )n

Rλ,

• ̂U (g)λn := lim←−U (g)λn/π
iU (g)λn and

• ̂U (g)λn,K := ̂U (g)λn ⊗
R
K .

We should remark that by [2, Theorem 6.10a)], ̂U (g)λn,K
∼= ̂U (g)n,K ⊗̂

U (g)Gn,K

Kλ,

so in particular ̂U (g)λn,K is a quotient of ̂U (g)n,K .

We also let Dλ
n be as in [2, Sect. 6.4]. This coincides with Dλ,πn as defined in

Subsection 2.6. By [2, Theorem 6.10b)] one has �(X , ̂Dλ
n,K ) ∼= ̂U (g)λn,K . We define

a localisation functor

Loc λ : Mod fg ( ̂U (g)λn,K ) → Coh (̂Dλ
n,K ) Loc λ(M) := ̂Dλ

n,K ⊗̂
U (g)λn,K

M .

We say that λ ∈ h∗
K is dominant if (λ + ρ)(h) ≥ 0 for any positive coroot h ∈ h.

Given λ : πnh → R, we say that λ is dominant if the corresponding root λ ∈ h∗
K is

dominant. We say that λ : πnh → R is regular if the corresponding λ ∈ h∗
K is regular,

i.e. the stabiliser of the Weyl group action on λ is trivial.

In [2], the authors prove an affinoid version of Beilinson–Bernstein localisation:

Theorem 5.7 [2, Theorem C] [1, Theorem 5.3.13] Let λ : πnh → R be a dominant
weight. The functor � is exact and the functors Loc λ and � induce quasi-inverse

equivalences of categories between Mod fg ( ̂U (g)λn,K ) and the quotient category

Coh (̂Dλ
n,K )/ ker �. In case λ is also regular, then ker � = 0 whenever n > 0 or

p is a very good prime for G.

We should remark that the part of the proof where λ is dominant does not require p
to be a very good prime for G. The restriction on p has been removed in [1, Theorem
5.3.13] provided that n > 0.
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We may prove an equivariant version of the affinoid localisation theorem.

Theorem 5.8 Let L be a closed subgroup of G and let λ : πnh → R be a dominant
weight. The functors Loc λ and � induce quasi-inverse equivalences of categories

betweenMod fg ( ̂U (g)λn,K , L) and the quotient categoryCoh (̂Dλ
n,K , L)/ ker �. In case

λ is also regular, then ker � = 0 whenever n > 0 or p is a very good prime for G.

Proof By Theorem 5.7, it is enough to prove that Loc λ and � preserve the L-
equivariance. We have by Proposition 2.21 that Dλ

n is a πn-deformed G-htdo, so
in particular it is πn-deformed L-htdo. Further, we have by [2, Proposition 5.15] that

Dλ
n satisfies Assumption 5.1. The claim follows from Proposition 5.6 since ̂U (g)λn,K

is a quotient of ̂U (g)n,K . ��
As a corollary we obtain:

Corollary 5.9 Let M ∈ Mod fg ( ̂U (g)λn,K ). Then

�(X ,Loc λ(M)) ∼= M .

In the next section, we will apply Theorem 5.8 in two cases: B is a Borel subgroup of
a G and G ∼= Gd = {(g, g)|g ∈ G} is the diagonal subgroup of G × G.

5.3 Equivariance of two-sided ideals

We keep the notation from the previous section. The Lie algebra of the algebraic group
G×G is given by Lie (G×G) = Lie (G)×Lie (G) = g×g. We aim to prove that any
two-sided ideal in ̂U (g)n,K is G-equivariant when viewed as ̂U (g × g)n,K -module.
Here we view G as the diagonal subgroup of G × G and the Definition 5.3. To avoid
confusion, we denote this group Gd .

Recall that the enveloping algebra U (g) is a G-representation. In particular, the
group G(R) acts on U (g) via the Adjoint action inducing a comodule map

ρ : U (g) → O(G) ⊗U (g).

Further, since the G-action preserves U (g)n , the map ρ restricts to a comodule map
ρ : U (g)n → O(G) ⊗ U (g)n . Let ̂O(G) := lim←− O(G)/π iO(G) denote the π -adic

completion of the Hopf algebra O(G) corresponding to the group G. Using the fact
that the π -adic completion is a functor, we obtain a map

ρ̂ : ̂U (g)n → ̂O(G)⊗̂̂U (g)n,

where ⊗̂ denotes the completed tensor product.

Definition 5.10 We say that a two-sided ideal I in ̂U (g)n is π -closed if the quotient
̂U (g)n/I is π -torsion-free.
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For the rest of this subsection, we let I a π -closed two-sided ideal in ̂U (g)n .

By construction, we have that g · x = ρ̂(x)(g), for all g ∈ G(R), x ∈ ̂U (g)n , so
applying [3, Corollary 4.3], we obtain

ρ̂(x)(g) = g · x ∈ I , for all g ∈ G(R), x ∈ I . (28)

For each g ∈ G(R) consider the map εg : ̂O(G) → R, εg( f ) := f (g) and let q :
̂U (g)n → ̂U (g)n/I denote the natural projection. Consider the following commutative
diagram:

̂O(G)⊗̂̂U (g)n ̂O(G)⊗̂̂U (g)n/I

R⊗̂̂U (g)n R⊗̂̂U (g)n/I .

εg⊗̂ id

id ⊗̂q

εg⊗̂ id

id ⊗̂q

(29)

By Eq. (28), we have that (id ⊗̂q)◦ (εg⊗̂ id )◦ ρ̂(i) = 0, for all i ∈ I and g ∈ G(R),
therefore we obtain

(εg⊗̂ id ) ◦ (id ⊗̂q) ◦ ρ̂(i) = 0 for all g ∈ G(R), i ∈ I . (30)

Let ̂K (G) := ̂O(G) ⊗
R
K . We wish to prove that the Jacobson radical of ̂K (G) is

0, and if f ∈ ̂O(G), viewed as an element of ̂K (G), is such that εg( f ) = 0 fo all
g ∈ G(OL) and all L/K finite extensions, then f is in the intersection of all maximals
ideals of ̂K (G). By combining the results, we obtain f = 0.

Proposition 5.11 The Jacobson radical J (̂K (G)) of ̂K (G) is 0.

Proof Any free Tate algebra over a non-archimidean field K is a Jacobson ring by
[12, Proposition 3.1.3]; in particular as ̂K (G) = K 〈x1, x2, . . . xn〉/J is a quotient of
a free Tate algebra by some closed ideal J , we have J (̂K (G)) =nilradical(̂K (G)), so
it suffices to prove that nilradical(̂K (G))=0.

As G is a reductive connected group scheme, we have by [22, II.1.9 (4)] that
O(G) is an integral domain, therefore k(G) := O(G) ⊗

R
k is also an integral domain.

Consider theπ -adic filtrations onO(G) and̂O(G); we have by the properties ofπ -adic
completions

gr( ̂O(G)) = gr(O(G)) ∼= (gr R)(G).

As (gr R) is a polynomial ring over k and k(G) is an integral domain, we obtain that
gr(̂O(G)) is an integral domain, so ̂O(G) is an integral domain. Therefore, ̂K (G) =
̂O(G) ⊗

R
K is an integral domain, so in particular ̂K (G) has trivial nilradical. ��

Proposition 5.12 Let f ∈ ̂O(G) such that εg( f ) = 0 for all g ∈ G(OL) and all L
finite extensions of K . Then f = 0.
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Proof View f as an element of ̂K (G). Further, let K 〈x1, x2 . . . , xn〉 be a free Tate
algebra projecting onto ̂K (G) via a map denoted φ; let J = ker φ. Finally, let m ⊂
̂K (G) be a maximal ideal of ̂K (G); we aim to prove that f ∈ m.

As m ⊂ ̂K (G) is maximal, φ−1(m) is a maximal ideal in K 〈x1, x2 . . . , xn〉, so we
get an induced map ζ : ̂K (G)/m → K 〈x1x2 . . . xn〉/φ−1(m). Further, we have by
[12, Corollary 2.2.12], K 〈x1, x2, . . . , xn〉/φ−1(m) ∼= L , where L is a finite extension
of K . The image of f under the composition of the maps (call this composition
η : ̂O(G) → L) lies into the ring of integers of L , OL .

By [14, Example 1.8 ii)], there is a correspondence between maps from ̂K (G)

to L and the zero locus of a system of generators for the ideal defining J (recall
̂K (G) = K 〈x1, x2 . . . , xn〉/J ) insideOn

L . Therefore, as εg( f ) = 0 for all g ∈ G(OL),
we obtain η( f ) = 0. Consider the composition defining η:

̂K (G) → ̂K (G)/m → K 〈x1, x2 . . . xn〉/φ−1(m) ∼= L.

Asm is a maximal ideal, ̂K (G)/m is a field, so the map ̂K (G)/m → L is an injection.
Thus, as η( f ) = 0, one obtains that f ∈ m. In conclusion, f lies in all the maximal
ideals of ̂K (G), i.e. f ∈ J (̂K (G)); applying Proposition 5.11, we get f = 0. ��
Theorem 5.13 Let I be a π -closed two-sided ideal in ̂U (g)n. Then ρ̂(I ) ⊂ ̂O(G)⊗̂I .

Proof Consider the composition map (εg⊗̂ id ) ◦ (id ⊗̂q) ◦ ρ̂ : I → R⊗̂̂U (g)n/I . By
Eq. (30), we know that for all i ∈ I , (εg⊗̂ id ) ◦ (id ⊗̂q) ◦ ρ̂(i) = 0.

Let IK = I ⊗
R
K and notice that IK is a two-sided ideal in ̂U (g)n,K . As I is a

π -closed ideal, the space ̂U (g)n/I has no π -torsion, so we obtain

̂U (g)n/I ⊗
R
K ∼= ̂U (g)n,K /IK .

The space ̂U (g)n,K /IK is a K -Banach space that has a countably dimensional dense
subspace consisting of elements of the form x + IK , x ∈ U (gK ). Therefore, applying
[30, Proposition 10.4], we get that ̂U (g)n,K /IK has a countable topological K -basis,

so ̂U (g)n/I has a countable topological R-basis; denote this basis {yi |i ∈ N}. Another
way to see the existence of this basis is that the space ̂U (g)n,K /IK is a separable
K -Banach space, so it has a Schauder basis.

Consider an element a = ∑∞
i=1 fi ⊗̂yi ∈ ̂O(G)⊗̂̂U (g)n . Then we have for all

g ∈ G(R),

0 = (εg⊗̂ id )

( ∞
∑

i=1

fi ⊗̂yi

)

=
∞
∑

i=1

fi (g)yi .

As yi ’s form a topological basis of ̂U (g)n , we obtain

εg( fi ) = 0 for all g ∈ G(R), i ∈ N. (31)
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Now, let A be π -adically complete commutative R-algebra finitely generated as an
R-module. For g ∈ G(A) let εg : ̂A(G) → A denote the evaluation map by abusing
notation.

Recall that ̂U (g)n is a G-representation by extending the Adjoint action of G on g.
Consider the set I ⊗

R
A inside ̂U (g)n,A := ̂U (g)n ⊗

R
A. Notice that since A is finitely

generated as an R-module, we only need to take the standard tensor product, not the
completed one. Let x1 ⊗ y1 be a simple tensor in ̂U (g)n,A and x2 ⊗ y2 be a simple
tensor in I ⊗

R
A. Then

(x1 ⊗ y1)(x2 ⊗ y2) = x1x2 ⊗ y1y2.

As x2 ∈ I and I is a two-sided ideal x1x2 ∈ I , so (x1⊗y1)(x2⊗y2) ∈ I⊗
R
A. Extending

this to non-simple tensors, taking in account all the possibleways to represent elements
in I ⊗

R
A and ̂U (g)n,A as sums of simple tensors, we get that I ⊗

R
A is a left ideal in

̂U (g)n,A. By symmetry it is also a right ideal, so I ⊗
R
A is indeed a two-sided ideal

in ̂U (g)n,A. As ̂U (g)n is a G-representation and G(R) preserves I , G is a flat group

scheme,wededuce that I is aG-subrepresentation of ̂U (g)n , soG(A)·(I⊗
R
A) ⊂ I⊗

R
A.

Therefore, by base changing Eq. (31) to A we get

εg( fi ) = 0 for all g ∈ G(A), i ∈ N. (32)

In particular we get that the result is true for any OL , where L is a finite extension of
K . Applying Proposition 5.12, we obtain fi = 0 for all i ∈ N. Thus, we have obtained
that a = 0, so (id ⊗̂q) ◦ ρ̂(i) = 0, which implies

ρ̂(i) ∈ ker(id ⊗̂q) = ̂O(G)⊗̂I .

Therefore, ρ̂(I ) ⊂ ̂O(G)⊗̂I . ��
Let τ be the principal anti-automorphism of U (g) induced by x → −x for all x ∈ g.
We use xτ to denote τ(x). For all x1, x2 . . . xn ∈ g, we have

(x1x2 . . . xn)
τ = (−1)nxnxn−1 . . . x2x1.

We define the action of the ring ̂U (g × g)n ∼= ̂U (g)n⊗̂̂U (g)n on ̂U (g)n via

(a ⊗ b)x = bxaτ , for all a, b, x ∈ ̂U (g)n .

Let m : (̂U (g)n⊗̂̂U (g)n)⊗̂̂U (g)n → ̂U (g)n denote the action map. The set of sub-
modules of ̂U (g)n under this action coincide with the set of two-sided ideals. The
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group G × G acts on ̂U (g)n⊗̂̂U (g)n via the adjoint action:

(g1, g2) · (x⊗̂y) = (Ad (g1)x⊗̂Ad (g2)y).

In particular we get an action of the group Gd ∼= G. Let

ρ̂bimod : ̂U (g)n⊗̂̂U (g)n → ̂O(G)⊗̂̂U (g)n⊗̂̂U (g)n

be the corresponding comodule map.
Finally, let gd = Lie (Gd). It embeds into ̂U (g)n⊗̂̂U (g)n via x �→ x⊗̂1+ 1⊗̂x for

all x ∈ gd .

Proposition 5.14 Let I be a π -closed two-sided ideal in ̂U (g)n. Then, I ∈
Mod ( ̂U (g × g)n,Gd).

Proof By abuse of notation let ρ̂ : I → ̂O(G)⊗̂I be the restriction of ρ̂ to I induced
by the Ad action; by Theorem 5.13 this map is well defined. Furthermore, since the
ring ̂U (g)n⊗̂̂U (g)n is Noetherian, I is also finitely generated. Let

ρ̂tensor : ̂U (g)n⊗̂̂U (g)n⊗̂I → ̂O(G)⊗̂̂U (g)n⊗̂̂U (g)n⊗̂I

be the comodule map induced by ρ̂ and ρ̂bimod . To prove that the multiplicationm is a
morphism of comodules it is enough to prove that for all g ∈ G, x, y ∈ ̂U (g)n, u ∈ I .

Ad (g) · ((x⊗̂y) · u) = (Ad (g)x⊗̂Ad (g)y) · (Ad (g)u)

We have:

Ad (g) · ((x⊗̂y) · u) = Ad (g)(yuxτ )

= Ad (g)y Ad (g)u Ad (g)xτ

= Ad (g)y Ad (g)u(Ad (g)x)τ

= (Ad (g)x⊗̂Ad (g)y) · (Ad (g)u).

(33)

Next, the differentiation of the Ad action is the ad action which coincides with the
action of the Lie Algebra gd . (*)

Now, consider Ii = I/π i I . Then it is easy to see that Ii is finitely generated as
U (g × g)n ∼= U (g)n ⊗ U (g)n-module (here U (g)n ⊗ U (g)n acts on Ii via (x ⊗ y) ·
(u + π i I ) = xuyτ + π i I ), π i Ii = 0 and I = lim←− Ii . The map ρ̂ : I → ̂O(G)⊗̂I

descends to a map ρi : Ii → O(G) ⊗ Ii which is compatible with the action map
since ρ̂tensor is a comodule homomorphism. Finally, by (*) the differentiation of theAd
action descend to Ii , so Ii is indeed a Gd -equivariant U (g)n ⊗U (g)n-module. Thus,
we have proven all the conditions required to make I a Ĝd -equivariant ̂U (g × g)n-
module. ��
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Corollary 5.15 Let J be a two-sided ideal in ̂U (g)n,K . Then

J ∈ Mod fg ( ̂U (g × g)n,K ,Gd).

Proof Clearly, J is finitely generated since ̂U (g × g)n,K is a Noetherian ring. Let

I = J ∩ ̂U (g)n . It is easy to see that I is a two sided ideal in ̂U (g)n ; we claim it is
π -closed. Suppose there exists x ∈ ̂U (g)n and n ∈ N

∗ such that πn(x + I ) = 0 + I .
Thenwe obtainπnx ∈ I ⊂ J . Since J is a two-sided ideal in ̂U (g)n,K , we have x ∈ J .
By the construction of I , we obtain x ∈ I , i.e. x + I = 0+ I , so I is indeed π -closed.
Therefore, by applying Proposition 5.14, we obtain I ∈ Mod ( ̂U (g × g)n,Gd).

To finish the proof, we need to prove that I is a lattice for J . Notice that I ⊗
R
K ⊂

J . Let x ∈ J ; there exists n ∈ N such that πnx ∈ ̂U (g)n , so πnx ∈ I . Thus
x = πnx ⊗

R
π−n ∈ I ⊗

R
K , so J = I ⊗

R
K . Finally, since ∩∞

i=1
̂U (g)n/π

i
̂U (g)n = 0

we obtain that ∩∞
i=1 I/π

i I = 0, so I is indeed a lattice for J . ��

5.4 Ideals with a given central character

We now specialise to ideals in ̂U (g)n,K with a given central character. The Cartan
subalgebra of g × g is given by h × h, so picking a weight ν : πn(h × h) → R is the
same as picking a pair of weights (λ, μ) where λ,μ : πnh → R.

Proposition 5.16 We have
∧

U (g × g)
λ,μ
n,K

∼=
∧

U (g)λn,K
⊗̂
K

∧

U (g)
μ
n,K

.

We need the following Lemma:

Lemma 5.17 Let A and B be complete normed K-algebras and I , J be closed two-
sided ideals in A and B, respectively. Then

A⊗̂
K
B/(I ⊗̂

K
B + A⊗̂

K
J ) ∼= A/I ⊗̂

K
B/J .

Proof We call a continuous morphism φ : M → N between two semi-normed K -
vector spaces strict if the natural morphism coim φ → im φ is a homeomorphism. If
M and N are Banach spaces, then by [10, Lemma 2.6], φ is strict if and only if the
image of φ is closed in N .

Let φ1 : A → A/I , φ2 : B → B/J be the natural projections. Since A and B are
Banach spaces and I and J are closed ideals, we get by the discussion above that φ1
and φ2 are strict morphisms. Further, R is mixed characteristic (0, p), so the valuation
on Q ⊂ K = Frac (R) is non-trivial. Thus, by [10, Theorem 2.8] the morphism
φ1 ⊗

K
φ2 : A ⊗

K
B → A/I ⊗

K
B/J is also strict. Furthermore, as I , J are closed in A

and B respectively, we get that the natural inclusion I ⊗
K
B + A⊗

K
J → A⊗

K
B is also

strict. Therefore, we obtain a strict short exact sequence

0 → I ⊗
K
B + A ⊗

K
J → A ⊗

K
B → A/I ⊗

K
B/J → 0.
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Applying [13, Corollary 1.1.9/6], we get a strict exact sequence

0 → I ⊗
K
B + A ⊗

K
J → A⊗̂

K
B → A/I ⊗̂

K
B/J → 0. (34)

Since I and J are closed ideals, we have I ⊗
K
B + A ⊗

K
J = I ⊗̂

K
B+ A⊗̂

K
J . The lemma

follows from Eq. (34). ��

We can now prove Proposition 5.16:

Proof For λ : πnh → R denote χλ : U (g)Gn → R the map obtained by composing the

map λwith themapU (g)Gn → U (h)n . Recall by Theorem 3.4, we have Z( ̂U (g)n,K ) ∼=
̂U (g)Gn,K , soχλ determines a central character of ̂U (g)n,K whichwedenoteχλ by abuse

of language. Let mλ = ker χλ, so that
∧

U (g)λn,K
= ̂U (g)n,K / ̂U (g)n,Kmλ. Further,

consider χλ,μ : U (g × g)G×G
n → R and let mλ,μ = ker χλ,μ so that

∧

U (g × g)
λ,μ
n,K

=
̂U (g × g)n,K /mλ,μ

̂U (g × g)n,K .
We have by definition that mλ,μ = mλ ⊗ (U (g)G)n + (U (g)G)n ⊗ mμ, so

mλ,μ
̂U (g × g)n,K = mλ⊗̂

K
̂U (g)n,K + ̂U (g)n,K ⊗̂mμ. (35)

The claim now follows by applying Lemma 5.17. ��

Recall that τ denotes the principal anti-automorphism ofU (g). It can be extended to
an anti-automorphism of ̂U (g)n,K , which we will also call τ . We have by [5, Lemma
5.4-Eq. 5.5] that τ induces an isomorphismU (g)λ

op ∼= U (g)−woλ; herewo denotes the

longest element ofW . Themap τ extends to an isomorphism
∧

U (g)λn,K

op ∼=
∧

U (g)
−woλ
n,K

.

From now on, until the end of the document we will use λ∗ to denote −woλ.
Recall that if I is a two-sided ideal in ̂U (g)n,K , we have shown in Corollary 5.15

that I ∈ Mod fg ( ̂U (g × g)n,K ,Gd). Furthermore, if I has central character χλ, i.e.

mλ ⊂ I , we view I as a two-sided ideal in
∧

U (g)λn,K
. We have by Proposition 5.16 that

I is a module over the ring
∧

U (g × g)λ
∗,λ

n,K
∼=
∧

U (g)λ
∗

n,K
⊗̂
K

∧

U (g)λn,K
, so we have:

Corollary 5.18 Let I be a two-sided ideal in
∧

U (g)λn,K
. Then

I ∈ Mod fg (
∧

U (g × g)λ
∗,λ

n,K
,G).

We should remark that we have dropped the index d as this should not cause
any confusion for the rest of the document. Recall that we view G via its diagonal
embedding into G × G.
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6 Global sections under affinoid pullback

Throughout this section, we aim to compute global sections under the affinoid pullback
defined in Remark 4.20. We proceed by developing some machinery.

6.1 Preliminary lemmas

Recall that for any sheaf R-modules F on a topological space Y , we denote F̂ :=
lim←− F/π iF its π -adic completion andFK the sheaf defined byFK (U ) := F(U )⊗

R
K

for any U ⊂ Y open.
Throughout this sectionwewill freelymake use of the following easy result: Let f :

Y → W be a map of R-schemes andF be a sheaf of R-modules on Y , then ( f∗F)K ∼=
f∗(FK ). The following result may be well known by the experts, unfortunately we
were not able to find a reference in the literature.

Lemma 6.1 Let j : Y → W be a closed embedding of R-varieties and let (Fi ) be an
inverse system of sheaves of R-modules such that Fi/π

i−1Fi ∼= Fi−1 for i ≥ 1. Let
F := lim←− Fi . Then:

j∗F ∼= (lim←− j∗Fi ).

Proof of Theorem 4.9 Notice that apriori it is not clear that the right-hand side is well
defined. However, since j is a closed embedding, it is in particular right exact. There-
fore, one can prove easily that

j∗Fi/π
i−1 j∗Fi ∼= j∗Fi−1.

Let G := lim←− j∗Fi . Since j∗ is a right adjoint functor to the inverse image functor,

j∗ commutes with inverse limits, thus

j∗F = j∗(lim←− Fi ) ∼= lim←−( j∗Fi ) = G.

��
Lemma 6.2 Let Y be an R-variety and let pr : Y × Y → Y be the projection on the
right factor, and F a sheaf of R-modules. Then:

̂p−1
r F ∼= p−1

r F̂ .

Proof First, notice that there is a map from the right hand side to the left-hand side
via the maps F̂ → F̂/π i F̂ ∼= F/π iF . Let U , V ⊂ Y be affine open, so that
U × V ⊂ Y × Y is affine open. Then, we have:

̂p−1
r F(U × V ) = lim←−(p−1

r F/π i p−1
r F)(U × V )
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∼= lim←− p−1
r F(U × V )/π i p−1

r F(U × V )

∼= lim←− F(V )/π iF(V )

∼= F̂(V )

∼= p−1
r F̂(U × V ). (36)

Now let (Ui )i∈I be an affine open covering of Y . Then {Uj ×Uk | j, k ∈ I } is an affine
open covering of Y × Y . By Eq. (36), we have that the sheaves ̂p−1

r F and p−1
r F̂

agree on affine open cover and since there exists a map between the two, they are
isomorphic. ��

6.2 Simplyfing the pullback functor

We retain the notation from the previous section. Further, for the rest of the section
we assume λ,μ : πnh → R are R-linear dominant weights. Since Dλ,μ

n is a sheaf of
πn-deformed G-htdo by Proposition 2.21 and the double flag variety X × X is quasi-
compact we have by Theorem 2.17, Proposition 4.8 and Theorem 4.19 equivalences
of categories:

i#l : Coh (Dλ,μ
n ,G) → Coh (Dλ

n , B),

îl
# : Coh (

̂Dλ,μ
n ,G) → Coh (̂Dλ

n , B),

î#l,K : Coh (
̂Dλ,μ
n,K ,G) → Coh (̂Dλ

n,K , B).

(37)

We let i : eB → X and pr : X × X → X denote the natural inclusion and projection
onto the right factor, respectively. We also define Mμ

n := i∗R ⊗
OX

Dμ
n .

Lemma 6.3 [32, Lemma 6.2, Corollary 6.4]

(i) Mμ
n ∈ Coh (Dμ

n ). We should remark that this is a right Dμ
n -module.

(ii) Let M ∈ Coh (Dλ,μ
n ,G). Then:

il∗ i
#
l M ∼= p−1

r (Mμ
n ) ⊗

p−1
r Dμ

n

M.

We can now give a description of the pullback of G-equivariant coherent ̂Dλ,μ
n -

modules and ̂Dλ,μ
n,K -modules.

Proposition 6.4 Let M ∈ Coh (
̂Dλ,μ
n ,G). Then:

il∗(îl
#M) ∼= p−1

r
̂Mμ

n ⊗
p−1
r

̂Dμ
n

M.
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Proof of Theorem 4.9 We know by construction that M/π iM ∈ Coh (Dλ,μ
n ,G). We

have

il∗(îl
#M) = il∗(lim←− i#l (M/π iM))

∼= lim←−(il∗(i
#
l (M/π iM))) (by Lemma 6.1)

∼= lim←−(p−1
r Mμ

n ⊗
p−1
r Dμ

n

M/π iM) (by Lemma 6.3)

∼= lim←−(p−1
r Mμ

n /π i p−1
r Mμ

n ⊗
p−1
r Dμ

n /π i p−1
r Dμ

n

M/π iM)

∼= ̂p−1
r Mμ

n ⊗̂
p−1
r Dμ

n

M (by Lemma 5.4)

∼= p−1
r

̂Mμ
n ⊗

p−1
r

̂Dμ
n

M (by Lemma 6.2.).

��

Corollary 6.5 Let M ∈ Coh (
̂Dλ,μ
n,K ,G). Then:

il∗(î
#
l,KM) ∼= (p−1

r
̂Mμ

n )K ⊗
p−1
r

̂Dμ
n,K

M.

Proof of Theorem 4.9 Let M0 be the correspoding lattice for M such that M0 ∈
Coh (

̂Dλ,μ
n ,G). By definition (î#l,KM) = (îl

#M0)K . We have

il∗(î
#
l,KM) = il∗((îl

#M0)K )

∼= (il∗ i
#
l M0)K

∼= (p−1
r

̂Mμ
n ⊗

p−1
r

̂Dμ
n

M0)K (by Proposition 6.4)

∼= (p−1
r

̂Mμ
n )K ⊗

(p−1
r

̂Dμ
n )K

(M0)K

∼= (p−1
r

̂Mμ
n )K ⊗

(p−1
r

̂Dμ
n )K

M

∼= (p−1
r

̂Mμ
n )K ⊗

p−1
r

̂Dμ
n,K

M.

��
We should remark that the argument above proves that the functor î#l,K is well defined,
i.e. it does not depend on the lattice of M.
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6.3 Computation of global sections

We aim to compute �(X , î#l,KM) for M ∈ Coh (
̂Dλ,μ
n,K ,G). Recall that Z = X × X

denotes the double flag variety. We start by making some notations.
To simplify the notation, we denote A := �(X , ̂Dμ

n ), so that AK = A ⊗
R
K ∼=

�(X , ̂Dμ
n,K ). Further, we let B := �(X ,

̂Dλ,μ
n ). We have by combining Proposition

5.16 and [2, Theorem 6.10b)] that
∧

U (g × g)
λ,μ
n,K

∼= BK ∼=
∧

U (g)λn,K
⊗̂
K
AK . Given a

BK -module M , we may view it asAK -module via x .m = (1⊗ x).m for x ∈ AK and
m ∈ M .

Proposition 6.6 M ∈ Coh (
̂Dλ,μ
n,K ,G). Then:

�(X , î#l,KM) ∼= �(X , ̂Mμ
n,K ) ⊗

AK

�(Z ,M).

Proof Wehave�(X , î#l,KM) ∼= �(Z , il∗(î
#
l,KM)), so usingCorollary 6.5, it is enough

to compute �(Z , (p−1
r

̂Mμ
n )K ⊗

p−1
r

̂Dμ
n,K

M).

We have by the first part of Lemma 6.3 that there is an exact sequence (Dμ
n )a →

(Dμ
n )b → Mμ

n → 0 for some a, b ∈ N

∗. Sinceπ -adic completion is exact on coherent

modules, we obtain an exact sequence (̂Dμ
n )a → (̂Dμ

n )b → ̂Mμ
n → 0, so an exact

sequence

(̂Dμ
n,K )a → (̂Dμ

n,K )b → ̂Mμ
n,K → 0.

Since p−1
r

̂Mμ
n,K

∼= (p−1
r

̂Mμ
n )K and tensor product is right exact we obtain an exact

sequence:

(p−1
r

̂Dμ
n,K )a ⊗

p−1
r

̂Dμ
n,K

M → (p−1
r

̂Dμ
n,K )b ⊗

p−1
r

̂Dμ
n,K

M → (p−1
r

̂Mμ
n )K ⊗

p−1
r

̂Dμ
n,K

M → 0.

To simplify the notation, we let E = p−1
r

̂Dμ
n,K and M = �(Z ,M). The above short

sequence fits into the following commutative diagram:

Ea ⊗
E
M Eb ⊗

E
M (p−1

r
̂Mμ

n )K ⊗
E
M 0

Ma Mb (p−1
r

̂Mμ
n )K ⊗

p−1
r

̂Dμ
n,K

M 0.

Since�(Z ,−) is exact on coherent modules by Theorem 5.7 we obtain a commutative
diagram:
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�(Z , Ea ⊗
E
M) �(Z , Eb ⊗

E
M) �(Z , (p−1

r
̂Mμ

n )K ⊗
E
M) 0

�(Z ,Ma) �(Z ,Mb) �(Z , (p−1
r

̂Mμ
n )K ⊗

E
M) 0

Ma Mb �(Z , (p−1
r

̂Mμ
n )K ⊗

E
M) 0

�(X , ̂Dμ
n,K

a
) ⊗

AK

M �(X , ̂Dμ
n,K

b
) ⊗

AK

M �(X , ̂Mμ
n,K ) ⊗

AK

M 0.

By construction, we have that the vertical arrows on the first, second and fourth
column are isomorphisms. Considering the first and fourth row and applying the Five
Lemma, we get the desired isomorphism. ��

6.4 Global sections of ̂M�
n,K

Recall that b− = n− ⊕ h denotes the negative Borel subalgebra of g. Let T (μ)0 =
Rμ ⊗

U (b−)n

U (g)n denote the right U (g)n-module such that U (b−)n acts on R via μ.

Further, we let T (μ) := T (μ)0 ⊗
R
K ∼= Kμ ⊗

U (b−)K

U (g)K and ̂T (μ) := ̂T (μ)0 ⊗
R
K ∼=

T (μ) ⊗
U (g)K

̂U (g)n,K .

Proposition 6.7 We have �(X , ̂Mμ
n,K ) ∼= ̂T (μ) as right ̂U (g)n,K -modules.

Proof of Theorem 4.9 Wehavebyconstruction that�(X ,Mμ
n )⊗

R
K ∼= �(XK ,Mμ

n,K |XK
)

and by [32, Lemma 6.2] that �(XK ,Mμ
n,K |XK

) ∼= T (μ). Therefore

�(X ,Mμ
n ) ⊗

R
K ∼= T (μ)0 ⊗

R
K ∼= T (μ).

By [2, Proposition 5.15b)], �(X ,Mμ
n ) is finitely generated as a U (g)n-module,

so �(X ,Mμ
n ) and T (μ)0 are both lattices for T (μ). Therefore, they agree modulo

bounded π -torsion, i.e. there exists an exact sequence

T (μ)0 → �(X ,Mμ
n ) → C → 0,

such that πmC = 0 for some m ∈ N and C is a finitely generated U (g)n-module.
Since,π -adic completion is exact on finitely generatedU (g)n-modules we get an exact
sequence

̂T (μ)0 → ̂�(X ,Mμ
n ) → ̂C → 0,
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with πm
̂C = 0. So by tensoring with K we obtain

̂T (μ) = ̂T (μ)0 ⊗
R
K ∼= ̂�(X ,Mμ

n ) ⊗
R
K ∼= �(X , ̂Mμ

n,K ).

��
We may now prove the main theorem of this section:

Theorem 6.8 Let M ∈ Coh (
̂Dλ,μ
n,K ,G). Then

�(X , î#l,KM) ∼= ̂T (μ) ⊗
∧

U (g)
μ
n,K

�(Z ,M).

Proof This follows by combining Corollary 6.6, Proposition 6.7 and [2, Theorem
6.10b)]. ��

7 Affinoid Duflo’s theorem

Throughout this section λ : πnh → R denotes an R-linear dominant weight. Recall
that we use λ∗ to denote the weight −woλ, where wo is the longest element of the
Weyl group. If λ is a dominant weight, so is λ∗. We consider the functor

F : Mod fg (
∧

U (g × g)λ
∗,λ

n,K
,G) → Mod fg (

∧

U (g)λ
∗

n,K
, B),

F (M) := �(X , î#l,K Loc λ(M)).

Proposition 7.1 The functor F is exact and F (M) ∼= ̂T (λ) ⊗
∧

U (g)λn,K

M for any

M ∈ Mod fg (
∧

U (g × g)λ
∗,λ

n,K
,G).

Proof Let M ∈ Mod fg (
∧

U (g × g)λ
∗,λ

n,K
,G) and M := Loc λ∗,λ(M). We have by

Corollary 5.9 that �(Z ,M) ∼= M and by Theorem 5.8 that M ∈ Coh (
̂Dλ∗,λ
n,K ,G),

so the second claim follows from Theorem 6.8. Consider a short exact sequence in

Mod fg (
∧

U (g × g)λ
∗,λ

n,K
,G):

0 → N → M → P → 0.

We let N ,M,P denote the localisation of N , M and P respectively. Further, we
denote L := ker(N → M). By construction, Loc λ∗,λ is right exact, so we obtain an
exact sequence:

0 → L → N → M → P → 0.
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Since î#l,K is an equivalence ofAbelian categories, it is exact. Furthermore, byTheorem
5.8 the global sections functor is also exact, so we obtain an exact sequence

0 → �(X , î#l,KL) → �(X , î#l,KN ) → �(X , î#l,KM) → �(X , î#l,KP) → 0.

Combining Theorem 6.8 and Corollary 5.9 we obtain an exact sequence

0 → ̂T (λ) ⊗
∧

U (g)λn,K

�(Z ,L) → ̂T (λ) ⊗
∧

U (g)λn,K

N

→ ̂T (λ) ⊗
∧

U (g)λn,K

M → ̂T (λ) ⊗
∧

U (g)λn,K

P → 0. (38)

The claim follows since �(Z ,L) = 0 by definition of L and Corollary 5.9. ��

Lemma 7.2 Let M ∈ Mod fg (
∧

U (g × g)λ
∗,λ

n,K
,G) and assume F (M) = 0. Then M =

0.

Proof LetM := Loc λ∗,λ(M). Then, by assumption, we have that �(X , î#l,KM) = 0.
By applying Corollary 5.9 and Corollary 4.21, we obtain M = 0. ��

We now specialise to two sided ideals in
∧

U (g)λn,K
; recall that a two-sided ideal

I can be viewed as a module over
∧

U (g)λ
∗

n,K
⊗
∧

U (g)λn,K
via (x ⊗ y).i = yiτ(x)

for x ∈
∧

U (g)λ
∗

n,K
, y ∈
∧

U (g)λn,K
and i ∈ I . Further, by Corollary 5.15, we have

I ∈ Mod fg (
∧

U (g × g)λ
∗,λ

n,K
,G), so F (I ) is well-defined. As a corollary, we obtain

immediately:

Corollary 7.3 Let I , J be two-sided ideals in
∧

U (g)λn,K
such that I ⊆ J . Assume that

F (I ) ∼= F (J ). Then I = J .

Proof Consider the short exact sequence:

0 → I → J → J/I → 0.

By Proposition 7.1 the functor F is exact, so we obtain an exact sequence

0 → F (I ) → F (J ) → F (J/I ) → 0.

Using the assumption, we obtain F (J/I ) = 0. The claim follows by Lemma 7.2. ��
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Corollary 7.4 Let I be a two-sided ideal in
∧

U (g)λn,K
. Then as left

∧

U (g)λ
∗

n,K
-modules

we have

F (I ) ∼= ̂T (λ)I .

We should remark that
∧

U (g)λ
∗

n,K
acts on ̂T (λ)I via x .(t i) = t(x .i) = t iτ(x) for

x ∈
∧

U (g)λ
∗

n,K
, t ∈ ̂T (λ) and i ∈ I . Further, the isomorphism is natural in I .

Proof Consider the following exact sequence:

0 → I →
∧

U (g)λn,K
→
∧

U (g)λn,K
/I → 0.

Applying Proposition 7.1 we obtain a short exact sequence:

0 → ̂T (λ) ⊗
∧

U (g)λn,K

I → ̂T (λ) → ̂T (λ) ⊗
∧

U (g)λn,K

∧

U (g)λn,K
/I → 0.

This short exact sequence fits in the following commutative diagram:

0 ̂T (λ) ⊗
∧

U (g)λn,K

I ̂T (λ) ̂T (λ) ⊗
∧

U (g)λn,K

∧

U (g)λn,K
/I 0

0 ̂T (λ)I ̂T (λ) ̂T (λ) ⊗
∧

U (g)λn,K

∧

U (g)λn,K
/I 0.

It is easy to see that the first map is a surjection and the second and the third maps
are isomorphisms. Furthermore, by the diagram above, the first map is also injective,
so indeed we get F (I ) ∼= ̂T (λ)I . ��

Let σ : g → g denote the Chevalley involution that swaps n+ and n− and fixes h .
Thenσ extends to an anti-automorphismofU (g)K that fixes the center by [21, Exercise

1.10]. Therefore, we obtain that an anti-automorphism σ̂ :
∧

U (g)λn,K
→
∧

U (g)λn,K
.

Recall that T (λ)0 = Rλ ⊗
U (b−)n

U (g), so that ̂T (λ) ∼= Kλ ⊗̂
U (b−)n,K

̂U (g)n,K .

Lemma 7.5 The map

φ̂ : ̂T (λ) → ̂M(λ), φ̂(k ⊗ x) = σ̂ (x) ⊗ k, k ∈ Kλ, x ∈ ̂U (g)n,K

is a K -linear isomorphism of vector spaces satisfying φ̂(tu) = σ̂ (u)φ̂(t) for all

u ∈ ̂U (g)n,K and t ∈ ̂T (λ). In particular, if I is a two-sided ideal in
∧

U (g)λn,K
, then

φ̂(̂T (λ)I ) = σ̂ (I ) ̂M(λ).
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Proof We have by [32, Lemma 7.6] that the map φ : T (λ) → M(λ), φ(k ⊗ x) =
σ(x) ⊗ K is a K -linear isomorphism of vector spaces satisfying φ(tu) = σ(u)φ(t)
for all t ∈ T (λ) and u ∈ U (g)K . Therefore, the claims follow from the construction
of φ̂ and σ̂ . ��

To prove the main theorem, we will need the following corollary:

Corollary 7.6 Let I be a two-sided ideal in
∧

U (g)λn,K
. Then:

I = Ann ( ̂M(λ)/I ̂M(λ)).

Proof Let J := Ann ( ̂M(λ)/I ̂M(λ)). Since I ( ̂M(λ)/I ̂M(λ)) = 0, we obtain that

I ⊆ J , so σ̂ (I ) ⊆ σ̂ (J ). We remark that since σ̂ is an anti-automorphism of
∧

U (g)λn,K
,

σ̂ (I ) and σ̂ (J ) are also two-sided ideals in
∧

U (g)λn,K
. Since F is exact, in particular

left exact, we obtain F (σ̂ (I )) ⊆ F (σ̂ (J )). Consider the following diagram:

F (σ̂ (I )) F (σ̂ (J ))

̂T (λ)σ̂ (I ) ̂T (λ)σ̂ (J )

I ̂M(λ) J ̂M(λ)

φ̂ φ̂

By construction, the bottom diagram commutes and by the definition of J , we have
J ̂M(λ) = I ̂M(λ). Using Lemma 7.5, we get ̂T (λ)σ̂ (I ) = ̂T (λ)σ̂ (J ). Furthermore,
since the isomorphism is Lemma 7.4 is natural on ideals, the top diagram is also
commutative. Therefore, F (σ̂ (I )) ∼= F (σ̂ (J )). The claim follows from Corollary
7.3 since σ̂ is an anti-automorphism. ��
Theorem 7.7 Let I be a prime ideal in

∧

U (g)λn,K
. Then

I = Ann (̂L(μ)) for some μ : πnh → R.

Proof Since ̂M(λ)/I ̂M(λ) is a quotient of ̂M(λ), we have by Proposition 3.29 that
there exists a finite composition series:

0 = M0 ⊂ M1 ⊂ . . . Ml = ̂M(λ)/I ̂M(λ).

Let Ii = Ann (Mi/Mi−1) for 1 ≤ i ≤ l. We have

I1 I2 . . . Il Ml = I1 I2 . . . Il−1Ml−1 = . . . = 0,

so I1 I2 . . . Il ⊂ Ann ( ̂M(λ)/I ̂M(λ)) = I by Corollary 7.6. Since I is prime, there
exists 1 ≤ j ≤ l such that I j ⊂ I . On the other hand, we have by construction
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I ⊂ I j , so I = I j = Ann (Mj/Mj−1). Finally, we have by Proposition 3.29 that

Mj/Mj−1 ∼= ̂L(μ) for some μ : πnh → R. ��
As an easy corollary, we obtain a positive answer to [3, Question A]:

Corollary 7.8 Every primitive ideal of ̂U (g)n,K with K -rational infinitesimal central
character is the annihilator of a simple affinoid highest weight module.

Proof Any primitive ideal in ̂U (g)n,K with K -rational infinitesimal central character

intersects Z( ̂U (g)n,K ) in a maximal ideal of the form ker χλ; here we view ker χλ as

a central character of ̂U (g)n,K via Theorem 3.4. Therefore, classifying these ideals

reduces to classifying the ideals in
∧

U (g)λn,K
for all λ ∈ πnh∗. There is an action of the

Weyl group W on the set of weights such that for two weights λ and μ,
∧

U (g)λn,K
=

̂U (g)
μ
n,K if and only if λ and μ are W -conjugate. Further, every W -conjugacy class

contains at least one dominant weight. The claim follows by Theorem 7.7 since every
primitive ideal is prime. ��

We should remark that in the case p is a very good prime forG, we have by Theorem
3.6 that the ideals { Îλ = Ann ( ̂M(λ))|λ ∈ πnh∗} form the set of minimal primitive
ideals with K -rational central character.

We are now able characterise all the primitive ideals in ̂U (g)n,K in the case n > 0.

Theorem 7.9 Assume n > 0 and let I be a primitive ideal in ̂U (g)n,K . Then there

exists a finite extension L/K and a primitive ideal J ∈ ̂U (g)n,K ⊗
K
L with L-rational

central character such that:

I = J ∩ ̂U (g)n,K .

Further, this ideal J is of the form Ann (̂L(λ)) for some suitable λ.

Proof We have by Theorem 3.4 that Z( ̂U (g)n,K ) is isomorphic with a Tate algebra.
Further, we have by [2, Theorem 9.4] that I has some central character. Therefore,
there exists L/K finite extension such that I ⊗

K
L ⊂ ̂U (g)n,K ⊗

R
K has L-rational

central character. Let e be the ramification index of K/L , OL the ring of integers of
L , π ′ the uniformiser of OL and g′ = g ⊗

R
OL . We have by [2, Lemma 3.9 c)] that

̂U (g)n,K ⊗ L ∼= ̂U (g′)en,L . Finally, we have by [24, Theorem 10.2.9] that there exist

a prime ideal J ∈ ̂U (g′)en,L such that I = J ∩ ̂U (g)n,K . Thus J contains I ⊗
K
L , so

in particular it has an L-rational central character. The claim follows from Theorem
7.7. ��

We should remark that the assumption n > 0 is required in order to apply the
affinoid Quillen’s Lemma [2, Theorem 9.4]. In the future, we aim to prove that the
lemma works in the case n = 0 and remove this restriction.
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8 A controller theorem

We keep the notations and assumptions from the previous section; we further assume
thatλ : πnh → R is also regular.Wewill alsomakeuse of the fact that two-sided ideals

in ̂U (g)n,K that contain ̂U (g)n,K ker χλ correspond to two-sided ideals in
∧

U (g)λn,K
.

Lemma 8.1 Let I be a two-sided ideal in U (gK ). Then ̂U (g)n,K I is a two-sided ideal

in ̂U (g)n,K I and furthermore, ̂U (g)n,K I = ̂U (g)n,K I ̂U (g)n,K .

Proof Clearly, it is enough to prove that I ̂U (g)n,K ⊂ ̂U (g)n,K I .

Viewing ̂U (g)n,K as a left ̂U (g)n,K -module via left multiplication, we have that
̂U (g)n,K I is a ̂U (g)n,K -submodule. Since the topology ̂U (g)n,K is complete, we have

by [20, I.5.5] that ̂U (g)n,K I is a closed subset.

Let i ∈ I and x ∈ ̂U (g)n,K . Recall that assuming that u1, u2 . . . ud is a free R-
basis for g, we may write as x = ∑

α∈Nd cαuα , with ||p−ncα|| → 0 as |α| → ∞.
For k ∈ N, let xk = ∑

α∈Nd ,|α|≤k cαuα . Since I is a two-sided ideal, we obtain that

i xk ∈ I ⊂ ̂U (g)n,K I .

Finally, we have i x = i limk→∞ xk = limk→∞ i xk . Since ̂U (g)n,K I is closed, we

obtain i x ∈ ̂U (g)n,K I finishing the proof. ��

Proposition 8.2 Let I be a two-sided ideal in ̂U (g)n,K such that ̂U (g)n,K ker χλ ⊂ I .

Then there exists a two-sided ideal J in U (gK ) such that I = ̂U (g)n,K J .

Proof Let M̂ = I ̂M(λ). We have by Theorem 3.25 that there exists M a submodule
of M(λ) such that M̂ = ̂U (g)n,K .M . Further, we have by [8, Theorem 4.3] that there
exists J a two-sided idealU (gK ) such that JM(λ) = M . By applying Lemma 8.1 we
obtain:

( ̂U (g)n,K J ). ̂M(λ) = ( ̂U (g)n,K J ) ̂U (g)n,K .M(λ) = ( ̂U (g)n,K J ).M(λ) = ̂U (g)n,K .M = M̂,

so ( ̂U (g)n,K J ) ̂M(λ) = I ̂M(λ). Let J ′ = ̂U (g)n,K J + I , so that J ′
̂M(λ) = I ̂M(λ)

and I ⊂ J ′. We have by Lemma 8.1 that J ′ is also a two-sided ideal. Further, by
combiningCorollary 7.3, Corollary 7.4 andLemma 7.5we get J ′ = I , so ̂U (g)n,K J ⊂
I . Applying the same strategy again, we obtain ̂U (g)n,K J = I . ��

To finish the proof, we need one more lemma. This is probably well-known among
the experts, but we have not been able to locate a reference.

Lemma 8.3 Let S ⊂ T two rings and let I be a left ideal of T generated by X ⊂ S.
Then I = T (I ∩ S).

Proof Let J = I ∩S. Obviously, we have T J ⊂ I . On the other hand, we have X ⊂ S,
X ⊂ I , so X ⊂ J . Therefore, I = T .X ⊂ T J . The claim follows. ��
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Theorem 8.4 Let λ : πnh → R be a R-linear dominant regular weight. Let I be a
two-sided ideal in ̂U (g)n,K with χλ-central character. Then:

I = ̂U (g)n,K (I ∩U (gK )).

Proof This follows immediately from Proposition 8.2 and Lemma 8.3. ��
As a corollary, we obtain immediately:

Corollary 8.5 Let λ : πnh → R be a R-linear dominant regular weight. The maps:

I �→ I ∩U (gK )

J �→ ̂U (g)n,K J
(39)

induce inverse bijections between the set of two sided ideals in ̂U (g)n,K withχλ-central
character and the set of two sided ideals in U (gK ) with χλ-central character.

We may also prove which ideal controls the annihilator of the simple affinoid
module ̂L(μ).

Proposition 8.6 Let μ : πnh → R and assume that μ is W-linked to λ. Then:

Ann (̂L(μ)) = ̂U (g)n,K Ann L(μ).

Proof Let P̂ := Ann (̂L(μ)), P = Ann (L(μ)) and J = P̂ ∩ U (gK ). Then, we have
by construction P ⊂ J .

We claim that ̂U (g)n,K P contains the annihilator of ̂L(μ). We have by the proof of

Lemma y8.1 that for all p ∈ P and x ∈ ̂U (g)n,K , there exist q ∈ P and y ∈ ̂U (g)n,K

such that px = yq. Therefore,wehave for all z ∈ ̂U (g)n,K and x⊗l ∈ ̂U (g)n,K ⊗
U (gK )

L

that

zp.(x ⊗ l) = z(px ⊗ l) = zy(q ⊗ l) = zy(1 ⊗ q.l) = 0,

so the claim is proven. Therefore, we obtain using Corollary 8.5 that P = J and so,
P̂ = ̂U (g)n,K P . ��
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