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Abstract. In this paper, we explore intricate connections between Ra-
manujan’s theta functions and a class of partition functions defined by
the nature of the parity of their parts. This consequently leads us to the
parity analysis of the crank of a partition and its correlation with the
number of partitions with odd number of parts, self-conjugate partitions,
and also with Durfee squares and Frobenius symbols.
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1. Introduction

A partition of a positive integer n is a finite non-increasing sequence of positive
integers π1, π2, . . . , πr such that

∑r
i=1 πi = n. The πi are called the parts of

the partition. The partition (π1, π2, . . . , πr) will be denoted by π, and we shall
write π � n to denote that π is a partition of n. The partition function p(n)
is the number of partitions of n. A partition of n has a Durfee square of side
s if s is the largest number such that the partition contains at least s parts
with values ≥ s. One of the more significant results in the elementary theory
of partitions is the Euler’s fundamental and beautiful theorem:

Theorem 1.1 [11, Theorem 1.1.10]. The number of partitions of a positive in-
teger n into distinct parts equals the number of partitions of n into odd parts.

Consider the following refinement of Euler’s theorem which is stated
above. Let k and n be positive integers with k ≥ 2. Then the number of
partitions of n into parts which are not multiples of k, denoted by p(n, k),
equal to the number of partitions of n into parts with multiplicity of parts
< k. For example, there are six partitions enumerated by p(5, 4) are 5, 3 +
2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. For k = 2, we retrieve
Theorem 1.1.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00026-022-00615-1&domain=pdf


566 K. Banerjee and M. G. Dastidar

Ramanujan [19,20] investigated p(n), and discovered congruences in spe-
cial arithmetic progressions such as:

p(5n + 4) ≡ 0 (mod 5),
p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11). (1.1)

Define

(a; q)0 := 1, (a; q)n :=
n−1∏

k=0

(1 − aqk), n ≥ 1;

(a; q)∞ := lim
n→∞(a; q)n, |q| < 1.

Ramanujan’s two-variable general theta function is defined as

f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1. (1.2)

Three special cases of (1.2) are defined by, in Ramanujan’s notation

φ(q) := f(q, q) =
∞∑

n=−∞
qn2

,

ψ(q) := f(q, q3) =
∞∑

n=0

qn(n+1)/2,

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞.

Besides the above three functions, Ramanujan defines a further one

χ(q) := (−q; q2)∞,

which is not a theta function but it plays a prominent role in the theory of
theta functions. Following Ramanujan’s definition (1.2), Jacobi’s famous triple
product identity [1, Theorem 2.8]

∞∑

n=−∞
qn2

zn = (−qz; q2)∞(−q/z; q2)∞(q2; q2)∞, |q| < 1 and z �= 0

takes the shape

f(a, b) = (−a, ab)∞(−b, ab)∞(ab, ab)∞. (1.3)

From [10, Entry 31, Equation (31.1)], it follows that we can express f(a, b) as
the n-linear combination of theta functions in the following form

f(a, b) =
n−1∑

r=0

ar(r+1)/2br(r−1)/2f

(an(n+1)/2+nrbn(n−1)/2+nr, an(n−1)/2−nrbn(n+1)/2−nr). (1.4)

For a more comprehensive analysis on Ramanujan’s theta function, we refer to
[10, Chapter 16]. We shall subsequently present two results, namely Lemma 1.2
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(resp. Lemma 1.3) for 5-dissection of f(−q) (resp. 1/f(−q)). Ramanujan de-
fined what was later called the Rogers–Ramanujan continued fraction

R(q) :=
q1/5

1 +

q

1 +

q2

1 +

q3

1 +...
= q1/5 f(−q,−q4)

f(−q2,−q3)
, |q| < 1. (1.5)

Lemma 1.2 [11, p. 161 and p. 164]. If T (q) := q1/5

R(q) = f(−q2,−q3)
f(−q,−q4) ,

T (q5) − q − q2

T (q5)
=

(q; q)∞
(q25; q25)∞

. (1.6)

Lemma 1.3 [11, p. 165, Equation (7.4.14)].

1
(q; q)∞

=
(q25; q25)5∞
(q5; q5)6∞

(

T 4(q5) + qT 3(q5) + 2q2T 2(q5) + 3q3T (q5)

+ 5q4 − 3q5

T (q5)
+

2q6

T 2(q5)
− q7

T 3(q5)
+

q8

T 4(q5)

)

.

(1.7)

In 1944, Dyson [14] discovered a beautiful combinatorial interpretation
for the congruences of p(n) modulo 5 and 7 by introducing the concept of
the rank of integer partitions and later, Andrews and Garvan [7] defined and
established the crank, hypothesized by Dyson, to give a combinatorial proof
of congruence for p(n) modulo 11 (1.1).

Definition 1.4 ([7]). For a partition π, let l(π) denote the largest part of π,
w(π) denote the number of 1s in π and μ(π) denote the number of parts of π
that are larger than w(π). The crank c(π) is given by

c(π) =

{
l(π), ifw(π) = 0,
μ(π) − w(π), ifw(π) > 0.

Let ce(n) (resp. co(n)) be the number of partitions of n with even (resp.
odd) crank and further, let ce,o(n) be the difference between ce(n) and co(n)
[2, Equation (6.2)]. The study on ce,o(n) began with the work of Andrews and
Lewis [8]. Further investigation on ce,o(n) which describes both combinatorial
results and analytic ones which include Ramanujan type congruences modulo
powers of 5 and classical asymptotic formula were introduced in the work of
Choi, Kang, and Lovejoy [13]. We find in Andrews’ [2, Section 6] how Ra-
manujan’s third-order mock theta functions φ3(q) and ψ3(q) also come into
prominence in the study of classical ranks and cranks in partitions.

Definition 1.5 ([16]). The Frobenius symbol is obtained through extraction
from the Ferrers graph of a partition π as follows: We delete the diagonal of
the Ferrers graph. If the diagonal is of length j, we form the top row of the
Frobenius symbol using the nodes to the right of the diagonal and similarly
form the bottom row from the nodes below the diagonal. The Frobenius symbol
of π is denoted by F(π).

For instance, in the partition π = (7, 4, 4, 2, 1) � 18, the Ferrers graph is



568 K. Banerjee and M. G. Dastidar

and correspondingly the Frobenius symbol F(π) is
(

6 2 1
4 2 0

)

.

Ramanujan’s theta functions are the central theme of this paper. At
the very outset, we establish a few partition identities where restrictions are
imposed on the partition functions based on the parity of parts and their
correlation to the aforementioned theta functions. A slew of investigations have
been carried out on the parity study of partitions in recent years. Andrews’ [3]
studied on the parts of partitions that are separated by parity, either all odd
parts are smaller than all even parts or vice versa. Bringmann and Jennings-
Shaffer [12] have extended the work of Andrews’ with a thorough q-series
analysis that finally connects the parity study of partitions to the regime of
partial theta functions, Ramanujan’s third-order mock theta function ν(q),
and combinatorial interpretation by hook-type statistics in [9]. We will see
how the parity biases of parts in partitions entangled with partitions with
multiplicity of parts less than or equals to 4, denoted by p(n, 4), finally connect
very naturally to Ramanujan’s theta functions. We undertake a detailed study
on the parity of cranks through the lens of Ramanujan’s theta functions (see
Theorems 1.6 and 1.7 below). Next, we examine the parity and associated
congruence properties of the function delineating the difference between even
and odd cranks of partitions (see Theorem 1.8). We prove a congruence modulo
5 for ce,o(n) by analyzing 5-dissection of Ramanujan’s theta functions which
in turn shows that an arithmetic progression of the sequence co(n) is divisible
10 (see Theorem 1.9), without using the machinations of modular forms, as
given in [13, Theorem 1.2]. The novelty of Theorem 1.10 is that it identifies the
odd crank enumeration of partitions with those partitions into odd number of
parts and self-conjugate partitions through Liouville’s function λ. Following
the work done in [6,18], Theorem 1.11 springs up rather organically. Here, we
count Frobenius symbols with restrictions on the entries and equate them to
the enumeration of number of partitions with no parts that equal the size of
the Durfee square of that partition, two ideas in the theory of partitions that
are very rarely correlated.

The rest of this paper is organized as follows: in the remaining part
of this section, we shall state all the main results, see Theorems 1.6–1.11.
Before presenting the theorems, we shall provide all the necessary definitions,
sometimes with examples, so as to ease the stating of the theorems. The proofs
of Theorems 1.6–1.11 are given in Sect. 2.

We consider partitions whose odd parts unrestricted (resp. even parts
distinct) tagged by couplet “ou” (resp. “ed”). Let pou,ed(n) denote the number
of partitions of n such that odd parts are unrestricted and even parts are
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distinct and Eu(n) denote the number of partitions of n such that even parts
are unrestricted and each positive even integer smaller than the largest even
part must appear as a part of the partition. As an instance, the six partitions
enumerated by pou,ed(5) are 5, 4+1, 3+2, 3+1+1, 2+1+1+1, 1+1+1+1+1
and those for Eu(5) are 5, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1.

Theorem 1.6. Let
ψ(q)
φ(q)

:=
∞∑

n=0

aψ,φ(n)qn.

Then, we have

p(n, 4) = pou,ed(n) = Eu(n) = (−1)naψ,φ(n). (1.8)

Od(n) denote the number of partitions of n such that the odd parts are
distinct and each positive odd integer smaller than the largest odd part must
appear as a part of the partition. For example, the six partitions enumerated
by Od(9) are 8 + 1, 6 + 2 + 1, 4 + 4 + 1, 4 + 2 + 2 + 1, 5 + 3 + 1.

Theorem 1.7. ∞∑

n=0

Od(2n + 1)qn =
ψ(q4)
f(−q)

.

Theorem 1.8.
ce,o(n) ≡ p(n) (mod 2).

Moreover based on the numerical evidences, it seems that for all n ≥ 0,

co(2n) ≡ 0 (mod 4).

This has been checked up to n = 2000. We leave this as an open problem.

Theorem 1.9.
ce,o(5n + 4) ≡ 0 (mod 5) (1.9)

and
co(5n + 4) ≡ 0 (mod 10). (1.10)

Following Fine’s notation [15, Ch. 2, Example 2], we define pE(n) (pO(n),
respectively) to be the number of partitions of n into even (odd, respectively)
number of parts. We recall one of the classical completely multiplicative func-
tion, Liouville’s function λ, defined by

λ(n) =

{
1, ifn = 1,

(−1)a1+···+ak , ifn = pa1
1 . . . pak

k .

Theorem 1.10. For all n ∈ Z≥2,

co(n) = pO(n) − (−1)n
∑

d|n
λ(d) + (−1)n

n−2∑

k=0

( ∑

d|k+1

λ(d)
)
sc(n − k − 1),

where sc(n) denotes the number of self-conjugate partitions of n.
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As our proof of Theorem 1.10 primarily relies on comparing coefficients
of a certain q-series identity, we would like to ask if there a bijective proof
of Theorem 1.10. Next we move on to the last theorem of this paper. Let
p(n,�) denote the number of partitions of n, where the side of the Durfee
square does not occur as a part of the partition. For example, consider the
partitions of 8: the partition 8 with side of Durfee square one and the partitions
5+3, 4+4, 4+3+1, 3+3+1+1 with side of Durfee square two are altogether
five partitions of 8 where the side of respective Durfee square is not a part of
those partitions of 8.

Define F0(n) (resp. F
′
0(n)) to be the number of 0s in the Frobenius sym-

bols in the partitions of n (resp. the numbers of Frobenius symbols for the
partitions of n with no 0s). For instance, F0(8) = 20 and F

′
0(7) = 5 enumer-

ated by the Frobenius symbols
{(

5
1

)

,

(
4
2

)

,

(
3
3

)

,

(
2
4

)

,

(
1
5

)}

.

Theorem 1.11. p(n,�) = 1
2F0(n) − F

′
0(n − 1).

2. Proof of Theorems

Proof of Theorem 1.6. We begin the proof with following identity
∞∑

n=0

p(n, 4)qn =
(q4, q4)∞
(q; q)∞

=
(−q2, q2)∞
(q; q2)∞

=
∞∑

n=0

pou,ed(n)qn (2.1)

that establishes p(n, 4) = pou,ed(n). The generating function of Eu(n) is given
by

∞∑

n=0

Eu(n)qn =
1

(q; q2)∞

∞∑

n=0

q2+4+···+2n

(q2; q2)n
=

1
(q; q2)∞

∞∑

n=0

qn(n+1)

(q2; q2)n
. (2.2)

We note that 1
(q;q2)∞

contributes to all the odd parts that occur in Eu(n)

and q2+4+···+2n

(q2;q2)n
counts all those partitions in which even parts are unrestricted

and every positive even integer smaller than the greatest even part occurs
as a part. Applying z �→ −q into the following identity [11, Corollary 1.3.2,
Equation (1.3.7)]:

∞∑

n=0

(−z)nq
n(n−1)

2

(q; q)n
= (z; q)∞,

we obtain ∞∑

n=0

q
n(n+1)

2

(q; q)n
= (−q; q)∞. (2.3)

Now following the substitution q �→ q2 in (2.3) and from (2.2), it follows that

1
(q; q2)∞

∞∑

n=0

qn(n+1)

(q2; q2)n
=

(−q2; q2)∞
(q; q2)∞

=
∞∑

n=0

Eu(n)qn. (2.4)
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So, (2.2) and (2.4) implies
∞∑

n=0

Eu(n)qn =
(−q2; q2)∞
(q; q2)∞

. (2.5)

Putting down (2.1) and (2.5) together, it follows that
∞∑

n=0

p(n, 4)qn =
∞∑

n=0

pou,ed(n)qn =
∞∑

n=0

Eu(n)qn =
(q4; q4)∞
(q; q)∞

. (2.6)

To prove the remaining part of (1.8), we start with
∞∑

n=0

aψ,φ(n)qn =
ψ(q)
φ(q)

=
(q4; q4)2∞
(q2; q2)3∞

(q; q)∞ =
(q4; q4)2∞
(q2; q2)3∞

f(−q). (2.7)

Applying q �→ −q into (2.7), we get
∞∑

n=0

(−1)naψ,φ(n)qn =
(q4; q4)2∞
(q2; q2)3∞

f(q). (2.8)

Now

f(q) =
f(−q)
ψ(−q)

ψ(q)
(
by [10, Entry 24 (i)]

)

=
(q; q)∞(−q; q2)∞

(q2; q2)∞
ψ(q) =

(q2; q2)∞
(q4; q4)∞

ψ(q)

=
(q2; q2)∞
(q4; q4)∞

(q2; q2)∞
(q; q2)∞

=
(q2; q2)3∞

(q4; q4)∞(q; q)∞
. (2.9)

From (2.8) and (2.9), it follows that
∞∑

n=0

(−1)naψ,φ(n)qn =
(q4; q4)∞
(q; q)∞

. (2.10)

The q-series identities (2.6) and (2.10) conclude the proof of Theorem 1.6.

Proof of Theorem 1.7. From [3, Equation (3.1)], it follows that
∞∑

n=0

Od(n)qn =
1

2(q2; q2)∞

(
1 +

∞∑

n=−∞
qn2

)
=

1
2(q2; q2)∞

(
1 + φ(q)

)

=
1

2(q2; q2)∞

(
1 + f(q, q)

)
.

(2.11)

Applying (1.4) with n = 2 and a = b = q, we have

f(q, q) = f(q4, q4) + qf(q8, 1). (2.12)

From (1.4) and (2.11), it follows that
∞∑

n=0

Od(n)qn =
1

2(q2; q2)∞
+

1
2

f(q4, q4)
(q2; q2)∞

+
q

2
f(q8, 1)

(q2; q2)∞
, (2.13)
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and therefore,
∞∑

n=0

Od(2n + 1)q2n+1 =
q

2
f(q8, 1)

(q2; q2)∞

=
q

2(q2; q2)∞
(−q8; q8)∞(−1; q8)∞(q8; q8)∞ (by (1.3))

=
q

(q2; q2)∞
(−q8; q8)2∞(q8; q8)∞. (2.14)

Dividing by q and then replacing q2 by q in (2.14), we finally have
∞∑

n=0

Od(2n + 1)qn =
(−q4; q4)2∞(q4; q4)∞

(q; q)∞
=

(q8; q8)∞
(q4; q8)∞

1
(q; q)∞

=
ψ(q4)
f(−q)

,

which finishes the proof of Theorem 1.7. �

Proof of Theorem 1.8. To prove Theorem 1.8, it suffices to show that

co(n) ≡ 0 (mod 2) (2.15)

as ce(n) + co(n) = p(n). Due to Euler [11, Equation (1.1.7)], we have
∞∑

n=0

p(n)qn =
∞∑

n=0

(ce(n) + co(n))qn =
1

(q; q)∞
. (2.16)

From [7, p. 168, Equation (1.11)] with z = −1, it follows that
∞∑

n=0

ce,o(n)qn :=
∞∑

n=0

(ce(n) − co(n))qn =
(q; q)∞

(−q; q)2∞
= φ(−q)χ(−q). (2.17)

By (2.17) and (2.16), we have
∞∑

n=0

co(n)qn =
1
2

( 1
(q; q)∞

− (q; q)∞
(−q; q)2∞

)
. (2.18)

From [5, Entry 3.1.1] with a = −1, it follows that

(q; q)∞
(−q; q)2∞

=
1

(q; q)∞

(

1 −
∞∑

m=1
n=0

(−1)mq
m(m+1)

2 +mn
(
An+1 − An

)
)

(2.19)

with
An+1 − An = 4(−1)n+1. (2.20)

Substituting (2.19) and (2.20) into (2.18), we have
∞∑

n=0

co(n)qn =
2

(q; q)∞

∞∑

m=1
n=0

(−1)m+n+1q
m(m+1)

2 +mn

=
2

(q; q)∞

∞∑

m=1

(−1)m+1 q
m(m+1)

2

1 + qm
. (2.21)

Now, it can be easily observed that the right hand side of the above equation is
of the form

∑∞
n=0 anqn with (an)n≥0 a sequence of even integers; i.e., co(n) ≡

0 (mod 2) which concludes the proof of Theorem 1.8. �
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Proof of Theorem 1.9. We shall make use of the 5-dissections of (q; q)3∞ and
1

(q2;q2)2∞
as we rewrite (2.17) in the following way:

∞∑

n=0

ce,o(n)qn =
(q; q)3∞

(q2; q2)2∞
. (2.22)

Applying (1.6) of Lemma 1.2, we have

(q; q)3∞ = A0 + A1 + A3, (2.23)

where Ai consists of terms in which powers of q congruent to i modulo 5 can
be written as follows

A0 = (q25; q25)3∞
(
T 3(q5) − 3q5

T 2(q5)

)
,

A1 = −q(q25; q25)3∞
(
3T 2(q5) +

q5

T 3(q5)

)
,

A3 = 5q3(q25; q25)3∞. (2.24)

For the 5-dissection of 1
(q2;q2)2∞

, first let q �→ q2 and then by squaring both
sides of (1.7), it follows that

1

(q2; q2)2∞
=

(q50; q50)10∞
(q10; q10)12∞

(

T 8(q10) + 2q2 T 7(q10) + 5q4 T 6(q10) + 10q6 T 5(q10)

+ 20q8 T 4(q10) + 16q10 T 3(q10) + 27q12 T 2(q10) + 20q14 T (q10)

+ 15q16 − 20
q18

T (q10)
+ 27

q20

T 2(q10)
− 16

q22

T 3(q10)
+ 20

q24

T 4(q10)

− 10
q26

T 5(q10)
+ 5

q28

T 6(q10)
− 2

q30

T 7(q10)
+

q32

T 8(q10)

)

.

(2.25)
Similar to (2.23), we write

1
(q2; q2)2∞

:= B0 + B1 + B2 + B3 + B4, (2.26)

with

B1 = 5q6
(q50; q50)10∞
(q10; q10)12∞

(
2 T 5(q10) + 3q10 − 2

q20

T 5(q10)

)
,

B3 = 5q8
(q50; q50)10∞
(q10; q10)12∞

(
2 T 2(q10) − q10

T 3(q10)

)2

,

B4 = 5q4
(q50; q50)10∞
(q10; q10)12∞

(
T 3(q10) +

q10

T 2(q10)

)2

.

(2.27)

Consequently by (2.23) and (2.26), it follows that
∞∑

n=0

ce,o(5n + 4)q5n+4 = A0B4 + A1B3 + A3B1. (2.28)
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Finally, we plug in (2.24) and (2.27) into (2.28), and then substitute q5 �→ q.
This is followed by division on both side by q4, and hence we obtain:

∞∑

n=0

ce,o(5n + 4)qn = 5
(q5; q5)3∞(q10; q10)10∞

(q2; q2)12∞

(
(
T 3(q) − 3

q

T 2(q)

)

(
T 3(q2) +

q2

T 2(q2)

)2

− q
(
3T 2(q) +

q

T 3(q)

)(
2T 2(q2) − q2

T 3(q2)

)2

+5q

(

2T 5(q2) + 3q2 − 2
q4

T 5(q2)

))

. (2.29)

This implies that ce,o(5n + 4) ≡ 0 (mod 5) as claimed in (1.9). Now,

ce,o(5n + 4) = ce(5n + 4) − co(5n + 4) ≡ 0 (mod 5)

and

p(5n + 4) = ce(5n + 4) + co(5n + 4) ≡ 0 (mod 5) (by (2.16) and (1.1))

imply that for all n ≥ 0,

co(5n + 4) ≡ 0 (mod 5). (2.30)

We have already proved that for all n ≥ 0, co(n) ≡ 0 (mod 2), see (2.15),
which in particular states that for all n ≥ 0,

co(5n + 4) ≡ 0 (mod 2). (2.31)

From (2.30) and (2.31), it follows that co(5n + 4) ≡ 0 (mod 10) which finishes
the proof of (1.10). �

Proof of Theorem 1.10. From [15, Ch. 2, Equation (22.14)], we get
∞∑

n=0

(pE(n) − pO(n))qn =
1

(−q; q)∞
. (2.32)

As pE(n)+pO(n) = p(n) and
∑∞

n=0 p(n)qn = 1/(q; q)∞, from (2.32), it follows
that

∞∑

n=0

pO(n)qn =
1
2

(
1

(q; q)∞
− 1

(−q; q)∞

)

. (2.33)

Due to Glaisher [17, XVI, p. 256],
∞∑

n=0

(pE(n) − pO(n))qn =
∞∑

n=0

(−1)nsc(n)qn =
1

(−q; q)∞
. (2.34)

Recall the identity due to Gauss [1, Corollary 2.10, Equation (2.2.12)] which
states that

(q; q)∞
(−q; q)∞

=
∞∑

n=−∞
(−1)nqn2

= 1 + 2
∞∑

n=1

(−1)nqn2
. (2.35)
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Now
∞∑

n=0

co(n)qn =
1
2

( 1
(q; q)∞

− (q; q)∞
(−q; q)2∞

)
(by (2.18))

=
1
2

( 1
(q; q)∞

− (q; q)∞
(−q; q)∞

1
(−q; q)∞

)

=
1
2

(
1

(q; q)∞
−

(
1 + 2

∞∑

n=1

(−1)nqn2
) 1

(−q; q)∞

)

(by (2.35))

=
1
2

(
1

(q; q)∞
− 1

(−q; q)∞

)

− 1
(−q; q)∞

∞∑

n=1

(−1)nqn2

=
∞∑

n=0

pO(n)qn − 1
(−q; q)∞

∞∑

n=1

(−1)nqn2
(by (2.33))

=
∞∑

n=0

pO(n)qn −
∞∑

n=1

(−1)nqn2
∞∑

n=0

(−1)nsc(n)qn (by (2.34))

=
∞∑

n=0

pO(n)qn −
∞∑

n=1

(−1)nqn2

(

1 +
∞∑

n=1

(−1)nsc(n)qn

)

=
∞∑

n=0

pO(n)qn −
∞∑

n=1

(−1)nqn2 −
∞∑

n=1

(−1)nqn2
∞∑

n=1

(−1)nsc(n)qn.

(2.36)

From (2.36), for all n ∈ Z≥2, it follows that

co(n) = pO(n) − (−1)nδ(n,�) + (−1)n
n−2∑

k=0

δ(k+1,�) sc(n − k − 1), (2.37)

where

δ(m,�) =

{
1, ifm is a square,
0, otherwise.

Due to [4, Theorem 2.19], we know that

δ(m,�) =
∑

d|m
λ(d). (2.38)

Combining (2.37) and (2.38), we conclude the proof of Theorem 1.10. �

Proof of Theorem 1.11. Due to Euler [1, Corollary 2.6, Equation (2.2.9)], we
have

1
(q; q)∞

=
∞∑

n=0

qn2

(q; q)2n
, (2.39)

where the nth term of (2.39) qn2

(q;q)2n
is the generating function for those parti-

tions with Durfee square of side n. We observe that the generating function
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for p(n,�) is

∞∑

n=0

p(n,�)qn =
∞∑

n=0

qn · qn2

(1 − qn)(q; q)2n−1

=
∞∑

n=0

qn2+n(1 − qn)
(q; q)2n

=
∞∑

n=0

qn2+n

(q; q)2n
−

∞∑

n=0

qn2+2n

(q; q)2n
. (2.40)

For j ∈ Z, associated with enumeration of crank statistics given in (1.4), we
define

M≥j(n) := |{π � n : c(π) ≥ j}| and Mj(n) := |{π � n : c(π) = j}|.

By [18, Proposition 6 and Theorem 7], we rewrite the last line of (2.40) as

∞∑

n=0

p(n,�)qn =
∞∑

n=0

M≥0(n)qn −
∞∑

n=0

F
′
0(n)qn. (2.41)

Finally, we conclude the proof of Theorem 1.11 by showing that

p(n,�) = M≥0(n) − F
′
0(n) = M0(n) + M≥1(n) − F

′
0(n)

= M≥1(n) − F
′
0(n − 1)

(
by [18, Proposition 6]

)

=
1
2
F0(n) − F

′
0(n − 1)

(
by [6, Theorem 2]

)
. �
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