A q-Analogue for Euler's $\zeta(6)=\pi^{6} / 945$

In honour of Prof. George Andrews on his 80th birthday

Ankush Goswami

Abstract

Recently, Sun (Two q-analogues of Euler's formula $\zeta(2)=\pi^{2} / 6$. arXiv:1802.01473, 2018) obtained q-analogues of Euler's formula for $\zeta(2)$ and $\zeta(4)$. Sun's formulas were based on identities satisfied by triangular numbers and properties of Euler's q-Gamma function. In this paper, we obtain a q-analogue of $\zeta(6)=\pi^{6} / 945$. Our main results are stated in Theorems 2.1 and 2.2 below. Mathematics Subject Classification. 11N25, 11N37, 11N60. Keywords. q-Analogue, Triangular numbers.

1. Introduction

Recently, Sun [3] obtained a very nice q-analogue of Euler's formula $\zeta(2)=$ $\pi^{2} / 6$.

Theorem 1.1. (Sun [3]) For a complex q with $|q|<1$, we have:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{q^{k}\left(1+q^{2 k+1}\right)}{\left(1-q^{2 k+1}\right)^{2}}=\prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{4}}{\left(1-q^{2 n-1}\right)^{4}} \tag{1.1}
\end{equation*}
$$

Motivated by Theorem 1.1, the present author obtained the q-analogue of $\zeta(4)=\pi^{4} / 90$ and noted that it was simultaneously and independently obtained by Sun in his subsequent revised paper.

Theorem 1.2. (Sun [3]) For a complex q with $|q|<1$, we have:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{q^{2 k}\left(1+4 q^{2 k+1}+q^{4 k+2}\right)}{\left(1-q^{2 k+1}\right)^{4}}=\prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{8}}{\left(1-q^{2 n-1}\right)^{8}} \tag{1.2}
\end{equation*}
$$

Furthermore, Sun commented that one does not know how to find q analogues of Euler's formula for $\zeta(6)$ and beyond, similar to Theorems 1.1 and 1.2. This further motivated the author to consider the problem, and indeed,
we obtained the q-analogue of $\zeta(6)$. As we shall see shortly, the q-analogue formulation of $\zeta(6)$ is more difficult as compared to $\zeta(2)$ and $\zeta(4)$ due to an extra term that shows up in the identity; however, in the limit as $q \uparrow 1$ (where $q \uparrow 1$ means q is approaching 1 from inside the unit disk), this term vanishes. We also state the q-analogue of $\zeta(4)=\pi^{4} / 90$, since we found it independently of Sun's result; however, we skip the proof of this, since it essentially uses the same idea as Sun.

We emphasize here that the q-analogue of $\zeta(6)=\pi^{6} / 945$ is the first non-trivial case where we notice the occurrence of an interesting extra term which essentially is the twelfth power of a well-known function of Euler (see Theorem 2.2). After obtaining this result, we obtained q-analogues of Euler's general formula for $\zeta(2 k), k=4,5, \ldots$ (see [1]). Each of these q-analogues has an extra term that arises from the general theory of modular forms all of which approach zero in the limit $q \uparrow 1$. The case $k=3$ or the q-analogue of $\zeta(6)$ is special, since the extra term that we obtain in this case has a beautiful product representation, and has connections to well-known identities of Euler (see below).

2. Main Theorems

Theorem 2.1. For a complex q with $|q|<1$, we have:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{q^{2 k} P_{2}\left(q^{2 k+1}\right)}{\left(1-q^{2 k+1}\right)^{4}}=\prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{8}}{\left(1-q^{2 n-1}\right)^{8}} \tag{2.1}
\end{equation*}
$$

where $P_{2}(x)=x^{2}+4 x+1$. In other words, (2.1) gives a q-analogue of $\zeta(4)=$ $\pi^{4} / 90$.

Theorem 2.2. For a complex q with $|q|<1$, we have:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{q^{k}\left(1+q^{2 k+1}\right) P_{4}\left(q^{2 k+1}\right)}{\left(1-q^{2 k+1}\right)^{6}}-\phi^{12}(q)=256 q \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{12}}{\left(1-q^{2 n-1}\right)^{12}} \tag{2.2}
\end{equation*}
$$

where $P_{4}(x)=x^{4}+236 x^{3}+1446 x^{2}+236 x+1$ and $\phi(q)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)$ is Euler's function. In other words, (2.2) gives a q-analogue of $\zeta(6)=\pi^{6} / 945$.

Remark 2.3. We note that $\phi^{12}(q)$ has a beautiful product representation and is uniquely determined by:

$$
\begin{equation*}
\phi^{12}(q)=\sum_{k=0}^{\infty} \frac{q^{k}\left(1+q^{2 k+1}\right) P_{4}\left(q^{2 k+1}\right)}{\left(1-q^{2 k+1}\right)^{6}}-256 q \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{12}}{\left(1-q^{2 n-1}\right)^{12}} . \tag{2.3}
\end{equation*}
$$

In the general q-analogue formulation (see [1]), we do not have very elegant representations of these functions, although we obtain expressions for them similar to (2.3).

Remark 2.4. Since the coefficients in the q-series expansion of $\phi^{12}(q)$ are related to the pentagonal numbers by Euler's pentagonal number theorem, and the coefficients of the product in the right-hand side of (2.2) are related to the triangular numbers, it will be worthwhile to understand the relationships of these coefficients via identity (2.2).

3. Some Useful Lemmas

Let $q=e^{2 \pi i \tau}, \tau \in \mathcal{H}$ where $\mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$. Then, the Dedekind η-function defined by:

$$
\begin{equation*}
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \tag{3.1}
\end{equation*}
$$

is a modular form of weight $1 / 2$. Also, let us denote by $\psi(q)$ the following sum:

$$
\begin{equation*}
\psi(q)=\sum_{n=0}^{\infty} q^{T_{n}} \tag{3.2}
\end{equation*}
$$

where $T_{n}=\frac{n(n+1)}{2}($ for $n=0,1,2, \ldots)$ are triangular numbers. Then, we have the following well-known result due to Gauss:

Lemma 3.1.

$$
\begin{equation*}
\psi(q)=\prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)}{\left(1-q^{2 n-1}\right)} \tag{3.3}
\end{equation*}
$$

Thus, we have from Lemma 3.1 that:

$$
\begin{equation*}
\prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{12}}{\left(1-q^{2 n-1}\right)^{12}}=\psi^{12}(q)=\sum_{n=1}^{\infty} t_{12}(n) q^{n} \tag{3.4}
\end{equation*}
$$

where $t_{12}(n)$ is the number of ways of representing a positive integer n as a sum of 12 triangular numbers. Next, we have the following well-known result of Ono, Robins and Wahl [2].

Theorem 3.2. Let $\eta^{12}(2 \tau)=\sum_{k=0}^{\infty} a(2 k+1) q^{2 k+1}$. Then, for a positive integer n, we have:

$$
\begin{equation*}
t_{12}(n)=\frac{\sigma_{5}(2 n+3)-a(2 n+3)}{256} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{5}(n)=\sum_{d \mid n} d^{5} \tag{3.6}
\end{equation*}
$$

4. Proof of Theorem 2.2

Since $\zeta(6)=\frac{\pi^{6}}{945}$ has the following equivalent form:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{6}}=\frac{63}{64} \zeta(6)=\frac{\pi^{6}}{960}, \tag{4.1}
\end{equation*}
$$

it will be sufficient to get the q-analogue of (4.1). Now, from q-analogue of Euler's Gamma function, we know that:

$$
\begin{equation*}
\lim _{q \uparrow 1}(1-q) \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{2}}{\left(1-q^{2 n-1}\right)^{2}}=\frac{\pi}{2} \tag{4.2}
\end{equation*}
$$

so that from (4.2), we have:

$$
\begin{equation*}
\lim _{q \uparrow 1}(1-q)^{6} \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{12}}{\left(1-q^{2 n-1}\right)^{12}}=\frac{\pi^{6}}{64} \tag{4.3}
\end{equation*}
$$

Next, we consider the following infinite series

$$
\begin{equation*}
S_{6}(q):=\sum_{k=0}^{\infty} \frac{q^{k}\left(1+q^{2 k+1}\right) P_{4}\left(q^{2 k+1}\right)}{\left(1-q^{2 k+1}\right)^{6}} \tag{4.4}
\end{equation*}
$$

where $P_{4}(x)=x^{4}+236 x^{3}+1446 x^{2}+236 x+1$.
By partial fractions, we have:

$$
\begin{align*}
S_{6}(q)=\sum_{k=0}^{\infty} q^{k} & \left\{\frac{3840}{\left(1-q^{2 k+1}\right)^{6}}-\frac{9600}{\left(1-q^{2 k+1}\right)^{5}}+\frac{8160}{\left(1-q^{2 k+1}\right)^{4}}\right. \\
& \left.-\frac{2640}{\left(1-q^{2 k+1}\right)^{3}}+\frac{242}{\left(1-q^{2 k+1}\right)^{2}}-\frac{1}{\left(1-q^{2 k+1}\right)}\right\} \tag{4.5}
\end{align*}
$$

Lemma 4.1. With $S_{6}(q)$ represented by (4.5), we have:

$$
\begin{equation*}
S_{6}(q)=256 q \sum_{n=0}^{\infty} t_{12}(n) q^{n}+\phi^{12}(q) \tag{4.6}
\end{equation*}
$$

Proof. From (4.5), we have:

$$
\begin{aligned}
S_{6}(q)= & \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} q^{k}\left\{3840\binom{-6}{j}-9600\binom{-5}{j}+8160\binom{-4}{j}\right. \\
& \left.-2640\binom{-3}{j}+242\binom{-2}{j}-\binom{-1}{j}\right\}(-q)^{j(2 k+1)} \\
= & \sum_{k=0}^{\infty} \sum_{j=0}^{\infty}\{32(j+1)(j+2)(j+3)(j+4)(j+5) \\
& -400(j+1)(j+2)(j+3)(j+4)+1360(j+1)(j+2)(j+3) \\
& -1320(j+1)(j+2)+242(j+1)-1\} q^{k+j(2 k+1)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} \sum_{j=0}^{\infty}(2 j+1)^{5} q^{\frac{(2 j+1)(2 k+1)-1}{2}} \\
& =\sum_{n=0}^{\infty} \sigma_{5}(2 n+1) q^{n} \\
& =1+\sum_{n=1}^{\infty} \sigma_{5}(2 n+1) q^{n} \\
& =1+q \sum_{n=0}^{\infty} \sigma_{5}(2 n+3) q^{n}
\end{aligned}
$$

Also from (3.1), we have:

$$
\begin{aligned}
\phi^{12}(q) & =\frac{\eta^{12}(\tau)}{q^{\frac{1}{2}}} \\
& =\sum_{n=0}^{\infty} a(2 n+1) q^{n} \\
& =1+\sum_{n=1}^{\infty} a(2 n+1) q^{n} \\
& =1+q \sum_{n=0}^{\infty} a(2 n+3) q^{n}
\end{aligned}
$$

Thus, from above, we have:

$$
\begin{aligned}
S_{6}(q)-\phi^{12}(q) & =q \sum_{n=0}^{\infty}\left\{\sigma_{5}(2 n+3)-a(2 n+3)\right\} q^{n} \\
& =256 q \sum_{n=0}^{\infty} t_{12}(n) q^{n}
\end{aligned}
$$

where the last step follows from Theorem 3.2. This completes the proof of Theorem 2.2.

We also note that

$$
\begin{align*}
\lim _{q \uparrow 1}(1-q)^{6}\left(S_{6}(q)-\phi^{12}(q)\right) & =\lim _{q \uparrow 1}(1-q)^{6} S_{6}(q)-\lim _{q \uparrow 1}(1-q)^{6} \phi^{12}(q) \\
& =\sum_{k=0}^{\infty} \frac{3840}{(2 k+1)^{6}} \tag{4.7}
\end{align*}
$$

where $\lim _{q \uparrow 1}(1-q)^{6} \phi^{12}(q)=0$ and $q \uparrow 1$ indicates $q \rightarrow 1$ from within the unit disk. Hence, combining Eqs. (4.1), (4.3), (4.7), and Lemma 4.1, Theorem 2.2 follows.

Acknowledgements

Open access funding provided by Johannes Kepler University Linz. I am grateful to Prof. Krishnaswami Alladi for carrying out discussions pertaining to the
function $\phi(q)$ and for his encouragement. I also thank Prof. George Andrews for going through my proof and providing me a few useful references.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Goswami, A.: A q-analogue for Euler's evaluations of the Riemann zeta function. Res. Number Theory 5(1), \#Art. 3 (2019)
[2] Ono, K., Robins, S., Wahl, P.T.: On the representation of integers as sums of triangular numbers. Aequationes Math. 50(1-2), 73-94 (1995)
[3] Sun, Z.-W.: Two q-analogues of Euler's formula $\zeta(2)=\pi^{2} / 6$. arXiv:1802.01473 (2018)

Ankush Goswami
Department of Mathematics
University of Florida
Gainesville
Fl 32603
USA
e-mail: ankush04@ufl.edu

Present Address

Ankush Goswami
Research in Symbolic Computation (RISC)
Johannes Kepler University
Altenbergerstraße 69
4040 Linz
Austria
e-mail: agoswami@risc.jku.at

Received: 5 September 2018.
Accepted: 8 May 2019.

