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Abstract
The generalized Miller–Morita–Mumford classes of a manifold bundle with fiber M
depend only on the underlying τM -fibration, meaning the family of vector bundles
formed by the tangent bundles of the fibers. This motivates a closer study of the
classifying space for τM -fibrations, Baut(τM ), and its cohomology ring, i.e., the ring
of characteristic classes of τM -fibrations. For a bundle ξ over a simply connected
Poincaré duality space, we construct a relative Sullivan model for the universal ξ -
fibration with holonomy in a given connected monoid, together with explicit cocycle
representatives for the characteristic classes of the canonical bundle over its total space.
This yields tools for computing the rational cohomology ring of Baut(ξ) as well as the
subring generated by the generalized Miller–Morita–Mumford classes. To illustrate,
we carry out sample computations for spheres and complex projective spaces. We
discuss applications to tautological rings of simply connected manifolds and to the
problem of deciding whether a given τM -fibration comes from a manifold bundle.
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1 Introduction

The generalized Miller–Morita–Mumford classes, or tautological classes, are char-
acteristic classes of manifold bundles that play an important role in the study of the
cohomology of moduli spaces of manifolds [14, 26]. The tautological class κc, asso-
ciated to a characteristic class c of oriented vector bundles, is defined by its evaluation
on an oriented manifold bundle,

M → E
π−→ B,

namely

κc(π) =
∫
M
c(Tπ E) ∈ H∗(B),

i.e., the class κc(π) is obtained by integration along the fiber of the characteristic class
c evaluated on the fiberwise tangent bundle Tπ E .

This paper studies characteristic classes that, like the tautological classes, are
defined using only homotopy theory and tangential data, viz. the fiberwise tangent
bundle and its characteristic classes. For a bundle ξ over a space X , we define a
ξ -fibration to be a pair (π, ζ ), where

• π : E → B is a fibration whose fibers are homotopy equivalent to X , and
• ζ is a bundle over E , the ‘total bundle’, whose restriction to each fiber is equivalent
to ξ in an appropriate sense.

In other words, a ξ -fibration is a family of bundles {ζb} parameterized by the space B
such that ζb ∼ ξ for every b ∈ B. Every smooth manifold bundle π : E → B with
fiber M gives rise to a τM -fibration (π, ζ ) where ζ is the fiberwise tangent bundle.

The base of the universal ξ -fibrationmay be identifiedwith Baut(ξ), the classifying
space of the topological monoid aut(ξ) of automorphisms of ξ that cover a self-
homotopy equivalence of X . Therefore, the cohomology ring of Baut(ξ) may be
thought of as the ring of characteristic classes of ξ -fibrations.

The main result of the paper, Theorem 3.8, is the construction of a relative Sullivan
model for the universal ξ -fibration with holonomy in a given connected monoid,
together with explicit formulas for cocycle representatives of the characteristic classes
of its total bundle. This can be used to compute H∗(Baut(ξ); Q), and the subring
R∗(ξ) generated by the tautological classes, for bundles ξ over simply connected
Poincaré duality spaces.

We will spend the rest of this introduction discussing sample calculations done
using Theorem 3.8 and some applications. Full details are given in Sect. 4.



Characteristic classes for families of bundles Page 3 of 56 51

Theorem 1.1 Consider the oriented tangent bundle τSm of an even dimensional sphere
Sm. The ring of characteristic classes of τSm -fibrations may be identified with the
polynomial ring

H∗(Baut(τSm ); Q) = Q[κep1, . . . , κepk , κpr , . . . , κpk ],

where m = 2k and r is the smallest integer such that 4r > m. In particular, all
characteristic classes of τSm -fibrations are tautological.

Our calculation for odd dimensional spheres, to be presented next, informs the
following definition. For a class c ∈ H∗(BSO(m)) of degree < m, we define a
characteristic class αc of τSm -fibrations (π : E → B, ζ ) by

π∗(αc(π, ζ )) = c(ζ ) ∈ H∗(E).

This uniquely defines αc(π, ζ ) ∈ H∗(B), because π∗ : H∗(B) → H∗(E) is an
isomorphism in degrees < m.

Next, recall that every spherical fibration Sm → E
π−→ B has an associated Euler

class e(π) ∈ Hm+1(B). The Euler class is a characteristic class of spherical fibrations
and in particular of τSm -fibrations.

Let A∗(τSm ) denote the subring of H∗(Baut(τSm ); Q) generated by the α-classes
and the Euler class.

Theorem 1.2 Consider the oriented tangent bundle τSm of an odd dimensional sphere
Sm. Let m = 2k + 1 ≥ 3 and let r be the smallest integer such that 4r > m.

(1) The cohomology ring H∗(Baut(τSm ); Q) is additively the direct sum

A∗(τSm ) ⊕ R∗(τSm ),

and the multiplication is determined by

αaκb = κab,

eκb = 0,

for all a, b ∈ H∗(BSO(m))with |a| < m. In particular, the ring of characteristic
classes of τSm -fibrations is generated by the α-classes, the Euler class, and the
κ-classes.

(2) The ring generated by the α-classes and the Euler class may be identified with the
polynomial ring

A∗(τSm ) = Q[αp1 , . . . , αpr−1 , e].

(3) The tautological ring is isomorphic to the ring of exact Kähler differential forms
on Q[p1, . . . , pk], with respect to a formal differential d of degree −m which is
linear over Q[p1, . . . , pr−1],

R∗(τSm ) ∼= d�∗
Q[p1,...,pk ]|Q[p1,...,pr−1],
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through an isomorphism that sends κc to dc for all c ∈ Q[p1, . . . , pk].
For concreteness, let us look closer at what this means for S3.

Corollary 1.3 The tautological ring R∗(τS3) of the tangent bundle of S3 is spanned by
the κ-classes associated to the Hirzebruch L-classes,

κL1 , κL2 , · · · .

The multiplication is trivial.

Proof The ring of exactKähler forms over a polynomial ring has a non-trivial algebraic
structure in general, but for m = 3 the ring

R∗(τS3) ∼= d�∗
Q[p1]|Q

has basis pi−1
1 dp1 for i = 1, 2, . . . and the multiplication is trivial. The Hirzebruch

L-classes in the cohomology of BSO(3) are given byLi = bi pi1, for certain non-zero
rational numbers bi . Through the isomorphism in the theorem, κLi corresponds to
dLi = ibi p

i−1
1 dpi , showing the classes κLi are non-zero and span R∗(τS3). �	

As we will discuss next, the classes κLi are obstructions for extending a given τSm -
fibration to a fiber bundle and, rationally, they turn out to be the only obstructions. It is
a consequence of the family signature theorem that κLi (π, ζ ) = 0 for all i > m/4 if
(π, ζ ) is the τSm -fibration associated to a smooth manifold bundle with fiber Sm (see
[20,Theorem A.2]). Define Baut(τSm )L to be the homotopy fiber of the map

L : Baut(τSm ) →
∏

m/4<i≤m/2

K (Q, 4i − m)

that records the classesκLi in the indicated range. Itmaybe thought of as the classifying
space of τSm -fibrations with trivializations of the classes κLi . Every oriented vector
bundle E → B of dimension m + 1 has an associated sphere bundle

Sm → S(E) → B.

This is an SO(m + 1)-bundle, so it can be equipped with a fiberwise tangent bundle
ζ → S(E)making it into a τSm -fibration, and the map that classifies it factors through
Baut(τSm )L .

While the calculations for m even and m odd are quite different, they both lead to
the following result (for m odd we do not suggest that it is an obvious consequence of
the statement of Theorem 1.2 but it follows from the methods that prove it).

Theorem 1.4 The map

BSO(m + 1) → Baut(τSm )L , (1)

induced by taking the oriented sphere bundle of the universal oriented vector bundle,
is a rational homotopy equivalence.
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As an application, this implies that the classes κLi are the only obstructions for a
given τSm -fibration (π, ζ ) to be rationally equivalent to an SO(m + 1)-bundle with
fiber Sm . By the latter we mean that there exists a rational homotopy equivalence
f : B ′ → B such that the pulled back τSm -fibration f ∗(π, ζ ) is equivalent to the
underlying τSm -fibration of an SO(m + 1)-bundle over B ′ with fiber Sm .

Corollary 1.5 A τSm -fibration

Sm → E
π−→ B, ζ → E,

is rationally equivalent to an SO(m + 1)-bundle if and only if

κLi (π, ζ ) = 0

for m/4 < i ≤ m/2.

Proof Given a τSm -fibration (π, ζ ) such that κLi (π, ζ ) = 0 for m/4 < i ≤ m/2, the
classifying map factors through B → Baut(τSm )L . Forming the homotopy pullback

B ′ BSO(m + 1)

B Baut(τSm )L

yields the desired data, as rational equivalences are stable under homotopy pullbacks.
�	

As another application, we note that computations over Baut(τM ) can yield infor-
mation about the tautological ring of M in the sense of [13], i.e., the subring R∗(M)

of H∗(B Diff+(M); Q) generated by the κ-classes. Indeed, the map

B Diff+(M) → Baut(τM )

that classifies the τM -fibration associated to the universal smooth oriented M-bundle
induces a surjective ring homomorphism

R∗(τM ) → R∗(M).

Thus, in principle, the ring R∗(M) can be carved out of R∗(τM ) by imposing further
relations. As a simple illustration of this point, we give an alternative calculation of
the tautological ring of Sm for m even, cf. [13,Theorem 1.1(i)].

Corollary 1.6 The ring homomorphism

H∗(Baut(τSm )L ; Q) → H∗(B Diff+(Sm); Q).
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is split injective. For m = 2k even, the image is the tautological ring R∗(Sm), and

R∗(Sm) ∼= R∗(τSm )/(κLr , . . . , κLk )
∼= Q[κeL1, . . . , κeLk ].

Proof The map (1) factors as

BSO(m + 1) → B Diff+(Sm) → Baut(τSm )L ,

inducing

H∗(Baut(τSm )L ; Q) → H∗(B Diff+(Sm); Q) → H∗(BSO(m + 1); Q).

The composite is a ring isomorphism by Theorem 1.4. This proves the first claim.
Now assume m is even. Since all characteristic classes of τSm -fibrations are tau-

tological, the image is R∗(Sm). As will be clear from the proof, one can replace the
Pontryagin classes by the Hirzebruch L-classes in Theorem 1.1, so that

H∗(Baut(τSm ); Q) = R∗(τSm ) = Q[κeL1, . . . , κeLk , κLr , . . . , κLk ].

Since κLr , . . . , κLk is a regular sequence, it follows that

H∗(Baut(τSm )L ; Q) ∼= R∗(τSm )/(κLr , . . . , κLk )
∼= Q[κeL1, . . . , κeLk ].

�	
For another sample calculation, we turn to complex projective spaces. Consider a

fibration

CPn → E
π−→ B

which is orientable in the sense that π1(B) acts trivially on the cohomology of the
fiber. For every choice of generator ω ∈ H2(CPn; Q), there is a unique cohomology
class ω fw(π) ∈ H2(E; Q) (the ‘coupling class’) such that ω f w(π)|CPn = ω and

∫
CPn

ω f w(π)n+1 = 0.

For definiteness, we fix the generator ω = −c1(γ 1), the negative of the first Chern
class of the canonical line bundle γ 1.

By a standard argument, it follows that H∗(E; Q) is a free H∗(B; Q)-module with
basis 1, ω f w(π), . . . , ω f w(π)n . A key observation is that ω f w(π) is natural in the
fibrationπ (seeLemma4.1). Inspired byGrothendieck’s approach toChern classes (cf.
[16] or [7,§20]), we can then define characteristic classes of orientable CPn-fibrations
π : E → B,

ai (π) ∈ H2i (B; Q),
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by postulating the equality

ω f w(π)n+1 + a2(π) · ω f w(π)n−1 + · · · + an+1(π) · 1 = 0

in the cohomology of the total space (we set a0(π) = 1 and a1(π) = 0).1

Similarly, if ξ is a bundle over CPn with structure group G, then for every class
x ∈ H �(BG; Q) we can define characteristic classes

x| j (π, ζ ) ∈ H �−2 j (B; Q)

of orientable ξ -fibrations

CPn → E
π−→ B, ζ → E,

by postulating the equality

x(ζ ) = x|n(π, ζ ) · ω fw(π)n + · · · + x|1(π, ζ ) · ω f w(π) + x|0(π, ζ ) · 1 = 0

in the cohomology of the total space.

Theorem 1.7 Let ξ be a bundle over CPn with structure group G. Assume that G is
connected and that the cohomology of BG is an evenly graded polynomial ring, say
H∗(BG; Q) = Q[p1, p2, . . .] with |pi | = 2ri .

(1) The ring of characteristic classes of orientable ξ -fibrations,

H∗(Baut◦(ξ); Q),

may be identified with the polynomial ring

Q[a2, . . . , an+1, pi | j ],

generated by a2, . . . , an+1 and pi | j for all i and all j such that 0 ≤ j < ri .
(2) The ring of characteristic classes of ξ -fibrations may be identified with the invari-

ant subring

H∗(Baut(ξ); Q) = Q[a2, . . . , an+1, pi | j ]�(ξ),

where

�(ξ) ∼=
{

Z/2Z, c∗(ξ) ∼= ξ,

0, c∗(ξ) � ξ,

1 For the precise relation between the classes ai and the Chern classes in the case when the fibration arises
through projectivization of a complex vector bundle, see Proposition 4.6.
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where c : CPn → CPn denotes complex conjugation, and where the non-trivial
element of �(ξ) acts by

ak → (−1)kak, pi | j → (−1) j pi | j ,

in the case when c∗(ξ) ∼= ξ .

For example, since complex conjugation is an orientation preserving diffeomor-
phism of CP2 we have c∗(τR

CP2
) ∼= τR

CP2
, where the latter denotes the underlying

oriented vector bundle of the complex tangent bundle, whence

H∗(Baut(τR
CP2); Q) ∼= Q[a2, p1|0, e|0, p21|1, p1|1e|1, e2|1, p1|1a3, e|1a3, a23].

This ring is abstractly isomorphic to

Q[u, v, w, a, b, c, d, e, f ]/(ac − b2, a f − d2, c f − e2).

In particular, it is a complete intersection of Krull dimension 6 and embedding dimen-
sion 9.

By counting dimensions, one quickly realizes that there are not enough tautological
classes to generate H∗(Baut◦(ξ); Q) in general. However, if we extend the set of
tautological classes by defining

κωnc(π, ζ ) =
∫
CPn

ω f w(π)nc(ζ ),

for n ≥ 0 and c ∈ H∗(BG; Q), then we have the following.

Theorem 1.8 With hypotheses as in Theorem 1.7, the ring of characteristic classes of
orientable ξ -fibrations is a polynomial ring in the classes

κωn+2 , . . . , κω2n+1 ,

κω� pi , n − ri + 1 ≤ � ≤ n, i = 1, 2, . . . .

In particular, all such characteristic classes are tautological in the extended sense.

Remark 1.9 For the τCPn -fibration (π, ζ ) associated to a symplectic CPn-bundle, the
class κωn+kcI (π, ζ ), where cI = cm1

1 . . . cmn
n for a multi-index I = (m1, . . . ,mn),

agrees with the class μk,I defined by Kȩdra-McDuff [19,p.147].

Remark 1.10 By letting ξ be the trivial bundle with fiber a point, we recover a result
of Kuribayashi [22] on the ring of characteristic classes of orientable CPn-fibrations
as a special case of Theorem 1.8: H∗(Baut◦(CPn); Q) = Q[μ2, . . . , μn+1].

As an application of Theorem 1.7, we establish necessary and sufficient conditions
for a τCPn -fibration to be rationally equivalent to a PU (n + 1)-bundle. To do this, we
first equip every orientableCPn-fibrationwith a cohomological stand-in for a fiberwise
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tangent bundle. The following definition is based on the observation that the Chern
classes of the fiberwise tangent bundle of the projectivization of a complex vector
bundle can be expressed in terms of the classes ai (π) and ω f w(π) and hence only
depend on the underlying CPn-fibration (see Proposition 4.8).

Definition 1.11 For an orientable fibration

CPn → E
π−→ B,

we define the fiberwise Chern classes c f w
1 (π), . . . , c f w

n (π) by the formula

c fw
i (π) =

i∑
j=0

(
n + 1 − j

i − j

)
a j (π)ω f w(π)i− j ∈ H2i (E; Q). (2)

Let Baut(τCPn )c denote the classifying space for τCPn -fibrations (π, ζ ) with a trivi-
alization of the ‘Chern difference’

cdi (π, ζ ) = c f w
i (π) − ci (ζ )

for every i . By design, the Chern differences of τCPn -fibrations arising from projec-
tivizations of complex vector bundles are trivial. Somewhat surprisingly, it turns out
that the Chern differences are the only obstructions for a τCPn -fibration to be rationally
equivalent to a PU (n + 1)-bundle.

Theorem 1.12 Every PU (n + 1)-bundle with fiber CPn has trivial Chern differences
and the induced map

BPU (n + 1) → Baut(τCPn )
c,

is a rational homotopy equivalence.

Corollary 1.13 A τCPn -fibration is rationally equivalent to a PU (n+ 1)-bundle if and
only if its Chern differences are trivial.

Remark 1.14 Since c f w
1 (π) = (n + 1)ω f w(π), it follows immediately from Theorem

1.8 that all characteristic classes of τCPn -fibrations with trivial first Chern difference
are tautological.

There are similar results for τR
CPn -fibrations (π, ζ ), where the total bundle ζ is

an oriented vector bundle instead of a complex vector bundle. We define fiberwise
Pontryagin classes and a fiberwise Euler class by

p fw
i (π) =

2i∑
j=0

(−1) j−i c fw
j (π)c fw

2i− j (π),

e fw(π) = c f w
n (π).
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Weremark that e f w(π) as definedhere agreeswith thefiberwiseEuler class in the sense
of [17], as follows from [29,Theorem 5.6]. Let Baut(τR

CPn )
p,e denote the classifying

space for τR
CPn -fibrations (π, ζ ) with trivializations of the Pontryagin differences and

the Euler difference,

pdi (π, ζ ) = p f w
i (π) − pi (ζ ), ed(π, ζ ) = e f w(π) − e(ζ ),

and let Isom+(CPn) denote the group of orientation preserving isometries of CPn

with respect to the Fubini-Study metric.

Theorem 1.15 The universal Isom+(CPn)-bundle with fiber CPn has trivial Pontrya-
gin and Euler differences, and the induced map

B Isom+(CPn) → Baut(τRCPn )
p,e (3)

is a rational homotopy equivalence.

Corollary 1.16 A τR
CPn -fibration is rationally equivalent to an Isom+(CPn)-bundle if

and only if its Pontryagin and Euler differences are trivial.

Theorem 1.17 Consider the ring H∗(B Isom+(CPn); Q
)
of characteristic classes of

Isom+(CPn)-bundles with fiber CPn.

(1) For odd n = 2k + 1, the ring may be identified with the polynomial ring in the n
generators

κep1 , . . . , κepk+1
1

, κpk+2
1

, . . . , κp2k+1
1

.

(2) For even n = 2k, the ring is a complete intersection of Krull dimension n and
embedding dimension n + (k

2

)
. A minimal set of generators is given by

κpk+1
1

, . . . , κp2k1
, κp3k+1

1
,

and

κpk+s−1
1 βs

, . . . , κp2k1 βs
,

for s = 2, . . . , k, where

βs = (n + 1)s ps −
(
n + 1

s

)
ps1.

In particular, all characteristic classes of Isom+(CPn)-bundles with fiber CPn are
tautological.
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Remark 1.18 In view of Theorem 1.15, Theorem 1.17 could also be read as a statement
about the ring of characteristic classes of τR

CPn -fibrations with trivialized Pontryagin
and Euler differences. The displayed generators are by no means canonical, there are
other options.

The above results have interesting consequences for the tautological ring of CPn .
For an orientable τR

CPn -fibration (π, ζ ) over B, let d ⊆ H∗(B; Q) denote the ideal
generated by the coefficients pdi | j , ed|i , of the Pontryagin and Euler differences,

pdi (π, ζ ) =
2i∑
j=0

pdi | j · ω fw(π) j , ed(π, ζ ) =
n∑
j=0

ed| j · ω f w(π) j .

If (π, ζ ) is not orientable, we define d by pullback along H∗(B; Q) → H∗(B◦; Q),
where B◦ → B is the cover corresponding to the kernel of the action of π1(B) on the
cohomology of the fiber. Let us call elements of d ⊆ H∗(B; Q) ‘difference classes’.
We let R∗(B) ⊆ H∗(B; Q) denote the subring of tautological classes.

Theorem 1.19 Consider a τR
CPn -fibration over a space B whose classifying map fits in

a homotopy commutative diagram

B

B Isom+(CPn) Baut(τR
CPn ).

The induced ring homomorphism

R∗(B) → H∗(B Isom+(CPn); Q) (4)

is surjective and the kernel is the ideal R∗(B) ∩ d of tautological difference classes.

For a CP2-fibration π : E → B, the fiberwise Pontryagin and Euler classes are

p f w
1 (π) = 3ω f w(π)2 − 2a2(π) · 1,
e f w(π) = 3ω f w(π)2 + a2(π) · 1.

A recent result of Baraglia [1,Theorem 1.3(ii)] implies that every smooth oriented
CP2-bundle π : E → B has trivial Pontryagin and Euler differences,

p1(Tπ E) = p f w
1 (π), e(Tπ E) = e f w(π). (5)

We remark in passing that triviality of the Euler difference makes sense—and
holds—more generally for any oriented manifold bundle by [17,§3.2.1]. Baraglia uses
[1,Theorem 1.3(ii)] as one of several ingredients in a computation of the tautological
ring of CP2. Theorem 1.19 applied to B = B Diff+(CP2) gives a direct path from (5)
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to the computation that circumvents the other ingredients: triviality of the Pontryagin
and Euler differences means that d = 0 so

R∗(CP2) → H∗(B Isom+(CP2); Q)

is an isomorphism. The target may be identified with Q[κp21
, κp41

] by Theorem 1.17.
(Incidentally, this is the only even n for which the target of (4) is a polynomial ring.)

It is interesting to compare with Randal-Williams’ computations [32,§4.4]; they
inspire the following observations. For a closed oriented smooth manifold M , the
conditions on κLi that come from the family signature theorem give relations among
the generators for R∗(M). These relations are sometimes sufficient for determining
R∗(M) (as in Corollary 1.6). The following shows they are not sufficient in general.

Theorem 1.20 (1) For every τR
CP2

-fibration

CP2 → E
π−→ B, ζ → E,

such that

e(ζ ) = e fw(π), κLi (π, ζ ) = 0, i > 1, (6)

the difference class pd1|0 is tautological and generates the ideal R∗(B) ∩ d.
(2) There exist τR

CP2
-fibrations satisfying (6) such that pd1|0 �= 0. In particular, for

such τR
CP2

-fibrations, R∗(B) → R∗(CP2) is not injective.

Remark 1.21 The difference class pd1|0 is directly related to the class 4κp21
− 7κep1

featured in the computations of [32,§4.4]: for every τR
CP2

-fibration satisfying (6),

pd1|0 = 1
21

(
4κp21

− 7κep1
)
.

In particular, vanishing of the Pontryagin difference for smooth CP2-bundles explains
why

R∗(CP2) = Q[κp21
, κep1 , κp41

]/(4κp21
− 7κep1), (7)

answering the question posed after Theorem D in [32], but we stress that (7) should
be viewed as a corollary of [1,Theorem 1.3(ii)].

Remark 1.22 For a closed oriented smooth manifold M , triviality of the Euler differ-
ence together with the conditions on κLi that come from the family signature theorem
are necessary for being able to reduce the ‘structure group’ of a τM -fibration from
aut(τM ) to Diff+(M) rationally. For Sm these conditions are sufficient (Corollary
1.5), but they are not sufficient in general. Indeed, the τR

CP2
-fibration in Theorem

1.20(2) has a non-trivial Pontryagin difference, so cannot be rationally equivalent to
a smooth CP2-bundle.
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Remark 1.23 Theorem 1.19 shows that the structure of the tautological ring R∗(CPn)
is intimately linked to the behavior of the Pontryagin differences of smooth oriented
CPn-bundles. For n = 2, the Pontryagin difference vanishes, but this turns out to be a
low-dimensional phenomenon. For n sufficiently large, there are smooth orientedCPn-
bundles with non-trivial Pontryagin differences. We thank Oscar Randal-Williams for
suggesting a way to construct such bundles in a comment to an earlier version of this
paper.

The rational homotopy groups of the space aut(CPn)/ D̃iff(CPn), which classifies
homotopically trivial block bundles with fiberCPn , can be computed using the surgery
exact sequence (see e.g. [4,§3] for a review). After a few manipulations, this assumes
the form of an exact sequence

0 → πk(aut(CPn)/ D̃iff(CPn)) ⊗ Q →
⊕
i≥1

H4i−k(CPn; Q)

∫
CPn−−→ Q,

where the first map sends the equivalence class of a homotopically trivial block bundle
π : E → Sk , with fiber CPn and stable fiberwise tangent bundle ζ , to the sequence
of cohomology classes w−1(Ldi (π, ζ )) ∈ H4i−k(CPn; Q), where Ldi (π, ζ ) is the
i th ‘L-class difference’ and w : H∗−k(CPn; Q) → H∗(E; Q) comes from the Wang
sequence associated to π . In particular, this shows the existence of block bundles
over spaces within the rational homotopy type of Sk with non-trivial L-differences
and hence Pontryagin differences. To promote such block bundles to smooth bundles,
[10,Corollary D] implies that

πk(aut(CPn)/Diff(CPn)) ⊗ Q → πk(aut(CPn)/ D̃iff(CPn)) ⊗ Q

is surjective as long as k is in the pseudoisotopy stable range for CPn , which holds if
2n ≥ max(2k + 7, 3k + 4) by [18].

The applicability of Theorem 3.8 is not limited to the examples presented here.
Further computations and applications using Theorem 3.8 are worked out in the PhD
thesis of Nils Prigge [30].

The original motivation for this work was to understand the relation between the
generalized Miller–Morita–Mumford classes and certain classes defined using graph
complexes in the cohomology of the classifying space of the block diffeomorphism
group of the manifold #gSd × Sd \ intD2d , see [5]. This application will be treated
in a separate paper.

Remark 1.24 In [3], we constructed a different rational model for Baut◦(ξ), but this
model is insufficient for the applications presented here, because it does not say
anything about the universal ξ -fibration or the classifying map for the total bundle.
Theorem 3.8, on the other hand, does this. A precursor to Theorem 1.2 was obtained
in [3], but it lacks an interpretation in terms of characteristic classes.
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2 Families of bundles and characteristic classes

In this section, we discuss the notion of a family of bundles and, more generally,
fibrations with extra structure on the total space that restrict to a given structure on
the fiber. We review different models for universal fibrations and define tautological
classes in this context, and we discuss the relation to smooth manifold bundles.

2.1 Fibrations with extra structure

The following definition distills the relevant homotopical information carried by a
family of bundles.

Definition 2.1 Let g : X → Z be a map. A g-fibration over a space B is a pair (π, h)

consisting of

• a fibration π : E → B,
• a map h : E → Z ,

such that h|Eb : Eb → Z is weakly equivalent to g : X → Z as a space over Z , for
every b ∈ B, where Eb = π−1(b).

There are mainly two types of g-fibrations that will interest us:
Families of bundles. Let ξ be a bundle over X with structure group G and let

g : X → BG be a map that classifies ξ . In this case, a g-fibration may be interpreted
as a ξ -fibration as in the introduction, i.e., a fibration π : E → B together with a
bundle ζ over E such that ζ |Eb is weakly equivalent to ξ through bundle maps that
cover weak homotopy equivalences, for every b ∈ B.

Fiberwise cohomology classes.Let ci ∈ H �i (X) a sequence of cohomology classes,
represented by a map

g : X →
∏
i

K (Z, �i ).

Letting Z denote the product of Eilenberg–Mac Lane spaces, a g-fibration

π : E → B, h : E → Z ,

may be thought of as a fibration π : E → B with fiber X together with cohomology
classes ci (h) ∈ H �i (E) that restrict to ci in the fiber.

2.2 Universal fibrations with extra structure

Let X be a CW complex equipped with a map g : X → Z . Let map(X , Z)g denote
the connected component of the space of maps from X to Z that contains g, and let
aut(X)[g] denote the topological monoid of homotopy equivalences f : X → X such
that g ◦ f � g. For a topological monoid H, a right H-space M , and a left H-space
N , we let B

(
M,H, N

)
denote the geometric bar construction [27,§7]. Recall that

B
(
M,H) = B

(
M,H, ∗) is a model for the homotopy orbit space M//H.
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Theorem 2.2 The universal g-fibration is weakly equivalent to the map

B
(
map(X , Z)g, aut(X)[g], X

) → B
(
map(X , Z)g, aut(X)[g], ∗

)
,

and the reference map from the total space to Z is equivalent to the map

ev : B(
map(X , Z)g, aut(X)[g], X

) → Z

induced by the evaluation map map(X , Z)g × X → Z.

Proof The notion of a g-fibration fits into May’s framework of ‘fibrations with a Y -
structure’, and the result is a consequence of [27,Theorem 11.1] (the statement about
the reference map is implicit in the proof). �	

In the case when the map g classifies a bundle ξ , there is a model for the universal
g-fibration of a more geometric flavor, which will be useful when we study manifold
bundles. Suppose ξ is a fiber bundle over a CW complex X with fiber F , structure
group G, and projection T → X . Let aut(ξ) denote the topological monoid of self-
equivalences of ξ , i.e., bundle maps

T
ϕ

T

X
f

X

such that f is a homotopy equivalence and ϕ is a fiberwise isomorphism. The classify-
ing space of this monoid, Baut(ξ), is a model for the base of the universal ξ -fibration,
cf. [3,Corollary 2.4] or [5,Proposition 4.11]. The following enhances this result by
giving a model, expressed in terms of ξ , for the fibration and the total bundle as well.
Clearly, the monoid aut(ξ) acts on both T and X , and the projection T → X is a map
of aut(ξ)-spaces.

Proposition 2.3 Let ξ be a bundle classified by g : X → BG. The underlying fibration
of the universal ξ -fibration is weakly equivalent to the map

B
(
aut(ξ), X

) → Baut(ξ),

and the total bundle is equivalent to

B
(
aut(ξ), T

) → B
(
aut(ξ), X

)
.

Proof We highlight two key properties of spaces of bundle maps that we will use:

• (Covering homotopy property) For bundles ξ and ξ ′ over X and X ′, the forgetful
map map(ξ, ξ ′) → map(X , X ′) is a fibration.

• (Existence of a universal bundle) There is a bundle γ such thatmap(ξ, γ ) is weakly
contractible for every bundle ξ .
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That these properties hold for vector bundles over CW complexes should be well-
known. See Remark 2.4 below for a discussion and generalizations.

We may assume that ξ = g∗(γ ), where γ is the universal bundle over BG, so that
we have a bundle map ξ → γ given by a pullback square

T E

X
g

BG.

We then have an induced pullback square

aut(ξ) map(ξ, γ )

aut(X)[g] map(X , BG)g.

The verticalmaps are fibrations by the covering homotopy property, so it is a homotopy
pullback square. It follows from [5,Lemma 4.10] that the induced map

B
(
map(ξ, γ

)
, aut(ξ), ∗) → B

(
map(X , BG)g, aut(X)[g], ∗

)

is a weak homotopy equivalence. The map

B
(
map(ξ, γ ), aut(ξ), ∗) → Baut(ξ)

is a weak homotopy equivalence since map(ξ, γ ) is weakly contractible. Thus, the
bottom horizontal maps in the following diagram are weak homotopy equivalences.

B
(∗, aut(ξ), X

)
B

(
map(ξ, γ ), aut(ξ), X

)∼ ∼
B

(
map(X , BG)g, aut(X)[g], X

)

Baut(ξ) B
(
map(ξ, γ ), aut(ξ), ∗)∼ ∼

B
(
map(X , BG)g, aut(X)[g], ∗

)
.

The squares are homotopy cartesian by Theorem 7.6 and Proposition 7.8 of [27]. It
follows that the top horizontal maps are weak homotopy equivalences. This proves
the first claim.

The second claim can be proved by considering the diagram

B
(∗, aut(ξ), T

)
B

(
map(ξ, γ ), aut(ξ), T

)∼ ∼

ev

E ′ E

B
(∗, aut(ξ), X

)
B

(
map(ξ, γ ), aut(ξ), X

)∼ ∼
B

(
map(X , BG)g , aut(X)[g], X

) ev
BG,
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where the rightmost square is the pullback of the universal bundle along the map ev,
the map ev is induced by the map

map(ξ, γ ) × T → E,
(
( f , ϕ), t

) → ϕ(t),

and the dashed arrow exists by the universal property of the pullback. �	
Remark 2.4 Our main applications are to vector bundles over CW complexes, but
Proposition 2.3 remains valid for more general interpretations of the terms ‘bundle’
and ‘bundle map’. Indeed, these can be taken to mean ‘F-fibration’ and ‘F-map’,
respectively, in the sense of May [27], for F a category of fibers that satisfies the
hypotheses of the classification theorem [27,Theorem 9.2] (the ‘structure group’ G
should then be interpreted as the grouplike monoid of F-self-maps of the typical
fiber F as in [27,Definition 4.3]). The covering homotopy property as stated here is
equivalent to the covering homotopy property for ξ ′ in the definition of F-fibrations
[27,Definition 2.1]. That map(ξ, γ ) is weakly contractible is implicitly verified in
the course of the proof of [27,Theorem 9.2] (see the bottom of p. 50). Numerable
fiber bundles (in the sense of Dold [11,§7]) with structure group G and fiber F are
F-fibrations for a suitable choice of F (see Theorem 3.8 and Example 6.11 of [27]),
but ‘bundle’ could also be taken to mean e.g. ‘fibration with fiber weakly homotopy
equivalent to F’ for a fixed CW complex F (see [27,Example 6.6]).

Remark 2.5 Replacing g : X → Z by afibration if necessary, and lettingaut(g) denote
the topological monoid of self-equivalences of X as a space over Z , the universal g-
fibration can be seen to be weakly equivalent to

B
(
aut(g), X

) → Baut(g),

with structure map B
(
aut(g), X

) → Z induced by g : X → Z . One way to see this
is to apply [5,Lemma 4.10] to the homotopy cartesian square

aut(g) {g}

aut(X)[g]
g∗

map(X , Z)g.

This justifies writing Baut(ξ) for the classifying space of ξ -fibrations, regardless of
whether ξ denotes a bundle over X or a map from X to a space Z .

2.3 Fibrations with prescribed holonomy

LetH be a grouplike topological monoid that acts on the CW complex X by homotopy
equivalences and let H[g] denote the stabilizer of the homotopy class of the map
g : X → Z under the induced action ofH on [X , Z ]. The homotopy orbit space

B
(
map(X , Z)g,H[g], ∗

)
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classifies g-fibrations such that the underlying fibration π : E → B has ‘holonomy in
H’, in the sense that there is a lift up to homotopy,

BH[g]

B Baut(X)[g],

where the horizontalmap is the classifyingmap for the fibrationπ . This can be deduced
from Theorem 2.2 by contemplating the homotopy pullback square

B
(
map(X , Z)g,H[g], ∗

)
BH[g]

B
(
map(X , Z)g, aut(X)[g], ∗

)
Baut(X)[g].

If g is the classifying map for a bundle ξ over X , then a model for the universal g-
fibration with holonomy in H is obtained by replacing aut(ξ) in Proposition 2.3 by
the monoid autH(ξ) of pairs ( f , ϕ) such that f ∈ H and ϕ : ξ → ξ is a bundle map
covering the map X → X given by the action of f .

Examples of H that we have in mind are:

• aut◦(X) self-equivalences homotopic to the identity,
• aut+(X) orientation preserving self-equivalences (if X is oriented),
• autA(X) self-equivalences that fix a given subset A ⊆ X pointwise.

IfH = aut◦(X), we will write aut◦(ξ) for autH(ξ). Similarly for aut+(X), etc.

2.4 Families of bundles frommanifold bundles

Let M be a smooth compact manifold of dimension m and let τM = (T M, p, M)

denote its tangent bundle. Consider a smooth M-bundle,

M → E
π−→ B,

i.e., a fiber bundle with fiber M and structure group Diff(M). Recall that the fiberwise
tangent bundle, or vertical tangent bundle, Tπ E is a vector bundle over E that may
be defined as follows. If E and B are smooth compact manifolds and π is a surjective
submersion, then Tπ E can be defined as the kernel of the differential Dπ : T E →
π∗(T B). More generally, Tπ E may be defined as the vector bundle over E with
projection

P ×Diff(M) T M → P ×Diff(M) M = E,

where P → B is the principal Diff(M)-bundle associated to π . Thus, every smooth
M-bundle has an underlying τM -fibration with fibration π and total bundle Tπ E .
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There is an evident map of monoids D : Diff(M) → aut(τM ) that sends a diffeo-
morphism f : M → M to its differential Df : τM → τM .

Proposition 2.6 The τM-fibration underlying the universal smooth M-bundle is clas-
sified by the map B Diff(M) → Baut(τM ) induced by the differential.

Proof The space of embeddings Emb(M, R∞) is contractible and carries a free right
action of Diff(M), so

Emb(M, R∞) → Emb(M, R∞)/Diff(M)

may be taken as a model for the universal principal Diff(M)-bundle. Hence, a model
for the universal M-bundle is

M → Emb(M, R∞) ×Diff(M) M → Emb(M, R∞)/Diff(M).

Given an embedding f : M → Rm+k and a point x ∈ M , the image of the differential
Dfx : TxM → T f (x)R

m+k = Rm+k is an m-dimensional linear subspace of Rm+k .
This defines a map into the Grassmannian, the generalized Gauss map,

M → Gm(Rm+k).

It is covered by a bundle map τM → γm(Rm+k), into the canonical m-dimensional
vector bundle over Gm(Rm+k), cf. [28,p.60–61]. Varying the embedding, the Gauss
maps give rise to a map

G : Emb(M, Rm+k) → map
(
τM , γm(Rm+k)

)
.

This map is Diff(M)-equivariant and the action on the target factors through the
differential D : Diff(M) → aut(τM ). Letting k → ∞, we obtain a bundle map

B
(
Emb(M, R∞), Diff(M), T M

) B(G,D,1)
B

(
map(τM , γm), aut(τM ), T M

)

B
(
Emb(M, R∞), Diff(M), M

) B(G,D,1)
B

(
map(τM , γm), aut(τM ), M

)
,

We recognize the left vertical map as a model for the fiberwise tangent bundle of the
universal M-bundle and the right vertical map as a model for the total bundle of the
universal τM -fibration as in Proposition 2.3. This shows that the fiberwise tangent
bundle of the universal M-bundle is pulled back from the total bundle of the universal
τM -fibration. �	
Remark 2.7 In the classifying space interpretation, the map

[
B, B Diff(M)

] → [
B, Baut(τM )

]
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may be identified with the forgetful map that sends the equivalence class of a smooth
M-bundle over B to the equivalence class of its underlying τM -fibration.

2.5 Tautological classes

Definition 2.8 Let X be an oriented Poincaré duality space of formal dimension m
equipped with a map g : X → Z , and let

π : E → B, h : E → Z ,

be a g-fibration such that π1(B) acts on X by orientation preserving homotopy equiv-
alences. For a cohomology class c ∈ Hk+m(Z), we define

κc(π, h) = π!
(
h∗(c)

) ∈ Hk(B),

where

π! : Hk+m(E) → Hk(B),

denotes integration along the fiber. We will also write κc(π, ζ ) for κc(π, h) if h clas-
sifies a bundle ζ . We will often denote κc(π, h) simply by κc when there is no risk of
confusion.

Remark 2.9 Recall that the pushforward map, or integration along the fiber, may be
defined as the composite

Hk+m(E) → Ek,m∞ → Ek,m
2 = Hk(B, Hm(X)) → Hk(B),

where the first two maps arise from the fact that the Serre spectral sequence of the
fibration satisfies Ek,�

2 = 0 for � > m, and the last map comes from the orientation.
This only requires the fiber to be an oriented Poincaré duality space of dimension m
and the action of π1(B) on the fiber to be through orientation preserving homotopy
equivalences. See e.g. [15] and the references therein for a further discussion.

The following is immediate from the definitions and Proposition 2.6, but it is a key
observation and we record it as a theorem for reference.

Theorem 2.10 Let M be a closed oriented smooth manifold of dimension m and let
ϑ be a smooth oriented M-bundle, i.e., a fiber bundle π : E → B with fiber M and
structure group Diff+(M).

The generalizedMiller–Morita–Mumford classes ofϑ agreewith those of the under-
lying τM-fibration, i.e.,

κc(ϑ) = κc
(
π, Tπ E

) ∈ H∗(B),

for all c ∈ H∗+m(BSO(m)).
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In particular, the universal classes κc ∈ H∗(B Diff+(M)) lift to H∗(Baut(τM ))

under the map

H∗(Baut(τM )) → H∗(B Diff+(M))

induced by the differential Diff+(M) → aut(τM ). �	
The tautological ring R∗(M), in the sense of [13], can be defined as the subring

of the cohomology ring of B Diff+(M) generated by the κ-classes. It is clear how to
define an analog of the tautological ring for bundles.

Definition 2.11 For a bundle ξ with structure groupG over anorientedPoincaré duality
space X , we define R∗(ξ) to be the subring of the cohomology ring of Baut+(ξ)

generated by the classes κc, for all c ∈ H∗(BG).

Corollary 2.12 For every closed oriented smooth manifold M, the differential induces
a surjective ring homomorphism R∗(τM ) → R∗(M).

3 Rational homotopy theory of fibrations with extra structure

Let X be a simply connected finite CW-complex equipped with a map g : X → Z and
letH be a connected topological monoid acting on X by homotopy equivalences. The
aim of this section is to construct a relative Sullivan model, in the sense of rational
homotopy theory (see e.g. [12,§14]), for the universal g-fibration with holonomy in
H.

3.1 The Chevalley–Eilenberg cochain complex

Let L be a differential graded Lie algebra over Q with differential δ. For n ∈ Z, we
define L〈n〉 by

L〈n〉i =
⎧⎨
⎩
Li , i > n,

ker(Ln
δ−→ Ln−1), i = n,

0, i < n.

Recall that a Maurer–Cartan element is an element τ ∈ L−1 such that

δ(τ ) + 1

2
[τ, τ ] = 0.

If τ is a Maurer–Cartan element, then one can form the twisted dg Lie algebra Lτ . It
has the same underlying graded Lie algebra as L but the differential is δ + [τ,−].

The Chevalley–Eilenberg complex is the differential graded coalgebra

C∗(L) = (
�sL, d = d0 + d1

)
,



51 Page 22 of 56 A. Berglund

where the differential is characterized by

d0(sx) = −sδ(x),

d1(sx ∧ sy) = (−1)|x |s[x, y].

By definition, the Chevalley–Eilenberg cochain complex is the dual differential graded
algebra C∗(L) = C∗(L)∨.

If M is a differential graded left L-module, the Chevalley–Eilenberg complex with
coefficients in M is defined by

C∗(L, M) = Hom(C∗(L), M).

The differential is the sum ∂ + t , where

∂( f ) = dM ◦ f − (−1)| f | f ◦ dC∗(L),

t( f ) = τL · f .

Here τL · f denotes the action of the universal twisting function τL ∈ Hom(C∗(L), L)

on f ∈ Hom(C∗(L), M). Explicitly,

t( f )(sx1 ∧ · · · ∧ sxn) =
n∑

i=1

(−1)εi xi · f (sx1 ∧ · · · ∧ ŝxi ∧ · · · ∧ sxn),

εi = |sxi |(| f | + |sx1| + · · · + |sxi−1|).

We call a cochain f ∈ C∗(L, M) an n-cochain if f (sx1 ∧ · · · ∧ sxk) = 0 unless
k = n. Elements of M may be identified with 0-cochains. If αi is a graded vector
space basis for L , then the dual 1-cochains xi ∈ C∗(L) are characterized by

xi (sα j ) = δi j .

Remark 3.1 Our sign convention agrees with that of [36], but differs from that of [12].
The signs are dictated bywanting the 1-cochain τL ∈ C∗(L, L) defined by τL(sx) = x
to be a twisting function in the sense of [31].

3.2 Characteristic cochains

Fix a map g : X → Z . We assume that Z is nilpotent and of finite Q-type. Let A
be cdga model for X and let � be a Lie model for Z in the sense that A and C∗(�)

are quasi-isomorphic to A∗
PL(X) and A∗

PL(Z), respectively, as cdgas. The rational
homotopy class of g is recorded by either

• the homotopy class of a morphism of cdgas

ϕg : C∗(�) → A, or
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• the gauge equivalence class of a Maurer–Cartan element

τ(g) ∈ A⊗̂�,

in a certain completed tensor product.

For the latter, see e.g. [2,Theorem 1.5]. For A of finite type, the completed tensor
product can be taken to be (A⊗̂�)n = ∏

i A
i ⊗�i+n . If A or � is finite dimensional,

then A⊗̂� ∼= A ⊗ �. Concretely, if we fix a basis {qi } for � and we let pi ∈ C∗(�)

denote the dual 1-cochains, then ϕg and τ(g) are determined by certain cochains
pi (g) ∈ A, namely

ϕg(pi ) = pi (g), τ (g) =
∑
i

pi (g) ⊗ qi .

We will refer to pi (g) as characteristic cochains of g : X → Z . The characteristic
cochains are not unique, but the equivalence classes of ϕg or τ(g) are.

In the special case when Z is simply connected and H∗(Z; Q) is a free graded
commutative algebra (e.g., if Z = BG for G a connected compact Lie group), the
rational homotopy groups � = π∗(�Z)⊗Q, with trivial differential and Lie bracket,
is a dg Lie algebra model for Z , and the cochains pi are cocycles. In this case, the
homotopy class of ϕg , or the gauge equivalence class of τ(g), determines and is
determined by the cohomology classes of the cocycles pi (g) ∈ A.

3.3 Lie models for monoid actions

Let h be a positively graded dg Lie algebra. Following [3] we associate a simplicial
group exp•(h) to h as follows. In simplicial degree n it is the nilpotent group associated
to the nilpotent Lie algebra Z0(�n ⊗ h) of 0-cycles in the dg Lie algebra �n ⊗ h,
where �n = A∗

PL(�n) is the cdga of polynomial differential forms on the standard
n-simplex.

Remark 3.2 If h is of finite type, then the simplicial group exp•(h) is isomorphic to
the simplicial realization of the dg commutative Hopf algebra �h = Uh∨, studied in
[12,§25], see [3,Proposition 3.8].

Next, if h acts on a cdga � by derivations, then the simplicial group exp•(h) acts
on the simplicial set 〈�〉 = Homcdga(�,�•). Indeed, the Lie algebra Z0(�• ⊗ h)
acts on �• ⊗ � by �•-linear chain derivations. In each simplicial degree the action
is nilpotent (since h is assumed to be positively graded), so induces an action of the
group exp Z0(�• ⊗ h) on �• ⊗� by cdga automorphisms, and this induces an action
on 〈�〉 ∼= Homcdga(�•)(�• ⊗ �,�•).

Remark 3.3 If h is of finite type, then the action can alternatively be constructed as
follows. That h acts on � by derivations means that the map

α : � → Hom(Uh,�), α(x)(γ ) = x · γ,
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is a cdga morphism, where Hom(Uh,�) is given the convolution product. If h is of
finite type, then the natural cdga morphism

β : �h ⊗ � → Hom(Uh,�)

is an isomorphism. The composite map

〈�h〉 × 〈�〉 ∼= 〈�h ⊗ �〉 〈β−1α〉−−−−→ 〈�〉

defines the group action.

Definition 3.4 Wewill say that the action of h on�models the action of a topological
monoid H on a space X if (H, X) is rationally equivalent to (| exp•(h)|, |�|) in the
category of pairs (G, M) of topological monoids G and G-spacesM , where morphisms
(g,m) : (G, M) → (G′, M ′) are pairs where g : G → G′ is a map of topological
monoids and m : M → M ′ is a map of G-spaces, and where (g,m) is a rational
equivalence if both g and m induce isomorphisms in rational homology.

Remark 3.5 Since the action of a grouplike monoid G on a space X can be recovered,
up to homotopy, as the holonomy action of �BG on X associated to the fibration
X//G → BG, we have that (G, X) is weakly equivalent to (H,Y ) if and only if the
associated fibrations X//G → BG and Y//H → BH are weakly equivalent.

Proposition 3.6 Suppose that � is a Sullivan algebra of finite type. If the action of h
on � models the action of H on X, then the fibration

X//H → BH

is modeled by the relative Sullivan algebra

C∗(h) → C∗(h,�). (8)

Proof The realization of the universal Uh-coalgebra bundle

Uh → C∗(h,Uh) → C∗(h)

is a universal 〈Uh〉 ∼= exp•(h)-bundle, cf. [3,Theorem 3.9] and [12,§25]. It follows
that the fibration X//H → BH is rationally equivalent to

〈C∗(h,Uh)〉 ×〈Uh〉 〈�〉 → 〈C∗(h)〉.

The latter map isomorphic to the realization of the morphism of dg coalgebras
C∗(h,�∨) → C∗(h), the dual of which is isomorphic to (8). �	

For a simply connected finite CW-complex X with Sullivanmodel�, a well-known
and widely used result is that Der�〈1〉, the positive truncation of the dg Lie algebra
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of derivations on �, is a Lie model for Baut◦(X). This is sketched in [35,p.313]. See
also [23, 29, 34, 36] for this and related results. We will here give a short proof that
shows the slightly stronger statement that the action of aut◦(X) on X is modeled by
the action of Der�〈1〉 on �.

Proposition 3.7 For a simply connected finite CW-complex X with Sullivan model �,
the action of Der�〈1〉 on � models the action of aut◦(X) on X.

Proof The action of h = Der�〈1〉 on � gives rise to an action of the connected group
exp•(h) on 〈�〉, which yields map of monoids

exp•(h) → aut◦〈�〉. (9)

The pairs (aut◦(X), X) and (aut◦〈�〉, 〈�〉) are easily seen to be rationally equiva-
lent (see, e.g., [3,p.6]), so we are done if we can show that (9) is a weak homotopy
equivalence. For k ≥ 1, the map

Hk(h) → πk(exp•(h))

that sends the homology class of a cycle θ ∈ hk to the homotopy class of the k-simplex
ω ⊗ θ ∈ Z0(�

∗(�k) ⊗ h), where ω is the fundamental form k!dt1 ∧ · · · ∧ dtk , is an
isomorphism. This can be checked directly by using the normalized chain complex for
computing the homotopy groups of a simplicial vector space (the underlying simplicial
set of exp•(h) is the simplicial vector space Z0(�• ⊗h)), or by using the isomorphism
of simplicial sets exp•(h) ∼= MC•(s−1h) (where the desuspension s−1h is viewed as
an abelian dg Lie algebra) and invoking [2,Theorem 4.6].

On the other hand, it is well-known that the homotopy groups of the target of (9)
are computable in terms of derivations of �, cf. [6, 9, 24, 35]. This goes as follows
(cf. [24,Theorem 2.1]): by the equivalence of homotopy categories between finite type
Sullivan algebras and rational nilpotent spaces of finite Q-type,

πkaut◦〈�〉 = [Sk, aut◦〈�〉]∗ ∼= [SkQ, aut◦〈�〉]∗
∼= [SkQ × 〈�〉, 〈�〉]〈�〉 ∼= [�, H∗(Sk) ⊗ �]�.

The set [�, H∗(Sk) ⊗ �]� of homotopy classes of cdga morphisms f : � →
H∗(Sk) ⊗ � over � is in bijection with the set of homology classes of degree k
chain derivations θ : � → � via f (x) = 1 ⊗ x + z ⊗ θ(x), where z ∈ Hk(Sk) is a
generator.

The final step is to check that the composite map

Hk(h) → πk(exp•(h)) → πk(aut◦〈�〉) ∼= Hk(Der�)

is the identity map. We leave this as an exercise to the reader. �	
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3.4 A relative Sullivanmodel for the universal g-fibration

Let X be a simply connected finite CW complex, let g : X → Z be a map, and let
H be a connected monoid acting on X by homotopy equivalences. Assume that the
space Z is nilpotent and of finite Q-type.

Let � be a Sullivan model for X of finite type, let h be a positively graded dg
Lie algebra acting on � by derivations, modeling the action of H on X as in the
previous section, and let � be a degreewise nilpotent finite type Lie model for Z . Fix
characteristic cochains pi (g) ∈ � for g : X → Z and let

τ(g) =
∑
i

pi (g) ⊗ qi

denote the corresponding Maurer–Cartan element in �⊗̂�.
The dg Lie algebra h acts by derivations on the dg Lie algebra �⊗̂� by

θ · (x ⊗ q) = (θ · x) ⊗ q,

so we may form the semi-direct product dg Lie algebra h � �⊗̂�. The element τ(g)
may be viewed as a Maurer–Cartan element in this semi-direct product. Define

hg = (
h � �⊗̂�

)τ(g)〈0〉,

i.e., the dg Lie algebra hg is obtained by twisting h � �⊗̂� by the Maurer–Cartan
element τ(g) and then taking the non-negative truncation. We note that hg acts on �

by derivations via the evident map to h.

Theorem 3.8 The universal g-fibrationwith holonomy inH admits the following ratio-
nal model.

(1) The underlying fibration has relative Sullivan model

C∗(hg) → C∗(hg,�).

(2) Characteristic cochains pi (h) ∈ C∗(hg,�) of the structure map from the total
space to Z are given by

pi (h) = pi (g) + Pi ,

where pi (g) ∈ � is viewed as a 0-cochain in C∗(hg,�) and Pi ∈ C∗(hg,�) is
the 1-cochain determined by

Pi (sx ⊗ q) = (−1)|x ||q| pi (sq)x,

for x ∈ � and q ∈ �, and Pi (sθ) = 0 for θ ∈ h.
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Remark 3.9 If g is the classifying map for a bundle ξ , then the first part of the theorem
can be read as saying that the action of hg on � models the action of autH(ξ) on X .

Proof We use the model for the universal g-fibration with holonomy in H described
in Sect. 2.3. Since H is connected H = H[g]. Let C = �∨ be the dual dg coalgebra
and let hom denote the dg Lie algebra Hom(C,�) ∼= �⊗̂�. An adaptation of the
argument of [3] (with C replacing CL and h replacing (DerL � ad sL)〈1〉, and using
τ = τ(g)) shows that the map

B
(
map(X , Z)g,H, X

) → B
(
map(X , Z)g,H, ∗)

. (10)

is modeled by the map of dg coalgebras

C∗
(
C∗(homτ 〈0〉), h,C) → C∗

(
C∗(homτ 〈0〉), h).

Now observe that there is an isomorphism of dg coalgebras

C∗
(
C∗(homτ 〈0〉), h, M) ∼= C∗

(
(h � hom)τ 〈0〉, M)

,

natural in Uh-module coalgebras M . It follows that the fibration (10) is rationally
equivalent to the fibration constructed from the action of hg on �. To establish the
formula for the characteristic cochains, it is enough to understand how to model
evaluation maps. This will be dealt with in the next section. �	
Remark 3.10 For a more explicit description of the cochain Pi , choose a basis {x�} for
� and let px�

i ∈ C∗(hg) denote 1-cochain characterized by

px�

i (sxk ⊗ q j ) = δ(i,�),( j,k)

and px�

i (sθ) = 0 for all θ ∈ h. The cochain Pi then assumes the form

Pi =
∑

�

px�

i x� ∈ C∗(hg,�), (11)

where we view x� ∈ � as a 0-cochain in C∗(hg,�). The sum is finite because of the
truncation in the definition of hg and because � is of finite type. Indeed, this implies
that for i fixed, the cochain px�

i is zero for all but finitely many �.

3.5 Rational models for evaluationmaps

Theorem 3.11 Let X be a simply connected finite CW complex, let Z be a nilpotent
space of finite Q-type and let g : X → Z be a map. If C is a fibrant cdgc model for X
of finite type,� is a degreewise nilpotent Lie model for Z of finite type and τ : C → �

is a twisting function that models the map g : X → Z, then the map

C∗
(
Homτ (C,�)〈0〉) ⊗ C → �
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determined by

1 ⊗ x → τ(x),

s f ⊗ x → f (x),

s f1 ∧ · · · ∧ s fn ⊗ x → 0, n > 1,

is a twisting function that models the evaluation map

map(X , Z)g × X → Z .

Proof First, we show that the map is a twisting function. For a cdgc C, a dg Lie algebra
g and aMaurer–Cartan element τ ∈ MC(g), there is a bijection between sets of twisting
functions,

Tw(C, gτ )
∼=−→ Tw(C, g), ρ → ρ + τ ◦ ε,

where ε : C → Q is the counit. If we apply this observation to g = Hom(C,�)

and C = C∗(gτ 〈0〉), the universal twisting function composed with the inclusion,
π : C∗(gτ 〈0〉) → gτ 〈0〉 → gτ , gives rise to a twisting function π + τ ◦ ε : C → g.
Under the adjunction isomorphism,

Tw(C ⊗ C,�) ∼= Tw(C, Hom(C,�)),

this corresponds to the map in the statement of the theorem, showing it is a twisting
function.

Next, we will argue that the twisting function just constructed is a model for the
evaluationmap. To simplify the exposition, wewill go through the argument in the case
when � is finite dimensional. For the general case, one writes � as an inverse limit
of finite dimensional nilpotent dg Lie algebras �/�〈r〉 and works with the inverse
system, cf. [3,Remark 3.17].

As in [3,§3.2–§3.3], we write MC•(�) = MC(� ⊗ �•) for the nerve of � and
〈C〉 = G(C ⊗ �•) for the simplicial realization of C , where MC stands for Maurer–
Cartan elements and G for group-like elements. By a slight variation of [3,Theorem
3.16] the natural map

MCHom(C,� ⊗ �•) → map(〈C〉,MC•(�)),

defined as the adjoint of the map

ε : MCHom(C,� ⊗ �•) × 〈C〉 ∼= MC
(
Hom�•(C ⊗ �•,� ⊗ �•)

) × G(C ⊗ �•)
→ MC•(�)

that sends (ρ, ξ) to ρ(ξ), is a weak equivalence. Indeed, the proof of [3,Theorem 3.16]
goes through after using the natural identifications MC•(L) ∼= 〈CL〉 and C�•(L ⊗
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�•) ∼= C(L) ⊗ �•, and then replacing CL with C throughout. This implies that ε is a
model for the evaluation map

map(X , ZQ) × X → ZQ.

Because of the simplifying assumption that � is finite dimensional, the left factor in
the source of ε may be identified with MC•(g) where g = Hom(C,�). Let

e : MC•(g) × 〈C〉 → MC•(�)

denote the map ε after making this identification.
Next, the map λτ : MC•(gτ 〈0〉) → MC•(g) that adds τ is a weak equivalence to the

component that is determined by τ , cf. [2,Corollary 4.11]. Also, note that the universal
twisting function α : C∗(gτ 〈0〉) → gτ 〈0〉 induces an isomorphism 〈C∗(gτ 〈0〉)〉 →
MC•(gτ 〈0〉). Now compose:

〈C∗(gτ 〈0〉) ⊗ C〉 ∼= 〈C∗(gτ 〈0〉)〉 × 〈C〉
α∗×1−−−→ MC•(gτ 〈0〉) × 〈C〉
λτ ×1−−−→ MC•(g) × 〈C〉
e−→ MC•(�).

By writing out definitions, one sees that this composite may be identified with the
map induced by the twisting function in the statement of the theorem. By the above,
the composite map models the evaluation map map(X , ZQ)rg × X → ZQ, where
r : Z → ZQ is the rationalization. Since X is a finite complex and Z is nilpotent, this
is rationally equivalent to map(X , Z)g × X → Z . �	
Remark 3.12 Rational models for evaluation maps have been studied before by many
authors, see e.g. [8, 21, 24, 25], but our approach of using twisting functions appears
to be new.

To finish the proof of Theorem3.8(2), note that since h acts onC = �∨ by coderiva-
tions, the twisting function of Theorem 3.11 is h-equivariant (cf. [3,Proposition 3.18]).
This implies that it induces a twisting function

C∗(C∗(Homτ (C,�)〈0〉), h,C) → �, (12)

given by essentially the same formula, and that this models the evaluation map

B
(
map(X , Z)g,H, X

) → Z .

Observing, as before, that

C∗(C∗(Homτ (C,�)〈0〉), h,C)∨ ∼= C∗(hg,�),
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it is an exercise to see that theMaurer–Cartan element inC∗(hg,�)⊗̂� corresponding
to (12) is given by the formula in Theorem 3.8(2).

4 Sample calculations and applications

4.1 Even spheres

We consider the oriented tangent bundle ξ = τSm of an even dimensional sphere Sm

form = 2k ≥ 2 and compute a model for the universal ξ -fibration over Baut(ξ) using
Theorem 3.8.

Thus, G = SO(2k) in this case and we have

H∗(BSO(2k); Q) = Q[p1, . . . , pk−1, e], |pi | = 4i, |e| = 2k,

where pi are the Pontryagin classes and e the Euler class.

� = π∗(SO(2k)) ⊗ Q = 〈q1, . . . , qk−1, ε〉, |qi | = 4i − 1, |ε| = 2k − 1,

where qi is dual to pi and ε to e under the Hurewicz pairing.
The minimal Sullivan model for S2k has the form

(
�(x, y), x2

∂

∂ y

)
,

with x and y in cohomological degrees 2k and 4k−1, respectively. The dg Lie algebra
Der�〈1〉 has basis

∂

∂x
,

∂

∂ y
, x

∂

∂ y
,

and the only non-trivial differential is given by

∂

∂x
→ −2x

∂

∂ y
.

Therefore, if we let h ⊂ Der� be the abelian dg Lie subalgebra spanned by ∂
∂ y , then

the inclusion h → Der�〈1〉 is a quasi-isomorphism.
If we equip the cohomology H = H∗(S2k; Q) = Q[x]/(x2) with the trivial h-

action, then the section i : H → � of p sending 1 to 1 and the class of x to x is a
quasi-isomorphism of dg h-modules (but not of algebras). The characteristic classes
of ξ are pi (ξ) = 0 and e(ξ) = 2x and as cocycle representatives in � we may choose
their images under i . The Maurer–Cartan element is τ(ξ) = 2x ⊗ ε.

The section i induces a quasi-isomorphism of dg Lie algebras

h × (
H ⊗ �

)〈0〉 → (
h � �⊗̂�

)τ(ξ) 〈0〉.



Characteristic classes for families of bundles Page 31 of 56 51

Thus, a Lie model for Baut(ξ) is given by

g = h × (
H ⊗ �

)〈0〉.
This is the abelian dg Lie algebra with trivial differential and basis

∂

∂ y
, 1 ⊗ q1, . . . , 1 ⊗ qk−1, 1 ⊗ ε, x ⊗ qr , . . . , x ⊗ qk−1,

where r = � k+1
2 �. Thus,

R = C∗(g) = Q
[
a, p1, . . . , pk−1, e, p

x
r , . . . , pxk−1

]
,

where a is the dual 1-cochain of ∂
∂ y and pxi is dual to x ⊗ qi , and so forth. The

differential is zero, so

H∗(Baut(τS2k ); Q) ∼= R.

The relative Sullivan model C∗(g) → C∗(g,�) may be identified with

R → R[x, y],

where the differential is given by dy = x2 + a. Clearly, the map

R[x, y] → R[x]/(x2 + a).

is a quasi-isomorphism of dg R-algebras. Thus, the universal τS2k -fibration over
Baut(τS2k ) is formal and in cohomology it is given by

R → R[x]/(x2 + a).

It follows from Theorem 3.8 that the characteristic classes of the total bundle ζ over
S2k//aut(ξ) are given by

pi (ζ ) = pi + pxi · x,
e(ζ ) = 2x + e,

where pxi should be interpreted as 0 for 1 ≤ i ≤ r − 1.
The pushforward map π! : R[x]/(x2 + a) → R is determined by R-linearity and

π!(x) = 1. The κ-classes can now be computed explicitly as elements of the polyno-
mial ring R:

κpi = π!(pi (ζ )) = π!(pi + pxi · x) = pxi ,

κepi = π!((2x + e) · (pi + pxi · x)) = 2pi + epxi ,

κe2 = π!((2x + e)2) = 4e,

κe3 = π!((2x + e)3) = −8a + 6e2.
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A look at the linear terms of these expressions shows that the classes

κep1, . . . , κepk , κpr , . . . , κpk ,

where we write pk for e2, are algebraically independent and generate R. This proves
Theorem 1.1.

To prove Theorem 1.4 for m even, observe that the sphere bundle associated to the
universal oriented vector bundle may be identified the fibration

Sm → BSO(m)
π−→ BSO(m + 1)

induced by the inclusion SO(m) → SO(m + 1), and the fiberwise tangent bundle
may be identified with the universal oriented vector bundle γm over BSO(m). For
this τSm -fibration, we have that

κeLi = 2Li ∈ H4i (BSO(m + 1); Q),

so it follows that H∗(BSO(m + 1); Q) is a polynomial ring in the classes

κeL1, . . . , κeLk .

The computation of H∗(Baut(τSm )L ; Q) in the proof of Corollary 1.6 (which does
not use Theorem 1.4) then shows that BSO(m + 1) → Baut(τSm )L induces an
isomorphism in rational cohomology.

4.2 Odd spheres

Consider the sphere Sm , form = 2k+1 odd, and its tangent bundle ξ = τSm viewed as
an oriented vector bundle. The structure group isG = SO(2k+1) and the cohomology
of its classifying spaces is H∗(BSO(2k + 1); Q) = Q[p1, . . . , pk].

The minimal model for S2k+1 has the form

� = (�x, 0) , |x | = 2k + 1.

The dg Lie algebra h = Der� is one-dimensional and spanned by

∂

∂x
.

We have that pi (S2k+1) = 0 for all i , so we may take τ(ξ) = 0.
The dg Lie algebra model hξ for Baut(τS2k+1) from Theorem 3.8 then has basis

∂

∂x
, q1, . . . , qk, xqr , . . . , xqk,
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where r = � k+1
2 �. The differential is zero and the only non-trivial Lie brackets are

[
∂

∂x
, xqi

]
= qi ,

for i = r , . . . , k. Writing z, pi and pxi for the dual 1-cochains of ∂
∂x , qi and xqi ,

respectively, and setting pxi = 0 for i < r , we see that

R = C∗(hξ ) = �
(
p1, . . . , pk, p

x
r , . . . , pxk , z

)
,

where the non-trivial differentials are given by dpi = pxi z. Themodel for the universal
τSm -fibration then assumes the form

R → R[x],

where x is adjoined as an exterior generator and dx = z.
Let� be a graded commutative algebra equippedwith a degree−(2k+1) derivation

D such that D2 = 0. We may adjoin a polynomial generator z of degree 2k + 2 and
form the cdga

(
�[z], zD)

.

There is a natural isomorphism of algebras

H∗(�[z], zD) ∼= Z(�, D) � H∗(�, D)[z], (13)

where the right hand side denotes the ring of polynomials
∑

i ai z
i where a0 a cycle

in (�, D) and the coefficients ai for i ≥ 1 are cohomology classes with respect to D.
We observe that R may be identified with

(
�[z], zD)

if we let

� = Q[p1, . . . , pk, pxr , . . . , pxk ],

equipped with the derivation D defined by D(pi ) = pxi and D(pxi ) = 0. In other
words,

� = �∗
Q[p1,...,pk ]|Q[p1,...,pr−1]

is the cdga of Kähler differential forms on the polynomial ring Q[p1, . . . , pk] that
are linear over the subring Q[p1, . . . , pr−1], with differential D of degree −(2k + 1).
Moreover, R[x] may be identified with the same construction applied to �[x] with
derivation D defined as above and extended by D(x) = 1.

Observe that H∗(�[x], D) = 0 since xD + Dx = 1. Furthermore, the projection
Z(�[x], D) → � sending a + bx to a is an isomorphism, with inverse a → a +
(−1)|a|D(a)x . By naturality of the isomorphism (13), we can therefore identify the
map π∗ : H∗(R) → H∗(R[x]) with the map Z(�, D) � H∗(�, D)[z] → � that
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sends
∑

i ai z
i to a0. The pushforward map π! : H∗(R[x]) → H∗(R) is induced

by the dg R-module map R[x] → R that sends x to 1. Tracing this through the
isomorphisms discussed above, one sees that the map π! may be identified with the
map � → Z(�, D) � H∗(�, D)[z] that sends a to −D(a).

For our particular �, we obviously have

H∗(�, D) = Q[p1, . . . , pr−1],
Z(�, D) = Q[p1, . . . , pr−1] � D�,

so we can rewrite the cohomology of (�[z], zD) as

Q[p1, . . . , pr−1, z] � D�∗
Q[p1,...,pk ]|Q[p1,...,pr−1],

where z acts trivially on the second factor.
Since pi (ξ) = 0 for all i , the characteristic cochains for the total bundle ζ are given

by

pi (ζ ) = Pi = pi + pxi x ∈ R[x].
Observe that pxi = D(pi ), so pi (ζ ) = pi + D(pi )x . Since D is a derivation, this
implies that

c(ζ ) = c + D(c)x

for every c ∈ Q[p1, . . . , pk]. Hence,
κc = π!

(
c(ζ )

) = π!(c) − D(c)π!(x) = −D(c).

The class represented by z ∈ R may be identified with the Euler class of the
underlying spherical fibration. The fact that pi (ζ ) = pi for 1 ≤ i ≤ r − 1 allows us
to identify the class represented by the cocycle pi ∈ R with the class we called αpi
in the introduction. Thus, Theorem 1.2 is proved. (Concerning the statement about
R∗(τSm ), the above yields an isomorphism where κc corresponds −dc, but the sign
can be removed by composing with the algebra automorphism a → (−1)|a|a.)

To prove Theorem 1.4 in the casem odd, use the Hirzebruch L-classes as generators
for H∗(BSO(m); Q) when constructing the model, so that

R = �
(L1, . . . ,Lk,Lx

r , . . . ,Lx
k , z

)
,

with differential dLi = Lx
i z for r ≤ i ≤ k. As above, we have

κLi = −Lx
i .

A model RL for the homotopy fiber Baut(τSm )L is then obtained by adding new
generators Mi to kill the cocycles −Lx

i for i = r , . . . , k;

RL = �
(L1, . . . ,Lk,Lx

r , . . . ,Lx
k , z, Mr , . . . , Mk

)
, dLi = Lx

i z, dMi = −Lx
i .
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There is an evident cdga quasi-isomorphism RL → Q[L1, . . . ,Lk, z]. In particular,
the spaces Baut(τSm )L and BSO(n+1) have abstractly isomorphic minimal models,
whence abstractly isomorphic rational homotopy groups. The map

BSO(m + 1) → Baut(τSm )L (14)

is injective on rational homotopy groups, because its composite with the evident map
to Baut(F(τSm )) is, where F(τSm ) denotes the frame bundle, see (5) on p.242 of
[3]. An injection between finite dimensional isomorphic vector spaces must be an
isomorphism, so (14) is a rational equivalence. By that, the proof of Theorem 1.4 is
complete.

4.3 Complex projective spaces

Characteristic classes are often defined as cohomology classes in the base space, but
one can also consider characteristic classes in the total space. Let F be a class of
fibrations, e.g., the class of orientable X -fibrations for a given space X . By a total-
space characteristic class for F we will mean the assignment of a cohomology class
χ(π) ∈ H∗(E) to each fibration π : E → B in F such that

f ∗(χ(π)) = χ(π ′)

for every homotopy cartesian square

E ′

π ′

f
E

π

B ′ B

such that π and π ′ belong to F .

Lemma 4.1 For every generator ω ∈ H2(CPn; Q) there is a unique total-space char-
acteristic class for orientable CPn-fibrations ω f w such that ω f w(CPn → ∗) = ω.

The class ω f w(π) is characterized by π!(ω f w(π)n+1) = 0 and ω f w(π)|CPn = ω.

Remark 4.2 The last statementmeans thatω f w(π)maybe identifiedwith the ‘coupling
class’. That the coupling class admits a homotopy theoretical definition has been
observed in [19,Proposition 3.1]. Lemma 4.1 shows that the coupling class is the only
total-space characteristic class for orientable CPn-fibrations that restricts to ω in the
fiber.

Proof Consider the universal orientable CPn-fibration,

CPn → Baut∗,◦(CPn) → Baut◦(CPn).
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Since Hk(Baut◦(CPn); Q) = 0 for k = 2, 3, an application of the Serre spectral
sequence shows that the restriction map

H2(Baut∗,◦(CPn); Q) → H2(CPn; Q)

is an isomorphism. Define ω f w to be the preimage of ω under this map.
Since the classifying map for an orientable CPn-fibration π : E → B factors

through Baut◦(CPn), there is a homotopy cartesian square

E

π

fπ
Baut∗,◦(CPn)

πuniv

B Baut◦(CPn),

which is uniquely determined up to homotopy by π . Define ω f w(π) = f ∗
π (ω f w).

We note that πuniv
! (ωn+1

f w ) = 0 simply because H2(Baut◦(CPn); Q) = 0. By natu-

rality of the pushforward map, it then follows that π!(ω fw(π)n+1) = 0. The property
ω f w(π)|CPn = ω holds because it holds in the universal orientable fibration by defi-
nition. �	

The classes

1, ω fw(π), ω f w(π)2, . . . , ω f w(π)n,

form a basis for H∗(E; Q) as a H∗(B; Q)-module, and yield an isomorphism of
H∗(B; Q)-modules

H∗(E; Q) ∼= H∗(B; Q) ⊗ H∗(CPn; Q), (15)

which is natural in π . The basis of course depends on the choice of generator ω,
but the decomposition (15) does not. In what follows we fix the standard generator
ω = −c1(γ 1), which has the convenient property π!(ω f w(π)n) = 1 (cf. [28,p.170]).

We now proceed to prove Theorem 1.7.
The minimal Sullivan model for CPn has the form

� = (
�(x, y), d

)
, |x | = 2, |y| = 2n + 1,

where x is a cocycle that represents ω and dy = xn+1. Let

H = H∗(CPn; Q) = Q[ω]/(ωn+1).

The map p : � → H defined by p(x) = ω and p(y) = 0 is a quasi-isomorphism
of cdgas. It admits a section ι : H → �, which is a quasi-isomorphism of cochain
complexes (but which does not respect the multiplication).
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Now consider a bundle ξ over CPn , with structure group G as in the statement of
Theorem 1.7. As a dg Lie model for BG we may take the rational homotopy groups

� = π∗(G) ⊗ Q,

with trivial Lie bracket and differential. It has basis

q1, q2 . . . ,

where qi ∈ π∗(G) ∼= π∗+1(BG) is dual to the generator pi ∈ H∗(BG; Q) under the
Hurewicz pairing between cohomology and homotopy.

If we let pi (ξ) ∈ H denote the characteristic classes of ξ , then we may choose
ι(pi (ξ)) ∈ � as characteristic cochains of the bundle, so that

τ(ξ) =
∑
i

ι(pi (ξ)) ⊗ qi ∈ H ⊗ �.

One checks that the subspace a ⊂ Der�〈1〉 spanned by the derivations

∂

∂ y
, x

∂

∂ y
, . . . , xn−1 ∂

∂ y
,

forms an abelian dg Lie subalgebra with trivial differential, and that the inclusion
a → Der�〈1〉 is a quasi-isomorphism. This means that the action of a on � models
the action of aut◦(CPn) on CPn .

If we equip the cohomology H with trivial a-action, then ι : H → � is a quasi-
isomorphism of dg a-modules, and the induced map

ι∗ : (
a � H ⊗ �

)τ(ξ)〈0〉 → (
a � �⊗̂�

)ι∗(τ (ξ))〈0〉,

is a quasi-isomorphism of dg Lie algebras (ι is not a morphism of algebras, but this
does not matter since we tensor with the abelian dg Lie algebra �). It follows from
Theorem 3.8 that the dg Lie algebra

g = (
a � H ⊗ �

)τ(ξ)〈0〉 = a ⊕ (
H ⊗ �

)〈0〉
is a model for Baut◦(ξ). Explicitly, the dg Lie algebra g has trivial Lie bracket and
trivial differential, and a basis is given by

xk ∂
∂ y , 0 ≤ k ≤ n − 1,

ωk ⊗ qi , 0 ≤ k ≤ n, |qi | ≥ 2k.

Since g is concentrated in odd degrees, the Chevalley–Eilenberg constructionC∗(g)
is a polynomial algebra with trivial differential,

R = Q[v0, . . . , vk−1, pi,k],
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generated by the 1-cochains vk and pi,k dual to xk ∂
∂ y and xk ⊗ qi , respectively. It

follows that we have an isomorphism of graded algebras

H∗(Baut◦(ξ); Q) ∼= R.

This is as far as we get from knowing amodel for the base Baut◦(ξ). To identify which
characteristic classes vk and pi,k represent, we must use the full force of Theorem 3.8.

The relative Sullivan model C∗(g) → C∗(g,�) for the universal ξ -fibration from
Theorem 3.8 may in the case at hand be identified with

R → R ⊗ �(x, y),

where the only non-trivial differential is given by

d(1 ⊗ y) = 1 ⊗ xn+1 +
n−1∑
�=0

v� ⊗ x�.

The evident map R ⊗ �(x, y) → R[x]/I , where I is the ideal generated by the
element xn+1 + ∑n−1

�=0 v�x� and where R[x]/I is equipped with the zero differential,
is a quasi-isomorphism of cdgas over R. Thus, the universal ξ -fibration over Baut◦(ξ)

is formal and modeled by the morphism of algebras

R → R[x]/I .

The R-algebra R[x]/I is free as an R-module with basis 1, x, . . . , xn . The multi-
plication is determined by R-linearity and the relation

xn+1 +
n−1∑
�=0

v�x
� = 0. (16)

The pushforward map in cohomology is the degree −2n map

π! : R[x]/I → R

determined by R-linearity and π!(xn) = 1 (note that π!(xk) = 0 for k < n for degree
reasons). Since (16) contains no xn-term, we have π!(xn+1) = 0, and by construction
x represents ω when restricted to the fiber, so the cocycle x represents the class ω f w

by Lemma 4.1. This in turn implies that the class vi in the model represents the
characteristic class an+1−i featured in Theorem 1.7.

From Theorem 3.8 and Remark 3.10, one sees that the characteristic classes of the
total bundle ζ of the universal ξ -fibration over Baut◦(ξ) are given by

pi (ζ ) = ι(pi (ξ)) +
∑
j

pi, j x
j .
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This implies that the class pi, j in the model R represents the characteristic class pi | j .
This finishes the proof of the first part of Theorem 1.7.

We now proceed to the second part of Theorem 1.7. For a bundle ξ over a CW
complex X , there is a homotopy fiber sequence

Baut◦(ξ) → Baut(ξ) → B�(ξ), (17)

where

�(ξ) = π0aut(X)[ξ ] = {[ f ] ∈ π0aut(X) | f ∗ξ ∼= ξ
}

is the group of homotopy classes of self-homotopy equivalences of X that fix the
isomorphism class of the bundle ξ . For X = CPn , the group π0aut(CPn) of homotopy
classes of self-homotopy equivalences is cyclic of order two, generated by complex
conjugation c : CPn → CPn . For a bundle ξ over CPn , it follows that

�(ξ) ∼=
{

Z/2Z, c∗(ξ) ∼= ξ,

0, c∗(ξ) � ξ.

For example,�(τCPn ) = 0 for the complex tangent bundle τCPn , but for the underlying
oriented vector bundle τR

CPn we have

�(τRCPn )
∼=

{
Z/2Z, n even,
0, n odd,

because complex conjugation is a diffeomorphism of CPn which is orientation pre-
serving if n is even and orientation reversing if n is odd.

Whenever �(ξ) is finite, the rational Serre spectral sequence of the fibration (17)
collapses at the second page, which allows us to identify

H∗(Baut(ξ); Q) = R�(ξ),

where the latter denotes the invariant subring. Complex conjugation is modeled by the
involution on the minimal model (�(x, y), d) given by

x → −x, y → (−1)n+1y.

Using this, one can work out that the action on R is determined by

vk → (−1)k+n+1vk, pi,k → (−1)k pi,k .

With that, the second part of Theorem 1.7 is proved.

Remark 4.3 If H∗(BG; Q) is concentrated in degrees divisible by 4, then the action
agrees with the action given by multiplication by (−1) in degrees 4� + 2 and by
the trivial action in degrees 4�. Thus, if this is the case, and if c∗(ξ) ∼= ξ , then the
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cohomology of Baut(ξ) may be identified with the subring R(4) ⊂ R of elements in
degrees divisible by 4. For example, this is the case for τR

CPn for n even.

The proof of Theorem 1.12 will depend on an analysis of the universal U (n + 1)-
bundle with fiber CPn . This in turn may be identified with the projectivization of the
universal complex vector bundle of rank n + 1, so we proceed to discuss projectiviza-
tions.

Let p : E → B be a complex vector bundle of rank n + 1. By taking fiberwise
projectivization, we obtain a U (n + 1)-bundle with fiber CPn ,

CPn → P(E)
π−→ B. (18)

There are two distinguished vector bundles over P(E), the fiberwise canonical line
bundle L and the fiberwise tangent bundle ζ . These make (18) into a γ 1-fibration and
a τCPn -fibration, respectively.

Proposition 4.4 The following equation relates the Chern classes of the (n + 1)-
dimensional complex vector bundle p : E → B and the Chern classes of the fiberwise
tangent bundle ζ and the line bundle L over the projectivization P(E). For all i ,

ci (ζ ) =
i∑

j=0

(
n + 1 − i + j

j

)
ci− j (E) · c1(L) j , (19)

where L denotes the conjugate bundle.

Proof The proof is essentially a fiberwise version of the classical computation of the
Chern classes of CPn [28,Theorem 14.10]. The pullback of the vector bundle E along
π : P(E) → B can be written as

π∗(E) = L ⊕ L ′,

where L ′ is the fiberwise orthogonal complement to L , and the fiberwise tangent
bundle is given by

ζ = Hom(L, L ′).

Since Hom(L, L) may be identified with the trivial line bundle ε1, we have

ε1 ⊕ ζ ∼= Hom(L, L) ⊕ Hom(L, L ′)
∼= Hom(L, L ⊕ L ′)
∼= Hom(L, π∗(E))

∼= L ⊗ π∗(E).

Since ci (ζ ) = ci (ε1 ⊕ ζ ), the formula (19) now follows from the well-known formula
for the Chern classes of a tensor product of a line bundle and a vector bundle. �	
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Remark 4.5 The fiberwise tangent bundle ζ is n-dimensional, so cn+1(ζ ) = 0. Hence,
a special case of (19) is

n+1∑
j=0

cn+1− j (E) · c1(L) j = 0. (20)

By an application of Theorem 1.7 to the canonical line bundle γ 1 over CPn , for
which the structure group isU (1)with H∗(BU (1); Q) equal to the polynomial ring in
e = c1 and c∗(γ 1) � γ 1, we see that the ring of characteristic classes of γ 1-fibrations
may be identified with

H∗(Baut(γ 1); Q) = Q[a2, . . . , an+1, e|0].

Proposition 4.6 Consider a complex (n + 1)-dimensional vector bundle,

p : E → B,

and the γ 1-fibration formed by its projectivization,

CPn → P(E)
π−→ B, L → P(E).

The following equations express the Chern classes of the vector bundle E in terms of
the characteristic classes of the γ 1-fibration (π, L), and vice versa.

For i = 1, . . . , n + 1, we have that

ci (E) =
i∑

j=0

(
n + 1 − i + j

j

)
ai− j (π)e|0(π, L) j . (21)

On the other hand

e|0(π, L) = 1

n + 1
c1(E), (22)

and

ai (π) =
i∑

j=0

(−1) j
(
n + 1 − i + j

j

)
ci− j (E)

(
c1(E)

n + 1

) j

, (23)

for i = 2, . . . , n + 1.

Proof By definition of the classes e| j ,

e(L) = e|1(π, L) · ω f w(π) + e|0(π, L) · 1 ∈ H2(P(E); Q).
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Since both ω f w(π) and −e(L) restrict to ω = −c1(γ 1) in the fiber, it follows that
e|1(π, L) = −1. Next, insert ω f w(π) = −e(L) + e|0(π, L) = e(L) + e|0(π, L) in
the defining equation for the characteristic classes ai ,

n+1∑
k=0

an+1−kω f w(π)k = 0,

compare with (20) (remember that c1(L) = e(L)), and use that 1, e(L), . . . , e(L)n

form a H∗(B; Q)-module basis for the cohomology. This yields the formula (21). The
formula (23) is derived in a similar fashion by inserting e(L) = ω f w(π) − e|0(π, L)

in (20) and by observing that (21) in particular shows that

c1(E) = (n + 1)e|0(π, L).

�	
Corollary 4.7 The map BU (n + 1) → Baut(γ 1) that classifies the γ 1-fibration
obtained by projectivizing the universal complex vector bundle of rank n + 1 is a
rational homotopy equivalence.

Proof The Eqs. (22), (23), and (21) give explicit formulas for the induced map in
rational cohomology and its inverse. �	
Proposition 4.8 Consider a U (n + 1)-bundle with fiber CPn,

CPn → P
π−→ B.

The Chern classes of the fiberwise tangent bundle ζ = Tπ P satisfy the equation

ci (ζ ) =
i∑

j=0

(
n + 1 − j

i − j

)
a j (π)ω f w(π)i− j ∈ H2i (P; Q). (24)

In particular, they only depend on the underlying CPn-fibration π .

Proof Every U (n + 1)-bundle with fiber CPn is equivalent to the projectivization of
some complex (n+1)-dimensional vector bundle p : E → B (e.g. the complex vector
bundle constructed from the associated principalU (n+1)-bundle), so wemaywithout
loss of generality assume that the bundle is of the form

CPn → P(E)
π−→ B.

Let ζ = TπP(E) denote the fiberwise tangent bundle over P(E) and let L be the
canonical line bundle over P(E). By inserting

e(L) = ω f w(π) − e|0(π, L)
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in the formula (19), we obtain

ci (ζ ) =
i∑

j=0

(
n + 1 − i + j

j

)
ci− j (E)

(
ω f w(π) − e|0(π, L)

) j

=
i∑

j=0

j∑
k=0

(−1) j−k
(
n + 1 − i + j

j

)(
j

k

)
ci− j (E)e|0(π, L) j−kω fw(π)k .

Using the identity

(
n + 1 − i + j

j

)(
j

k

)
=

(
n + 1 − i + k

k

)(
n + 1 − i + j

j − k

)
,

and changing the order of summation, the above may be written as

i∑
k=0

(
n + 1 − i + k

k

) ⎛
⎝ i∑

j=k

(−1) j−k
(
n + 1 − i + j

j − k

)
ci− j (E)e|0(π, L) j−k

⎞
⎠ω f w(π)k .

By (23) and (22), we recognize the inner sum as ai−k(π), so we conclude that

ci (ζ ) =
i∑

k=0

(
n + 1 − i + k

k

)
ai−k(π)ω f w(π)k

as claimed. �	

As discussed in the introduction, this justifies defining fiberwise Chern classes
c fw
i (π), for arbitrary orientable CPn-fibrations π , in terms of the right hand side of
(24). An equivalent formulation of Proposition 4.8 is then that everyU (n+ 1)-bundle
withfiberCPn has trivialChern differences.Byusing that BSU (n+1) → BPU (n+1)
is a rational equivalence, one can deduce the stronger statement that every PU (n+1)-
bundle with fiber CPn has trivial Chern differences (this is also verified in Theorem
4.9 below).

Fix a map that represents the rational Chern classes of CPn ,

ξc : CPn →
n∏

i=1

K (Q, 2i),

and let Baut(ξc) denote the classifying space for ξc-fibrations. We define the clas-
sifying space of τCPn -fibrations with trivialized Chern differences as the homotopy
pullback
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Baut(τCPn )c Baut◦(CPn)

c f w

Baut(τCPn )
ctot

Baut(ξc),

(25)

where c fw arises by taking the fiberwise Chern classes of an orientable CPn-fibration
and ctot by taking the Chern classes of the total bundle of a τCPn -fibration.

A consequence of the next result is that the Chern differences are the only obstruc-
tions for a τCPn -fibration to be rationally equivalent to a PU (n + 1)-bundle.

Theorem 4.9 Every PU (n + 1)-bundle with fiber CPn has trivial Chern differences
and the induced map

BPU (n + 1) → Baut(τCPn )
c,

is a rational homotopy equivalence.

Proof By Theorem 1.7, the ring of characteristic classes of τCPn -fibrations is the poly-
nomial ring

H∗(Baut(τCPn ); Q) = Q[a2, . . . , an+1, ci | j ],

where we have one generator ci | j for each pair of integers (i, j) such that 1 ≤ i ≤ n
and 0 ≤ j < i . By definition of the characteristic classes ci | j , we have

ci (ζ ) =
n∑
j=0

ci | j (π, ζ ) · ω f w(π) j

for every τCPn -fibration (π, ζ ). By comparing coefficients, we see that the equation
ci (ζ ) = c f w

i (π) is equivalent to the equations

ci | j (π, ζ ) =
(
n + 1 − i + j

j

)
ai− j (π) (26)

for 0 ≤ j < i . It follows that the cohomology ring of Baut(τCPn )c is isomorphic to

H∗(Baut(τCPn )c; Q) = Q[a2, . . . , an+1, ci | j ]/I ∼= Q[a2, . . . , an+1],

where I is the ideal generated by the linear polynomials

ci | j −
(
n + 1 − i + j

j

)
ai− j

for 1 ≤ i ≤ n and 0 ≤ j < i . We note in passing that this implies that the map
Baut(τCPn )c → Baut◦(CPn) is a rational equivalence.
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By (23), Proposition 4.8 and (26) applied to the universal U (n + 1)-bundle with
fiber CPn , the map in rational cohomology induced by

q : BU (n + 1) → Baut(τCPn )

may be identified with

q∗ : Q[a2, . . . , an+1, ci | j ] → Q[c1, . . . , cn+1],

where

q∗(ai ) =
i∑

j=0

(−1) j
(
n + 1 − i + j

j

)
ci− j

(
c1

n + 1

) j

,

q∗(ci | j ) =
(
n + 1 − i + j

j

)
q∗(ai− j ).

It follows that

ker(q∗) = I .

Now, observe that q factors as

BU (n + 1)

q

f
BPU (n + 1)

r

Baut(τCPn ).

The map f is injective in rational cohomology, so

ker(r∗) = ker( f ∗r∗) = ker(q∗) = I .

This implies that the universal PU (n + 1)-bundle with fiber CPn has trivial Chern
differences, and that the induced map

H∗(Baut(τCPn )c; Q) → H∗(BPU (n + 1); Q)

is injective. Since both source and target are abstractly isomorphic to a polynomial
ring with generators in degrees 4, 6, . . . , 2n + 2, the map must be an isomorphism. �	
Remark 4.10 The above shows in particular that each map in

BPU (n + 1) → Baut(τCPn )
c → Baut◦(CPn)

is a rational equivalence. (That BPU (n+1) → Baut◦(CPn) is a rational equivalence
has been observed before, cf. [19, 21, 29, 33].) These rational equivalences together
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with Remark 1.10 imply that the ring of characteristic classes of τCPn -fibrations
with trivialized Chern differences, or equivalently the ring of characteristic classes
of PU (n + 1)-bundles with fiber CPn , may be identified with the polynomial ring in
the classes κcn+2

1
, . . . , κc2n+1

1
.

In the calculations that follow, we will use the abbreviations ω f w = ω f w(π),
ai = ai (π), pi | j = pi | j (π, ζ ), etc, when there is no risk of confusion.

Lemma 4.11 For every orientable CPn-fibration π : E → B we have

π!(ωn
f w) = 1, (27)

π!(ωn+k
f w ) + ak ∈ a2, (28)

for 1 ≤ k ≤ n + 1, and

π!(ωn+k
f w ) ∈ a2

for k > n + 1. Here, a ⊆ H∗(B; Q) is the ideal generated by a2, . . . , an+1.

Proof Multiply both sides of the equation

ωn+1
f w + a2 · ωn−1

fw + · · · + an+1 = 0

with suitable powers of ω f w and apply π!. We omit the details. �	
Proof of Theorem 1.8 Let (π, ζ ) be the universal ξ -fibration over Baut◦(ξ). ByLemma
4.11, the class κωn+k is a polynomial in a2, . . . , an+1 with linear term−ak . This implies
that the classes κωn+2 , . . . , κω2n+1 are algebraically independent and that they generate
the same subring as a2, . . . , an+1. Say |pi | = 2ri . By definition of pi | j , we have

pi (ζ ) =
n∑
j=0

pi | jω j
fw,

where pi | j = 0 if j > ri for degree reasons and pi |ri is a rational number. By

multiplying the above with ω
n− j
f w and applying π!, we obtain the equality

κωn− j pi = pi | j + pi | j+2κωn+2 + · · · + pi |ri κωn− j+ri .

This can be used to express pi | j in terms of the extended κ-classes by descending
induction on j = ri −1, ri −2, . . . , 0. The equality can also be used to show algebraic
independence of the extended κ-classes by observing that the linear term of κωn− j pi
is pi | j , modulo the subspace spanned by a2, . . . , an+1. �	

We now turn to the proof of Theorem 1.17. The first step is to reduce this to a
statement about τR

CPn -fibrations with trivialized Pontryagin and Euler differences and
prove Theorem 1.15.
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Observe that the fiberwise Pontryagin classes and the fiberwise Euler class can
be defined for every CPn-fibration π : E → B such that π1(B) acts on the fiber by
orientation preserving homotopy equivalences (this is weaker than “orientability” of
the fibration for n even, but equivalent to it for n odd). The reason is that we may
identify

H∗(CPn//aut+(CPn); Q) = H∗(CPn//aut◦(CPn); Q)Z/2Z

where Z/2Z acts by (−1) in degrees congruent to 2 modulo 4 (cf. Remark 4.3). The
classes p fw

i (π) and e f w(π) are invariant since their degrees are divisible by 4 when
n is even.

Now, let us be more precise about the definition of the classifying space for τR
CPn -

fibrations with trivialized Pontryagin and Euler differences; we define it as a homotopy
pullback

Baut(τR
CPn )

p,e Baut+(CPn)

Baut(τR
CPn ) Baut(ξp,e)

(29)

similar to (25), where ξp,e is the map

CPn → Kp,e =
n−1∏
i=1

K (Q, 4i) × K (Q, 2n)

that records the Pontryagin and Euler classes of τR
CPn .

Proof of Theorem 1.15 Vanishing of the Pontryagin differences and the Euler differ-
ence for Isom◦(CPn)-bundles follows from Corollary 1.13, because Isom◦(CPn) ∼=
PU (n+1). One can show that themap Isom◦(CPn) ∼= PU (n+1) → Baut◦(τRCPn )p,e
is a rational equivalence as in the proof of Theorem 4.9. For n odd, Isom+(CPn) =
Isom◦(CPn) and Baut(τR

CPn )
p,e = Baut◦(τRCPn )p,e so nothing more needs to be said.

For n even, one uses that Isom+(CPn) ∼= Isom◦(CPn) � Z/2Z, and similarly for
Baut(τR

CPn )
p,e. �	

Next, we relate the space Baut(τR
CPn )

p,e to self-homotopy equivalences.

Proposition 4.12 The map Baut(τR
CPn )

p,e → Baut+(CPn) is a rational equivalence.

Proof The bottom horizontal map in (29) is a rational equivalence, because it may be
identified with the map

map(CPn, BSO(2n))τR
CPn

//aut+(CPn) → map(CPn, Kp,e)p,e//aut+(CPn),
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induced by the map BSO(2n) → Kp,e that records the universal Pontryagin and
Euler classes, which is a rational equivalence. It follows that the top horizontal map
in (29) is a rational equivalence. �	

Weproceed tomake computations over Baut+(CPn)using thefiberwisePontryagin
and Euler classes. By Theorem 1.7 applied to the orientation bundle,

H∗(Baut+(CPn); Q) = Q[a2, . . . , an+1]�,

where � is trivial if n is odd and cyclic of order 2, acting by ak → (−1)kak , if n is
even.

Lemma 4.13 Let π : E → B be a CPn-fibration such that π1(B) acts by orientation
preserving homotopy equivalences on the fiber. Let a ⊆ H∗(B; Q) denote the ideal
generated by a2, . . . , an+1. We have that

κe = n + 1,

κep1 = −4(n + 1)a2,

κep�
1

≡ −2�(n + 1)�a2� (mod a2), 4 ≤ 2� ≤ n + 1,

κp�
1

≡ −(n + 1)�a2�−n (mod a2), 2 < 2� − n ≤ n + 1,

κp�
1

= −(2n + 3)(n + 1)�−1a2, 2� − n = 2.

Proof We have that

p f w
1 = (n + 1)ω2

f w − 2a2,

e f w = (n + 1)ωn
f w + (n − 1)a2ω

n−2
f w + · · · + 2an−1ω fw + an .

It is a simple matter to expand
(
p fw
1

)�

and e f w
(
p fw
1

)�

and then use Lemma 4.11 to

calculate their pushforwards. We omit the details. �	
Assume n is odd, say n = 2k + 1. Lemma 4.13 shows that, modulo a2 and up to

multiplication by non-zero scalars, the classes

κep1, κep21
, . . . , κepk+1

1
, κpk+2

1
, κpk+3

1
, . . . , κp2k+1

1
,

agree with the classes

a2, a4, . . . , an+1, a3, a5, . . . , an .

This implies that the displayed κ-classes are algebraically independent and that they
generate H∗(Baut+(CPn); Q) = Q[a2, . . . , an+1].

Now assume n is even, say n = 2k. By what we said above, the ring

H∗(Baut+(CPn); Q)
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may be identified with the subring of Q[a2, . . . , an+1] consisting of all elements in
degrees divisible by 4. This ring is generated by the following n + (k

2

)
elements:

• a� for all even �, and
• ai, j = aia j for all odd i and j with i ≤ j .

It is easy to see that the kernel of the map

Q[a�, ai, j ] → H∗(Baut+(CPn); Q)

is generated by the
(k
2

)
polynomials

a2i, j − ai,i a j, j , i < j .

and these clearly form a regular sequence. Hence, the ring H∗(Baut+(CPn); Q) is a
complete intersection of Krull dimension n and embedding dimension n + (k

2

)
.

We will now show that all classes are tautological. Clearly, it suffices to prove that
the generators a� and ai, j are tautological.

For n = 2, the computation is very easy. The expressions

κp21
= −21a2,

κp41
= 81a23 − 609a32,

show that κp21
, κp41

generate the same subring as a2, a23 .
The idea in the general case is the same but more care is required.

Lemma 4.14 Let n be even, say n = 2k. Let β2, . . . , βk+1 ∈ H∗(BSO(2n); Q) be
classes of degree |βs | = 4s such that βs|2s = 0 for s ≤ k and βs|1 /∈ a2 for all s. Then
H∗(Baut+(CPn); Q) is minimally generated by the classes

κpk+1
1

, . . . , κp2k1
, κpk+i

1 βs
, (30)

for 2 ≤ s ≤ k + 1 and s − 1 ≤ i ≤ k.

Proof Let A = H∗(Baut◦(CPn); Q) = Q[a2, . . . , an+1]. We have that

H∗(Baut+(CPn); Q) = A(4)

is the subring of elements in degrees divisible by 4. Let R denote the subring of A
generated by the classes (30). Clearly, R ⊆ A(4). We will prove that A4� = R4� for
all � by induction.

In degree 0 there is nothing to prove. In degree 4, Lemma 4.13 shows that

κpk+1
1

= −(2n + 3)(n + 1)ka2,

so a2 ∈ R, and hence A4 = R4.
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Let � > 1 and assume by induction that A4�′ = R4�′
for all �′ < �. To show that

A4� = R4�, it is enough to show that the generators in degree 4� belong to R. These
are

aia2�−i

for all odd i such that max(3, 2� − n − 1) ≤ i ≤ � and, if 2� ≤ n + 1,

a2�.

Let us use the convention that am = 0 for m > n + 1. Lemma 4.11 shows that

π!(aiωn+2�−i
fw ) + aia2�−i ∈ a3,

for all i ≤ � All elements of a3 of degree 4� belong to R by induction. Hence,

aia2�−i ∈ R if and only if π!(aiωn+2�−i
fw ) ∈ R, (31)

for all odd i ≤ �.
We will now show that aia2�−i ∈ R, or equivalently π!(aiωn+2�−i

f w ) ∈ R, for all
odd i ≤ � by induction on i , starting with the vacuous case a1a2�−1 = 0 ∈ R. Thus,
let i be odd with 3 ≤ i ≤ � and assume that a ja2�− j ∈ R for all odd j < i . We may
also assume 2� − n − 1 ≤ i ≤ n + 1, because otherwise ai = 0 or a2�−i = 0 and
there is nothing to prove. Say i = 2s − 1. We have s ≤ k + 1 because i ≤ n + 1. By
the assumption βs|2s = 0 for s ≤ k (and the fact that A2 = 0) we may write

βs =
2s∑
j=2

b jω
2s− j
f w ,

where b j ∈ A2 j . Multiplying by ω2k+2�−2s
f w yields

βsω
2k+2�−2s
fw =

2s∑
j=2

b jω
2k+2�− j
f w . (32)

Now note that since

ω2
f w = μp f w

1 + νκpk+1
1

(33)

for non-zero rational numbers μ, ν, it follows that

π!(βsω
2k+2�−2s
fw ) = cκ

βs p
k+�−s
1

+ K ,

where c is a non-zero rational number and K is a sum of products of κ-classes of
lower degree, whence K ∈ R by induction (this only uses that the κ-classes have
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degree divisible by four, not their specific form). Also note that κ
βs p

k+�−s
1

is one of the
generators for R. Indeed, s − 1 ≤ �− s holds because 2s − 1 = i ≤ � by assumption,
and � − s ≤ k holds because we have assumed 2� − i ≤ n + 1.

Turning to the pushforward of the right hand side of (32), consider

π!(b jω
2k+2�− j
f w ) = b jπ!(ω2k+2�− j

fw ).

The inequality j ≤ 2s = i + 1 ≤ � + 1 implies |b j | = 2 j < 4� since � > 1, so

b j ∈ R for all even j . Also, for j = 2 j ′ even and positive, the class π!(ω2k+2�− j
f w ) has

degree 4(� − j ′) < 4�, so it belongs to R by induction. Thus, π!(b jω
2k+2�− j
f w ) ∈ R

for all even j .
Now for odd j , we may write

b j =
j∑

q=3
q odd

f j−qaq

where f j−q ∈ A2( j−q). Hence,

π!(b jω
2k+2�− j
f w ) =

j∑
q=3
q odd

f j−qπ!(aqω2k+2�− j
f w ). (34)

For q < j , both factors f j−q and π!(aqω2k+2�− j
f w ) have degrees that are smaller than

4� and divisible by 4, so they belong to R by induction. For q = j , we have f0 ∈ Q

and π!(a jω
2k+2�− j
f w ) ∈ R by the inductive hypothesis that a ja2�− j ∈ R for odd j < i .

Thus, we have shown that π!(b jω
2k+2�− j
f w ) ∈ R for all j < i and that, for j = i ,

all terms in the right hand side of (34), except possibly the one corresponding to
q = i , belong to R. But applying π! to (32) and using our above observation that
π!(βsω

2k+2�−2s
f w ) ∈ R, we can conclude that also this last term,

f0π!(aiω2k+2�−i
fw ),

belongs to R. The assumption that βs|1 /∈ a2 means that bi must contain a term of the
form f0ai with f0 a non-zero rational number. Therefore, π!(aiω2k+2�−i

f w ) belongs to
R as well, and this finishes the induction on i .

To show that a2� ∈ R, we use Lemma 4.13. It shows that

κpk+�
1

+ (n + 1)k+�a2� ∈ a2.

All elements of a2 in degree 4� belong to R by induction or by the now proved
statement that aia2�−i ∈ R for all odd i . Also, κpk+�

1
is one of the generators for R
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since we may assume � ≤ k (otherwise a2� = 0 and there is nothing to prove). This
finishes the induction on � and concludes the proof. �	

We have that

p fw
1 = (n + 1)ω2

f w − 2a2,

p fw
2 =

(
n + 1

2

)
ω4

fw − (2n − 4)a2ω
2
f w − 6a3ω f w + 2a4 + a22 .

We do not need a general formula for p f w
s , but we record the following properties

when 2s ≤ n: the leading term is

p fw
s =

(
n + 1

s

)
ω2s + · · · ,

and

p f w
s ≡ (−1)s−1(4s − 2)a2s−1ω f w + (−1)s2a2s (mod a2 + (ω f w)2).

These facts imply that we may use

βs = (n + 1)s p fw
s −

(
n + 1

s

) (
p f w
1

)s

for s = 2, 3 . . . , k. Finally, we have that

(
p f w
1

)k+1 = −(2n + 3)(n + 1)ka2ω
n
fw + · · · − (n + 1)k+1an+1ω f w + (−2a2)

k+1.

This implies that we can use βk+1 =
(
p f w
1

)k+1
. By that, Theorem 1.17 is proved.

Proof of Theorem 1.19 Theorem 1.15 and Theorem 1.17 show that all characteristic
classes of Isom+(CPn)-bundles with fiber CPn are tautological, so the map (4) is
surjective.

As in the proof of Theorem 4.9, the map in cohomology induced by

B Isom◦(CPn) ∼Q Baut◦(τRCPn )
p,e → Baut◦(τRCPn )

may be identified with the homomorphism

Q[a2, . . . , an+1, pi | j , e|i ] → Q[a2, . . . , an+1, pi | j , e|i ]/duniv,

where duniv is the ideal generated by the coefficients of the Pontryagin and Euler
differences of the universal orientable τR

CPn -fibration. It follows that the map

R∗(τRCPn ) → H∗(B Isom+(CPn); Q) (35)
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has kernel R∗(τR
CPn )∩duniv . The hypotheses on the given τR

CPn -fibration over B imply
a factorization of (35) into surjective ring homomorphisms

R∗(τRCPn )
g−→ R∗(B)

f−→ H∗(B Isom+(CPn); Q).

This implies that ker( f ) = g(ker( f g)), which is seen to be equal to R∗(B)∩ d by the
above. �	
Proof of Theorem 1.20 The ring H∗(Baut(τR

CP2
)e; Q) may be identified with the sub-

ring of Q[a2, a3, p1|0, p1|1] generated by the elements

a2, p1|0, p21|1, a3 p1|1, a23 . (36)

If (π, ζ ) denotes the universal τR
CP2

-fibration with trivialized Euler difference, then

p1(ζ ) = 3ω2
f w + p1|1ω f w + p1|0,

p f w
1 (π) = 3ω2

f w − 2a2,

e(ζ ) = e f w(π) = 3ω2
f w + a2.

With the above expressions at hand, it is straightforward to compute the following.

κp21
= −9a2 + 6p1|0 + p21|1,

κL2 = − 4
15a2 − 2

15 p1|0 − 1
45 p

2
1|1,

κL3 = 1
15a3 p1|1− 34

315a
2
2− 1

63a2 p1|0+ 2
105 p

2
1|0− 2

105a2 p
2
1|1+ 2

315 p1|0 p
2
1|1,

κp41
= 81a23 − 81a32+108a22 p1|0−54a2 p

2
1|0+12p31|0+216a2a3 p1|1−108a3 p1|0 p1|1,

+ 54a22 p
2
1|1 − 36a2 p1|0 p21|1 + 6p21|0 p21|1 − 12a3 p

3
1|1 − a2 p

4
1|1.

Setting λ = p21|1, the first two equations show that λ, κp21
, κL2 span the same subspace

as a2, p1|0, p21|1. The last two can then be used in turn to express a3 p1|1 and a23 in
terms of κp21

, κp41
, κL2 , κL3 , λ. All algebraic relations among the generators (36) are

consequences of the single relation

(a3 p1|1)2 = (a23)(p
2
1|1).

It follows that

H∗(Baut(τR
CP2)

e) = Q[κp21
, κp41

, κL2 , κL3 , λ]/J ,

where J is the principal ideal generated by the element (a3 p1|1)2−(a23)(p
2
1|1) rewritten

in the new generators. Let Baut(τR
CP2

)eL denote the classifying space of τ
R
CP2

-fibrations
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with trivializations of the Euler difference and the classes κL2 , κL3 . The classes
κL2 , κL3 form a regular sequence in the cohomology of Baut(τR

CP2
)e, so

H∗(Baut(τR
CP2)

e
L ; Q) ∼= Q[κp21

, κp41
, λ]/I ,

where I is the reduction of J modulo (κL2 , κL3). By rewriting (a3 p1|1)2 − (a23)(p
2
1|1)

in the new generators andmultiplying with a suitable scalar, we find that I is generated
by the element

λ4 − 6304
2023κp21

λ3 + 35905
14161κ

2
p21

λ2 +
(
116
289κ

3
p21

− 1764
289 κp41

)
λ.

In particular, this shows that the kernel of the surjective map

H∗(Baut(τR
CP2)

e
L ; Q) → H∗(B Isom+(CP2); Q)

is the principal ideal generated by λ.
We have that pd1|1 = −p1|1 and pd1|0 = −2a2 − p1|0. The equations

21pd1|0 = 4κp21
− 7κep1 + 180κL2 ,

45κL2 = 6pd1|0 − pd21|1,

show that pd1|0 and λ are tautological and that λ = 6pd1|0 if κL2 = 0.
For an arbitrary τR

CPn -fibration over a space B with trivial Euler difference and
trivial κL2 , κL3 , the above shows that the kernel of

R∗(B) → H∗(B Isom+(CP2); Q)

is the principal ideal generated by pd1|0.
Imposing trivializations of κLi for i > 3 by taking the homotopy fiber of a suitable

map from Baut(τR
CP2

)eL to a product of Eilenberg–Mac Lane spaces will not change

the cohomology in degree 4, so the resulting space will have a τR
CP2

-fibration over
it with trivial Euler difference and κLi = 0 for all i > 1, but with pd1|0 �= 0. In
particular, it has a non-vanishing Pontryagin difference. �	
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