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A q-Analogue for Euler’s ζ(6) = π6/945
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Abstract. Recently, Sun (Two q-analogues of Euler’s formula ζ(2) = π2/6.
arXiv:1802.01473, 2018) obtained q-analogues of Euler’s formula for ζ(2)
and ζ(4). Sun’s formulas were based on identities satisfied by triangular
numbers and properties of Euler’s q-Gamma function. In this paper, we
obtain a q-analogue of ζ(6) = π6/945. Our main results are stated in
Theorems 2.1 and 2.2 below.
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1. Introduction

Recently, Sun [3] obtained a very nice q-analogue of Euler’s formula ζ(2) =
π2/6.

Theorem 1.1. (Sun [3]) For a complex q with |q| < 1, we have:
∞∑

k=0

qk(1 + q2k+1)
(1 − q2k+1)2

=
∞∏

n=1

(1 − q2n)4

(1 − q2n−1)4
. (1.1)

Motivated by Theorem 1.1, the present author obtained the q-analogue of
ζ(4) = π4/90 and noted that it was simultaneously and independently obtained
by Sun in his subsequent revised paper.

Theorem 1.2. (Sun [3]) For a complex q with |q| < 1, we have:
∞∑

k=0

q2k(1 + 4q2k+1 + q4k+2)
(1 − q2k+1)4

=
∞∏

n=1

(1 − q2n)8

(1 − q2n−1)8
. (1.2)

Furthermore, Sun commented that one does not know how to find q-
analogues of Euler’s formula for ζ(6) and beyond, similar to Theorems 1.1 and
1.2. This further motivated the author to consider the problem, and indeed,
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we obtained the q-analogue of ζ(6). As we shall see shortly, the q-analogue
formulation of ζ(6) is more difficult as compared to ζ(2) and ζ(4) due to an
extra term that shows up in the identity; however, in the limit as q ↑ 1 (where
q ↑ 1 means q is approaching 1 from inside the unit disk), this term vanishes.
We also state the q-analogue of ζ(4) = π4/90, since we found it independently
of Sun’s result; however, we skip the proof of this, since it essentially uses the
same idea as Sun.

We emphasize here that the q-analogue of ζ(6) = π6/945 is the first
non-trivial case where we notice the occurrence of an interesting extra term
which essentially is the twelfth power of a well-known function of Euler (see
Theorem 2.2). After obtaining this result, we obtained q-analogues of Euler’s
general formula for ζ(2k), k = 4, 5, . . . (see [1]). Each of these q-analogues has
an extra term that arises from the general theory of modular forms all of
which approach zero in the limit q ↑ 1. The case k = 3 or the q-analogue of
ζ(6) is special, since the extra term that we obtain in this case has a beautiful
product representation, and has connections to well-known identities of Euler
(see below).

2. Main Theorems

Theorem 2.1. For a complex q with |q| < 1, we have:
∞∑

k=0

q2k P2(q2k+1)
(1 − q2k+1)4

=
∞∏

n=1

(1 − q2n)8

(1 − q2n−1)8
, (2.1)

where P2(x) = x2 + 4x + 1. In other words, (2.1) gives a q-analogue of ζ(4) =
π4/90.

Theorem 2.2. For a complex q with |q| < 1, we have:
∞∑

k=0

qk(1 + q2k+1) P4(q2k+1)
(1 − q2k+1)6

− φ12(q) = 256q
∞∏

n=1

(1 − q2n)12

(1 − q2n−1)12
, (2.2)

where P4(x) = x4 + 236x3 + 1446x2 + 236x + 1 and φ(q) =
∏∞

n=1
(1 − qn) is

Euler’s function. In other words, (2.2) gives a q-analogue of ζ(6) = π6/945.

Remark 2.3. We note that φ12(q) has a beautiful product representation and
is uniquely determined by:

φ12(q) =
∞∑

k=0

qk(1 + q2k+1) P4(q2k+1)
(1 − q2k+1)6

− 256q

∞∏

n=1

(1 − q2n)12

(1 − q2n−1)12
. (2.3)

In the general q-analogue formulation (see [1]), we do not have very elegant
representations of these functions, although we obtain expressions for them
similar to (2.3).
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Remark 2.4. Since the coefficients in the q-series expansion of φ12(q) are
related to the pentagonal numbers by Euler’s pentagonal number theorem,
and the coefficients of the product in the right-hand side of (2.2) are related to
the triangular numbers, it will be worthwhile to understand the relationships
of these coefficients via identity (2.2).

3. Some Useful Lemmas

Let q = e2πiτ , τ ∈ H where H = {τ ∈ C : Im(τ) > 0}. Then, the Dedekind
η-function defined by:

η(τ) = q1/24
∞∏

n=1

(1 − qn), (3.1)

is a modular form of weight 1/2. Also, let us denote by ψ(q) the following
sum:

ψ(q) =
∞∑

n=0

qTn , (3.2)

where Tn =
n(n + 1)

2
(for n = 0, 1, 2, . . .) are triangular numbers. Then, we

have the following well-known result due to Gauss:

Lemma 3.1.

ψ(q) =
∞∏

n=1

(1 − q2n)
(1 − q2n−1)

. (3.3)

Thus, we have from Lemma 3.1 that:
∞∏

n=1

(1 − q2n)12

(1 − q2n−1)12
= ψ12(q) =

∞∑

n=1

t12(n)qn, (3.4)

where t12(n) is the number of ways of representing a positive integer n as a
sum of 12 triangular numbers. Next, we have the following well-known result
of Ono, Robins and Wahl [2].

Theorem 3.2. Let η12(2τ) =
∑∞

k=0 a(2k+1)q2k+1. Then, for a positive integer
n, we have:

t12(n) =
σ5(2n + 3) − a(2n + 3)

256
, (3.5)

where

σ5(n) =
∑

d|n
d5. (3.6)
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4. Proof of Theorem 2.2

Since ζ(6) =
π6

945
has the following equivalent form:

∞∑

k=0

1
(2k + 1)6

=
63
64

ζ(6) =
π6

960
, (4.1)

it will be sufficient to get the q-analogue of (4.1). Now, from q-analogue of
Euler’s Gamma function, we know that:

lim
q↑1

(1 − q)
∞∏

n=1

(1 − q2n)2

(1 − q2n−1)2
=

π

2
, (4.2)

so that from (4.2), we have:

lim
q↑1

(1 − q)6
∞∏

n=1

(1 − q2n)12

(1 − q2n−1)12
=

π6

64
. (4.3)

Next, we consider the following infinite series

S6(q) :=
∞∑

k=0

qk(1 + q2k+1) P4(q2k+1)
(1 − q2k+1)6

, (4.4)

where P4(x) = x4 + 236x3 + 1446x2 + 236x + 1.
By partial fractions, we have:

S6(q) =
∞∑

k=0

qk

{
3840

(1 − q2k+1)6
− 9600

(1 − q2k+1)5
+

8160
(1 − q2k+1)4

− 2640
(1 − q2k+1)3

+
242

(1 − q2k+1)2
− 1

(1 − q2k+1)

}
. (4.5)

Lemma 4.1. With S6(q) represented by (4.5), we have:

S6(q) = 256q
∞∑

n=0

t12(n)qn + φ12(q). (4.6)

Proof. From (4.5), we have:

S6(q) =
∞∑

k=0

∞∑

j=0

qk

{
3840

(−6
j

)
− 9600

(−5
j

)
+ 8160

(−4
j

)

−2640
(−3

j

)
+ 242

(−2
j

)
−

(−1
j

)}
(−q)j(2k+1)

=
∞∑

k=0

∞∑

j=0

{32(j + 1)(j + 2)(j + 3)(j + 4)(j + 5)

−400(j + 1)(j + 2)(j + 3)(j + 4) + 1360(j + 1)(j + 2)(j + 3)

−1320(j + 1)(j + 2) + 242(j + 1) − 1} qk+j(2k+1)
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=
∞∑

k=0

∞∑

j=0

(2j + 1)5q
(2j+1)(2k+1)−1

2

=
∞∑

n=0

σ5(2n + 1)qn

= 1 +
∞∑

n=1

σ5(2n + 1)qn

= 1 + q

∞∑

n=0

σ5(2n + 3)qn.

Also from (3.1), we have:

φ12(q) =
η12(τ)

q
1
2

=
∞∑

n=0

a(2n + 1)qn

= 1 +
∞∑

n=1

a(2n + 1)qn

= 1 + q
∞∑

n=0

a(2n + 3)qn.

Thus, from above, we have:

S6(q) − φ12(q) = q

∞∑

n=0

{σ5(2n + 3) − a(2n + 3)} qn

= 256 q

∞∑

n=0

t12(n)qn,

where the last step follows from Theorem 3.2. This completes the proof of
Theorem 2.2. �

We also note that

lim
q↑1

(1 − q)6(S6(q) − φ12(q)) = lim
q↑1

(1 − q)6S6(q) − lim
q↑1

(1 − q)6φ12(q)

=
∞∑

k=0

3840
(2k + 1)6

, (4.7)

where limq↑1 (1−q)6φ12(q) = 0 and q ↑ 1 indicates q → 1 from within the unit
disk. Hence, combining Eqs. (4.1), (4.3), (4.7), and Lemma 4.1, Theorem 2.2
follows.
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