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Abstract. A PSCA(v, t, λ) is a multiset of permutations of the v-element
alphabet {0, . . . , v −1}, such that every sequence of t distinct elements of
the alphabet appears in the specified order in exactly λ of the permuta-
tions. For v � t � 2, we define g(v, t) to be the smallest positive integer
λ, such that a PSCA(v, t, λ) exists. We show that g(6, 3) = g(7, 3) =
g(7, 4) = 2 and g(8, 3) = 3. Using suitable permutation representations of
groups, we make improvements to the upper bounds on g(v, t) for many
values of v � 32 and 3 � t � 6. We also prove a number of restrictions
on the distribution of symbols among the columns of a PSCA.
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1. Introduction

For positive integers v and t with v � t, we let [v] = {0, . . . , v − 1}, Sv be
the set of permutations of [v] and Sv,t be the set of ordered sequences of t
distinct elements of [v]. For π ∈ Sv and s = (s0, . . . , st−1) ∈ Sv,t, we say
that s is covered by π if π−1(si) < π−1(si+1) for 0 � i � t − 2. A perfect
sequence covering array with order v, strength t, and multiplicity λ, denoted by
PSCA(v, t, λ), is a multiset X of permutations in Sv such that every sequence
in Sv,t is covered by exactly λ permutations in X. If we let T be a t-subset
of [v], then there are t! orderings of the symbols of T , each of which must be
covered by λ permutations in a PSCA(v, t, λ). Furthermore, every permutation
in a PSCA(v, t, λ) covers exactly one ordering of T , so a PSCA(v, t, λ) must
consist of t!λ permutations.

Perfect sequence covering arrays were introduced by Yuster [10] in 2020
as a variant of sequence covering arrays. Sequence covering arrays, denoted
by SCA(v, t), are sets of permutations in Sv in which every sequence in Sv,t

is covered by at least one permutation in the set. The study of SCAs dates
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back to Spencer [9] in 1971. They are useful for constructing test suites for
situations where the order of operations may be important.

For v � t define g(v, t) to be the smallest positive integer λ, such that
a PSCA(v, t, λ) exists. Observe that Sv is a PSCA(v, t, v!/t!), so g(v, t) is well
defined and g(v, t) � v!/t!. Note that if v > t and we remove the symbol v − 1
from every permutation of a PSCA(v, t, λ), then we obtain a PSCA(v−1, t, λ),
and hence, g(v, t) � g(v − 1, t). For 2 � t′ � t, a PSCA(v, t, λ) is also a
PSCA(v, t′, λ

(
t
t′
)
), so g(v, t′) �

(
t
t′
)
g(v, t).

The question of when g(v, t) = 1 has received particular attention. Not
only would a PSCA(v, t, 1) be the smallest possible SCA(v, t), but it is also an
object of interest in coding theory. A (v− t)-deletion correcting code is a set X
of permutations in Sv, such that every sequence in Sv,t is covered by at most
one permutation in X. Hence, a PSCA(v, t, 1) would be the largest possible
(v − t)-deletion correcting code. For more on deletion correcting codes, see
[3,5]. Note that Sv forms a PSCA(v, v, 1). At the other end of the spectrum,
if t = 2, then we can take any permutation in Sv and its reverse to form
a PSCA(v, 2, 1). Therefore, g(v, v) = g(v, 2) = 1. Levenshtein [5] proved that
g(t+1, t) = 1 for t � 3. Mathon and van Trung [6] proved that a PSCA(5, 3, 1)
does not exist (we provide a new proof of this fact in Sect. 2). As demonstrated
above, g(v, t) � g(v − 1, t) so it follows that a PSCA(v, 3, 1) does not exist for
v � 5. Therefore, when t = 3, we have g(v, t) > 1 for v > t + 1. It was
initially conjectured by Levenshtein that this property would hold for any
t � 3; however, that was later shown to be false for t = 4 by Mathon and van
Trung [6], who presented a PSCA(6, 4, 1). On the other hand, Mathon and van
Trung computationally proved that neither a PSCA(7, 5, 1) nor a PSCA(8,
6, 1) exists, thus confirming Levenshtein’s conjecture for t ∈ {5, 6}. They also
found that a PSCA(7, 4, 1) does not exist. A combinatorial proof of this last
fact was later given by Klein [3]. Chee et al. [1] proved that g(2t, t) > 1 for
t � 3.

Yuster [10] proved that g(5, 3) = 2. In Sect. 3, we show that g(6, 3) =
g(7, 3) = g(7, 4) = 2, g(8, 3) = 3, and g(8, 4) � 3. We state here a definition
which we expand upon further in Sect. 2.

Definition 1.1. For a multiset X of permutations of [v], a symbol w ∈ [v], and
for 0 � i � v − 1, we define

dw(i) :=
∣
∣{π ∈ X : π(i) = w}∣∣.

We refer to the vector dw =
(
dw(0), . . . , dw(v − 1)

)
as the distribution vector

of w.

In Sect. 2, we derive restrictions on distribution vectors of symbols in
PSCAs. These restrictions facilitate the computer searches that we use to
exhaustively catalogue PSCA(v, t, λ) for different sets of parameters. These
searches and their results are described in Sect. 3. All computational results
reported in this paper were checked by both authors using independent com-
putations.
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Table 1. Improvements to known upper bounds on g(v, 3).
An asterisk denotes that the new bound is exact

v New bound Old bound

6–7 2* 8
8 3* 8
9 6 8
10–12 6 160
13–14 7 160
15–16 16 160
17–19 19 160
20–32 96 160

Although there are still few parameters (v, t) for which g(v, t) has been
determined exactly, there are some known results on the asymptotic behaviour
of g(v, t). A lower bound for g(v, t) for t > 3 was proved by Yuster [10] using
a matrix rank argument. If t/2 is a prime, then for v � t

g(v, t) �
(

v
t/2

) − (
v

t/2−1

)

t!
.

Additionally, for an absolute constant c, Kuperberg, Lovett and Peled [4] guar-
antee the existence of a PSCA(v, t, λ) with (cv)ct permutations using proba-
bilistic methods. Thus

g(v, t) � (cv)ct

t!
.

Yuster [10] also proved an upper and lower bound on g(v, 3). The upper
bound comes from a general construction of a PSCA with (v, t) = (3n, 3) for
n � 1 that is built from an affine plane. The lower bound is proved using
a similar matrix rank argument to the more general case above. Combining
these bounds, we have that for an absolute constant c

v

6
� g(v, 3) � cv(log v)log 7.

In Sect. 4, we explore the relationship between groups and PSCAs and
use this relationship to construct PSCAs with strengths 3 and 4, thereby im-
proving upon the best known upper bounds for g(v, 3) for 9 � v � 32 and
providing non-trivial upper bounds for g(v, t) for v � 24 and 4 � t � 6.
Table 1 summarises the improvements to upper bounds on g(v, 3), while Table
2 summarises the new results for 4 � t � 6. The tables also incorporate the
exact bounds shown in Sect. 3.

Independently, and using different methods, Na, Jedwab, and Li [8] have
also considered the problem of determining g(v, t). They find that g(6, 3) =
g(7, 3) = g(7, 4) = 2, while also demonstrating that g(8, 3) � 3, g(9, 3) � 4
and g(7, 5) � 4. They also show that for (v, t) ∈ {(5, 3), (6, 3), (7, 3), (7, 4)},
a PSCA(v, t, λ) exists if and only if λ � 2, while a PSCA(8, 3, λ) exists for
any λ � 3. Several of these results were originally reported in Na’s Masters
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Table 2. New upper bounds for g(v, t) for 4 � t � 6. An
asterisk denotes that the new bound is exact

v t New bound

7 4 2*
8–12 4 18
13 4 234
14–21 4 5040
22 4 18,480
23 4 425,040
24 4 10,200,960
7–11 5 66
12 5 792
13–22 5 3696
23 5 85,008
24 5 2,040,192
8–12 6 132
13–24 6 340,032

thesis [7]; in particular, he reported that g(7, 4) = 2 before we computed our
catalogue of PSCA(7, 4, 2).

2. Distribution Vectors

Recall the definition of distribution vectors given in Definition 1.1. The distri-
bution vector of w records the number of times a symbol w appears in each
column across a multiset of permutations. In this section, we will derive several
restrictions on distribution vectors for symbols in PSCAs. We begin with the
following lemma which limits the number of occurrences of each symbol in a
PSCA across sets of consecutive columns.

Lemma 2.1. Let X be a PSCA(v, t, λ) with v � t � 2 and λ � 1. Then, for
w ∈ [v] and for 0 � i � t − 1

λ(v − 1)!
(v − t)!

=
v−1∑

j=0

dw(j)
(

j

i

)(
v − 1 − j

t − 1 − i

)
.

Proof. Let X be a PSCA(v, t, λ), let i ∈ {0, . . . , t − 1} and let w ∈ [v]. Let
S = {s ∈ Sv,t : s(i) = w}. Note that |S| = (v − 1)!/(v − t)! and each sequence
in S is covered by λ permutations in X. For some j ∈ [v], let π ∈ X be one
of the dw(j) permutations in X, such that π(j) = w and consider how many
sequences in S are covered by π. There are j symbols that appear before w
and v − 1− j symbols that appear after w in π. For every sequence in S, there
are i symbols appearing before w and t − 1 − i symbols appearing after w.
Hence, π covers

(
j
i

)(
v−1−j
t−1−i

)
sequences in S. The result follows. �
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We can now use Lemma 2.1 to prove the following theorem.

Theorem 2.2. Let X be a PSCA(v, t, λ) with v � t � 2 and λ � 1. Then, for
w ∈ [v] and for 1 � s < t

1
t!λ

v−1∑

j=0

jsdw(j) =
1
v

v−1∑

i=0

is. (1)

Proof. Fix s ∈ {1, . . . , t − 1} and w ∈ [v]. Let αk(w) =
∑v−1

j=0 jkdw(j) for k ∈
{1, . . . , s}. Now, X is a PSCA(v, k +1, λ

(
t

k+1

)
), and so, using Lemma 2.1 with

i = k, we find that αk(w) is a function of λ, v, t, k and α1(w), . . . , αk−1(w).
Therefore, proceeding by induction on k, we have that αk(w) is independent
of w for each k ∈ {1, . . . , s}. Thus

vαs(w) =
∑

w∈[v]

αs(w) =
∑

π∈X

v−1∑

i=0

is = t!λ
v−1∑

i=0

is,

and hence, (1) holds. �
We call a distribution vector that satisfies (1) for parameters (v, t, λ) a

(v, t, λ)-feasible distribution. We now prove some more facts about distribution
vectors when certain restrictions on v and t are imposed. The following theorem
demonstrates more stringent restrictions on the distribution vector whenever
t is an odd prime. Intuitively, it states that in a PSCA whose strength is an
odd prime p and whose order is not divisible by p, the number of occurrences
of a symbol across all columns of a given equivalence class modulo p is itself
divisible by p.

Theorem 2.3. Let X be a PSCA(v, p, λ) with p an odd prime and with v �≡
0 mod p. For w ∈ [v] and 0 � j � p − 1, let yw(j) =

∑
i≡j mod p dw(i). Then,

yw(j) ≡ 0 mod p.

Proof. Let w ∈ [v]. By Theorem 2.2, if X is a PSCA(v, p, λ), then for 1 � i �
p − 1

v−1∑

j=0

jidw(j) =
p!λ
v

v−1∑

j=0

ji.

As v is not divisible by p, the right-hand side of the equation above must be
divisible by p. Therefore, for 1 � i � p − 1

0 ≡
v−1∑

j=0

jidw(j) ≡
p−1∑

j=1

jiyw(j) mod p.

This gives a system of p − 1 linear equations in p − 1 variables over the field
Fp. We can restate this system as

A

⎛

⎜
⎜
⎜
⎝

yw(1)
yw(2)

...
yw(p − 1)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0
0
...
0

⎞

⎟
⎟
⎟
⎠

,
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where A is a (p − 1) × (p − 1) matrix over Fp with Ai,j = ji. Therefore, A is
a Vandermonde matrix and thus, A is non-singular. Hence, the only solution
to this system is yw(j) ≡ 0 mod p for all j ∈ {1, . . . , p − 1}. As the number of
permutations in X is p!λ ≡ 0 mod p, it also follows that yw(0) ≡ 0 mod p. �

When v = t+1 and t is even, the following lemma proves that all (v, t, λ)-
feasible distribution vectors are palindromic.

Lemma 2.4. Let t be even and dw be a (t + 1, t, λ)-feasible distribution. Then,
dw(t/2 − i) = dw(t/2 + i) for 0 � i � t.

Proof. With v = t + 1, Lemma 2.1 implies that

λt! = (t − i)dw(i) + (i + 1)dw(i + 1)

for 0 � i � t − 1. Therefore, for even t

dw

(
t

2
− i

)
=

λt! − (
t
2 − i + 1

)
dw

(
t
2 − i + 1

)

t
2 + i

dw

(
t

2
+ i

)
=

λt! − (
t
2 − i + 1

)
dw

(
t
2 + i − 1

)

t
2 + i

for 0 � i � t/2. Then, induction on i shows that dw(t/2 − i) = dw(t/2 + i) for
0 � i � t/2. �

We continue with the case where v = t+1. The only possible PSCA(t, t, λ)
is a multiset containing λ copies of Sv. Therefore, this is exactly the PSCA we
obtain by deleting any symbol from a PSCA(t+1, t, λ) (throughout the paper,
whenever we delete a symbol from a PSCA with ground set [v], we assume the
remaining symbols get relabelled to [v − 1] in an order preserving way). We
use this fact to derive further restrictions for a PSCA(t + 1, t, λ). Let X be a
PSCA(v, t, λ). For w ∈ [v] and I ⊆ [v]\{w} with |I| = i, let dI,w be the number
of permutations π ∈ X, such that π(i) = w and I = {π(j) : 0 � j � i − 1}.

Theorem 2.5. Let X be a PSCA(t + 1, t, 1), let w ∈ [v], and let 0 � i � t.
Then, for any i-subset I ⊆ [v]\{w}

dI,w =
dw(i)
(
t
i

) .

Proof. Let w ∈ [v]. We proceed by induction on i. Note that the statement is
trivially true for i = 0. Suppose the statement is true for some i with 0 � i �
t−1 and consider the statement for i+1. Let I = {u1, . . . , ui+1} ⊆ [v]\{w} and
let J = I\{ui+1}. The array formed by removing ui+1 from each permutation
of X is St. The number of permutations τ ∈ St for which τ(i) = w and {τ(j) :
0 � j � i−1} = J is i!(t−1−i)!. These permutations exactly correspond to the
permutations π ∈ X, such that either π(i) = w and {π(j) : 0 � j � i− 1} = J
or π(i + 1) = w and {π(j) : 0 � j � i} = I. Thus

i!(t − 1 − i)! = dJ,w + dI,w.

By the inductive hypothesis, dJ,w = dw(i)/
(
t
i

)
. Therefore, for any two (i + 1)-

subsets of [v]\{w}, I and I ′, dw(I) = dw(I ′). The sum of dI,w as I ranges
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over all
(

t
i+1

)
possible (i + 1)-subsets of [v]\{w} must be dw(i + 1). Therefore,

dI,w = dw(i + 1)/
(

t
i+1

)
, completing the induction. �

Corollary 2.6. Let X be a PSCA(t + 1, t, 1), and let 0 � i � t. Then, dw(i) is
divisible by

(
t
i

)
for all w ∈ [v].

In general, if it could be shown that there are no (v, t, λ)-feasible distri-
butions for some choice of v, t and λ, then it would imply that a PSCA(v, t, λ)
does not exist. However, it is possible to find (v, t, λ)-feasible distributions for
infinitely many choices of v, t, and λ. For example, if t!λ is divisible by v, then
a distribution vector with dw(i) = t!λ/v for 0 � i � v − 1 is (v, t, λ)-feasible.

On the other hand, it is possible to use (v, t, λ)-feasible distributions to
disprove the existence of a PSCA(v, t, λ) even when such distributions do exist.
For example, consider the (5, 3, 1)-feasible distributions. By Theorem 2.3, for
such a distribution, dw(2) ∈ {0, 3, 6}. If dw(2) = 6, then dw = (0, 0, 6, 0, 0)
which violates (1) for s = 2. Now, suppose dw(2) = 3. Again, by Theorem 2.3,
{dw(0) + dw(3), dw(1) + dw(4)} = {0, 3}. As the reverse of a PSCA is also a
PSCA, we can without loss of generality suppose dw(0) + dw(3) = 0. Then,
for s = 2, (1) reduces to dw(1) + 16dw(4) = 24. As dw(1) and dw(4) must be
nonnegative integers that sum to 3, we find that this equation has no solutions.
Therefore, in any (5, 3, 1)-feasible distribution, dw(2) = 0. This means that
if a PSCA(5, 3, 1) exists, then it would be impossible to place any symbol in
column 2. This contradiction provides an alternate proof of the non-existence
of a PSCA(5, 3, 1). See [6] for an earlier proof.

In the proof of Theorem 2.5, we were able to enforce restrictions on a
PSCA(t + 1, t, λ) by considering the new array formed by deleting a symbol
from this PSCA. We consider this kind of symbol deletion in a more general
setting with the following theorem.

Theorem 2.7. Let dw =
(
dw(0), . . . , dw(v − 1)

)
be the distribution vector for

a symbol w in X, a PSCA(v, t, λ). Let d′
w =

(
d′

w(0), . . . , d′
w(v − 2)

)
be the

distribution vector of w in the PSCA X ′ obtained by deleting a symbol w′ �= w
from X. Then

δk =
k∑

i=0

(
d′

w(i) − dw(i)
)

satisfies 0 � δk � d′
w(k) for 0 � k � v − 2.

Proof. Define ci =
∣
∣{π ∈ X : π−1(w) = i < π−1(w′)}∣

∣ and c′
i =

∣
∣{π ∈

X : π−1(w) = i > π−1(w′)}∣
∣ for 0 � i � v − 1. Then, ci + c′

i = dw(i) and
ci + c′

i+1 = d′
w(i). Now, c′

0 = 0 and c′
i+1 − c′

i = d′
w(i) − ci − c′

i = d′
w(i) − dw(i).

Therefore, it follows by induction on i that δi = c′
i+1 for 0 � i � v − 2. The

result then follows from the fact that ci � 0 and c′
i � 0 for each i, by definition.

�

We say that dw and d′
w are compatible if they satisfy Theorem 2.7. This

test can be used to eliminate some distributions from consideration. If dw

is (v, t, λ)-feasible, it may be the case that there is no (v − 1, t, λ)-feasible
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distribution d′
w compatible with dw. It may even happen that there is a com-

patible d′
w, but that all such candidates can themselves be ruled out, because

they are not compatible with a (v − 2, t, λ)-feasible distribution, and so on. A
concrete example is that (2, 6, 1, 1, 6, 2) is a (6, 3, 3)-feasible distribution. The
only (5, 3, 3)-feasible distribution that it is compatible with is (3, 6, 0, 6, 3).
However, (3, 6, 0, 6, 3) is not compatible with any of the four (4, 3, 3)-feasible
distributions, which are (3,9,0,6), (4,6,3,5), (5,3,6,4), and (6,0,9,3). Hence,
(2, 6, 1, 1, 6, 2) and (3, 6, 0, 6, 3) can be eliminated from consideration.

Table 3 records the number of (v, t, 1)-feasible distributions for different
values of v and t, as well as incorporating information about how many distri-
butions cannot be ruled out using Theorem 2.7 in the manner just described.

3. Exhaustive Search Algorithm

We have seen in the previous section the relationship between a PSCA(v, t, λ)
and the smaller array that results from deleting a symbol from this PSCA.
Specifically, we have seen that by deleting a symbol from a PSCA(t + 1, t, λ),
we are left with λ copies of St. We can extend this argument to say that
by deleting v − t symbols from a PSCA(v, t, λ), we obtain λ copies of St.
In this sense, every PSCA contains λ copies of St. This relationship between
smaller and larger PSCAs with the same strength and multiplicity allows for
the design of an algorithm that can exhaustively search for a PSCA(v, t, λ) by
first cataloguing all possible PSCA(v′, t, λ) for t � v′ < v. Such an algorithm
is further aided by the results proved in the previous section. To catalogue all
possible PSCAs for a particular choice of parameters, we must first establish
a definition of isomorphism for PSCAs.

Definition 3.1. Two multisets of permutations, X and Y , are isomorphic if
Y can be obtained from X by permuting the symbols and/or reversing every
permutation.

In searching for PSCA(v, t, λ) for v > t, we employed two different meth-
ods. Both of these methods relied on a catalogue of isomorphism class rep-
resentatives of PSCA(v − 1, t, λ). For each array in this catalogue, we tested
every possible way of inserting a new symbol into each permutation of the
array. In the first method, we assigned a (v, t, λ)-feasible distribution for this
new symbol and found all possible PSCAs that can be formed when the new
symbol obeys that distribution, before moving on to the next (v, t, λ)-feasible
distribution. In the second method, we did not fix a distribution. Instead, we
maintained a list of (v, t, λ)-feasible distributions that were consistent with the
positions so far chosen for the new symbol. If that list ever became empty, then
we knew that the current placements were unviable. Using these two search
methods, we were able to independently count the number of isomorphism
classes of PSCA(v, t, λ) for different sets of parameters, as shown in Table 4.
In some cases, it was not feasible to perform an exhaustive enumeration. In
such cases, the number of PSCAs that we found before abandoning the search
is given with a + symbol, indicating that the search was incomplete. In each
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1
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7
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/3

5
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1
12
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/1

29
6
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43
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34

1
38
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1/

39
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6
5
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–

1/
1

13
/1

3
17
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19

9
29

33
/2

95
1

46
16

0/
48

15
0

79
04

91
/7

93
17
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such case, we believe that the true number of PSCAs is much higher than the
number that we quote.

In the cases when (v, t, λ) ∈ {(5, 3, 1), (7, 4, 1), (7, 5, 1), (8, 3, 2), (8, 4, 2)},
our enumeration was exhaustive, and demonstrated that no PSCA with these
parameters exists. For the first three of these parameter sets, this was already
known, but the last two are new results. Our computations have discovered
several new values of the function g.

Theorem 3.2. g(6, 3) = g(7, 3) = g(7, 4) = 2 and g(8, 3) = 3. In addition,
g(8, 4) > 2.

Proof. Given the non-existence results just mentioned, it suffices to display a
PSCA(7, 3, 2), a PSCA(8, 3, 3), and a PSCA(7, 4, 2):

PSCA(7, 3, 2) PSCA(8, 3, 3) PSCA(7, 4, 2)

0123465 0642315 04712563 05672341 0123465 0254163 0351264 0432165
1540362 1634052 06432157 07351462 0621435 0634125 0651432 0652341
2405163 2610543 16547203 17453026 1045263 1254063 1432560 1530264
3054261 3625401 17630245 25476301 1632045 1635402 1640253 1652043
4312560 4651230 26751043 27410365 2045361 2103564 2341560 2530164
5231064 5603124 31526074 34675102 2601534 2635104 2643015 2645103

37206154 42351067 3015462 3214065 3402561 3520461
46051327 50213476 3604521 3610254 3614520 3625401
53764201 61234075 4015362 4123065 4351062 4520163

4610352 4620351 4621530 4653012
5103462 5214360 5341260 5402361
5603214 5604123 5612340 5643210

�

There are 260,664 isomorphism classes of PSCA(5, 3, 3). We took the
one which has the largest automorphism group and extended it in all pos-
sible ways. Doing so produced 3072, 481 765 and 51 448 isomorphism classes
of PSCAs with parameters (6,3,3), (7,3,3) and (8,3,3), respectively. However,
none of these extended to a PSCA(9,3,3). We also performed a search for all
PSCA(6,3,3) in which every symbol has distribution vector (3, 3, 3, 3, 3, 3).
Using Theorem 2.7, we were able to find all (5,3,3)-feasible distributions that
are compatible with this uniform distribution and thus could determine the
PSCA(5,3,3) that could potentially extend to such a PSCA(6,3,3). From them,
we found 1 053 700 PSCA(6,3,3) up to isomorphism. These arrays extend to
35 872 460 PSCA(7,3,3) and 1 992 709 PSCA(8,3,3) up to isomorphism.
Again, none of these arrays extend to a PSCA(9,3,3). We also built some other
PSCA(8,3,3) via several other routes, but were unable to find a PSCA(9,3,3).

The last column of Table 4 lists the number of isomorphism classes in
our catalogue which contain a PSCA for which the corresponding set (ignoring
multiplicity of repeated permutations) of permutations forms a group. To test
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Table 4. Number of PSCAs generated by adding one symbol
at a time

t λ v PSCAs Groups

3 1 3 1 1
3 1 4 1 0
3 1 5 0 0
3 2 3 1 1
3 2 4 12 1
3 2 5 314 0
3 2 6 1957 5
3 2 7 146 0
3 2 8 0 0
3 3 3 1 1
3 3 4 37 0
3 3 5 260,664 0
3 3 6 29,100,897+ 0+
3 3 7 14,943,804+ 0+
3 3 8 2,111,540+ 0+
4 1 4 1 1
4 1 5 4 0
4 1 6 2 1
4 1 7 0 0
4 2 4 1 1
4 2 5 12,351 0
4 2 6 32,507 2
4 2 7 1826 0
4 2 8 0 0
5 1 5 1 1
5 1 6 3461 0
5 1 7 0 0

if a PSCA is isomorphic to a group it suffices to permute the symbols to
ensure that one permutation (it does not matter which) is the identity, and
then check that the resulting set of permutations is closed under composition.
PSCAs that form groups will be studied further in the next section, which will
provide details of all of the groups included in Table 4 (except the trivial cases
when v = t).

In Table 3, we showed how many distributions might be achieved by sym-
bols in PSCAs. In the “realised distributions” column of Table 5, we show
how many of these distributions are actually realised within some PSCA.
For comparison, the column headed “compatible distributions” repeats the
smaller of the two bounds we had computed in Table 3. Table 5 covers all
cases where we computed (non-empty) exhaustive catalogues. It also covers
the case (v, t, λ) = (6, 3, 3), where we were able to rule out 6 distributions with
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Table 5. Number of realised distributions for different
parameter sets

v t λ Realised Compatible
distributions distributions

3 3 1 1 1
4 3 1 2 2
3 3 2 1 1
4 3 2 3 3
5 3 2 6 6
6 3 2 4 8
7 3 2 2 16
3 3 3 1 1
4 3 3 4 4
5 3 3 11 11
6 3 3 26 32
4 4 1 1 1
5 4 1 3 3
6 4 1 1 6
4 4 2 1 1
5 4 2 5 5
6 4 2 10 17
7 4 2 16 59
5 5 1 1 1
6 5 1 5 5

targeted searches, assisted by Theorem 2.7. The 6 unrealised distributions
were (0,9,1,3,0,5), (2,6,0,4,3,3), (3,1,8,0,2,4), and their reverses. The other 26
distributions from Table 3 appeared in our partial catalogue.

4. PSCAs from Permutation Groups

In this section, we consider PSCAs which can be constructed from permutation
groups. For permutations f, g ∈ Sv, the composition f ◦ g is the permutation
(f ◦ g)(x) = f(g(x)). For a subgroup H � G and for g ∈ G, the right coset
Hg is the set {hg : h ∈ H}, whereas the left coset gH is the set {gh : h ∈ H}.
If H is a subgroup of Sv, then the right coset Hg permutes the columns of H
according to g, while the left coset gH permutes the symbols of H according to
g. Throughout this section, for s ∈ Sv,t, we use the notation s = (s0, . . . , st−1).
Moreover, G will always denote a group, such that if G has order v, then the
elements of G are {0, . . . , v−1}, and ψ will denote an injective homomorphism
ψ : G → Sv, g �→ ψg. We can then consider the action of G on Sv,t where, if
s = (s0, . . . , st−1) ∈ Sv,t and g ∈ G, then gs = (ψg(s0), . . . , ψg(st−1)).
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Mathon and van Trung [6] found that there are exactly two non-isomorphic
PSCA(6, 4, 1); one forms a group isomorphic to S4, the other forms three cosets
of a group isomorphic to D8. While noting the connection between their
PSCAs and groups, their search methods did not focus on building PSCAs
from groups (the same is true of our work in Sect. 3). However, several con-
nections between PSCAs and groups have been formalised by Na, Jedwab,
and Li [8] and they found a number of examples of PSCAs based on groups.
Note that the permutation composition convention used in [8] differs from the
convention used here.

Lemma 4.1. Let G be a group, ψ : G → Sv be an injective homomorphism, T
be the image of ψ, and let Th be a right coset of T . If x and y are sequences
belonging to the same orbit under the action of G on Sv,t, then x and y are
covered by the same number of permutations in Th.

Proof. Let x and y be elements of Sv,t that belong to the same orbit under
the action of G. Then, gx = y for some g ∈ G. Let 0 � c0 < · · · < ct−1 � v − 1
and let f ∈ Th such that f(ci) = xi for 0 � i � t − 1. Then, f covers x.
Now, consider ψg ◦ f . As f(ci) = xi, (ψg ◦ f)(ci) = ψg(xi) for 0 � i � t − 1.
Therefore, ψg◦f covers y. Therefore, for every permutation in Th that covers x,
we can find a corresponding permutation that covers y. Therefore, the number
of permutations in Th that cover y is at least the number of permutations in
Th that cover x. By reversing the argument, and noting x = g−1y, we find
that the number of permutations in Th that cover x is at least the number
of permutations in Th that cover y. Thus, x and y are covered by the same
number of permutations in Th. �

A consequence of Lemma 4.1 is that in a right coset of a permutation
group ψ(G), we can determine the number of permutations covering each se-
quence in the orbit of a sequence x under the action of G on Sv,t by simply
finding the number of permutations in the coset that cover x. We will develop
this point further in the context of transitive permutation groups in Lemma
4.2. Recall that a set X of permutations in Sv is transitive if for each i, j ∈ [v],
there is a permutation π ∈ X, such that π(i) = j. If for each i and j, the
permutation π is unique, then X is sharply transitive.

Lemma 4.2. Let G be a group, let ψ : G → Sv be an injective homomorphism,
such that the image, T , of ψ is a transitive permutation group and let X be an
array constructed from right cosets of T . Furthermore, let w ∈ [v], 0 � i � t−1
and let S = {s ∈ Sv,t : si = w}. If every sequence in S is covered by λ
permutations in X, then X is a PSCA(v, t, λ).

Proof. Let s ∈ Sv,t. Then, as T is transitive, there is a g ∈ G, such that
ψg(si) = w. Therefore, the orbit of s contains a sequence in S. As every orbit
of the action of G on Sv,t contains a representative from S, then by Lemma 4.1,
if every sequence in S is covered by λ permutations in X, then every sequence
in Sv,t is also covered by λ permutations in X. �
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Figure 1. Three types of cosets of E4

Table 6. Triples uncovered by cosets of Type A, B and C

Type A Type B Type C

021 012 013
031 032 023
120 103 102
130 123 132
203 210 201
213 230 231
302 301 310
312 321 320

Elementary Abelian 2-groups

Throughout this subsection, we use Ev to denote an elementary abelian 2-
group on the set [v] with identity 0 and operation ⊕. Then, for a group Ev,
we fix ψ : Ev → Sv to be the homomorphism that maps g �→ ψg where
ψg(x) = g ⊕ x. We then let T be the image of ψ. Under this homomorphism,
gs = (g ⊕ s0, . . . , g ⊕ st−1) for g ∈ Ev and s ∈ Sv,t. By construction, T is
a sharply transitive set of permutations, a fact that will be critical in what
follows. We begin our analysis of elementary abelian 2-groups with an overview
of PSCAs built from E4. Within S4, there are several subgroups isomorphic to
E4. However, the only one of these subgroups that is sharply transitive (and
hence may be represented within T ) is the following:

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

.

The cosets of this group within S4 are shown in Fig. 1. We refer to the
cosets on the left as having Type A coverage, the cosets in the middle as having
Type B coverage, and the cosets on the right as having Type C coverage. Cosets
of the same type cover the same set of triples. Each coset covers 16 triples of
S4,3 exactly once, leaving 8 triples uncovered. These uncovered triples are
recorded in Table 6.
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Observe that the sets of triples uncovered by Type A, Type B and Type C
cosets partition S4,3. Suppose X is a PSCA(4, 3, λ) which is built from a combi-
nation of cosets of our E4 permutation group. As the number of permutations
in X is 6λ, the total number of cosets that make up X is 3λ/2. Consider
the triple 012. This triple is covered by Type A and Type C cosets, but is
not covered by Type B cosets. Given that the number of permutations that
cover 012 is λ, there must be λ/2 Type B cosets. Similar arguments involving
other triples (e.g., 021 and 013) demonstrate that X must be built from λ/2
of each type of coset. Furthermore, because of the coverage properties of each
coset type, any combination of λ/2 Type A cosets, λ/2 Type B cosets, and
λ/2 Type C cosets will form a PSCA(4, 3, λ). Therefore, an array built from a
combination of cosets of E4 will form a PSCA(4, 3, λ) if and only if the array
contains an equal number of each type of coset.

We use this characterisation to aid us in our search for PSCAs from cosets
of permutation representations of the elementary abelian 2-group of order v
with v > 4. Obviously, these larger groups contain many subgroups isomorphic
to E4. As in the general case above, we isolate a subset of triples of Sv,3, such
that balanced coverage on these triples implies balanced coverage for every
triple in Sv,3.

Lemma 4.3. Let H be the set of order 4 subgroups of Ev and let S be the set
of triples defined by

S =
{
(s0, s1, s2) ∈ Sv,3 : {s0, s1, s2} ⊂ H for some H ∈ H}

.

Let X be an array constructed from right cosets of T in Sv. If every triple in
S is covered by λ permutations in X, then X is a PSCA(v, 3, λ).

Proof. First, we observe that if {x, y, z} is a 3-subset of an elementary abelian
2-group, then {x, y, z, x ⊕ y ⊕ z} is a coset of the order 4 subgroup {0, x ⊕
y, x⊕ z, y ⊕ z}. Furthermore, x⊕y ⊕ z is the only element we can include with
{x, y, z} to form an order 4 coset.

Let (x, y, z) ∈ Sv,3. If ψx acts on (x, y, z), we obtain the triple (0, x ⊕
y, x ⊕ z). As per the previous paragraph, {0, x ⊕ y, x ⊕ z} forms a subset of an
order 4 subgroup, so (0, x ⊕ y, x ⊕ z) ∈ S. Hence, each orbit of Sv,3 under the
action of Ev contains a triple from S. Therefore, by Lemma 4.1, if every triple
in S is covered by λ permutations in X, then X is a PSCA(v, 3, λ). �
Definition 4.4. Let X ⊆ Sv be a multiset of permutations. For W ⊆ [v], the re-
duced array of X on W , denoted by X[W ], is the array we obtain by removing
every symbol of [v]\W from X.

Let Y be a right coset of T in Sv, let H be an order 4 subgroup of Ev, and
consider the reduced array Y [H]. If we partition the rows of Y [H] according
to the cosets of H, then each part will form a coset of the sharply transitive
E4 permutation group. By taking X to be a collection of right cosets of T , we
can determine whether X[H] forms a PSCA by analysing the coverage type
of each coset of E4 that appears in X[H]. As a result of Lemma 4.3, if the
reduced array X[H] is a PSCA of strength 3 for each H ∈ H, then X will be
a PSCA of strength 3.
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Lemma 4.5. Let f be an order n automorphism of Ev and let X be the array

X =
n−1⋃

i=0

Tf i.

Let H be an order 4 subgroup of Ev. If the reduced array X[H] is a PSCA(4, 3, λ),
then X[f i(H)] will also be a PSCA(4, 3, λ) for 1 � i � n − 1.

Proof. First, we show that T = f−1Tf . Let g ∈ Ev. Then, we can consider
ψg ∈ T and the composition f−1ψgf . Let x ∈ Ev. Then, f−1ψgf(x) = f−1(g⊕
f(x)). As f is an automorphism of Ev, so too is f−1. Hence, f−1(g ⊕ f(x)) =
f−1(g) ⊕ x. Therefore, f−1ψgf = ψf−1(g) and hence, f−1Tf ⊆ T . Now, ψg =
ψf−1(f(g)) = f−1ψf(g)f by the above argument. So, T ⊆ f−1Tf , and thus,
T = f−1Tf . Therefore, fT = Tf , and so, we can consider Tf as being an
array in which the symbols of T have been permuted according to f . As a
result, the reduced array T [H] is isomorphic to Tf [f(H)]. More generally, the
reduced array Tf i[H] is isomorphic to Tf i+1[f(H)] for 0 � i � n−1. Moreover,
the isomorphism in each case is the restriction of f to H. Therefore, X[H] is
isomorphic to X[f(H)]. Applying this argument to the subgroups f i(H) and
f i+1(H) for 0 � i � n − 1, we find that X[H] is isomorphic to X[f i(H)] for
1 � i � n − 1. Therefore, if X[H] is a PSCA(4, 3, λ), then so is X[f i(H)] for
1 � i � n − 1. �

Essentially, Lemma 4.3 demonstrates that in a collection of right cosets
of T , it suffices to check the coverage of triples whose elements form a subset of
an order 4 subgroup Ev to determine whether the cosets form a PSCA. When
these cosets are related by an automorphism of Ev, we are able to further
restrict what triples need to be checked by allowing us to consider only certain
subgroups, depending upon the automorphism f . In each case, the reduced
array on any order 4 subgroup H will form a collection of cosets of E4 and so
we can use the characterisation at the start of this section to determine whether
these reduced arrays form PSCAs. Using these methods, we have been able to
find PSCAs of orders 4, 8, 16 and 32 with strength 3.

The PSCA(4, 3, 2) forms a permutation group isomorphic to the alter-
nating group A4. The PSCA(8, 3, 4) forms a permutation group isomorphic
to A4 × C2. We also have the following PSCAs of orders 16 and 32.

Theorem 4.6. g(v, 3) � 16 for v � 16 and g(v, 3) � 96 for v � 32.

Proof. To prove the first part of the theorem, we need only present a PSCA
(16, 3, 16). We let G be the group isomorphic to E16 generated by the permu-
tations
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The following are examples of a PSCA(4, 3, 2) and a PSCA(8, 3, 4) (note
that Na, Jedwab, and Li [8] also found a PSCA(8, 3, 4)).

PSCA(4, 3, 2) PSCA(8, 3, 4)

0123 01234567 42671053
1032 10543276 53106742
2301 25076143 60435217
3210 34701652 71342506
0231 43610725 07245316
1320 52167034 16532407
2013 67452301 23061754
3102 76325410 32716045
0312 06253471 45607132
1203 17524360 54170623
2130 24017635 61423570
3021 35760124 70354261

(0 1)(2 3)(4 5)(6 7)(8 9)(10 11)(12 13)(14 15),
(0 2)(1 3)(4 14)(5 15)(6 12)(7 13)(8 10)(9 11),
(0 4)(1 5)(2 14)(3 15)(6 10)(7 11)(8 12)(9 13),
(0 8)(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15).

We then let f =(1 8 9)(2 4 15 11 5 7)(3 12 6 10 13 14). Then

X =
5⋃

i=0

Gf i

forms a PSCA(16, 3, 16). The 96 permutations of this PSCA also form a group
which can be generated by

(1 8 9)(2 4 15 11 5 7)(3 12 6 10 13 14),
(0 4 7)(1 13 15)(2 3 10)(5 14 8)(6 9 12).

As a result of Lemma 4.3, to check whether X forms a PSCA, we need
only check that the reduced arrays of X corresponding to the 35 order 4
subgroups of G form PSCA(4, 3, 16). As the cosets of G from which X is
constructed are related by an automorphism, we can use Lemma 4.5 to further
limit the number of reduced arrays of X that we need to check to verify that
X is a PSCA. The orbits of the 35 order 4 subgroups of G under f are as
follows:

{{0, 1, 2, 3}, {0, 4, 8, 12}, {0, 6, 9, 15}, {0, 1, 10, 11}, {0, 5, 8, 13}, {0, 7, 9, 14}}

{{0, 1, 6, 7}, {0, 2, 8, 10}, {0, 4, 9, 13}, {0, 1, 14, 15}, {0, 3, 8, 11}, {0, 5, 9, 12}}

{{0, 2, 4, 14}, {0, 3, 4, 15}, {0, 11, 12, 15}, {0, 5, 6, 11}, {0, 5, 7, 10}, {0, 2, 7, 13}}

{{0, 2, 6, 12}, {0, 4, 6, 10}, {0, 10, 13, 15}, {0, 11, 13, 14}, {0, 3, 5, 14}, {0, 3, 7, 12}}
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{{0, 1, 4, 5}, {0, 7, 8, 15}, {0, 2, 9, 11}}

{{0, 1, 12, 13}, {0, 6, 8, 14}, {0, 3, 9, 10}}

{{0, 2, 5, 15}, {0, 4, 7, 11}}

{{0, 3, 6, 13}, {0, 10, 12, 14}}

{{0, 1, 8, 9}}
.

Hence, by Lemma 4.5, we need only check the reduced array of one subgroup
from each of these 9 orbits to verify that X is a PSCA.

For the second part of the theorem, we present a PSCA(32, 3, 96). We let
G32 be the group isomorphic to E32 generated by the permutations

(0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15) (16 17) (18 19)
(20 21) (22 23) (24 25) (26 27) (28 29) (30 31),

(0 2) (1 3) (4 28) (5 29) (6 30) (7 31) (8 10) (9 11)
(12 20) (13 21) (14 22) (15 23) (16 18) (17 19) (24 26) (25 27),

(0 4) (1 5) (2 28) (3 29) (6 26) (7 27) (8 14) (9 15) (10 22)
(11 23) (12 18) (13 19) (16 20) (17 21) (24 30) (25 31),
(0 8) (1 9) (2 10) (3 11) (4 14) (5 15) (6 12) (7 13) (16 24)

(17 25) (18 26) (19 27) (20 30) (21 31) (22 28) (23 29),
(0 16) (1 17) (2 18) (3 19) (4 20) (5 21) (6 22) (7 23) (8 24)

(9 25) (10 26) (11 27) (12 28) (13 29) (14 30) (15 31).

We then let f1 be the following order 2 automorphism of G32:

(2 8) (3 9) (4 6) (5 7) (12 28) (13 29) (14 30) (15 31) (18 24)
(19 25) (20 22) (21 23).

We then let G64 = G32 ∪ G32f1. Observe that G64 also forms a group. Then,
we let f2 be the following order 3 automorphism of G32:

(2 12 24) (3 13 25) (4 6 10) (5 7 11)(8 18 28) (9 19 29)(20 22 26)(21 23 27).

We then let G192 = G64 ∪ G64f2 ∪ G64f
2
2 . Again, G192 forms a group. Finally,

we let f3 be the following order 3 automorphism of G32:

(1 16 17)(3 18 19)(5 20 21)(6 7 23)(9 24 25)(11 26 27)(12 13 29)(15 30 31).

Then, G192 ∪f3G192 ∪f2
3G192 is a PSCA(32, 3, 96). Although this construction

is not of the form described in Lemma 4.5, it is a collection of right cosets of
G32. Therefore, we can use Lemma 4.3 to check that this array is indeed a
PSCA. �

We remark that even though G32, G64, and G192 are groups, the PSCA
(32, 3, 96) described in Theorem 4.6 is not a group. We also note that while f3
is an automorphism of G32, it is not an automorphism of G192. As such, the
shift to left cosets in the final step of the construction is significant as taking
right cosets would not form a PSCA.
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Motivated by those PSCAs that we had earlier found which turned out
to be permutation representations of groups, we decided to search for such
objects directly. Fix v, t and λ. We sought a representation in Sv of some group
of order n = t!λ. We began by deciding on positive integers g1, g2 and possibly
g3. We then chose permutations of orders g1, g2 (and possibly g3) and checked
whether they generate a group of order n. For each group that we discovered
in this way, we then tried to find a conjugate that was a PSCA. This was
done by building up the PSCA one column at a time, backtracking whenever
some t-sequence would be covered too many times. As the conjugate h−1Gh
of a group G is isomorphic in terms of sequence coverage to Gh, searching
over all column permutations of G for a PSCA is equivalent to searching over
all conjugates of G. Since we checked all conjugates of each group that we
found, we were free to insist that the generator of order g1 that we chose was
lexicographically maximal amongst all of its conjugates. In particular, this
meant we only had to consider one choice for each possible cycle structure of
that generator. Note that this method did not prejudge which group it was
going to build. Many non-isomorphic groups of order n may have generators
of the specified orders. For example, there are 15 groups of order 24, but they
all have a generating set with (g1, g2) ∈ {(12, 4), (12, 2), (8, 3), (6, 4), (3, 2)} or
(g1, g2, g3) = (6, 6, 2). Similarly, the 5 groups of order 18 all have a generating
set with (g1, g2) ∈ {(9, 2), (6, 6)} or (g1, g2, g3) = (3, 3, 2). Of course, groups
will typically have many different generating sets with suitable orders, and
hence will be built multiple times. However, we could be confident that every
group of order n that has some representation in Sv would be built, and thus,
that our catalogue of PSCAs that are groups is exhaustive for v � 14 and
n � 42.

In an alternative computation, we used GAP [2] to generate representa-
tives of conjugacy classes of subgroups of Sv and used the backtracking process
described above to search over each conjugacy class. We have also performed
ad hoc computations on some doubly transitive permutation groups. Some
of those groups had too many conjugates to search exhaustively, so we ran-
domly sampled conjugates instead. Our results are recorded in two tables. The
first, Table 7, records permutation groups that are strength 3 PSCAs but not
strength 4 PSCAs. The second table, Table 8, records permutation groups that
are strength 4 PSCAs but not strength 5 PSCAs. In Table 7, a representative
of each PSCA-isomorphism class of each group is presented. As a crosscheck,
we note that these results agree with those presented in Table 4, which were
found by a completely separate method. For reasons of space, in Table 8, we
do not list representatives of each PSCA-isomorphism class. Rather, we just
give the number of such classes (or a ? when random sampling of conjugates
was used instead of an exhaustive search).

We know of few permutation groups that are PSCAs of strength 5,
other than symmetric and alternating groups. These necessarily include the
5-transitive Mathieu groups M12 and M24. Perhaps, more interestingly, we
also found that

〈(1, 7)(2, 8)(3, 4)(6, 9), (0, 2, 10, 6)(3, 7, 5, 8)〉 (2)
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is one of 108 presentations of the (4-transitive) Mathieu group M11 in S11 that
form PSCAs of strength 5. No subgroup of S11 forms a PSCA of strength 4,
other than those isomorphic to M11, A11 or S11. Similarly

〈(2, 11, 8, 6)(3, 10, 4, 5), (0, 1, 2, 3, 4, 5, 11, 6, 7, 10, 8), (0, 9)(1, 8)(2, 5)(3, 6)(4, 7)(10, 11)〉
(3)

is one of 161 presentations of the (5-transitive) Mathieu group M12 in S12 that
form PSCAs of strength 6. The presentations of M11 are conjugates of each
other, and similarly for M12. If we let r ∈ Sv be the reverse permutation, i.e.,
r(i) = (v − 1 − i), then for a permutation group G � Sv, we will find that G
and rGr are isomorphic in terms of sequence coverage. Hence, it is plausible
that we may find presentations of the same group that are isomorphic as
PSCAs. Indeed, this is the case for M11 where the 108 presentations that form
PSCAs of strength 5 can be reduced to 54 isomorphism classes. Meanwhile, the
presentation of M12 given in (3) is the only one of the 161 strength 6 PSCAs for
which conjugation by r leaves the underlying set of permutations unchanged.
Thus, these 161 presentations that form PSCAs of strength 6 reduce to 81
isomorphism classes.

For the larger Mathieu groups, we were unable to do exhaustive compu-
tations and again relied on random sampling. We found that

〈(0, 1, 20, 4, 2)(3, 8, 9, 12, 13)(5, 16, 10, 11, 18)(6, 7, 15, 19, 14),

(0, 13, 16, 5, 10)(1, 14, 19, 4, 2)(3, 18, 7, 12, 15)(9, 21, 11, 20, 17)〉 (4)

is a presentation of the (3-transitive) Mathieu group M22 in S22 that forms a
PSCA of strength 5. Also

〈(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22),
(0, 23)(1, 22)(2, 11)(3, 15)(4, 17)(5, 9)(6, 19)(7, 13)(8, 20)(10, 16)(12, 21)(14, 18),

(2, 16, 9, 6, 8)(3, 12, 13, 18, 4)(7, 17, 10, 11, 22)(14, 19, 21, 20, 15)〉
(5)

is a presentation of the (5-transitive) Mathieu group M24 in S24 that forms a
PSCA of strength 6. Its point stabilisers provide PSCAs of strength 5 in S23

that are presentations of M23.
Table 7 also includes the PSCA(16, 3, 16) found earlier in the section, and

a PSCA(19, 3, 19). Exhaustive searches were not undertaken for either of these
parameter sets. However, a partial search found 17116 and 232 isomorphism
classes, respectively, of PSCA(16, 3, 16) and PSCA(19, 3, 19) that are conjugate
to the examples given in the table. Note that since isomorphism includes the
option to freely permute symbols, the only material effect of conjugation in
this context is to permute the columns of a PSCA.

A striking feature of results summarised in Tables 7 and 8 is that there are
a number of cases of non-isomorphic PSCAs being produced by similar sets of
generators. For example, starting from the PSCA(6, 4, 1), if we conjugate the
generating set by the transposition (2, 5), we reach a PSCA(6, 3, 4). A similar
thing happens if we use the transposition (4, 5). Conjugating the generating
set by a transposition has the effect of interchanging two columns of the PSCA
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(and then exchanging two symbols to once again achieve the property of having
one row equal to the identity permutation).

Summarising our bounds on g(v, t) derived from group presentations, we
have the following:

Theorem 4.7.

• For v � 11, we have g(v, 5) � 66.
• For v � 12, we have g(v, 4) � 18, g(v, 5) � 792 and g(v, 6) � 132.
• For v � 13, we have g(v, 4) � 234.
• For v � 21, we have g(v, 4) � 5040, and
• For v � 22, we have g(v, 5) � 3696, and hence, g(v, 4) � 18 480.
• For v � 23, we have g(v, 5) � 85 008, and hence, g(v, 4) � 425 040.
• For v � 24, we have g(v, 6) � 340 032, and hence, g(v, 5) � 2 040 192 and

g(v, 4) � 10 200 960.

Proof. Examples of a PSCA(12, 4, 18), a PSCA(13, 4, 234) and a PSCA
(21, 4, 5040) are given in Table 8. Also, we gave a PSCA(11, 5, 66) in (2), a
PSCA(12, 6, 132) in (3), a PSCA(22, 5, 3696) in (4), and a PSCA(24, 6, 340 032)
in (5), from which we derived a PSCA(23, 5, 85 008). �

Acknowledgements

The authors are grateful to Jingzhou Na, Jonathan Jedwab, and Shuxing Li for
sharing the results of their ongoing investigation [7,8], which has paralleled our
own. We are also very grateful to Daniel Horsley who has been very generous
with his time and advice. The first author was supported by an Australian
Government Research Training Program (RTP) Scholarship. This research was
supported by the Monash eResearch Centre through the use of the MonARCH
HPC Cluster. Computations in Sect. 4 were facilitated by GAP software [2].

Funding Information Open Access funding enabled and organized by CAUL
and its Member Institutions

Data Availability Data will be made available on reasonable request.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author states
that there is no conflict of interest.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s



On Perfect Sequence Covering Arrays 563

Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Y. M. Chee, C. J. Colbourn, D. Horsley and J. Zhou, Sequence covering arrays,
SIAM J. Disc. Math., 27 (2013), 1844–1861.

[2] The GAP Group, GAP – groups, algorithms, and programming. v.4.11.0. gap-
system.org.

[3] A. Klein, On perfect deletion-correcting codes, J. Combin. Des., 12 (2004), 72–77.

[4] G. Kuperberg, S. Lovett and R. Peled, Probabilistic existence of regular combi-
natorial structures, Geom. Funct. Anal., 27 (2017), 919–972.

[5] V. Levenshtein, Perfect codes in the metric of deletions and insertions, Diskret.
Mat., 3 (1991), 3–20.

[6] R. Mathon and Tran Van Trung, Directed t-packings and directed t-Steiner sys-
tems, Des. Codes Cryptogr., 18 (1999), 187–198.

[7] J. Na, Perfect Sequence Covering Arrays, Master’s Thesis, Simon Fraser Univer-
sity, (2021).

[8] J. Na, J. Jedwab, S. Li, A group-based structure for perfect sequence covering
arrays, Des., Codes Cryptog., to appear.

[9] J. Spencer, Minimal scrambling sets of simple orders, Acta Math. Acad. Sci.
Hungar., 22 (1971), 349–353.

[10] R. Yuster, Perfect sequence covering arrays, Des. Codes Cryptogr., 88 (2020),
585–593.

Aidan R. Gentle and Ian M. Wanless
School of Mathematics
Monash University
Clayton
VIC
3800
Australia
e-mail: aidan.gentle@monash.edu

Ian M. Wanless
e-mail: ian.wanless@monash.edu

Communicated by Frédérique Bassino

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


564 A. R. Gentle and I. M. Wanless

Received: 28 February 2022.

Accepted: 27 September 2022.


	On Perfect Sequence Covering Arrays
	Abstract
	1. Introduction
	2. Distribution Vectors
	3. Exhaustive Search Algorithm
	4. PSCAs from Permutation Groups
	Elementary Abelian 2-groups

	Acknowledgements
	References




