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Abstract We prove several basic ring-theoretic results about tautological rings of
manifolds W , that is, the rings of generalised Miller–Morita–Mumford classes for
fibre bundles with fibre W . Firstly we provide conditions on the rational cohomology
of W which ensure that its tautological ring is finitely-generated, and we show that
these conditions cannot be completely relaxed by giving an example of a tautological
ring which fails to be finitely-generated in quite a strong sense. Secondly, we provide
conditions on torus actions on W which ensure that the rank of the torus gives a lower
bound for the Krull dimension of the tautological ring of W . Lastly, we give extensive
computations in the tautological rings of CP2 and S2 × S2.

Mathematics Subject Classification 57S25 · 57R22 · 57R20 · 55R40 · 55R40 ·
55R10

1 Introduction

1.1 Recollections on tautological rings

A smooth fibre bundle π : E → B with closed d-dimensional fibre W equipped with
an orientation of the vertical tangent bundle Tπ E has characteristic classes defined
as follows. For each characteristic class c ∈ Hk(BSO(d)) of oriented d-dimensional
vector bundles, we may form
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κc(π) :=
∫

π

c(Tπ E) ∈ Hk−d(B),

the generalised Mumford–Morita–Miller class (or κ-class) associated to c, by evalu-
ating c on the vector bundle Tπ E and integrating the result along the fibres of the map
π . This construction may in particular be applied to the universal such fibre bundle,
whose base space is the classifying space BDiff+(W ) of the topological group of
orientation-preserving diffeomorphisms of W , to give universal characteristic classes
κc ∈ H∗(BDiff+(W )). If c has degree d then κc is a degree zero cohomology class,
and may be identified with the characteristic number

∫
W c(T W ) of W .

If we work in cohomology with rational coefficients then H∗(BSO(d);Q) is gen-
erated by the Pontrjagin and Euler classes, and in this case we define the tautological
ring

R∗(W ) ⊂ H∗(BDiff+(W );Q)

to be the subring generated by all classes κc. Our goal is to describe some quantitative
and qualitative properties of these rings, for certain manifolds W .

Before doing so, we introduce some variants. The topological group Diff+(W, ∗)
of diffeomorphisms of W which fix a marked point ∗ ∈ W has a homomorphism to
GL+d (R) by sending a diffeomorphism ϕ to its differential Dϕ∗ at the marked point.
On classifying spaces this gives a map

s : BDiff+(W, ∗) −→ BGL+d (R) � BSO(d)

and for each c ∈ H∗(BSO(d);Q) we may also form s∗c ∈ H∗(BDiff+(W, ∗);Q).
We let the tautological ring fixing a point R∗(W, ∗) ⊂ H∗(BDiff+(W, ∗);Q) be the
subring generated by all the classes κc and s∗c.

Finally, if BDiff+(W, Dd) is the classifying space of the group of diffeomorphisms
of W which are the identity near a marked disc Dd ⊂ W , then we let the tautological
ring fixing a disc R∗(W, Dd) ⊂ H∗(BDiff+(W, Dd);Q) be the subring generated
by all the classes κc. The inclusions of diffeomorphism groups

BDiff+(W ) ←− BDiff+(W, ∗) ←− BDiff+(W, Dd)

therefore yield Q-algebra homomorphisms

R∗(W ) −→ R∗(W, ∗) −→ R∗(W, Dd)

whose composition is surjective.
These rings have been studied by Grigoriev [22], and by Galatius, Grigoriev, and

the author [21], mainly for the manifolds W = #g Sn × Sn with n odd. This is the
natural generalisation of the case of oriented surfaces, i.e. n = 1, which has been
studied in great detail: see e.g. [17,28,31,34]. Our purpose here is to explain to what
extent those results apply to more general manifolds. We will only consider even-
dimensional manifolds. For odd-dimensional manifolds the classes κc have odd degree
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and so anticommute and are nilpotent, and tautological rings in this situation seem to
have a different flavour.

1.2 Finiteness

Our first result concerns conditions under which the rings R∗(W ) and R∗(W, ∗) are
suitably finite.

Theorem A Let W be a closed smooth oriented 2n-manifold, and assume that either

(H1) H∗(W ;Q) is non-zero only in even degrees, or
(H2) H∗(W ;Q) is non-zero only in degrees 0, 2n and odd degrees, and χ(W ) �= 0.

Then

(i) R∗(W ) is a finitely-generated Q-algebra, and
(ii) R∗(W, ∗) is a finitely-generated R∗(W )-module.

The result under hypothesis (H2) generalises a theorem of Grigoriev [22], and
proceeds by establishing the same basic source of relations among κ-classes found
by Grigoriev. In the case 2n = 2 this source of relations had been established by the
author [36], using ideas ofMorita [29,30]. As the later results of [22] and the results of
[21] are deduced almost entirely from this basic source of relations, the same results
largely follow assuming only hypothesis (H2). For example, for g > 1, k odd, and
n ≥ k, it follows that

Q[κep1, κep2 , . . . , κepn−1 ] −→ R∗(#g Sk × S2n−k)/
√
0

is surjective, which was obtained in [21] only in the case k = n. We give details of
this in Sect. 4.1.

The result under hypothesis (H1) is entirely new and itsmethod of proof is novel.We
consider a fibre bundle W → E

π→ B as determining a parametrised spectrum over B,
and hence its rational “cochains” as giving a parametrised HQ-module spectrum over
B. We then use the notion of Schur-finiteness from the theory of motives to obtain a
Cayley–Hamilton-type trace identity for endomorphisms of this cochain object, which
establishes concrete relations among κ-classes. Later we shall describe some explicit
calculations done using these relations.

1.3 Krull dimension

Our second main result is a general technique, continuing on from our work with
Galatius and Grigoriev [21, §4], for estimating the Krull dimension (for which we
write Kdim) of the rings R∗(W ) from below in terms of torus actions on W . The
general statement is Theorem 3.1, but the hypotheses of that theorem are somewhat
involved: we state here one of its corollaries with hypotheses which are easy to verify.
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Corollary B Let a k-torus T act effectively on W , and suppose that either

(i) χ(W ) �= 0 and the fixed set W T is connected, or
(ii) the fixed set W T is discrete and non-empty.

Then Kdim(R∗(W )) ≥ k.

For example, if W 2n is a quasitoric manifold then case (ii) gives the estimate
Kdim(R∗(W )) ≥ n. As another example, if W = #g Sn × Sn with n odd then it is a
consequence of the localisation theorem in equivariant cohomology (which we shall
discuss in Sect. 3.1) that any torus action on W has connected fixed set, so by case (i)
restricting the SO(n)× SO(n)-action on W constructed in [21, §4] to a maximal torus
(which has rank n − 1) we obtain Kdim(R∗(W )) ≥ n − 1 for g > 1, which recovers
the calculation of that paper. This example admits many variants: the construction of
[21, §4] can be easily modified to give a SO(k)×SO(2n−k)-action on #g Sk×S2n−k ,
so for any odd k and any n we have

Kdim(R∗(#g Sk × S2n−k)) ≥ n − 1.

We shall say more about this example in Sect. 4.1.

1.4 Examples

In the last section of the paper we exhibit several phenomena in tautological rings by
calculations for specificmanifolds. The following result is complementary to Theorem
A, and shows that the hypotheses of that theorem cannot be completely removed.

Theorem C There are closed smooth manifolds W for which R∗(W )/
√
0 is not

finitely-generated as a Q-algebra. There are examples of any dimension 4k + 2 ≥ 6,
and in dimensions 4k + 2 ≥ 14 such manifolds can also be assumed to be simply-
connected.

To show the effectiveness of the relations between κ-classes arising in the proof
of Theorem A, we apply them to the simplest manifold whose tautological ring is
not yet known, namely CP

2. These relations, along with relations associated to the
Hirzebruch L-classes coming from index theory, give the following.

Theorem D The ring R∗(CP2) has Krull dimension 2. The ring R∗(CP2, D4) is a
vector space of dimension at most 7 over Q.

In fact, we show that the ring R∗(CP2)/
√
0 is equal to either

Q[κp21
, κep1 , κp41

]/(4κp21
− 7κep1) ∩ (κp21

− 2κep1, 316κ
3
ep1 − 343κp41

),
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whose variety is the union of a line and a plane, or

Q[κp21
, κep1 , κp41

]/(4κp21
− 7κep1),

whose variety is a plane. It would be interesting to determine which case occurs, and
very interesting if it is the first case.

Finally, we give a calculation which shows that the lower bound of Corollary B is
not always sharp. The 3-torus cannot act effectively on S2 × S2, and yet

Theorem E The ring R∗(S2 × S2) has Krull dimension 3 or 4.

The lower bound on the Krull dimension comes from a 1-parameter family of 2-
torus actions, to which the method of proof of Corollary B is applied. The upper bound
comes from the relations between κ-classes which we found in the proof of Theorem
A.

2 Tautological relations and finite generation

Unless specified, all cohomology in this paper will be taken with Q coefficients.

In this section we describe some techniques for obtaining relations between tau-
tological classes, which for some manifolds W suffice to establish that R∗(W ) is
finitely-generated. The techniques we will introduce are perhaps more important than
any particular application that can be made, but Theorem A will be a consequence.

2.1 Integrality

One consequence of conclusion (ii) of Theorem A is that R∗(W, ∗) is integral over
R∗(W ). In fact, this integrality statement implies the two finiteness statements, as
follows.

Proposition 2.1 Suppose that W is a closed smooth oriented d-manifold such that
R∗(W, ∗) is integral over R∗(W ). Then

(i) R∗(W ) is a finitely-generated Q-algebra, and
(ii) R∗(W, ∗) is a finitely-generated R∗(W )-module.

For the sake of clarity, wewill first formulate and prove a purely algebraic statement
of which this proposition is a consequence.

Lemma 2.2 Let π : B → E be a homomorphism of Q-algebras, g : E → B be a
homomorphism of B-modules (where E is made into an B-module via π ), and C ⊂ E
be a finitely-generated subalgebra, generated by {ci }i∈I . Let R ⊂ B be the subalgebra
generated by g(C). If each ci is integral over π(R) ⊂ E, with

cni
i =

ni−1∑
j=0

π(ai, j )c
j
i
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for some ai, j ∈ R, then R is generated by the finitely-many elements

{ai, j }i, j∈I ∪
{

g
(∏

cmi
i

)
|mi < ni

}
.

Proof By definition R is generated by the elements g(
∏

cki
i ), so we must show that

these lie in the subring generated by the indicated elements. By assumption we may
write cki

i as a Q[π(ai, j )]-linear combination of terms c j
i with j < ni , and so we

may write
∏

cki
i as a Q[π(ai, j )]-linear combination of terms

∏
cmi

i with mi < ni .

As g is B- and hence R-linear, we may therefore write g(
∏

cki
i ) as a Q[ai, j ]-linear

combination of terms g(
∏

cmi
i ) with mi < ni . Thus g(

∏
cki

i ) lies in the subring
generated by the indicated elements. 
�
Proof of Proposition 2.1 The universal fibre bundle with fibre W may be identified
with the natural projection

p : BDiff+(W, ∗) ∼= EDiff+(W )×Diff+(W ) W −→ BDiff+(W ).

This gives a Q-algebra homomorphism

p∗ : H∗(BDiff+(W );Q) −→ H∗(BDiff+(W, ∗);Q)

by pullback and an H∗(BDiff+(W );Q)-module homomorphism

p! : H∗(BDiff+(W, ∗);Q) → H∗−d(BDiff+(W );Q)

by fibre integration. As we have described in the introduction, taking the differential
at the marked point gives a map s : BDiff+(W, ∗) → BGL+d (R) � BSO(d), which
classifies the vertical tangent bundle of the universal fibre bundle p.

ApplyingLemma2.2with B = H∗(BDiff+(W );Q), E = H∗(BDiff+(W, ∗);Q),
π = p∗, g = p!, and C = Im(s∗) (using that H∗(BSO(d);Q) is finitely-generated
and that C ⊂ R∗(W, ∗) so by assumption consists of elements which are integral
over R = R∗(W )) shows that R∗(W ) ⊂ H∗(BDiff+(W );Q) is finitely-generated,
proving the first part.

For the secondpart, as H∗(BSO(d)) is a finitely-generatedQ-algebra,weknow that
R∗(W, ∗) is a finitely-generated R∗(W )-algebra, so under the integrality assumption
it follows that R∗(W, ∗) is in fact finitely-generated as a R∗(W )-module. 
�

Thus in order to prove Theorem A we shall actually show that R∗(W, ∗) is integral
over R∗(W ).

2.2 Outline

Tomotivate the proof of TheoremA let us first explain its proof under hypothesis (H1)
and an additional assumption: that the universal smooth oriented fibre bundle W →
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E
π→ B = BDiff+(W ) satisfies the Leray–Hirsch property in rational cohomology,

i.e. that π1(B) acts trivially on H∗(W ) and the Serre spectral sequence for π : E → B
collapses. (The proof of TheoremA under hypothesis (H1) is a technical device which
allows the following argument to be made without this additional assumption.)

Under this assumption, H∗(E) is a free finitely-generated H∗(B)-module, say with
basis x̄1, . . . , x̄k ∈ H∗(E) lifting a basis x1, . . . , xk for H∗(W ). Furthermore, as W
has all its cohomology in even degrees, Hev(E) is a free finitely-generated module
over the commutative ring Hev(B), with basis the x̄i . For x ∈ Hev(E) the map

− · x : Hev(E) −→ Hev(E)

is a Hev(B)-module map, so has a characteristic polynomial χx (z) ∈ Hev(B)[z], and
by the Cayley–Hamilton theorem (for finitemodules over a commutative ring, alias the
determinantal trick) we have χx (x) = 0 ∈ Hev(E). Furthermore, the coefficients of
the characteristic polynomial χx (z) may be expressed as polynomials in the elements

Tr(− · xi : Hev(E) → Hev(E)) ∈ Hev(B),

which make sense as Hev(E) is a finite free Hev(B)-module. The following lemma
relates such traces to fibre-integration and the Euler class of the vertical tangent bundle.

Lemma 2.3 For any x ∈ Hev(E) we have

Tr(− · x : Hev(E) → Hev(E)) =
∫

π

e(Tπ E) · x ∈ Hev(B).

We apply the above discussion to x = c(Tπ E) for c ∈ H∗(BSO(2n)) a character-
istic class of oriented 2n-dimensional vector bundles. Then the polynomial χx (z) is
monic, has coefficients in the subring generated by the κeci = ∫

π
e(Tπ E) · c(Tπ E)i ,

and satisfies χx (c(Tπ E)) = 0. Thus we deduce that c(Tπ E) = s∗c is integral over
R∗(W ) and hence that R∗(W, ∗) is integral over R∗(W ). Theorem A in the case we
are considering follows by applying Proposition 2.1. It remains to prove this lemma.

Proof of Lemma 2.3 Rational cohomology classes are determined by their evaluations
against rational homology classes, and any rational homology class is carried on amap
from a smooth oriented manifold. So wemay assume that π : E → B is a fibre bundle
over a smooth oriented manifold, still satisfying the Leray–Hirsch property.

The pairing

〈−,−〉 : H∗(E)⊗H∗(B) H∗(E) −→ H∗−d(B)

a ⊗ b �−→
∫

π

a · b

is non-singular, as in the basis x̄i its matrix X agrees modulo the ideal H∗>0(B) of
H∗(B) with that of the intersection form of W in the basis xi , so det(X) ∈ H∗(B)

is a unit modulo H∗>0(B), and hence is a unit as the ideal H∗>0(B) is nilpotent. Let
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us write x̄∨i for the dual H∗(B)-module basis of H∗(E) with respect to this pairing,
characterised by 〈x̄i , x̄∨j 〉 = δi j . Then for any x ∈ Hev(E) we have

Tr(− · x : Hev(E) → Hev(E)) =
∑

i

〈x̄i · x, x̄∨i 〉 =
∫

π

((∑
i

x̄i · x̄∨i

)
· x

)
,

so to establish the claimed formulawemust show that
∑

i x̄i ·x̄∨i = e(Tπ E) ∈ Hev(E).
The diagonal map� : E → E×B E is a map of smooth oriented manifolds, whose

normal bundle is identified with Tπ E . Thus the Euler class e(Tπ E) ∈ Hd(E) may be
described as �∗�!(1). It is therefore enough to show that

�!(1) =
∑

i

x̄i ⊗ x̄∨i ∈ H∗(E ×B E) = H∗(E)⊗H∗(B) H∗(E).

This is the parametrised analogue of the classical formula [32, Theorem 11.11] for
the Poincaré dual of the diagonal, and we shall prove it in the same way. For any
b ∈ H∗(B) we calculate

∫
E×B E

�!(1) · ((b · x̄∨j )⊗ x̄k) =
∫

E
b · x̄∨j · x̄k

=
∫

B
b

∫
π

x̄∨j · x̄k = δ jk

∫
B

b

and

∫
E×B E

(∑
i

x̄i ⊗ x̄∨i

)
· ((b · x̄∨j )⊗ x̄k) =

∑
i

∫
E×B E

(b · x̄∨j · x̄i )⊗ (x̄k · x̄∨i )

=
∑

i

∫
B

b
∫

π×Bπ

(x̄∨j · x̄i )⊗ (x̄k · x̄∨i )

=
∑

i

δi jδki

∫
B

b = δ jk

∫
B

b.

As the classes (b · x̄∨j ) ⊗ x̄k generate H∗(E ×B E) as a Q-module, it follows from
Poincaré duality for E ×B E that �!(1) =∑

i x̄i ⊗ x̄∨i , as required. 
�

2.3 Parametrised spectra and Schur functors

The technical device we shall use to attempt the argument of the previous section
without the Leray–Hirsch assumption is to consider a fibre bundle as a parametrised
manifold over its base, and make the argument in the parametrised setting. In order to
do so, we shall suppose that B is a connected CW-complex, and work in a symmetric
monoidal category (Sp/B,∧B, S0

B) of parametrised spectra over B. For concreteness
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we take the category developed by May–Sigurdsson [33].1 We will write r : B → {∗}
for the unique map; then, as Sp/∗ = Sp, by [33, Theorem 11.4.1] there are right and
left adjoint functors

r∗ : Sp −→ Sp/B and r! : Sp/B −→ Sp,

(apart from this map, the notation (−)! will always denote Gysin maps). The functor
r∗ is strong monoidal.

Our argument applies more generally than to oriented fibre bundles: for now, we
let π : E → B be a Hurewicz fibration (later we will add a finiteness hypothesis to
the fibres of π ). This defines a parametrised spectrum �∞B E ∈ Sp/B ; we shall abuse
notation and continue to call it E . Note that r!(E) ∈ Sp is the suspension spectrum
�∞E+.

The ring spectrum HQ has a 2-periodic version

H PQ =
∨
i∈Z

�2i HQ,

and we write π∗(H PQ) = Q[t±1] with t ∈ π2(H PQ). The constant parametrised
spectra HBQ := r∗(HQ) and H PBQ := r∗(H PQ) define ring objects in Sp/B , and
the main objects we will consider are the function objects

C := FB(E, HBQ) and C P := FB(E, H PBQ).

These are again ring objects, using the fibrewise diagonal map on E and the multipli-
cation on HBQ and H PBQ; we write μ for the multiplication on either object. The
map E → ∗ gives ring maps HBQ → C and H PBQ → C P , making them HBQ-
and H PBQ-modules respectively.

Let us write (HBQ-mod,⊗, HBQ) for the homotopy category of HBQ-module
spectra, with derived smash product of HBQ-modules as the symmetric monoidal
structure and unit HBQ; similarly write (H PBQ-mod,⊗, H PBQ) for the homo-
topy category of H PBQ-module spectra. We have C ∈ HBQ-mod and C P ∈
H PBQ-mod, and we can calculate

[�d HBQ, C]HBQ-mod = [�d S0
B, C]Sp/B

= [E, �−d HBQ]Sp/B
= [E, r∗(�−d HQ)]Sp/B

= [�∞E+, �−d HQ]Sp = H−d(E)

1 However, our arguments are not model-dependent and can be applied in the ∞-categorical formalism
of Ando, Blumberg, Gepner, Hopkins, and Rezk [2,3], and presumably even in more naïve models of
parametrised spectra.
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and

[H PBQ, C P]H PBQ-mod = [S0
B, C P]Sp/B

= [E, H PBQ]Sp/B
= [E, r∗(H PQ)]Sp/B

=
[
�∞E+,

∨
i∈Z

�2i HQ

]

Sp

=
⊕
i∈Z

H2i (E).

Both HBQ-mod and H PBQ-mod are Q-linear tensor categories (i.e. categories
enriched in Q-modules, equipped with a symmetric monoidal structure which is an
enriched functor) which are idempotent complete (the retract associated to an endo-
morphism e : X → X which is idempotent up to homotopy may be taken to be the
homotopy colimit of a diagram X

e→ X
e→ X

e→ · · · of modules over the appropriate
ring object).

We must now recall a little representation theory of symmetric groups; we need
nothing beyond Lecture 4 of [18]. To each partition λ of n there is associated an
irreducible representation Sλ of �n , with character χλ. This character takes rational
(in fact, integer) values, so we may form the element

dλ := dim Sλ

n!
∑

σ∈�n

χλ(σ ) · σ ∈ Q[�n],

which is central (as χλ is a class function) and idempotent (the coefficient dim Sλ

n! is
chosen to make this so). For any object X in aQ-linear tensor category (D,⊗,1), the
action of the nth symmetric group �n on X⊗n yields a map of Q-algebras

e : Q[�n] −→ HomD(X⊗n, X⊗n),

so e(dλ) is an idempotent endomorphism of X⊗n in D; if D is idempotent complete
then we write Sλ(X) for the corresponding retract of X⊗n in D: this defines the Schur
functor Sλ(−) on D. In this paper the trivial and sign representations will play the
most prominent role, and we write

∧n X := S(1n)(X) and Symn(X) := S(n)(X),

or, if we wish to emphasise the ambient category, ∧n
D and Symn

D.
The categories HBQ-mod and H PBQ-mod are idempotent complete Q-linear

tensor categories, so there are defined Schur functors on both categories. Furthermore,
let us write (VQ,⊗Q,Q) for the symmetric monoidal category of gradedQ-modules,
and (VQ[t±1],⊗Q[t±1],Q[t±1]) for the symmetricmonoidal category of gradedQ[t±1]-
modules (where t has degree 2). These are also idempotent complete Q-linear tensor
categories. Taking homotopy groups defines functors
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π∗(−) : HQ-mod −→ VQ

π∗(−) : H PQ-mod −→ VQ[t±1]

which are strong monoidal (by the Künneth theorem, as every graded Q- or Q[t±1]-
module is free). Taking derived homotopy fibres at b ∈ B defines functors

(−)b : HBQ-mod −→ HQ-mod

(−)b : H PBQ-mod −→ H PQ-mod

which are strong monoidal and reflect isomorphisms (by definition, cf. [33, Definition
12.3.4], as B is assumed path-connected). Finally,

−⊗Q Q[t±1] : VQ −→ VQ[t±1]

is also strongmonoidal. In particular, all of the above functors preserve Schur functors.

Lemma 2.4 Let X ∈ HBQ-mod or H PBQ-mod be such that for each fibre Xb we
have Sλ(π∗(Xb)) = 0. Then Sλ(X) � ∗.

Proof As taking homotopy groups preserves Schur functors, we have π∗(Sλ(Xb)) =
Sλ(π∗(Xb)) which vanishes by assumption. Thus Sλ(Xb) � ∗, so as taking derived
fibres preserves Schur functors it follows that Sλ(X)b � ∗. Thus the map from Sλ(X)

to the terminal object is an equivalence on derived fibres, and hence an equivalence,
as taking derived fibres reflects isomorphisms. 
�

2.4 Duals, trace, and transfer

We recall the framework of categorical traces, from [15]. If (C,⊗,1) is a symmetric
monoidal category and X ∈ C is an object, a strong dual of X is an object X∨ ∈ C
and morphisms

ε : X∨ ⊗ X −→ 1 η : 1 −→ X ⊗ X∨

such that the compositions (X⊗ε)◦ (η⊗ X) and (ε⊗ X∨)◦ (X∨⊗η) are the identity
maps of X and X∨ respectively. If f : X → Y is a map of objects having strong duals,
then the dual of f is

f ∨ : Y∨ Y∨⊗η−→ Y∨ ⊗ X ⊗ X∨ Y∨⊗ f⊗X∨−→ Y∨ ⊗ Y ⊗ X∨ ε⊗X∨−→ X∨.

If f : X → X is an endomorphism of X , the trace of f is the composition

Tr( f ) : 1 η−→ X ⊗ X∨ ∼= X∨ ⊗ X
f ∨⊗X−→ X∨ ⊗ X

ε−→ 1.
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This agrees with the perhaps more obvious choice

Tr( f ) : 1 η−→ X ⊗ X∨ f⊗X∨−→ X ⊗ X∨ ∼= X∨ ⊗ X
ε−→ 1,

but the first definition is that of [15]. Generalising this more obvious choice, if f :
A ⊗ X → B ⊗ X is a morphism then the trace of f over X is the composition

TrX ( f ) : A
A⊗η−→ A ⊗ X ⊗ X∨ f⊗X∨−→ B ⊗ X ⊗ X∨ ∼= B ⊗ X∨ ⊗ X

B⊗ε−→ B.

If X is in addition equipped with a comultiplication d : X → X ⊗ X then the
transfer of f is

τ( f ) : 1 η−→ X ⊗ X∨ ∼= X∨ ⊗ X
f ∨⊗d−→ X∨ ⊗ X ⊗ X

ε⊗X−→ X.

First, consider the symmetric monoidal category given by the homotopy category
of (Sp/B,∧B, S0

B).

Lemma 2.5 If π : E → B is a Hurewicz fibration and its fibre has the homotopy type
of a finite CW-complex, then its associated parametrised spectrum �∞B E is a strongly
dualisable object in the homotopy category of parametrised spectra.

Proof This follows from Theorem 15.1.1 of [33]. 
�
Suppose then thatπ : E → B is a Hurewicz fibration and its fibre has the homotopy

type of a finite CW-complex. Recall that we abuse notation by writing E for �∞B E .
The fibrewise suspension of the fibrewise diagonal map � : E → E ×B E gives a
comultiplication on the object E , we may thus form

trfπ = τ(IdE ) : S0
B −→ E .

On applying r! : Sp/B → Sp this gives a map of spectra �∞B+ → �∞E+, which
on cohomology gives a map

trf∗π : H∗(E) −→ H∗(B),

the Becker–Gottlieb transfer. See [10] or [33, Section 15.3] for this construction of
the Becker–Gottlieb transfer. When π : E → B is an oriented smooth fibre bundle,
by [9, Theorem 4.3] we have the identity

trf∗π (−) =
∫

π

e(Tπ E) · − : H∗(E) −→ H∗(B). (2.1)

In particular for c ∈ H∗(BSO(2n))we have that trf∗π (c(Tπ E)) = κec is a tautological
class.

Let us now consider the symmetricmonoidal categories (HBQ-mod,⊗, HBQ) and
(H PBQ-mod,⊗, H PBQ).
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Corollary 2.6 If π : E → B is a Hurewicz fibration and its fibre has the homo-
topy type of a finite CW-complex, then C = FB(E, HBQ) is a dualisable object of
HBQ-mod, and C P = FB(E, H PBQ) is a dualisable object of H PBQ-mod.

Proof The functor

FB(−, HBQ) : Ho(Sp/B) −→ HBQ-mod

has a monoidality given by the adjoint of the morphism

X ∧B Y ∧B (FB(X, HBQ) ∧HBQ FB(Y, HBQ)) −→ HBQ ∧B HBQ −→ HBQ

given by evaluation and product. This is a strong monoidality: the induced morphism

F(Xb, HQ) ∧HQ F(Yb, HQ) −→ F(Xb ∧ Yb, HQ)

on derived fibres is a weak equivalence (by the Künneth theorem, as every π∗(HQ) =
Q-module is free). As E ∈ Ho(Sp/B) is strongly dualisable by Lemma 2.5, so is
C = FB(E, HBQ), because strong monoidal functors preserve (strong) duals. The
argument for C P is identical. 
�

2.5 Schur-finiteness and trace identities

Deligne has introduced [13, §1] the notion of Schur-finiteness of an object X in an
idempotent complete Q-linear tensor category to be the property that Sλ(X) is trivial
for some partition λ � n. In this section we consider this notion applied to the category
(H PBQ-mod,⊗, H PBQ) and so consider an H PBQ-module X such that Sλ(X) � ∗,
and let us in addition suppose that X is dualisable in H PBQ-mod. Let us write X∨
for the dual of X , with duality structure given by η : H PBQ → X ⊗ X∨ and
ε : X∨ ⊗ X → H PBQ.

Given an endomorphism f : X → X , we may form the endomorphism

X⊗n X⊗ f ⊗n−1
−→ X⊗n e(dλ)−→ X⊗n

and take the trace over the last (n − 1) copies of X , i.e. apply the construction
TrX⊗n−1

(−) described in the previous section, to obtain an endomorphism of X . This
endomorphism is null because the idempotent e(dλ) : X⊗n → X⊗n factors through
Sλ(X) which is contractible by assumption.

We now translate this into formulas. We have dλ = dim Sλ

n!
∑

σ∈�n
χλ(σ ) · σ so

the essential calculation is to describe the endomorphism of X obtained from σ ◦
(X ⊗ f ⊗n−1) : X⊗n → X⊗n by taking the trace over the last (n − 1) copies of X .
This is a universal construction in idempotent complete Q-linear tensor categories,
and has been worked out by Abramsky [4, Proposition 3]. In the notation of that
proposition, one takes A1 = B1 = X and U2 = · · · = Un = X , then f1 = IdX and
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f2 = · · · = fn = f , and π = σ . The trace of σ ◦ (X ⊗ f ⊗n−1) over the last (n − 1)
copies of X is then given by

⎛
⎝ ∏

l∈L(σ )

sl

⎞
⎠ · (p−1σ ◦ g1).

Here p−1σ = IdX , and g1 is given by composing the fi along the cycle in σ starting
at 1: as f1 = IdX , if this cycle is (1, p2, . . . , pk) then this gives g1 = f ◦k−1; L(σ )

is the set of cycles in the permutation σ which do not contain 1, and for such a cycle
l = (p1, p2, . . . , pk) we have sl := Tr( f pk ◦ · · · ◦ f p1) = Tr( f ◦k).

Applying this discussion to the identity 0 = ∑
σ∈�n

χλ(σ ) · (σ ◦ (X ⊗ f ⊗n−1))
gives the identity

0 =
∑

σ∈�n

χλ(σ ) · Tr( f ◦l(γ2)) · · ·Tr( f ◦l(γq(σ ))) · f ◦l(γ1)−1 ∈ [X, X ]H PBQ-mod

(2.2)

where σ = γ1 · γ2 · · · γq(σ ) is a decomposition into disjoint cycles, with 1 being in the
support of γ1, and l(γi ) denotes the length of the cycle γi .

We originally learnt this idea from the thesis of del Padrone [16] (see [16, Propo-
sition 2.2.4] for a closely related result).

2.6 Proof of Theorem A under the first hypothesis

In this case we will work with the periodic chains C P . For each b ∈ B we have

π0(C Pb) =
⊕
i∈Z

H−2i (Eb) ∼=
⊕
i∈Z

H−2i (W ),

π1(C Pb) =
⊕
i∈Z

H−2i−1(Eb) ∼=
⊕
i∈Z

H−2i−1(W )

and so by 2-periodicity we have an isomorphism π∗(C Pb) ∼= H−∗(W ) ⊗Q Q[t±1]
of graded Q[t±1]-modules. Here the right-hand side is to be interpreted as the tensor
product of graded Q-modules, which in degree k is

⊕
−i+2n=k

H−i (W )⊗Q{tn}.

Thus we have ∧�
Q[t±1](π∗(C Pb)) ∼= ∧�

Q
(H−∗(W ))⊗Q Q[t±1].

Under hypothesis (H1) the cohomology H∗(W ) is concentrated in even degrees,
so if it has total degree k then we have

∧k+1
Q[t±1](π∗(C Pb)) ∼= ∧k+1

Q
(H−∗(W ))⊗Q Q[t±1] = 0



Some phenomena in tautological rings of manifolds 3849

and so it follows from Lemma 2.4 that ∧k+1C P � ∗.
As π : E → B is a fibre bundle with compact fibres Corollary 2.6 applies to it,

so C P is dualisable in H PBQ-mod and hence the discussion of the previous section
applies. Thus, as C P is a ring object in H PBQ-mod, for any

x ∈ H2p(E) ⊂
⊕
i∈Z

H−2i (E) = [H PBQ, C P]H PBQ-mod

multiplication by x yields an endomorphism x̂ : C P → C P , and in this case com-
posing the map (2.2) with 1 ∈ [H PBQ, C P]H PBQ-mod gives the identity

0 =
∑

σ∈�k+1
sign(σ ) · Tr(x̂◦l(γ2)) · · ·Tr(x̂◦l(γq(σ ))) · x◦l(γ1)−1 (2.3)

in [H PBQ, C P]H PBQ-mod, because the partition λ = (1k+1) corresponds to the sign
representation.

Corollary 2.7 The polynomial

ρx (z) := (−1)k

k!
∑

σ∈�k+1
sign(σ ) · trf∗π (xl(γ2)) · · · trf∗π (xl(γq(σ ))) · zl(γ1)−1 ∈ H2∗(B)[z]

is monic of degree k and satisfies ρx (x) = 0 ∈ H2∗(E).

Proof Let E∨ be a dual of E ∈ Ho(Sp/B), so C P∨ := FB(E∨, H PBQ) is a dual
in H PBQ-mod of C P . The Becker–Gottlieb transfer trf∗π is the map on cohomology
induced by the composition

S0
B

η−→ E ∧B E∨ ∼= E∨ ∧B E
E∨∧B�−→ E∨ ∧B E ∧B E

ε∧B E−→ E .

Applying FB(−, H PBQ), this is

C P
η∧C P−→ C P∨ ⊗ C P ⊗ C P

C P∨⊗μ−→ C P∨ ⊗ C P ∼= C P ⊗ C P∨ ε−→ H PBQ.

If t ∈ ⊕
i∈Z H−2i (E) = [H PBQ, C P]H PBQ-mod then composing the previous

map with t gives the class trf∗π (t) ∈ ⊕
i∈Z H−2i (B) = [H PBQ, H PBQ]H PBQ-mod.

The commutative diagram

H PBQ
t

η

C P
η∧C P

C P∨ ⊗ C P ⊗ C P
C P∨⊗μ

C P∨ ⊗ C P
∼=

C P ⊗ C P∨

ε

C P∨ ⊗ C P

C P∨⊗t̂

H PBQ
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shows that trf∗π (t) is the trace of t̂∨ : C P∨ → C P∨, which is the same as the trace of
t̂ : C P → C P: thus

trf∗π (t) = Tr(t̂) ∈ [H PBQ, H PBQ]H PBQ-mod =
⊕
i∈Z

H−2i (B).

In particular we have Tr(x̂◦i ) = trf∗π (xi ). Substituting this into (2.3) therefore
shows that

∑
σ∈�k+1

sign(σ ) · trf∗π (xl(γ2)) · · · trf∗π (xl(γq(σ ))) · xl(γ1)−1 = 0

in H2pk(E) ⊂ [H PBQ, C P]H PBQ-mod. The coefficient of xk is the sum over the
k!-many (k + 1)-cycles σ ∈ �k+1 of sign(σ ) = (−1)k , which is k!(−1)k . Thus after
dividing by this coefficient we see that ρx (x) = 0 as required. 
�

Applying this to the universal fibre bundle p : BDiff+(W, ∗) → BDiff+(W ) and
the cohomology class s∗c, and using the identity trf∗p((s∗c)i ) = κci e(p) from (2.1),
one obtains amonic polynomial ρc(z) ∈ R∗(W )[z] such that ρc(s∗c) = 0 ∈ R∗(W, ∗)
and hence that R∗(W, ∗) is integral over R∗(W ). Theorem A under hypothesis (H1)
follows by applying Proposition 2.1.

2.7 Proof of Theorem A under the second hypothesis

In this case we will work with the non-periodic chains C . We shall first prove the
following generalisation of a theorem of Grigoriev [22].

Theorem 2.8 Let W be a manifold of dimension 2n having rational cohomology only
in degrees 0, 2n, and odd degrees, and let d := dimQ Hodd(W ). Let π : E → B be a
smooth oriented fibre bundle with fibre W . Let a, b ∈ H∗(E) satisfy π!(a) = π!(b) =
0, and a have even degree. Then

π!(a2)
� d+1

2 � = 0 and π!(ab)d+1 = 0.

To begin with, we prove the following extension of Corollary 2.6, which is the
appropriate form of Poincaré duality in our setting.

Lemma 2.9 If π : E → B is a Hurewicz fibration over a CW-complex, its fibre F
has the homotopy type of a finite Poincaré complex of dimension n, and π1(B) acts
trivially on Hn(F), then an orientation of F determines an identification of the dual
of C with �nC in HBQ-mod.

Proof This is proved in Section 3.1 of [23] in dual form, where, passing to rational
coefficients, the equivalence is expressed as D f w

E : �n FB(E, HBQ)
∼→ E ∧B HBQ.

The domain of this morphism is �nC and as C = FB(E, HBQ) = FHBQ-mod(E ∧B

HBQ, HBQ) we recognise E ∧B HBQ as the dual of C . 
�
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We now consider a smooth oriented fibre bundle π : E → B as in the statement
of Theorem 2.8, with B a CW-complex; this satisfies the hypotheses of the previ-
ous lemma. Fibre integration π! : H∗(E) → H∗−2n(B) is realised in the category
HBQ-mod by the morphism π! : C → �−2n HBQ dual to the unit ι : HBQ → C ,
using the self-duality of C described in Lemma 2.9. We may thus define an HBQ-
module D′ by the homotopy fibre sequence

D′ −→ C
π!−→ �−2n HBQ.

The composition HBQ
ι→ C

π!→ �−2n HBQ is null, as it represents the class

π!(1) = 0 ∈ H−2n(B) = [HBQ, �−2n HBQ]HBQ-mod,

so ι lifts to a map ι′ : HBQ → D′ and we can define an HBQ-module D by the
homotopy cofibre sequence

HBQ
ι′−→ D′ −→ D.

Lemma 2.10 If W only has rational cohomology in degree 0, 2n, and odd degrees,
and d := dimQ Hodd(W ) then Symd+1(D) � ∗.

Proof The HQ-module spectrum Db is obtained by forming the homotopy fibre

sequence D′b → F(W, HQ)
π!→ �−2n HQ and then the homotopy cofibre sequence

HQ
ι′b→ D′b → Db. Now π∗(F(W, HQ)) = H−∗(W ), and the map

(π!)∗ : π∗(F(W, HQ)) = H−∗(W ) −→ π∗(�−2n HQ)

realises capping with the fundamental class so is surjective. By the associated long
exact sequence we have

π0(D′b) = Q{1}
πodd(D′b) = H−odd(W )

and the remaining even homotopy groups are zero. Now the map

(ι′b)∗ : Q = π0(HQ) −→ π0(D′b)

realises the unit so is an isomorphism, and it follows that πodd(Db) = H−odd(W ) and
the even homotopy groups of Db vanish. As the (d + 1)-st symmetric power of the
graded Q-module H−odd(W ) vanishes, the rest follows from Lemma 2.4. 
�

The map

D′ ⊗ D′ −→ C ⊗ C
μ−→ C

π!−→ �−2n HBQ
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is null when precomposed with D′ ⊗HBQ
D′⊗ι′→ D′ ⊗D′ or HBQ⊗D′ ι′⊗D′→ D′ ⊗D′,

so taking homotopy cofibres of these two maps gives a morphism

φ : D ⊗ D −→ �−2n HBQ.

Proof of Theorem 2.8 If a ∈ H−k(E) = [�k HBQ, C]HBQ-mod is such thatπ!(a) = 0
then it lifts to a map to D′ and hence determines a map ā : �k HBQ→ D. Similarly if
b ∈ H−�(E) satisfies π!(b) = 0 then it gives a b̄ : �� HBQ→ D. The class π!(a · b)

may therefore be represented by

�k HBQ⊗�� HBQ
ā⊗b̄−→ D ⊗ D

φ−→ �−2n HBQ.

Hence the class π!(a · b)N may be written as

(�k HBQ)⊗N ⊗ (�� HBQ)⊗N āN⊗b̄N−→ D⊗N ⊗ D⊗N φN

−→ (�−2n HBQ)⊗N ,

as the degree k of ā is even so no sign is incurred in rearranging the factors. As k
is even, the map āN : (�k HBQ)⊗N → D⊗N factors through SymN (D) which is
contractible as long as N ≥ d + 1. Hence π!(a · b)d+1 = 0.

Similarly, if a = b then we can choose b̄ = ā : �k HBQ → D in which case
the map āN ⊗ āN : (�k HBQ)⊗N ⊗ (�k HBQ)⊗N → D⊗N ⊗ D⊗N factors through

Sym2N (D), which is contractible as long as 2N ≥ d + 1. Hence π!(a2)
� d+1

2 � = 0. 
�
Now that we have Theorem 2.8, the entirety of Section 5 of [22] goes through with

only notational changes, as this only uses the statement of Grigoriev’s theorem. In
particular, for p ∈ H∗(BSO(2n)) of even degree and χ = χ(W ) �= 0, the analogue
of [22, Example 5.19] gives the relation

(
p − κep

χ
− eκp

χ
+ κe2κp

χ2

)d+1
= 0 ∈ R∗(W, ∗).

From this it is clear that R∗(W, ∗) is a finite R∗(W )-module, as the monomials in
Q[p1, p2, . . . , pn−1, e] where no variable occurs with exponent larger than d give a
finite set of module generators. Thus R∗(W, ∗) is integral over R∗(W ), so by Propo-
sition 2.1 the algebra R∗(W ) is finitely-generated. This proves Theorem A under
hypothesis (H2).

2.8 Tautological relations

Under either hypothesis we have established more than Theorem A, as we have pro-
duced explicit relations in R∗(W, ∗). Under hypothesis (H2) these relations are equal
to those obtained by Grigoriev, and under hypothesis (H1) they are given by Corollary
2.7 as
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0 =
∑

σ∈�k+1
sign(σ ) · κecl(γ2) · · · κecl(γq(σ )) · cl(γ1)−1 ∈ R∗(W, ∗)

for each c ∈ H∗(BSO(2n)), where k = dimQ H∗(W ). These may of course be
pushed forward to obtain relations in R∗(W ).

More generally, the trace identity technique of Sect. 2.5may be used to find relations
among tautological classes for any manifold. Recall that given a fibre bundle W →
E

π→ B we have formed an associated object C P ∈ H PBQ-mod. Let us write
dev = dimQ Hev(W ) and dodd = dimQ Hodd(W ). The first ingredient is the following
consequence of a calculation of Deligne.

Lemma 2.11 If λ is a partition whose Young diagram contains the rectangle (dev +
1)× (dodd + 1), then Sλ(C P) � ∗.

Proof By Lemma 2.4 it is enough to verify that Sλ(π∗(C Pb)) = 0 for all b ∈ B. But
we have shown that π∗(C Pb) ∼= H−∗(W ) ⊗ Q[t±1] as graded Q[t±1]-modules so
Sλ(π∗(C Pb)) vanishes if Sλ(H−∗(W )) does, where the latter Schur functor is taken
in VQ. By [13, Corollary 1.9] a (Z/2-)graded vector space is annihilated by Sλ(−)

under the given assumption on its (super)dimension. 
�
In particular, for a given manifold W we may take λ to be the partition of n =

(dev+1) ·(dodd+1)with Young diagram equal to the rectangle (dev+1)×(dodd+1),
so that we have Sλ(C P) � ∗ and hence by (2.2) we have the relation

0 =
∑

σ∈�n

χλ(σ ) · κecl(γ2) · · · κecl(γq(σ )) · cl(γ1)−1 ∈ R∗(W, ∗).

It is a simple exercisewith theMurnaghan–Nakayama rule to show that the character
χλ vanishes on all n-cycles if both dev > 0 and dodd > 0. As dev cannot be zero,
because H0(W ) �= 0, it follows that this relation is a monic polynomial in c (after
perhaps scaling by a rational number) if and only if dodd = 0. (This accounts for
why we restricted to manifolds with only even rational cohomology in the first case
of Theorem A.)

3 Torus actions

In this section we suppose that we have a smooth action of the torus T = (S1)k on a
d-dimensional orientable manifold W . We write W T for the fixed set of this action.
The Borel construction gives a smooth fibre bundle

W −→ W//T
π−→ BT, (3.1)

and the action of T on the tangent bundle T W → W gives a vector bundle T T W :=
T W//T → W//T , which is the vertical tangent bundle of the smooth fibre bundle π .
Following the usual notation of equivariant cohomology we write

H∗
T = H∗(BT ;Q) = Q[x1, x2, . . . , xk] and H∗

T (W ) = H∗(W//T ;Q).
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As (3.1) is a smooth fibre bundle, there is a ring homomorphism ρ : R∗(W ) → H∗
T ,

and we denote by R∗T ≤ H∗
T its image. Pulling back π along itself gives a smooth

fibre bundle over W//T with canonical section, and so a ring homomorphism ρ∗ :
R∗(W, ∗) → H∗

T (W ), and we denote by R∗T (∗) ≤ H∗
T (W ) its image.

Our goal in this section is to describe conditions on themanifold W and the action of
T on W which allow us to estimate theKrull dimension of R∗(W ) as Kdim(R∗(W )) ≥
k. We will regularly use the following standard piece of commutative algebra: when
one ring is integral over another they have the same Krull dimension, by the “going
up” and “going down” theorems [5, Ch. 5]. Our most general result is as follows.

Theorem 3.1 Let T act smoothly and effectively on a connected closed orientable
manifold W . Let V1, V2, . . . , Vp be an enumeration of the T -representations arising
as normal spaces to points on W T , and let Bi denote the Euler characteristic of the
subspace of W T consisting of those path components having normal representation
Vi .

If some yi ∈ Q[y1, y2, . . . , yp] is integral over the subring generated by

p∑
i=1

Bi yn
i , n = 1, 2, 3, . . . ,

then H∗
T is integral over R∗T . In particular Kdim(R∗(W )) ≥ k.

It is perhaps not clear when the hypothesis of this theorem is likely to hold. The
following lemma, which we learnt from [8], gives a simple criterion.

Lemma 3.2 Suppose that we have discarded the Bi which are zero, and that this is not
all of them. If the remaining numbers B1, B2, . . . , Bp have all partial sums non-zero,
then Q[y1, y2, . . . , yp] is finite over the subring generated by

p∑
i=1

Bi yn
i , n = 1, 2, 3, . . . , (3.2)

and so every yi is integral over this subring.

Proof Write B ≤ Q[y1, y2, . . . , yp] for the subring generated by the ∑p
i=1 Bi yn

i , and
B+ for the subset of positive-degree elements.
Claim. If

√
(B+) = (y1, y2, . . . , yp) then Q[y1, . . . , yp] is finite over B.

Our proof of this claim follows the discussion at [26]. Under the assumption the
quotient ring Q[y1, y2, . . . , yp]/(B+) has every yi nilpotent, so is a finite Q-module;
let z1, z2, . . . , zm ∈ Q[y1, y2, . . . , yp] be lifts of these finitely-many generators,which
can be taken to be homogeneous as the ideal (B+) is homogeneous. We claim that
these generate Q[y1, y2, . . . , yp] as a B-module; let M ⊂ Q[y1, y2, . . . , yp] be the
B-submodule that they generate.

As the zi are homogeneous, and B is generated by homogeneous elements, M is a
graded submodule of Q[y1, y2, . . . , yp] with the monomial-length grading. Suppose
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p ∈ Q[y1, y2, . . . , yp] is an element of minimal grading which does not lie in M .
Then we may write

p =
m∑

i=1
Ui zi +

∑
Vj b j

withUi ∈ Q, Vj ∈ Q[y1, y2, . . . , yp], and b j ∈ (B+). But the b j have strictly positive
degree, so the Vj have strictly smaller degree than p so must lie in M , and hence p
does too, which proves the claim.

In order to prove the lemma we must therefore show that (y1, y2, . . . , yp) =
(0, 0, . . . , 0) is the only simultaneous solution to the equations

∑p
i=1 Bi yn

i = 0 for
n ∈ N. If (y1, y2, . . . , yp) ∈ Q

p is a solution, then grouping terms with yi = y j

together we obtain distinct rational numbers ȳi solving the equations

q∑
i=1

B̄i ȳn
i = 0

where each B̄i is a partial sum of the Bi , and hence non-zero by assumption. But
this means that the vector (B̄1 ȳ1, . . . , B̄q ȳq) is in the kernel of the (transposed) Van-
dermonde matrix associated to (ȳ1, . . . , ȳq), so as the ȳi are all distinct it follows
that (B̄1 ȳ1, . . . , B̄q ȳq) = 0, and as the B̄i are all non-zero it follows that ȳi = 0 as
required. 
�

The following corollary, whilst not so powerful as Theorem 3.1, is often easier to
apply as one does not need to classify the normal representations at the fixed set.

Corollary 3.3 Let the path components X1, X2, . . . , X� of the fixed set W T have
Euler characteristics A1, A2, . . . , A�. If some xi ∈ Q[x1, x2, . . . , x�] is integral over
the subring generated by

�∑
i=1

Ai xn
i , n = 1, 2, 3, . . . ,

then H∗
T is integral over R∗T . In particular Kdim(R∗(W )) ≥ k.

Proof Consider the ring homomorphism φ : Q[x1, x2, . . . , x�] → Q[y1, y2, . . . , yp]
defined by sending xi to y j if the normal representation at every point of Xi is Vj .
Then

φ

(
�∑

i=1
Ai xn

i

)
=

�∑
i=1

Aiφ(xi )
n =

p∑
j=1

B j yn
j

so φ sends the subring A ⊂ Q[x1, x2, . . . , x�] generated by the
∑�

i=1 Ai xn
i onto the

subring B ⊂ Q[y1, y2, . . . , yp] generated by the
∑p

i=1 Bi yn
i .
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If xi is integral over A then there is a polynomial q(x) =∑
ai xi with coefficients

in A such that q(xi ) = 0. Then q ′(y) = ∑
φ(ai )yi is a polynomial over B such that

q ′(φ(xi )) = 0, so y j = φ(xi ) is integral over B, and hence Theorem 3.1 applies. 
�
Example 3.4 There are several standard conditions which oblige a torus action on a
manifold W to have connected fixed-set. For example

(i) Let W have dimension 2n, and suppose that all its cohomology apart from
H0(W ;Q) and H2n(W ;Q) lies in odd degrees, and that there is some coho-
mology in odd degrees. Then W T is connected (by the localisation theorem in
equivariant cohomology, which we will describe in the following section).

(ii) If W has trivial even-dimensional rational homotopy groups, then W T is empty
or connected [25, Theorem IV.5].

In such cases χ(W T ) = χ(W ), so if this is non-zero then the hypotheses of Corollary
3.3 are satisfied.

Example 3.5 Suppose that the action of T k onW has isolatedfixedpoints, ormore gen-
erally that all Ai are equal and non-zero. Then the subring generated by the

∑�
i=1 Ai xn

i
is the subring of symmetric polynomials inQ[x1, x2, . . . , x�], and every xi is integral
over this so the hypotheses of Corollary 3.3 are satisfied.

This immediately implies that if W 2n is a quasitoric manifold (that is, the “toric
manifolds” of [14]) then Kdim(R∗(W )) ≥ n, as such manifolds by definition have
an action of an n-torus with isolated fixed points. Slightly more subtly, if G/K is
a homogeneous space of rank zero (i.e. rk(G) = rk(K )) then a common maximal
torus T of G and K acts on G/K with fixed points given by the finite set (WG(T ) ·
K )/K ⊂ G/K , where WG(T ) := NG(T )/T denotes the (finite) Weyl group of G, so
Kdim(R∗(G/K )) ≥ rk(G).

3.1 The localisation theorem

We now prepare for the proof of Theorem 3.1. Let X1, X2, . . . , X� be the components
of the fixed set W T , with di := dim(Xi ), let νXi be the normal bundle of Xi in
W , and let νi be the T -representation which arises as each fibre of νXi . Let us write
Ai := χ(Xi ), and write V1, V2, . . . , Vp for an enumeration of the T -representations
νi which arise. Then we have Bi =∑

j s.t. ν j=Vi
A j .

Let us write ρi : H∗
T (W ) → H∗

T (Xi ) for the restriction map in equivariant coho-

mology, and π! : H∗
T (W ) → H∗−d

T and (πi )! : H∗
T (Xi ) → H∗−di

T for the fibre
integration maps. As the T -action on Xi is trivial we have Xi//T = BT × Xi , and so
the fibre integration map (πi )! is simply given by slant product with the fundamental
class of Xi . As T acts on the normal bundle νXi → Xi , there is an induced vector
bundle νT

Xi
:= νXi //T → Xi//T .

Let S ⊂ H∗
T be the multiplicative subset of nonzero elements. The localisation

theorem in equivariant cohomology (of Borel [11, XII.§3], Hsiang [24] and Quillen
[35, Section 4]) says that the map

⊕
i

ρi : S−1H∗
T (W ) −→

⊕
i

S−1H∗
T (Xi )
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is an isomorphism. Even more is true: Atiyah and Bott have shown [1, eq (3.8)] that
the class e(νT

Xi
) ∈ S−1Hd−di

T (Xi ) is a unit and that we have a commutative diagram

S−1H∗
T (W ) ∼

⊕
i

ρi

π!

⊕
i

S−1H∗
T (Xi )

⊕
i

e(νT
Xi

)−1

∼
⊕

i
S−1H∗+di−d

T (Xi )

∑
i (πi )!

S−1H∗−d
T S−1H∗−d

T .

(3.3)

See [6, p. 366] for a textbook exposition of the localisation theorem.

3.2 Proof of Theorem 3.1

Using the diagram (3.3) to compute

κepI = π!(e(T T W )pI (T
T W )) ∈ S−1H∗

T ,

which we know lies in the subring H∗
T , gives

κepI =
�∑

i=1
(πi )!

(
e(T Xi ⊕ νT

Xi
)pI (T Xi ⊕ νT

Xi
)

e(νT
Xi

)

)

=
�∑

i=1
(πi )!(e(T Xi )pI (T Xi ⊕ νT

Xi
))

and in H∗
T (Xi ) = H∗

T ⊗ H∗(Xi ) we have

pI (T Xi ⊕ νT
Xi

) = pI (νi )⊗ 1+ terms with a nontrivial H∗(Xi ) component.

When we multiply by e(T Xi ) and integrate over Xi the latter terms do not contribute,
so as

∫
Xi

e(T Xi ) = χ(Xi ) = Ai we get

κepI =
�∑

i=1
Ai pI (νi ) ∈ H∗

T .

Grouping these terms by the representation types Vj instead gives

κepI =
p∑

i=1
Bi pI (Vi ) ∈ H∗

T . (3.4)
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Applying this to pI = pn
j we find that

p∑
i=1

Bi p j (Vi )
n ∈ R∗T for all j and n.

Applying the hypothesis of the theorem for each j , we find that there exists an i such
that all p j (Vi ) lie in a common integral extension R∗T ⊆ R′ ⊆ H∗

T . On the one hand
R′ is integral over R∗T . On the other hand by a theorem of Venkov [37] the ring H∗

T is
finite over the subring generated by the p j (Vi ) (because Vi is a faithful representation
of T , by the standard lemma given below), and hence is finite (and so integral) over
R′. It follows that H∗

T is integral over R∗T , so in particular they have the same Krull
dimension, namely k.

Finally, R∗(W ) → R∗T is surjective and so Kdim(R∗(W )) ≥ Kdim(R∗T ) = k.

Lemma 3.6 If T acts effectively and smoothly on a connected closed manifold W ,
then any T -representation arising as the normal space to a point on W T is faithful.

Proof We may choose a T -invariant Riemannian metric on W , so the exponential
map exp : T W → W is equivariant; the restriction of the exponential map to a fibre
Tx W → W is a diffeomorphism when restricted to a neighbourhood of 0 ∈ Tx W .

If the action of T on the normal space V to W T at x had a non-trivial kernel
{e} < T ′ ≤ T then the T ′-action on Tx W = T (W T )⊕V is trivial. By exponentiating,
it follows that T ′ fixes an open neighbourhood of x ∈ W . Thus the fixed set W T ′ is a
submanifold of W which contains an open subset; as W is connected it follows that it
is the whole of W . This contradicts the action being effective. 
�

3.3 An extension

The discussion so far gives a technique more general Theorem 3.1, but difficult to
formalise in a single result. It is best described through an example.

Proposition 3.7 Let T act effectively on W with two fixed components X1 and X2.
Suppose that χ(X1) = −χ(X2) �= 0 but that the normal T -representations ν1 and
ν2 at X1 and X2 have all Pontrjagin classes distinct (when they are non-zero). Then
Kdim(R∗(W )) ≥ k.

Proof We have that

1
χ(X1)

κepn
j
= p j (ν1)

n − p j (ν2)
n ∈ R∗T ≤ H∗

T

for all j and n, and p j (ν1)− p j (ν2) �= 0 ∈ R∗T . Hence

p j (ν1) = 1

2

(
p j (ν1)− p j (ν2)+ p j (ν1)

2 − p j (ν2)
2

p j (ν1)− p j (ν2)

)
∈ R∗T [(p j (ν1)− p j (ν2))

−1].
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Therefore after inverting the finite set

S := {p j (ν1)− p j (ν2), j = 1, 2, . . .}

of non-zero elements in R∗T ≤ H∗
T = Q[x1, x2, . . . , xk], we find that the p j (ν1)

lie in S−1R∗T , and hence by Venkov’s theorem [37] that S−1H∗
T is a finite S−1R∗T -

module. As S−1H∗
T still has Krull dimension k (there is a maximal ideal m of H∗

T
not containing the product of the finitely-many elements in S—as the intersection of
all maximal ideals is zero—whence (S−1H∗

T )S−1m ∼= (H∗
T )m so S−1m is a maximal

ideal of S−1H∗
T of height k), it follows that S−1R∗T has Krull dimension k and so

Kdim(R∗T ) ≥ k. Hence Kdim(R∗(W )) ≥ k. 
�

4 Examples

4.1 Manifolds with mostly odd cohomology

Let W be a 2n-dimensional manifold whose cohomology is only non-trivial in degrees
0, 2n, and odd degrees, let d = dimQ Hodd(W ), and suppose χ(W ) = 2 − d �= 0.
Then by Theorem A the Q-algebra R∗(W ) is finitely-generated and R∗(W, ∗) is a
finite R∗(W )-module.

Furthermore, by ourmethod of proof,Grigoriev’s theoremholds for thesemanifolds
(our Theorem 2.8). Therefore the results of Sections 2 and 3 of [21] hold for W as
well, as Grigoriev’s theorem was the only external input. So if d > 2 then

Q[κep1, . . . , κepn−1 ] −→ R∗(W )/
√
0

is surjective. Hence Kdim(R∗(W )) ≤ n − 1.
By Example 3.4 (i), if T = (S1)k acts on such a manifold W then the fixed set

W T is connected, so Kdim(R∗(W )) ≥ k. The construction of [21, Section 4.1] can be
mimicked to obtain an action of SO(k)× SO(2n− k) on #g Sk× S2n−k for any k, and
the calculation of the characteristic classes κepi for the associated bundle is entirely
analogous.

We obtain the following generalisation of the results of [21].

Corollary 4.1 For k odd and g > 1 we have

Q[κep1, . . . , κepn−1 ] ∼−→ R∗(#g Sk × S2n−k)/
√
0

and

R∗(#g Sk × S2n−k)/
√
0

∼−→ R∗(#g Sk × S2n−k, ∗)/√0.

Furthermore (2− 2g) · c = κec ∈ R∗(#g Sk × S2n−k, ∗)/√0, so

R∗(#g Sk × S2n−k, D2n)/
√
0 = Q,
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and hence R∗(#g Sk × S2n−k, D2n) is a finite-dimensional Q-vector space.

As in [21] results can be obtained for g = 0 or 1 too, but we shall not write them
out here.

4.2 Quasitoric manifolds

A quasitoric manifold W 2n has by definition a smooth action of T = (S1)n with
isolated fixed points, so has Kdim(R∗(W )) ≥ n by Corollary 3.3. Furthermore, the
integral cohomology of W is supported in even degrees, so its rational cohomology
is too, and therefore by Theorem A the Q-algebra R∗(W ) is finitely-generated and
R∗(W, ∗) is a finite R∗(W )-module.

4.3 Non-finite generation

We shall give some examples of manifolds W for which R∗(W ), and in fact even
R∗(W )/

√
0, is not finitely-generated. We shall do so by constructing actions of a

torus T on W and showing that the tautological subring R∗T ≤ H∗
T is not finitely-

generated. As H∗
T is an integral domain the natural surjection R∗(W ) → R∗T factors

through R∗(W )/
√
0, which therefore shows that R∗(W )/

√
0 is not finitely-generated.

Before attempting this method there is an important observation to be made.

Observation 4.2 Let T = (S1)k act on W satisfying the hypotheses of Theorem 3.1;
then that theorem shows that the inclusion R∗T ↪→ H∗

T is integral.
As H∗

T is Noetherian, and H∗(BT ; H∗(W )) is a finitely-generated H∗
T -module, it

follows from the Serre spectral sequence for the Borel construction that H∗
T (W ) is a

finitely-generated H∗
T -module and hence is integral over H∗

T .
Therefore the morphism R∗T → H∗

T → H∗
T (W ) is integral, so R∗T → R∗T (∗) is

integral too. It then follows from applying Lemma 2.2 as in the proof of Proposition
2.1 that R∗T → R∗T (∗) is finite and R∗T is a finitely-generated Q-algebra.

So to pursue the programme we have suggested one should only try to use torus
actions which do not satisfy the hypotheses of Theorem 3.1. The following allows us
to construct manifolds with torus actions having prescribed normal representations
and Euler characteristics of its fixed sets.

Construction 4.3 Fix a positive odd integer n and an even integer k. Let �(k)2n be
the 2n-manifold of Euler characteristic k obtained as #g Sn × Sn (if k is non-positive)
or

∐g S2n (if k is positive). Let H(k)2n+1 be the manifold with boundary �(k)2n

given by �g Sn × Dn+1 or
∐g D2n+1 respectively.

Let T be a torus, and suppose we are given even integers B1, B2, . . . , Bp and dis-
tinct faithful complex T -representations V1, V2, . . . , Vp, which are all of the same
dimension and which have no trivial subrepresentations. Then we can form the mani-
fold

M(i) = M(Bi , Vi ) := H(Bi )
2n+1 × S(Vi ) ∪�(Bi )×S(Vi ) �(Bi )

2n × D(Vi ).
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which has a T -action on the right-hand factors. We may then let M be the disjoint
union M = M(1) � M(2) � · · · � M(p).

As Vi is a representation having no trivial subrepresentations, T acts freely on S(Vi )

and its only fixed point on D(Vi ) is 0. Thus M(i)T = �(Bi )
2n × {0}, and the normal

representation at these fixed points is given by Vi .
Each Vi may be written as a sum L1 ⊕ · · · ⊕ Lm of 1-dimensional complex T -

representations; if a unit vector v ∈ S(Vi ) is written in components as (l1, . . . , lm)with
all l j non-zero, then a t ∈ T which stabilises it must act trivially on each L j , so must
act trivially on Vi , so t must be the identity as Vi is a faithful T -representation. Thus
such a v ∈ S(Vi ) must lie in a free orbit, so in particular each path component of M(i)
has a free orbit. If one prefers a connected manifold, such free orbits in two different
path components have tubular neighbourhoods T -equivariantly diffeomorphic to T ×
D2n+2m−rk(T ), which can therefore be cut out and the remaining pieces glued together
T -equivariantly along the commonboundaries T×S2n+2m−rk(T )−1.Doing this enough
times yields a connected T -manifold with the same fixed-point data, and hence by
localisation with the same characteristic classes.

Lemma 4.4 The T -manifold M so obtained has κpI = 0 and

κepI =
p∑

i=1
Bi · pI (Vi ) ∈ H∗

T .

Proof The second statement follows from (3.4). An analogous calculation shows that

κpI =
p∑

i=1
(πi )!

(
pI (T Xi ⊕ νT

Xi
)

e(νT
Xi

)

)
.

The bundle νXi → Xi is trivial, so the equivariant bundle νT
Xi

is isomorphic to the
pullback of Vi to Xi//T = BT × Xi . Thus the total Pontrjagin class satisfies

p(T Xi ⊕ νT
Xi

) = p(Vi )⊗ p(T Xi ) = p(Vi )⊗ 1 ∈ H∗
T ⊗ H∗(Xi )

as T Xi is stably trivial, and so p j (T Xi ⊕ νT
Xi

) = p j (Vi )⊗ 1. Hence

pI (T Xi ⊕ νT
Xi

)

e(νT
Xi

)
= pI (Vi )

e(Vi )
⊗ 1

which pushes forward to zero (as dim(Xi ) = 2n > 0), so κpI = 0. 
�
We now give our example.

Example 4.5 Let T = (S1)2 and V1 be the 2-dimensional complex T -representation
with weights {x1 + x2, x2}, and V2 be the 2-dimensional complex T -representation
withweights {x1, x2}. Construction 4.3with B1 = 2 and B2 = −2 yields a T -manifold



3862 O. Randal-Williams

W (which may be chosen to have any dimension at least 6 and congruent to 2 modulo
4) having κpI = 0 and

κepI = 2(pI (V1)− pI (V2)) ∈ H∗
T = Q[x1, x2].

For the chosen representations the total Pontrjagin classes are

p(V1) = (1− (x1 + x2)
2)(1− x22 )

p(V2) = (1− x21 )(1− x22 ).

Let us consider the image of the tautological subring R∗T ≤ H∗
T = Q[x1, x2] in the

quotient Q[x1, x2]/(x22 ). Here p2(V1) = p2(V2) = 0 and

p1(V1) = −(2x1x2 + x21 )

p1(V2) = −x21 ,

so the only non-zero κepI in this quotient ring are

κepi
1
= 2(−1)i ((2x1x2 + x21 )

i − (x21 )
i ) = 4i(−1)i x2i−1

1 x2,

so the image of R∗T in Q[x1, x2]/(x22 ) is the subring S := Q〈x1x2, x31 x2, x51 x2, . . .〉.
The ring S is an infinite-dimensionalQ-vector space, as the x2i−1

1 x2 all have different
degrees and are non-zero as they are not divisible by x22 . On the other hand, multiplica-
tion of any two positive-degree elements in S is zero, as each positive-degree element
is divisible by x2 so a product is divisible by x22 . Thus S is infinitely-generated, so R∗T
is too, and hence R∗(W )/

√
0 is too.

Let us record some observations about this example.

Remark 4.6 If we suppose that n ≥ 5 is odd and the T -manifolds M(2, V1) and
M(−2, V2) are glued along a free orbit as suggested above, then the (2n+4)-manifold
M obtained is simply-connected and has the same integral homology as

(S2 × S2n+2)#(S2 × S2n+2)#(S3 × S2n+1)#(Sn × Sn+4)#(Sn × Sn+4).

Remark 4.7 Although this tautological ring is not finitely-generated, Proposition 3.7
applies to this torus action and gives Kdim(R∗(W )) ≥ 2. (Specifically, we have

p1(V1)− p1(V2) = −(2x1x2 + x22 ) p2(V1)− p2(V2) = x22 (2x1x2 + x22 )

so after inverting s := x2(2x1+ x2) �= 0 ∈ R∗T the subring s−1R∗T ≤ s−1H∗
T contains

p1(V1), p2(V1), p1(V2), and p2(V2).)
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Remark 4.8 Choosing ∗ ∈ X2 gives a map R∗(W, ∗) → H∗
T , whose image is

generated by the κepI = 2(pI (V1) − pI (V2)) along with the characteristic classes
of the representation V2, which are e(V2) = x1x2, p1(V2) = −(x21 + x22 ), and
p2(V2) = x21 x22 . Rearranging a little shows that this is the subring generated by
e(V2) and the p j (Vi ), so is finitely generated. (Similarly if we choose ∗ ∈ X1.) This
raises the interesting possibility that R∗(W, ∗) might be finitely-generated in more
generality than R∗(W ) is.

4.4 The complex projective plane

Let us consider the manifold CP
2, whose cohomology is supported in even degrees.

Thus by Theorem A the Q-algebra R∗(CP2) is finitely-generated and R∗(CP2, ∗)
is a finite R∗(CP2)-module. We will explain estimates on the generators for these
algebras, using the relations developed in Sect. 2.5. The computations were done with
assistance from Maple™.

The trace identity technique of Sect. 2.5 gives the relation

c3 = κecc2 − κ2
ec − κec2

2! c + κ3
ec − 3κecκec2 + 2κec3

3! ∈ R∗(CP2, ∗)

for any c ∈ H∗(BSO(4)) = Q[p1, e]. In particular, for c = e and c = p1 we obtain

e3 = κe2e2 − κ2
e2
− κe3

2! e + κ3
e2
− 3κe2κe3 + 2κe4

3! (4.1)

p31 = κep1 p21 −
κ2

ep1 − κep21

2! p1 +
κ3

ep1 − 3κep1κep21
+ 2κep31

3! (4.2)

Wemay partially polarise the relation by taking c = e+t · p1, expanding and collecting
coefficients of powers of t . The coefficients of 1 and of t3 simply give the relations
(4.1) and (4.2). The coefficient of t gives

− κe3 p1 − (1/2)κ2
e2κep1 − κe2 p1e − κep1e2 + (1/2)κ2

e2 p1 + κe2κe2 p1

− (1/2)κe3 p1 + (1/2)κep1κe3 + κe2κep1e − 2κe2ep1 + 3e2 p1 = 0 (4.3)

and the coefficient of t2 gives

(1/2)eκ2
ep1 − (1/2)κ2

ep1κe2 − κe2 p21
− (1/2)eκep21

+ κep1κe2 p1

+ (1/2)κep21
κe2 − p1κe2 p1 − p21κe2 + p1κep1κe2 − 2ep1κep1 + 3ep21 = 0. (4.4)

(More generally, one could fully polarise this relation, by writing c = u+ t ·v+ s ·w,
expanding out and taking the coefficient of ts: this gives a trilinear form in the variables
(u, v, w) which vanishes for all u, v, w ∈ H∗(BSO(4)) = Q[p1, e], and there is no
reason to take these to be linear terms. However, we will not pursue this here.)
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The relations (4.1), (4.2), (4.3) and (4.4), multiplied by monomials inQ[p1, e] and
pushed forward, show that certain κea pb

1
∈ R∗(CP2) are decomposable. Specifically

κxp31
is decomposable for any monomial x �= 1, e, p1

κxep21
is decomposable for any monomial x �= 1, e, p1

κxe2 p1 is decomposable for any monomial x �= 1, e, p1

κxe3 is decomposable for any monomial x �= 1, e, p1.

Writing ≡ to mean “equal modulo decomposables”, there are further relations:

(i) Pushing (4.2) forward gives κp31
≡ 3

2κep21
.

(ii) Pushing (4.2) multiplied by p1 forward gives κp41
≡ κep31

.

(iii) Pushing (4.1) forward gives that κe3 is decomposable, and in fact that κe3 = κ2
e2
.

(iv) Pushing (4.1) multiplied by p1 forward gives κe3 p1 ≡ κe4 .
(v) Pushing (4.3) multiplied by p1 forward gives κe2 p21

≡ κe3 p1 .
(vi) Pushing (4.4) forward gives 2κe2 p1 ≡ κep21

.
(vii) Pushing (4.4) multiplied by p1 forward gives κep31

≡ κe2 p21
.

Using these relations we find that the five classes

κp21
, κp31

, κp41
, κep1 , κe2 ∈ R∗(CP2)

generate.
As described in [21, Section 2], it follows from work of Atiyah [7] that for each

Hirzebruch class Li the associated class κLi ∈ R∗(W ) is pulled back via the natural
map

φ : BDiff+(W ) −→ BAut(H, λ),

where H = Hn(W ;Z)/torsion and λ : H ⊗ H → Z is the intersection form of W .
For W = CP

2 the bilinear form (H, λ) = (Z, (1)) has automorphism group Z/2,
which has trivial rational cohomology. Thus the classes κLi ∈ R∗(CP2) are zero. The
first few are

7κe2 − κp21
= 0

−13κe2 p1 + 2κp31
= 0

−19κe4 + 22κe2 p21
− 3κp41

= 0

127κe4 p1 − 83κe2 p31
+ 10κp51

= 0

8718κe6 − 27635κe4 p21
+ 12842κe2 p41

− 1382κp61
= 0

−7978κe6 p1 + 11880κe4 p31
− 4322κe2 p51

+ 420κp71
= 0

−68435κe8 + 423040κe6 p21
− 407726κe4 p41

+ 122508κe2 p61
− 10851κp81

= 0

11098737κe8 p1 − 29509334κe6 p31
+ 20996751κe4 p51

− 5391213κe2 p71
+ 438670κp91

= 0.
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The first Hirzebruch relation allows us to remove κe2 from the list of generators. The
second Hirzebruch relation, with the relations κp31

≡ 3
2κep21

≡ 3κe2 p1 proved above,
shows that κp31

is decomposable. This proves the

Lemma 4.9 The classes κp21
, κp41

, κep1 generate R∗(CP2).

Let the ideal I ofQ[κp21
, κp41

, κep1 ] be generated by those relations implied by (4.1)–

(4.4) for κea pb
1
for a + b ≤ 9, and the Hirzebruch relations listed above.2 Generators

for this ideal can be computed to be

(4κp21
− 7κep1)(κp21

− 2κep1)κp41

(4κp21
− 7κep1)(κp21

− 2κep1)(21κep1 + 8κp21
)

(4κp21
− 7κep1)(316κ

3
ep1 − 343κp41

)

(4κp21
− 7κep1)(1264κp21

κ2
ep1 + 2212κ3

ep1 − 5145κp41
).

This ideal is not radical, and
√

I is generated by

(4κp21
− 7κep1)(κp21

− 2κep1)

(4κp21
− 7κep1)(316κ

3
ep1 − 343κp41

).

Corollary 4.10 There is a surjection from

Q[κp21
, κep1 , κp41

]/((4κp21
− 7κep1)(κp21

− 2κep1), (4κp21
− 7κep1)(316κ

3
ep1 − 343κp41

))

to R∗(CP2)/
√
0.

One can see that this quotient ring containsQ[κp21
, κp41

] as a subring and is integral
over it, so it has Krull dimension 2. It follows that Kdim(R∗(CP2)) ≤ 2.

4.4.1 Fixing a point

It follows from Lemma 4.9 that R∗(CP2, ∗) is generated by e, p1, κp21
, κp41

and
κep1 . Adding to the ideal I above the relations (4.1)–(4.4) gives an ideal J of
Q[e, p1, κp21

, κp41
, κep1 ] which is rather complicated, but its radical is generated by

the relations

2 The threshold a + b ≤ 9 is not significant, and one could try to go further, but we have checked that
adding those relations with a + b = 10 does not change the ideal I .
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(4κp21
− 7κep1)(κp21

− 2κep1)

1264κp21
κ3ep1 − 2212κ4ep1 − 1372κp21

κp41
+ 2401κp41

κep1

10κp21
κep1 − 28κp21

p1 − 21κ2ep1 − 14κep1e + 63κep1 p1

3κp21
κep1 − 28κp21

e − 7κ2ep1 + 42κep1e + 7κep1 p1

45κp21
κep1 − 112κ2ep1 − 84κep1e + 182κep1 p1 + 196e2 − 196p21

15κp21
κep1 − 35κ2ep1 + 14κep1e + 35κep1 p1 + 196e2 − 196ep1

316κ4ep1 + 1264κ3ep1e − 1264κ3ep1 p1 − 343κp41
κep1 − 1372κp41

e + 1372κp41
p1

12263κp21
κ2ep1−19446κ3ep1+168κ2ep1e−168κ2ep1 p1−4116κep1e2+16464e3−5488κp41

the last of which shows that the generator κp41
may be eliminated from the ring

Q[e, p1, κp21
, κp41

, κep1 ]/
√

J . One may also deduce from these relations that κep1 and

κp21
are integral over Q[e, p1], so that R∗(CP2, ∗)/√0 is finite over Q[e, p1].

4.4.2 Fixing a disc

As passing from R∗(CP2, ∗) to R∗(CP2, D4) in particular kills e and p1, we deduce
from the above that

Corollary 4.11 R∗(CP2, D4) is a finite-dimensional Q-vector space.

In fact, setting K = J + (e, p1) and simplifying, we find that K is generated by

κ4
p21

κ2
p21

(105κep1 − 11κp21
)

κp21
(245κ2

ep1 − 52κ2
p21

) 1029κ3
ep1 − 52κ3

p21

245κp41
− 29κ3

p21

and R∗(CP2, D4) is a quotient of Q[κp21
, κp41

, κep1 ]/K so

Corollary 4.12 dimQ R∗(CP2, D4) ≤ 7.

4.4.3 Lower bounds via torus actions

Consider the standard toric action of the torus T = (S1)2 on CP
2, via

S1 × S1 × CP
2 −→ CP

2

(ξ1, ξ2, [z0 : z1 : z2]) �−→ [z0 : ξ1z1 : ξ2z2]
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This gives a ring homomorphismφ : R∗(CP2) → H∗
T = Q[x1, x2]. It is an elementary

exercise to compute, by equivariant localisation, the classes

φ(κp21
) = 7x21 − 7x1x2 + 7x22

φ(κep1) = 4x21 − 4x1x2 + 4x22

φ(κp41
) = 23x61 − 69x51 x2 + 135x41 x22

− 155x31 x32 + 135x21 x42 − 69x1x52 + 23x62

and by eliminating variables to find that the unique relation between these is φ(7κep1−
4κp21

) = 0. Thus φ gives a surjection

R∗(CP2)/
√
0 −→ Q[κp21

, κep1 , κp41
]/(7κep1 − 4κp21

)

and hence Kdim(R∗(CP2)) ≥ 2. Combining this with the above gives

Corollary 4.13 Kdim(R∗(CP2)) = 2.

The fixed point [1 : 0 : 0] of the T -action gives an extension of φ to a ring
homomorphism φ̂ : R∗(CP2, ∗)/√0→ H∗

T = Q[x1, x2]. At this fixed point we have

φ̂(s∗e) = x1x2

φ̂(s∗ p1) = x21 + x22

which shows that the image of φ̂ is isomorphic to

Q[κp21
, κep1 , κp41

, e, p1]/(κp21
− 7p1 + 7e, κep1 − 4p1 + 4e,

17e3 − 66e2 p1 + 69ep21 − 23p31 + κp41
),

or in other words Q[e, p1].
Remark 4.14 In [19,20] there is given an analysis of S1-actions on simply-connected
4-manifolds, fromwhich it is possible to deduce—through a very laborious considera-
tion of cases and analysis of fixed-point data—that for any circle action onCP2 we have
4κe2 = κep1 and so by the first Hirzebruch relation we have 4κp21

− 7κep1 = 0. Alter-

natively, this may be proved using Hsiang’s splitting theorem for the S1-equivariant
cohomology of CP2 [25, Theorem VI.1].

4.4.4 The tautological variety

We find it quite revealing to consider the (reduced) tautological ring R∗(CP2)/
√
0 by

considering its associated variety VCP2 . The choice of generators κp21
, κp41

, and κep1



3868 O. Randal-Williams

of R∗(CP2) presents VCP2 as a subvariety of A3, and it follows from Corollary 4.10
that VCP2 is contained in the union of the plane

P := {4κp21
− 7κep1 = 0}

and the line

L := {κp21
− 2κep1 = 0, 316κ3

ep1 − 343κp41
= 0}.

Furthermore, it follows from the calculation of Sect. 4.4.3 thatVCP2 contains P, so the
variety VCP2 is either P or P ∪ L. It would be extremely interesting if L ⊂ VCP2 , but
no method for showing this seems to be available. (Each circle action on CP2 gives a
homomorphism R∗(CP2)/

√
0→ Q[x1] and hence a morphism A1 → VCP2 , but by

Remark 4.14 all such morphisms have image in P.)
Similarly, by the calculation of Sect. 4.4.1 the four elements e, p1, κp21

, and κep1

generate R∗(CP2, ∗)/√0, which presents the associated variety V(CP2,∗) as a subva-
riety ofA4. Eliminating the variable κp41

from the radical ideal described in Sect. 4.4.1
shows that V(CP2,∗) is contained in the union of the plane

{4κp21
− 7κep1 = 0, κep1 − 4p1 + 4e = 0}

and the lines

{κp21
− 2κep1 = 0, e = 0, κep1 − 7p1 = 0}

{κp21
− 2κep1 = 0, 2κep1 − 7e = 0, 5κep1 − 7p1 = 0}.

It follows from the calculation of Sect. 4.4.3 that the plane is contained in V(CP2,∗).

4.5 The manifold S2 × S2

The cohomology of S2 × S2 is supported in even degrees. Thus by Theorem A the
algebra R∗(S2× S2) is finitely-generated and R∗(S2× S2, ∗) is a finite R∗(S2× S2)-
module.

The trace identity technique of Sect. 2.5 gives the relation

c4 = κecc3 − κ2
ec − κec2

2
c2 + κ3

ec − 3κecκec2 + 2κec3

6
c

− κ4
ec

24
+ κ2

ecκec2

4
− κ2

ec2

8
− κecκec3

3
+ κec4

4
∈ R∗(S2 × S2, ∗)

for any c ∈ H∗(BSO(4)) = Q[p1, e]. Partially polarising via c = e + t · p1 as in
Sect. 4.4, we obtain the relations

(1/8)κ2
ep21
+ (1/24)κ4

ep1 − (1/6)p1κ
3
ep1 − (1/4)κ2

ep1κep21
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+ (1/2)p21κ
2
ep1 − (1/3)p1κep31

+ (1/3)κep1κep31
− p31κep1

− (1/2)p21κep21
− (1/4)κep41

+ p41 + (1/2)p1κep1κep21
= 0 (4.5)

− p21κe2 p1 − (1/6)κ3
ep1e + κep1κe2 p21

− p1κe2 p21
+ (1/6)κ3

ep1κe2

+ (1/3)κep31
κe2 − p31κe2 + (1/2)κep21

κe2 p1 − (1/2)κ2
ep1κe2 p1

+ 4ep31 − (1/3)eκep31
− (1/2)κep1κep21

κe2 + (1/2)p1κep21
κe2

− (1/2)p1κ
2
ep1κe2 + p21κep1κe2 − ep1κep21

+ (1/2)eκep1κep21

+ ep1κ
2
ep1 − 3ep21κep1 + p1κep1κe2 p1 − κe2 p31

= 0 (4.6)

6e2 p21 + (1/4)κ2
ep1κ

2
e2 + (1/2)p21κ

2
e2 − (1/2)e2κep21

+ (1/2)e2κ2
ep1 − p1κe3 p1 + κep1κe3 p1 + (1/4)κep21

κe3 − (1/4)κ2
ep1κe3

− (1/2)p21κe3 − eκe2 p21
+ κe2κe2 p21

− (1/4)κep21
κ2

e2

− (1/2)eκ2
ep1κe2 − 3ep21κe2 − 3e2 p1κep1

+ (1/2)p1κep1κe3 + (1/2)κ2
e2 p1

+ (1/2)eκep21
κe2

− (1/2)p1κep1κ
2
e2 + eκep1κe2 p1 + p1κe2κe2 p1

− 2ep1κe2 p1 − κep1κe2κe2 p1 + 2ep1κep1κe2 − (3/2)κe3 p21
= 0 (4.7)

(1/2)κe2 p1κe3 − (1/2)κ2
e2κe2 p1 − e2κe2 p1 − (1/6)κ3

e2 p1

+ (1/6)κ3
e2κep1 + κe2κe3 p1 − e3κep1 + (1/3)κep1κe4 − (1/3)p1κe4

− eκe3 p1 + (1/2)p1κe2κe3 − (1/2)κep1κe2κe3 + (1/2)eκep1κe3

− ep1κe3 + eκe2κe2 p1 + ep1κ
2
e2 − (1/2)eκep1κ

2
e2 − 3e2 p1κe2

+ e2κep1κe2 − κe4 p1 + 4e3 p1 = 0 (4.8)

(1/8)κ2
e3 + (1/24)κ4

e2 − (1/6)eκ3
e2 + (1/2)e2κ2

e2 − (1/4)κ2
e2κe3

+ (1/2)eκe2κe3 − (1/4)κe5 − e3κe2 − (1/2)e2κe3 − (1/3)eκe4

+ (1/3)κe2κe4 + e4 = 0 (4.9)

Modulo decomposables in R∗(S2 × S2), when multiplied by monomials in Q[e, p1]
and fibre integrated these give the relations

κxp41
is decomposable for any monomial x �= e

κxep31
is decomposable for any monomial x �= e

κxe2 p21
is decomposable for any monomial x �= e

κxe3 p1 is decomposable for any monomial x �= 1, e

κxe4 is decomposable for any monomial x �= e.
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This shows that all generators apart from

κp21
, κp31

, κep1 , κep21
, κe2 , κe2 p1 , κe3 , κe3 p1 , κe5

are decomposable. The Hirzebruch relations of the previous section hold here as well,
as the bilinear form associated to S2 × S2 is (Z2,

(
0 1
1 0

)
) which also has finite auto-

morphism group. The first two Hirzebruch relations κe2 = 1
7κp21

and κe2 p1 = 2
13κp31

allow us to remove two of these generators, and so we find that

Lemma 4.15 The classes κp21
, κp31

, κep1 , κep21
, κe3, κe3 p1 , κe5 generate R∗(S2 × S2).

Consider the ideal I of Q[κp21
, κp31

, κep1 , κep21
, κe3, κe3 p1 , κe5] of relations implied

by (4.5)–(4.9) for κea pb
1
for a + b ≤ 9, and the Hirzebruch relations of the previous

section. It is quite complicated, but it is easy to compute (in Macaulay2) that it has
codimension 3.

Corollary 4.16 Kdim(R∗(S2 × S2)) ≤ 4.

4.5.1 Fixing a point

It follows from Lemma 4.9 that R∗(S2 × S2, ∗) is generated by e, p1, κp21
, κp31

, κep1 ,

κep21
, κe3, κe3 p1 , κe5 . Adding to the ideal I above the relations (4.5)–(4.9) gives an ideal

J of Q[e, p1, κp21
, κp31

, κep1 , κep21
, κe3, κe3 p1 , κe5 ] which has codimension 5.

4.5.2 Fixing a disc

Passing from R∗(S2 × S2, ∗) to R∗(S2 × S2, D4) in particular kills e and p1, and we
may compute the radical of the ideal K := J + (e, p1), giving the following.

Corollary 4.17 R∗(S2 × S2, D4)/
√
0 is a quotient of

Q[κp21
, κp31

, κep1 , κep21
, κe3 , κe3 p1 , κe5 ]

(κp31
, κp21

, κ2
e3
− 2κe5, κep1κe3 − 2κe3 p1 , κ

2
ep1 − 2κep21

)
∼= Q[κep1, κe3 ]

so has Krull dimension at most 2.

4.5.3 Lower bounds via torus actions

We will use a family of almost-complex torus actions φk : T 2 → Diff(S2 × S2)

defined for k ∈ N. These actions are well-known among symplectic geometers: we
learnt their construction from work of Karshon [27], suggested to us by Ivan Smith. In
that paper these actions are constructed as the toric varieties associated to the Delzant
polytopes
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and it follows from [27, Lemma 3], and the fact that k = 0 yields S2 × S2, that
all the manifolds so obtained are diffeomorphic to S2 × S2. In toric geometry the
above polytope should be considered as lying in the dual t∗ of the Lie algebra of
T , having integral basis {x1, x2} which we identify with the cartesian coordinates in
the figure above. The T 2-fixed points correspond to the vertices of the polytope, and
the weights at each fixed point are given by the pair of elements of t∗ given by the
two primitive integral vectors associated to the edges incident at that vertex (cf. [12,
Example 7.3.19]). For the polytope above the weights are therefore

{x1, x2}, {x1,−x2}, {−x1, 2kx1 − x2}, {−x1, x2 − 2kx1}.

It follows that at the four fixed points of the action φk the Euler class is

x1x2,−x1x2, x1(x2 − 2kx1), x1(2kx1 − x2)

and the Pontrjagin class p1 = c21 − 2c2 is

x21 + x22 , x21 + x22 , (4k2 + 1)x22 − 4kx1x2 + x21 , (4k2 + 1)x22 − 4kx1x2 + x21

We may thus compute the map

ψk : Q[κp21
, κp31

, κep1 , κep21
, κe3 , κe3 p1 , κe5 ] −→ R∗(S2 × S2)

φk−→ H∗
T = Q[x1, x2]

by equivariant localisation, giving

κp21
= 0

κp31
= 0

κep1 = 8k2x22 − 8kx2x1 + 4x22 + 4x21

κep21
= 32k4x42 − 64k3x32 x1 + 16k2x42 + 48k2x22 x21 − 16kx32 x1 − 16kx2x31 + 4x42

+ 8x22 x21 + 4x41

κe3 = 8k2x42 − 8kx32 x1 + 4x22 x21

κe3 p1 = 32k4x62 − 64k3x52 x1 + 8k2x62 + 48k2x42 x21 − 8kx52 x1 − 16kx32 x31 + 4x42 x21

+ 4x22 x41

κe5 = 32k4x82 − 64k3x72 x1 + 48k2x62 x21 − 16kx52 x31 + 4x42 x41
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By eliminating x1, x2, and k from the above, one finds generators for the ideal U :=
∩k∈N Ker(ψk) of Q[κp21

, κp31
, κep1 , κep21

, κe3 , κe3 p1 , κe5 ] to be

κp21

κp31

κep21
κe3 − κ2

e3 − κep1κe3 p1 + 4κe5

κ3
e3 − κep1κe3κe3 p1 + κ2

ep1κe5 + 4κ2
e3 p1

− 4κep21
κe5 − 4κe3κe5,

so this ideal has codimension 4. There is a surjection

R∗(S2 × S2) −→ Q[κp21
, κp31

, κep1 , κep21
, κe3 , κe3 p1 , κe5 ]/U,

and hence theKrull dimension of R∗(S2×S2) is bounded below by 7−codim(U ) = 3.

Corollary 4.18 Kdim(R∗(S2 × S2)) ≥ 3.

Note that each ideal Ker(ψk) of Q[κp21
, κp31

, κep1 , κep21
, κe3, κe3 p1 , κe5] has codi-

mension 5, so each particular torus action only gives 2 as a lower bound for
Kdim(R∗(S2 × S2)): it is only by considering the countably-many such actions that
we are able to improve this lower bound to 3.

Acknowledgements I am grateful to Søren Galatius for an enlightening discussion of the ideas in Sect. 2
of this paper, and to Jens Reinhold and Dexter Chua for spotting several errors. I would also like to thank
the anonymous referee for their useful suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)
2. Ando, M., Blumberg, A.J., Gepner, D.: Parametrized spectra, multiplicative Thom spectra, and the

twisted Umkehr map. Geom. Topol. (to appear). arXiv:1112.2203 (2011)
3. Ando, M., Blumberg, A.J., Gepner, D., Hopkins, M.J., Rezk, C.: An∞-categorical approach to R-line

bundles, R-module Thom spectra, and twisted R-homology. J. Topol. 7(3), 869–893 (2014)
4. Abramsky, S.: Abstract scalars, loops, and free traced and strongly compact closed categories. In:

Algebra and Coalgebra in Computer Science, Lecture Notes in Computer Science, vol. 3629, pp. 1–
29. Springer, Berlin (2005)

5. Atiyah, M .F., Macdonald, I .G.: Introduction to Commutative Algebra. Addison-Wesley, Reading
(1969). Reading, Mass.-London-Don Mills, Ont.,

6. Allday, C., Puppe, V.: Cohomological Methods in Transformation Groups, Cambridge Studies in
Advanced Mathematics, vol. 32. Cambridge University Press, Cambridge (1993)

7. Atiyah, M.F.: The Signature of Fibre-bundles, Global Analysis (Papers in Honor of K. Kodaira),
pp. 73–84. Univ. Tokyo Press, Tokyo (1969)

8. Brookner, A., Corwin, D., Etingof, P., Sam, S.V.: On Cohen-Macaulayness of Sn -invariant subspace
arrangements. Int. Math. Res. Not. 2016(7), 2104–2126 (2015)

9. Becker, J.C., Gottlieb, D.H.: The transfer map and fiber bundles. Topology 14(1), 1–12 (1975)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1112.2203


Some phenomena in tautological rings of manifolds 3873

10. Becker, J.C., Gottlieb, D.H.: Transfer maps for fibrations and duality. Compos. Math. 33(2), 107–133
(1976)

11. Borel, A.: Seminar on Transformation Groups, With Contributions by G. Bredon, E. E. Floyd, D.
Montgomery, R. Palais. Annals of Mathematics Studies, No. 46. Princeton University Press, Princeton
(1960)

12. Buchstaber, V.M., Panov, T.E.: Toric Topology, Mathematical Surveys and Monographs, vol. 204.
American Mathematical Society, Providence (2015)

13. Deligne, P.: Catégories tensorielles. Mosc. Math. J. 2(2), 227–248 (2002)
14. Davis, M.W., Januszkiewicz, T.: Convex polytopes, Coxeter orbifolds and torus actions. Duke Math.

J. 62(2), 417–451 (1991)
15. Dold, A., Puppe, D.: Duality, trace, and transfer. Proceedings of the International Conference on

Geometric Topology (Warsaw, 1978), pp. 81–102. PWN, Warsaw (1980)
16. Del Padrone, A.: Schur-functors, nilpotency and Motives, Ph.D. thesis, Università di Genova (2006)
17. Faber, C.: A Conjectural Description of the Tautological Ring of the Moduli Space of Curves, Moduli

of Curves and Abelian Varieties, Aspects Mathematics, E33, pp. 109–129. Vieweg, Braunschweig
(1999)

18. Fulton, W., Harris, J.: Representation Theory Graduate Texts in Mathematics, vol. 129. Springer, New
York (1991). A first course, Readings in Mathematics

19. Fintushel, R.: Circle actions on simply connected 4-manifolds. Trans. Am. Math. Soc. 230, 147–171
(1977)

20. Fintushel, R.: Classification of circle actions on 4-manifolds. Trans. Am. Math. Soc. 242, 377–390
(1978)

21. Galatius, S., Grigoriev, I., Randal-Williams, O.: Tautological rings for high-dimensional manifolds.
Compos. Math. 153(4), 851–866 (2017)

22. Grigoriev, I.: Relations among characteristic classes of manifold bundles. Geom. Topol. 21(4), 2015–
2048 (2017)

23. Hebestreit, F., Land,M., Lück,W.,Randal-Williams,O.:AVanishingTheorem forTautologicalClasses
of Aspherical Manifolds, arXiv:1705.06232 (2017)

24. Hsiang, W.Y.: On some fundamental theorems in cohomology theory of topological transformation
groups. Taita J. Math. 2, 61–87 (1970)

25. Hsiang,W.Y.:CohomologyTheory ofTopological TransformationGroups. Springer,NewYork (1975).
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85

26. Jeff: Is a polynomial ring integral over this subring? MathOverflow. http://mathoverflow.net/q/110250
(version: 2012-10-21)

27. Karshon, Y.: Maximal tori in the symplectomorphism groups of Hirzebruch surfaces. Math. Res. Lett.
10(1), 125–132 (2003)

28. Looijenga, E.: On the tautological ring of Mg . Invent. Math. 121(2), 411–419 (1995)
29. Morita, S.: Families of Jacobian manifolds and characteristic classes of surface bundles. I. Ann. Inst.

Fourier 39(3), 777–810 (1989)
30. Morita, S.: Families of Jacobian manifolds and characteristic classes of surface bundles. II. Math. Proc.

Camb. Philos. Soc. 105(1), 79–101 (1989)
31. Morita, S.: Generators for the tautological algebra of the moduli space of curves. Topology 42(4),

787–819 (2003)
32. Milnor, J.W., Stasheff, J.D.: Characteristic Classes, vol. 93. Princeton University Press, Princeton

(1974)
33. May, J.P., Sigurdsson, J.: Parametrized Homotopy Theory, Mathematical Surveys and Monographs,

vol. 132. American Mathematical Society, Providence (2006)
34. Mumford, D.: Towards an Enumerative Geometry of the Moduli Space of Curves, Arithmetic and

Geometry, Vol. II, Progress in Mathematics, vol. 36, pp. 271–328. Birkhäuser Boston, Boston (1983)
35. Quillen, D.: The spectrum of an equivariant cohomology ring. I. Ann. Math. (2) 94, 549–572 (1971)
36. Randal-Williams, O.: Relations among tautological classes revisited. Adv.Math. 231(3–4), 1773–1785

(2012)
37. Venkov, B.B.: Cohomology algebras for some classifying spaces. Dokl. Akad. Nauk SSSR 127, 943–

944 (1959)

http://arxiv.org/abs/1705.06232
http://mathoverflow.net/q/110250

	Some phenomena in tautological rings of manifolds
	Abstract
	1 Introduction
	1.1 Recollections on tautological rings
	1.2 Finiteness
	1.3 Krull dimension
	1.4 Examples

	2 Tautological relations and finite generation
	2.1 Integrality
	2.2 Outline
	2.3 Parametrised spectra and Schur functors
	2.4 Duals, trace, and transfer
	2.5 Schur-finiteness and trace identities
	2.6 Proof of Theorem A under the first hypothesis
	2.7 Proof of Theorem A under the second hypothesis
	2.8 Tautological relations

	3 Torus actions
	3.1 The localisation theorem
	3.2 Proof of Theorem 3.1
	3.3 An extension

	4 Examples
	4.1 Manifolds with mostly odd cohomology
	4.2 Quasitoric manifolds
	4.3 Non-finite generation
	4.4 The complex projective plane
	4.4.1 Fixing a point
	4.4.2 Fixing a disc
	4.4.3 Lower bounds via torus actions
	4.4.4 The tautological variety

	4.5 The manifold S2 timesS2
	4.5.1 Fixing a point
	4.5.2 Fixing a disc
	4.5.3 Lower bounds via torus actions


	Acknowledgements
	References




