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Abstract. Consider non-negative lattice paths ending at their maximum height, which will be
called admissible paths. We show that the probability for a lattice path to be admissible is
related to the Chebyshev polynomials of the first or second kind, depending on whether the
lattice path is defined with a reflective barrier or not. Parameters like the number of admissible
paths with given length or the expected height are analyzed asymptotically. Additionally, we
use a bijection between admissible random walks and special binary sequences to prove a
recent conjecture by Zhao on ballot sequences.
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1. Introduction

Lattice paths as well as their stochastic incarnation— randomwalks— are interesting
and classical objects of study. Several authors have investigated a variety of parame-
ters related to lattice paths. For example, Banderier and Flajolet gave an asymptotic
analysis of the number of special lattice paths with fixed length in [2]. De Brujin,
Knuth, and Rice [4] analyzed the expected height of certain lattice paths, and Panny
and Prodinger [14] determined the asymptotic behavior of such paths with respect to
several notions of height.

The particular class of lattice paths we want to analyze in this paper is defined as
follows.
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Figure 2: Extremal lattice paths of length 3.

length n is given by pn2n. To illustrate this idea of extremal lattice paths, all paths of
this form of length 3 are given in Figure 2.

One of our motivations for investigating admissible randomwalks originates from
a conjecture in [16]. There, Zhao introduced the notion of a bidirectional ballot
sequence:

Definition 1.2. ( [16, Definition 3.1]) A 0-1 sequence is called a bidirectional ballot
sequence if every prefix and suffix contains strictly more 1’s than 0’s. The number of
bidirectional ballot sequences of length n is denoted by Bn.

Bidirectional ballot sequences are strongly related to admissible randomwalks on
Z. In fact, every bidirectional ballot sequence of length n+2 bijectively corresponds
to an admissible random walk of length n on Z: given an admissible random walk,
every up-step corresponds to a 1, and down-steps correspond to 0. Adding a 1 both
at the beginning and at the end of the constructed string gives a bidirectional ballot
sequence of length n+2.

Therefore, bidirectional ballot walks may also be seen as lattice paths with unique
minimum and maximum.

While we restrict ourselves to simple lattice paths (i.e., the path has steps ±1),
Bousquet-Mélou and Ponty introduce a more general class of so-called culminating
paths in [3]. Akin to bidirectional ballot walks, culminating paths are lattice paths
with unique minimum and maximum— however, the lattice path has steps a and −b
for fixed a, b > 0. They show that the behavior of these paths strongly depends on
the drift a− b. In particular, for a = b = 1 (i.e., for bidirectional ballot walks) they
determine the main term of the asymptotic expansion of Bn (cf. [3, Proposition 4.1]).

In [16], Zhao also shows that Bn = Θ(2n/n), states (without detailed proof) that
Bn ∼ 2n/(4n) and conjectures that

Bn

2n
=

1
4n

+
1
6n2

+O
( 1
n3

)
.

In this paper, we want to give a detailed analysis of the asymptotic behavior of
admissible random walks. By exploiting the bijection between admissible random
walks and bidirectional ballot sequences, we also prove a stronger version of Zhao’s
conjecture.

In order to do so, we use a connection between Chebyshev polynomials and the
probabilities p(h)n and q(h)n (cf. Propositions 2.1 and 2.2, respectively), which we ex-
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Definition 1.1. (Admissible random walks and lattice paths) Let (Sk)0≤k≤n be a sim-
ple symmetric random walk on N0 or Z of length n starting at 0. That is, we have
P(S0 = 0) = 1 as well as

P(Sk = j−1 | Sk−1 = j) = P(Sk = j+1 | Sk−1 = j) =
1
2
, for j ≥ 1,

P(Sk = 1 | Sk−1 = 0) = 1,

for random walks defined on N0, and

P(Sk = j−1 | Sk−1 = j) = P(Sk = j+1 | Sk−1 = j) =
1
2
, for j ∈ Z,

for random walks on Z. Then (Sk)0≤k≤n is said to be admissible of height h, if the
random walk stays within the interval [0, h] and ends in h, i.e., Sk ∈ [0, h] for all
0 ≤ k ≤ n and Sn = h. It is called admissible, if it is admissible of height h for some
h ∈ N.

The probability that a random walk of length n is admissible of height h is written
as p(h)n and q(h)n for random walks on N0 and Z, respectively. Furthermore, the prob-
abilities that a random walk is admissible at all are defined as pn := ∑h≥0 p

(h)
n and

qn := ∑h≥0q
(h)
n , respectively.

Finally, an admissible lattice path is a sequence of integers realizing an admissible
random walk.

In a nutshell, this means that an admissible randomwalk is a non-negative random
walk ending in its maximum. The definition is also visualized in Figure 1, where all
admissible lattice paths of length 5 are depicted. There are three admissible lattice
paths of height 3, and one of height 1 and 5, respectively. Note that when considering
random walks on Z, every lattice path has the same probability 2−n. Admissible
random walks on Z are enumerated by sequence A167510 in [11].

Figure 1: Admissible lattice paths of length 5.

However, in the case of random walks on N0, the probability depends on the
number of visits to 0: if there are v such visits (including the initial state), then the
path occurs with probability 2−n+v. Note that by “folding down” (i.e., reflecting about
the x-axis) some sections between consecutive visits to 0, or the section between the
last visit and the end, 2v lattice paths on Z can be formed, where the random walk
is never farther away from the start than at the end. We will call such lattice paths
extremal lattice paths— and by construction, the number of extremal lattice paths of
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Figure 2: Extremal lattice paths of length 3.

length n is given by pn2n. To illustrate this idea of extremal lattice paths, all paths of
this form of length 3 are given in Figure 2.
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sequence:
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every up-step corresponds to a 1, and down-steps correspond to 0. Adding a 1 both
at the beginning and at the end of the constructed string gives a bidirectional ballot
sequence of length n+2.

Therefore, bidirectional ballot walks may also be seen as lattice paths with unique
minimum and maximum.

While we restrict ourselves to simple lattice paths (i.e., the path has steps ±1),
Bousquet-Mélou and Ponty introduce a more general class of so-called culminating
paths in [3]. Akin to bidirectional ballot walks, culminating paths are lattice paths
with unique minimum and maximum— however, the lattice path has steps a and −b
for fixed a, b > 0. They show that the behavior of these paths strongly depends on
the drift a− b. In particular, for a = b = 1 (i.e., for bidirectional ballot walks) they
determine the main term of the asymptotic expansion of Bn (cf. [3, Proposition 4.1]).

In [16], Zhao also shows that Bn = Θ(2n/n), states (without detailed proof) that
Bn ∼ 2n/(4n) and conjectures that

Bn

2n
=
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+
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6n2
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( 1
n3

)
.

In this paper, we want to give a detailed analysis of the asymptotic behavior of
admissible random walks. By exploiting the bijection between admissible random
walks and bidirectional ballot sequences, we also prove a stronger version of Zhao’s
conjecture.

In order to do so, we use a connection between Chebyshev polynomials and the
probabilities p(h)n and q(h)n (cf. Propositions 2.1 and 2.2, respectively), which we ex-
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(
w(h)
n,0, w

(h)
n,1, . . . , w

(h)
n,h

)
holds:

w(h)
n ·Mh = w(h)

n+1,

so w(h)
n =w(h)

0 ·Mn
h . The initial vector is w

(h)
0 = e0 = (1, 0, . . . , 0). Since we also want

that Sn = h, we multiply by the vector eh = (0, . . . , 0, 1)� at the end to extract only
the last entry w(h)

n,h. This yields the generating function

∑
n≥0

q(h)n zn = ∑
n≥0

e0Mn
hehz

n = e0(I− zMh)
−1eh.

Cramer’s rule yields

∑
n≥0

q(h)n zn =
zh2−h

det(I− zMh)
.

The determinant of I− zMh can be computed recursively in h by means of row ex-
pansion, see (for instance) [1, p. 97]:

det(I− zMh+2) = det(I− zMh+1)−
z2

4
det(I− zMh).

Comparing this with the recursion for the Chebyshev polynomials and checking the
initial values, we find that 2h+1 det(I−zMh)

zh+1 =Uh+1(1/z). Therefore, we obtain

∑
n≥0

q(h)n zn =
2

zUh+1(1/z)
,

from which (2.1) follows by extracting the coefficient of zn.

An analogous statement holds for admissible random walks on N0 with the sole
difference that in this case, the Chebyshev polynomials of the first kind occur.

Proposition 2.2. The probability that a random walk (Sk)0≤k≤n of length n on N0 is
admissible of height h is given by

p(h)n = P(0≤ S0, S1, . . . , Sn ≤ h and Sn = h) = 2
[
zn+1] 1

Th+1(1/z)
, (2.2)

for h≥ 0 and n≥ 1.

Proof. For random walks with a reflective barrier at 0, the (h+ 1)× (h+ 1) transfer
matrix has the form

M̃h =




0 1 0 · · · · · · 0
1
2 0 1

2 · · · · · · 0

0 1
2 0

. . . 0
...

...
. . . . . . . . .

...
...

...
. . .

. . . 1
2

0 0 0 . . . 1
2 0




.
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plore in detail in Section 2. This allows us to determine explicit representations of the
probabilities pn and qn, which are given in Theorem 2.5. The analysis of the asymp-
totic behavior of admissible randomwalks of given length shall focus in particular on
the height of these random walks. In this context, we define random variablesHn and
H̃n by

P(Hn = h) :=
p(h)n

pn
, P

(
H̃n = h

)
:=

q(h)n

qn
.

These random variables model the height of admissible random walks on N0 and Z,
respectively. Besides an asymptotic expansion for pn and qn, we are also interested
in the behavior of the expected height and its variance. The asymptotic analysis of
these expressions, which is based on an approach featuring the Mellin transform, is
carried out in Sections 3 and 4, and the results are given in Theorems 3.5 and 4.2,
respectively. Finally, Zhao’s conjecture is proved in Corollary 4.5.

2. Chebyshev Polynomials and RandomWalks

We denote the Chebyshev polynomials of the first and second kind by Th and Uh,
respectively, i.e.,

Th+1(x) = 2xTh(x)−Th−1(x), for h≥ 1, T0(x) = 1, T1(x) = x,

Uh+1(x) = 2xUh(x)−Uh−1(x), for h≥ 1,U0(x) = 1,U1(x) = 2x.

In the following propositions, we show that these polynomials occur when analyz-
ing admissible random walks. As usual, the notation [zn] f (z) denotes the coefficient
of zn in the series expansion of f (z).

Proposition 2.1. The probability that a simple symmetric random walk (Sk)0≤k≤n of
length n on Z is admissible of height h is

q(h)n = P(0≤ S0, S1, . . . , Sn ≤ h and Sn = h) = 2
[
zn+1] 1

Uh+1(1/z)
, (2.1)

for h≥ 0 and n≥ 0.

Proof. We consider the (h+1)× (h+1) transfer matrix

Mh =




0 1
2 0 · · · · · · 0

1
2 0 1

2 · · · · · · 0

0 1
2 0

. . . 0
...

...
. . . . . . . . .

...
...

...
. . . . . . 1

2
0 0 0 . . . 1

2 0




,

which has the following simple yet useful property: if w(h)
n,k is the probability that

0≤ S0, S1, . . . , Sn ≤ h and Sn = k, then the following recursion for the vectors w(h)
n =
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(
w(h)
n,0, w

(h)
n,1, . . . , w

(h)
n,h

)
holds:

w(h)
n ·Mh = w(h)

n+1,

so w(h)
n =w(h)

0 ·Mn
h . The initial vector is w

(h)
0 = e0 = (1, 0, . . . , 0). Since we also want

that Sn = h, we multiply by the vector eh = (0, . . . , 0, 1)� at the end to extract only
the last entry w(h)

n,h. This yields the generating function

∑
n≥0

q(h)n zn = ∑
n≥0

e0Mn
hehz

n = e0(I− zMh)
−1eh.

Cramer’s rule yields

∑
n≥0

q(h)n zn =
zh2−h

det(I− zMh)
.

The determinant of I− zMh can be computed recursively in h by means of row ex-
pansion, see (for instance) [1, p. 97]:

det(I− zMh+2) = det(I− zMh+1)−
z2

4
det(I− zMh).

Comparing this with the recursion for the Chebyshev polynomials and checking the
initial values, we find that 2h+1 det(I−zMh)

zh+1 =Uh+1(1/z). Therefore, we obtain

∑
n≥0

q(h)n zn =
2

zUh+1(1/z)
,

from which (2.1) follows by extracting the coefficient of zn.

An analogous statement holds for admissible random walks on N0 with the sole
difference that in this case, the Chebyshev polynomials of the first kind occur.

Proposition 2.2. The probability that a random walk (Sk)0≤k≤n of length n on N0 is
admissible of height h is given by

p(h)n = P(0≤ S0, S1, . . . , Sn ≤ h and Sn = h) = 2
[
zn+1] 1

Th+1(1/z)
, (2.2)

for h≥ 0 and n≥ 1.

Proof. For random walks with a reflective barrier at 0, the (h+ 1)× (h+ 1) transfer
matrix has the form

M̃h =




0 1 0 · · · · · · 0
1
2 0 1

2 · · · · · · 0

0 1
2 0

. . . 0
...

...
. . . . . . . . .

...
...

...
. . .

. . . 1
2

0 0 0 . . . 1
2 0




.
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which immediately yields

1
Th(1/z)

= zh
2

(1−
√
1− z2 )h+(1+

√
1− z2 )h

=: zhY
(
z2
)
. (2.5)

By applying Cauchy’s integral formula, we obtain the coefficients of the factor Y (t)
encountered in (2.5). We choose a sufficiently small circle around 0 as the integration
contour γ . Thus, we get

[tn]Y (t) = [tn]
2

(1−
√
1− t )h+(1+

√
1− t )h

=
1
2π i

∮

γ

2
(1−

√
1− t )h+(1+

√
1− t )h

· 1
tn+1 dt.

We want to simplify the expression
√
1− t in this integral. This can be achieved by

the substitution t = 4u
(1+u)2 , which gives us dt = (1−u) · 4

(1+u)3 du and
√
1− t = 1−u

1+u .
Also, the new integration contour is γ̃ , which is still a contour that winds around the
origin once. Then, again by Cauchy’s integral formula, we obtain

[tn]Y (t) =
1
2π i

∮

γ̃
(1−u)

(1+u)2n+h−1

22n+h−1(1+uh)
· 1
un+1 du

= [un](1−u)
(1+u)2n+h−1

22n+h−1(1+uh)
.

Expanding the factor (1+u)2n+h−1

1+uh into a series with the help of the geometric series
and the binomial theorem yields

(1+u)2n+h−1

1+uh
= ∑

k≥0
(−1)kukh(1+u)2n+h−1 = ∑

k≥0
(−1)kukh

2n+h−1

∑
j=0

(
2n+h−1

j

)
u j,

and therefore,
[
u�
](1+u)2n+h−1

1+uh
= ∑

k≥0
(−1)k

(
2n+h−1
�−hk

)
.

This allows us to expand the expression encountered before, that is,

[tn]Y (t) = [un](1−u)
(1+u)2n+h−1

22n+h−1(1+uh)

=
1

22n+h−1 ∑
k≥0

(−1)k
[(

2n+h−1
n−hk

)
−
(
2n+h−1
n−hk−1

)]
.

Using the binomial identity
(
N−1
α

)
−
(
N−1
α−1

)
=

N−2α
N

(
N
α

)
,

6 B. Hackl et al.

By the same approach involving Cramer’s rule as in the proof of Proposition 2.1, we
find the generating function

∑
n≥0

p(h)n zn = e0
(
I− zM̃h

)−1eh =
zh21−h

det(I− zM̃h)
,

where we have the recursion

det
(
I− zM̃h+2

)
= det

(
I− zM̃h+1

)
− z2

4
det

(
I− zM̃h

)
,

for the determinant of I− zM̃h. Finally, (2.2) follows from
2h−1 det(I−zM̃h−1)

zh
= Th(1/z),

which can be proved again by verifying that the same recursion holds for the
Chebyshev-T polynomials and that the initial values agree.

Remark 2.3. The coefficients of 1
Th(1/z)

have also been studied in [9]. There, the case
of fixed h is investigated, whereas we mostly focus on the asymptotic behavior of
∑h≥0 p

(h)
n for n→ ∞.

Using the results from Propositions 2.1 and 2.2, we may give explicit represen-
tations of the probabilities p(h)n and q(h)n by investigating the Chebyshev polynomials
thoroughly.

Remark 2.4. (Iverson’s notation) We use the Iversonian notation

�expr�=





1, if expr is true,

0, otherwise,

popularized in [8, Chapter 2].

In the following theorem and throughout the rest of the paper,mwill denote a half-
integer, i.e., m ∈ 1

2N=
{ 1
2 , 1,

3
2 , 2, . . .

}
. While this convention may seem unusual, it

simplifies many of our formulae and is therefore convenient for calculations.

Theorem 2.5. With τh,k := (h+1)(2k+1)/2 and υh,k := (h+2)(2k+1)/2, we have

p(h)2m−1 =
4
4m ∑k≥0

(−1)k
τh,k
m

(
2m

m− τh,k

)
· �h+1≡ 2m mod 2�, (2.3)

q(h)2m−2 =
4
4m ∑k≥0

2υ2
h,k−m

(2m−1)m

(
2m

m−υh,k

)
· �h≡ 2m mod 2�, (2.4)

for h≥ 0 and half-integers m ∈ 1
2N with m≥ 1.

Proof. We begin with the analysis of p(h)n . The probabilities are related to the
Chebyshev-T polynomials by Proposition 2.2. It is a well-known fact (cf. [12, 22:3:3])
that these polynomials have the explicit representation

Th(x) =

(
x−

√
x2−1

)h
+
(
x+

√
x2−1

)h

2
,
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)
u j,

and therefore,
[
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](1+u)2n+h−1

1+uh
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k≥0
(−1)k

(
2n+h−1
�−hk

)
.

This allows us to expand the expression encountered before, that is,

[tn]Y (t) = [un](1−u)
(1+u)2n+h−1

22n+h−1(1+uh)
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1

22n+h−1 ∑
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n−hk
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−
(
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n−hk−1

)]
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(
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α

)
−
(
N−1
α−1

)
=

N−2α
N

(
N
α

)
,
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Recalling the result of Theorem 2.5, we find that in the half-integer representation
p(h)2m−1, the shifted central binomial coefficient

( 2m
m−τh,k

)
appears. Hence, for the pur-

pose of obtaining an expansion for p2m−1 = ∑h≥0 p
(h)
2m−1, analyzing the asymptotics

of binomial coefficients in the central region is necessary. In the following, we will
work a lot with asymptotic expansions. The notation

f (n) ∼
∞

∑
�=−L

a�n−�

(as n→ ∞) is understood to mean

f (n) =
R−1

∑
�=−L

a�n−�+O
(
n−R)

for all integers R>−L, even if the series does not converge. Likewise, an asymptotic
expansion in two variables given by

f (α, n)∼
∞

∑
�=−L

J(�)

∑
j=0

b� j
α j

n�

is to be understood as

f (α, n) =
R−1

∑
�=−L

J(�)

∑
j=0

b� j
α j

n�
+O

(
αJ(R)n−R

)
,

for all R>−L.

Lemma 3.1. For n ∈ 1
2N and |α| ≤ n2/3 such that n−α ∈ N, we have

(
2n

n−α

)
∼ 4n√

nπ
exp

(
−α2

n

)
·S(α, n),

with S(α, n) := ∑�, j≥0 c� j
α2 j

n�
and

c� j =
[
α2 jn−�

](
∑
r≥0

dr
(2n)r

)(
∑
r≥0

(−1)rdr
(n+α)r

)(
∑
r≥0

(−1)rdr
(n−α)r

)

×
(
∑
r≥0

(−1)r
(−1/2

r

)
α2r

n2r

)(
∑
r≥0

1
r!
α4r

n3r

[
∑
t≥0

−1
(t+2)(2t+3)

α2t

n2t

]r)
, (3.1)

where the coefficients dr come from the higher-order Stirling approximation of the
factorial, cf. (3.2). Additionally, the estimate

S(α, n) = 1+O
(
1+ |α|

n

)

holds for |α| ≤ n2/3 and we know that c00 = 1 as well as c� j = 0 if j > 2
3�.
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the expression above can be simplified so that, together with (2.5), we find

1
Th(1/z)

= 2∑
n≥0

( z
2

)2n+h
∑
k≥0

(−1)k
2hk+h
2n+h

(
2n+h
n−hk

)
.

By plugging this into (2.2), we obtain

p(h)n = 2
[
zn+1] 1

Th+1(1/z)

= 4
[
zn+1]∑

�≥0

( z
2

)2�+h+1
∑
k≥0

(−1)k
2(h+1)k+h+1

2�+h+1

(
2�+h+1
�− (h+1)k

)

=
1

2h−1

[
zn−h]∑

�≥0

( z
2

)2�
∑
k≥0

(−1)k
2(h+1)k+h+1

2�+h+1

(
2�+h+1
�− (h+1)k

)
.

Combinatorially, it is clear that p(h)n = 0 for n and h of different parity, as only heights
of the same parity as the length can be reached by a randomwalk starting at the origin.
This can also be observed in the representation above. Assuming n ≡ h mod 2, we
can write n−h= 2� or equivalently n−h

2 = �. This gives us

p(h)n =
1

2n−1 ∑
k≥0

(−1)k
2(h+1)k+h+1

n+1

(
n+1

n−h
2 − (h+1)k

)

=
1

2n−1 ∑
k≥0

(−1)k
(h+1)(2k+1)

n+1

(
n+1

n+1
2 − 1

2 (h+1)(2k+1)

)
.

Substituting n= 2m−1 with a half-integerm ∈ 1
2N such that h+1≡ 2m mod 2, and

recalling that τh,k = (h+1)(2k+1)/2, the representation in (2.3) is proved.
For the second part, we consider the explicit representation

Uh(x) =

(
x+

√
x2−1

)h+1−
(
x−

√
x2−1

)h+1

2
√
x2−1

of the Chebyshev-U polynomials, which is equivalent to

1
Uh(1/z)

= zh
2
√
1− z2

(1+
√
1− z2 )h+1− (1−

√
1− z2 )h+1

.

Formula (2.4) is now obtained in the same way as (2.3).

With explicit formulae for the probabilities p(h)n and q(h)n , we can start to work
towards the analysis of the asymptotic behavior of admissible random walks.

3. Admissible RandomWalks on N0

In this section, we begin to develop the tools required for a precise analysis of the
asymptotic behavior of admissible random walks on N0.
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Recalling the result of Theorem 2.5, we find that in the half-integer representation
p(h)2m−1, the shifted central binomial coefficient

( 2m
m−τh,k

)
appears. Hence, for the pur-

pose of obtaining an expansion for p2m−1 = ∑h≥0 p
(h)
2m−1, analyzing the asymptotics

of binomial coefficients in the central region is necessary. In the following, we will
work a lot with asymptotic expansions. The notation

f (n) ∼
∞

∑
�=−L

a�n−�

(as n→ ∞) is understood to mean

f (n) =
R−1

∑
�=−L

a�n−�+O
(
n−R)

for all integers R>−L, even if the series does not converge. Likewise, an asymptotic
expansion in two variables given by

f (α, n)∼
∞

∑
�=−L

J(�)

∑
j=0

b� j
α j

n�

is to be understood as

f (α, n) =
R−1

∑
�=−L

J(�)

∑
j=0

b� j
α j

n�
+O

(
αJ(R)n−R

)
,

for all R>−L.

Lemma 3.1. For n ∈ 1
2N and |α| ≤ n2/3 such that n−α ∈ N, we have

(
2n

n−α

)
∼ 4n√

nπ
exp

(
−α2

n

)
·S(α, n),

with S(α, n) := ∑�, j≥0 c� j
α2 j

n�
and

c� j =
[
α2 jn−�

](
∑
r≥0

dr
(2n)r

)(
∑
r≥0

(−1)rdr
(n+α)r

)(
∑
r≥0

(−1)rdr
(n−α)r

)

×
(
∑
r≥0

(−1)r
(−1/2

r

)
α2r

n2r

)(
∑
r≥0

1
r!
α4r

n3r

[
∑
t≥0

−1
(t+2)(2t+3)

α2t

n2t

]r)
, (3.1)

where the coefficients dr come from the higher-order Stirling approximation of the
factorial, cf. (3.2). Additionally, the estimate

S(α, n) = 1+O
(
1+ |α|

n

)

holds for |α| ≤ n2/3 and we know that c00 = 1 as well as c� j = 0 if j > 2
3�.
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By expanding the logarithm into a power series, we can simplify this expression to

(2n)2n

(n+α)n+α(n−α)n−α

= 4n exp

(
2

[
−∑

t≥0

1
2t+1

α2t+2

n2t+1 +∑
t≥0

1
2t+2

α2t+2

n2t+1

])

= 4n exp
(
−α2

n

)
exp

(
−α4

n3 ∑t≥0

1
(t+2)(2t+3)

α2t

n2t

)

= 4n exp
(
−α2

n

)(

∑
r≥0

1
r!
α4r

n3r

[

∑
t≥0

−1
(t+2)(2t+3)

α2t

n2t

]r)
.

We also use
1

n±α
=

1
n

1
1± α

n
=

1
n ∑r≥0

(
∓α

n

)r
.

By the symmetry of the binomial coefficient, the resulting asymptotic expansion has
to be symmetric in α . Assembling all these expansions yields the asymptotic formula

(
2n

n−α

)
∼ 4n√

nπ
exp

(
−α2

n

)
·S(α, n),

where S(α, n) is defined as in the statement of the lemma.
Note that d0 = 1, and thus the first summand of the series in (3.1) is 1 — which

gives c00 = 1. Summands where the exponent of α exceeds the exponent of 1/n only
occur in the last series, with the maximal difference being induced by α 4r/n3r. Thus,
if j > 2

3�, we have c� j = 0. Together with |α| ≤ n2/3, this implies the estimate for
S(α, n).

For |α|> n2/3, we can use the monotonicity of the binomial coefficient to obtain
(

2n
n−α

)
≤
(

2n
n−�n2/3�

)
,

for which the exponential factor ensures fast decay,

exp

(
−
⌈
n2/3

⌉2

n

)
=O

(
exp

(
−n1/3

))
,

and as everything else is of polynomial growth, the statement of the lemma follows.

Now that we have an asymptotic expansion for the shifted central binomial coef-
ficient, let us look at our explicit formula in (2.3) again: we have

p(h)2m−1 =
4
4m ∑k≥0

(−1)k
τh,k
m

(
2m

m− τh,k

)
· �h+1≡ 2m mod 2�,
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If |α|> n2/3, the term
(

2n
n−α

)
/4n =O

(
exp

(
−n1/3

))

decays faster than any power of n.

Proof. We begin by recalling the higher-order Stirling approximation (cf. [7, p. 760])

n!∼
√
2πn

(n
e

)n
(
∑
j≥0

d j

n j

)
. (3.2)

An explicit representation of the coefficients d j can be found in [10]. From the loga-
rithmic representation of the factorial (see [7, p. 766]), the expansion

1
n!

∼ 1√
2πn

( e
n

)n
(
∑
j≥0

(−1) jd j

n j

)
(3.3)

for the reciprocal factorial follows.
Let us assume |α| ≤ n2/3. Then, by applying (3.2) and (3.3) to the shifted central

binomial coefficient, we obtain
(

2n
n−α

)
=

(2n)!
(n−α)!(n+α)!

=
1√
nπ

(
1− α2

n2

)−1/2 (2n)2n

(n+α)n+α(n−α)n−α

×
(
∑
r≥0

dr
(2n)r

)(
∑
r≥0

(−1)rdr
(n+α)r

)(
∑
r≥0

(−1)rdr
(n−α)r

)
.

The factor
(
1− α2

n2
)−1/2 can be expanded as a binomial series, resulting in

(
1− α2

n2

)−1/2

= ∑
r≥0

(−1)r
(−1/2

r

)
α2r

n2r
.

The remaining factor is handled by means of the identity nn = exp(n logn), which
leads to

(2n)2n

(n+α)n+α(n−α)n−α

= exp(2n log(2n)− (n+α) log(n+α)− (n−α) log(n−α))

= exp(2n log2+2n logn− (n+α)(logn+ log(1+α/n))

− (n−α)(logn+ log(1−α/n)))

= 4n exp(α log(1−α/n)−α log(1+α/n)

−n log(1−α/n)−n log(1+α/n)).
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By expanding the logarithm into a power series, we can simplify this expression to

(2n)2n

(n+α)n+α(n−α)n−α

= 4n exp

(
2

[
−∑

t≥0

1
2t+1

α2t+2

n2t+1 +∑
t≥0

1
2t+2

α2t+2

n2t+1

])

= 4n exp
(
−α2

n

)
exp

(
−α4

n3 ∑t≥0

1
(t+2)(2t+3)

α2t

n2t

)

= 4n exp
(
−α2

n

)(

∑
r≥0

1
r!
α4r

n3r

[

∑
t≥0

−1
(t+2)(2t+3)

α2t

n2t

]r)
.

We also use
1

n±α
=

1
n

1
1± α

n
=

1
n ∑r≥0

(
∓α

n

)r
.

By the symmetry of the binomial coefficient, the resulting asymptotic expansion has
to be symmetric in α . Assembling all these expansions yields the asymptotic formula

(
2n

n−α

)
∼ 4n√

nπ
exp

(
−α2

n

)
·S(α, n),

where S(α, n) is defined as in the statement of the lemma.
Note that d0 = 1, and thus the first summand of the series in (3.1) is 1 — which

gives c00 = 1. Summands where the exponent of α exceeds the exponent of 1/n only
occur in the last series, with the maximal difference being induced by α 4r/n3r. Thus,
if j > 2

3�, we have c� j = 0. Together with |α| ≤ n2/3, this implies the estimate for
S(α, n).

For |α|> n2/3, we can use the monotonicity of the binomial coefficient to obtain
(

2n
n−α

)
≤
(

2n
n−�n2/3�

)
,

for which the exponential factor ensures fast decay,

exp

(
−
⌈
n2/3

⌉2

n

)
=O

(
exp

(
−n1/3

))
,

and as everything else is of polynomial growth, the statement of the lemma follows.

Now that we have an asymptotic expansion for the shifted central binomial coef-
ficient, let us look at our explicit formula in (2.3) again: we have

p(h)2m−1 =
4
4m ∑k≥0

(−1)k
τh,k
m

(
2m

m− τh,k

)
· �h+1≡ 2m mod 2�,
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The asymptotic behavior of the denominator is related to the behavior of the sum from
above — and fortunately, the behavior of the numerator is related to the behavior of
the very similar sum

∑
h,k≥0

h+1≡2m mod 2

(−1)kτ2 j+1
h,k (h+1)r exp

(
−
τ2h,k
m

)
.

The following lemma analyzes sums of this structure asymptotically.

Lemma 3.2. Let j, r ∈ N0. Then we have

∑
h,k≥0

h+1≡2m mod 2

(−1)kτ2 j+1
h,k (h+1)r exp

(
−
τ2h,k
m

)

= 2r−1Γ
(
j+1+

r
2

)
β (r+1)m j+1+r/2+O

(
m−K) , (3.5)

for any fixed K > 0, where β ( ·) denotes the Dirichlet beta function.
Remark 3.3. The Dirichlet beta function is also often called Catalan beta function,
and it is defined by

β (s) =
∞

∑
k=0

(−1)k

(2k+1)s
.

It can be expressed in terms of the Hurwitz zeta function as

β (s) = 4−s(ζ (s, 1/4)−ζ (s, 3/4)).

Amongst many other interesting properties, it satisfies the zeta-like functional equa-
tion (cf. [12, 3:5:2])

β (1− s) = (π/2)−s sin(πs/2)Γ(s)β (s),

which also implies that β (s) has zeros at all negative odd integers.

Proof of Lemma 3.2. If we substitute m= x−2, the left-hand side of (3.5) becomes

f (x) := ∑
h,k≥0

h+1≡2m mod 2

(−1)kτ2 j+1
h,k (h+1)r exp

(
−τ2h,kx

2) .

This is a typical example of a harmonic sum, cf. [6, §3], and the Mellin transform
can be applied to obtain its asymptotic behaviour. First of all, it is well known that
the Mellin transform of a harmonic sum of the form f (x) = ∑k≥1 akg(bkx) can be
factored as ∑k≥1 akb

−s
k g∗(s) [6, Lemma 2], provided that the half-plane of absolute

convergence of the Dirichlet series Λ(s) = ∑k≥1 akb
−s
k has non-empty intersection

with the fundamental strip of the Mellin transform g∗ of the base function g. In this
particular case, the Dirichlet series is

Λ(s) := ∑
h,k≥0

h+1≡2m mod 2

(−1)kτ2 j+1−s
h,k (h+1)r,
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where τh,k = (h+1)(2k+1)/2. Therefore, the total probability for a random walk of
length 2m−1 on N0 to be admissible is given by

p2m−1 = ∑
h≥0

p(h)2m−1 =
4
4m ∑

h,k≥0
h+1≡2m mod 2

(−1)k
τh,k
m

(
2m

m− τh,k

)
.

The terms where τh,k > m2/3 can be neglected in view of the last statement in
Lemma 3.1, as their total contribution decays faster than any power of m: note that
there are only O

(
m2) such terms (trivially, h, k ≤ m), each of which contributes

O
(
mexp(−m1/3)

)
to the sum. For all other values of h and k, we can replace the

binomial coefficient by its asymptotic expansion. This gives us, for any L> 0,

p2m−1 =
4√
mπ ∑

h,k≥0,τh,k≤m2/3

h+1≡2m mod 2

(−1)k
τh,k
m

exp

(
−
τ2h,k
m

)
L−1

∑
�=0

∑
j≥0

c� j
τ2 jh,k

m�

+O

(
1√
m ∑

h,k≥0,τh,k≤m2/3

h+1≡2m mod 2

τ2J(L)+1
h,k

mL+1

)
,

where J(L) ≤ 2
3L since c� j = 0 for j > 2

3�. Since the sum clearly contains O
(
m4/3)

terms, the error is at most O(m−1/2+4/3+2/3(2J(L)+1)−(L+1)) = O(m1/2−L/9). The ex-
ponent can be made arbitrarily small by choosing L accordingly. Finally, if we extend
the sum to the full range (all integers h, k≥ 0 such that h+1≡ 2m mod 2) again, we
only get another error term of order O

(
exp

(
−m1/3)), which can be neglected. In

summary, we have

p2m−1 ∼
4√
mπ ∑

h,k≥0
h+1≡2m mod 2

(−1)k
τh,k
m

exp

(
−
τ2h,k
m

)

∑
�, j≥0

c� j
τ2 jh,k

m�
. (3.4)

This sum can be analyzed with the help of the Mellin transform and the converse
mapping theorem (cf. [6]). In order to follow this approach, we will investigate those
terms in (3.4) whose growth is not obvious more precisely. That is, we will focus on
the contribution of terms of the form

∑
h,k≥0

h+1≡2m mod 2

(−1)kτ2 j+1
h,k exp

(
−
τ2h,k
m

)
.

We are also interested in the expected height and the corresponding variance and
highermoments of admissible randomwalks. Asymptotic expansions for these can be

obtained by analyzing moments of the random variableHn with P(Hn = h) := p(h)n
pn

, as
stated in the introduction. For the sake of convenience, let us consider the r-th shifted
moment E(H2m−1+1)r. We know

E(H2m−1+1)r = ∑
h≥0

(h+1)rP(H2m−1 = h) =
∑h≥0(h+1)rp(h)2m−1

p2m−1
.
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The asymptotic behavior of the denominator is related to the behavior of the sum from
above — and fortunately, the behavior of the numerator is related to the behavior of
the very similar sum

∑
h,k≥0

h+1≡2m mod 2

(−1)kτ2 j+1
h,k (h+1)r exp

(
−
τ2h,k
m

)
.

The following lemma analyzes sums of this structure asymptotically.

Lemma 3.2. Let j, r ∈ N0. Then we have

∑
h,k≥0

h+1≡2m mod 2

(−1)kτ2 j+1
h,k (h+1)r exp

(
−
τ2h,k
m

)

= 2r−1Γ
(
j+1+

r
2

)
β (r+1)m j+1+r/2+O

(
m−K) , (3.5)

for any fixed K > 0, where β ( ·) denotes the Dirichlet beta function.
Remark 3.3. The Dirichlet beta function is also often called Catalan beta function,
and it is defined by

β (s) =
∞

∑
k=0

(−1)k

(2k+1)s
.

It can be expressed in terms of the Hurwitz zeta function as

β (s) = 4−s(ζ (s, 1/4)−ζ (s, 3/4)).

Amongst many other interesting properties, it satisfies the zeta-like functional equa-
tion (cf. [12, 3:5:2])

β (1− s) = (π/2)−s sin(πs/2)Γ(s)β (s),

which also implies that β (s) has zeros at all negative odd integers.

Proof of Lemma 3.2. If we substitute m= x−2, the left-hand side of (3.5) becomes

f (x) := ∑
h,k≥0

h+1≡2m mod 2

(−1)kτ2 j+1
h,k (h+1)r exp

(
−τ2h,kx

2) .

This is a typical example of a harmonic sum, cf. [6, §3], and the Mellin transform
can be applied to obtain its asymptotic behaviour. First of all, it is well known that
the Mellin transform of a harmonic sum of the form f (x) = ∑k≥1 akg(bkx) can be
factored as ∑k≥1 akb

−s
k g∗(s) [6, Lemma 2], provided that the half-plane of absolute

convergence of the Dirichlet series Λ(s) = ∑k≥1 akb
−s
k has non-empty intersection

with the fundamental strip of the Mellin transform g∗ of the base function g. In this
particular case, the Dirichlet series is

Λ(s) := ∑
h,k≥0

h+1≡2m mod 2

(−1)kτ2 j+1−s
h,k (h+1)r,



788� B.�Hackl�et�al.
14 B. Hackl et al.

and the base function is g(x) = exp
(
−x2

)
, with Mellin transform g∗(s) = 1

2Γ
( s
2

)
and

fundamental strip 〈0, ∞〉.
Now we simplify the Dirichlet series. For s ∈C with ℜ(s)> 2 j+2+ r, the sum

Λ(s) = 2s−(2 j+1) ∑
h,k≥0

h+1≡2m mod 2

(−1)k(h+1)2 j+1+r−s(2k+1)2 j+1−s

converges absolutely because it is dominated by the zeta function. In view of the
definition of the β function, this simplifies to

Λ(s) = 2s−(2 j+1)β (s− (2 j+1))κ2m(s− (2 j+1+ r)),

where κ2m(s) depends on the parity of 2m. We find

κ2m(s) = ∑
h≥0

h+1≡2m mod 2

(h+1)−s =

{
2−sζ (s), for m ∈ N,

(1−2−s)ζ (s), for m �∈ N.

Thus, the Mellin transform of f is

f ∗(s) = Λ(s)g∗(s) =
1
2
Γ
( s
2

)
2s−(2 j+1)β (s− (2 j+1))κ2m(s− (2 j+1+ r)).

By the converse mapping theorem (see [6, Theorem 4]), the asymptotic growth of
f (x) for x→ 0 can be found by considering the analytic continuation of f ∗(s) further
to the left of the complex plane and investigating its poles. The theorem may be
applied because Λ(s) has polynomial growth and Γ(s/2) decays exponentially along
vertical lines of the complex plane.

We find that f ∗(s) has a simple pole at s= 2 j+2+ r, which comes from the zeta
function in the definition of κ2m. There are no other poles: β is an entire function,
and the poles of Γ cancel against the zeros of β (at all odd negative integers, see the
earlier remark).

The asymptotic contribution from the pole of f ∗ is

Res( f ∗, s= 2 j+2+ r) · x−(2 j+2+r) =
1
2
Γ
(
j+1+

r
2

)
2r+1β (r+1)

1
2
x−(2 j+2+r)

= 2r−1Γ
(
j+1+

r
2

)
β (r+1)m j+1+r/2,

which does not depend on the parity of 2m, as the respective residue of κ2m is 1
2 in

either case. Finally, the O-term in (3.5) comes from the fact that f ∗ may be continued
analytically arbitrarily far to the left in the complex plane without encountering any
additional poles.

Remark 3.4. In Lemma 3.2, particular values of the Dirichlet beta function are re-
quired. To compute the asymptotic expansions for the first moments, we need β (1) =
π/4, β (2) =G≈ 0.91597, as well as β (3) = π3/32, where G is the Catalan constant.
These values are taken from [12, Table 3.7.1].
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At this point, all that remains to obtain asymptotic expansions is to multiply the
contributions resulting from Lemma 3.2 with the correct coefficients and contribu-
tions from (3.4).

Theorem 3.5. (Asymptotic analysis of admissible random walks on N0) The prob-
ability that a random walk on N0 is admissible can be expressed asymptotically as

pn =

√
π
2n

− 5
√
2π

24
√
n3

+
127

√
2π

960
√
n5

− 1571
√
2π

16128
√
n7

− 1896913
√
2π

184320
√
n9

+O
(

1√
n11

)
,

(3.6)
where

√
π/2 ≈ 1.25331. The expected height of admissible random walks is given

by

EHn = 2G

√
2n
π

−1+
5
√
2G

6
√
πn

− 131
√
2G

720
√
πn3

+
1129

√
2G

12096
√
πn5

+O
(

1√
n7

)
, (3.7)

where 2G
√
2/π ≈ 1.46167, and the variance of Hn can be expressed as

VHn =
π3−32G2

4π
n+

π3−40G2

6π
− π3−12G2

180πn
+

11π3−265G2

1890πn2
+O

(
1
n3

)
, (3.8)

where
(
π3− 32G2)/(4π) ≈ 0.33092. Generally, the r-th moment is asymptotically

given by

EHr
n ∼

2r/2+2

π
Γ
( r
2
+1

)
β (r+1)nr/2. (3.9)

Moreover, if η = h/
√
n satisfies 3/

√
logn< η <

√
logn/2 and h≡ n mod 2, we have

the local limit theorem

P(Hn = h) =
p(h)n

pn
∼ 2φ(η)√

n

=
8η
π
√
n ∑k≥0

(−1)k(2k+1)exp
(
− (2k+1)2η2

2

)
(3.10)

=
2
√
2π

η2√n ∑k≥0
(−1)k(2k+1)exp

(
−π2(2k+1)2

8η2

)
. (3.11)

Remark 3.6. The fact that the two series in (3.10) and (3.11) that represent the density
φ(η) are equal is a simple consequence of the Poisson sum formula. We also note
that the asymptotic behavior of the moments ofHn readily implies that the normalized
random variable Hn/

√
n converges weakly to the distribution whose density is given

by φ(η) (see [7, TheoremC.2]). The local limit theorem (3.10) is somewhat stronger.

Proof of Theorem 3.5. With (3.4) and the result of Lemma 3.2, obtaining an asymp-
totic expansion of p2m−1 is only a question of developing the shifted central binomial
coefficient and multiplying with the correct growth contributions from (3.5). By do-
ing so (with the help of SageMath [15]: a worksheet containing these computations
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At this point, all that remains to obtain asymptotic expansions is to multiply the
contributions resulting from Lemma 3.2 with the correct coefficients and contribu-
tions from (3.4).

Theorem 3.5. (Asymptotic analysis of admissible random walks on N0) The prob-
ability that a random walk on N0 is admissible can be expressed asymptotically as

pn =

√
π
2n

− 5
√
2π

24
√
n3

+
127

√
2π

960
√
n5

− 1571
√
2π

16128
√
n7

− 1896913
√
2π

184320
√
n9

+O
(

1√
n11

)
,

(3.6)
where

√
π/2 ≈ 1.25331. The expected height of admissible random walks is given

by

EHn = 2G

√
2n
π

−1+
5
√
2G

6
√
πn

− 131
√
2G

720
√
πn3

+
1129

√
2G

12096
√
πn5

+O
(

1√
n7

)
, (3.7)

where 2G
√
2/π ≈ 1.46167, and the variance of Hn can be expressed as

VHn =
π3−32G2

4π
n+

π3−40G2

6π
− π3−12G2

180πn
+

11π3−265G2

1890πn2
+O

(
1
n3

)
, (3.8)

where
(
π3− 32G2)/(4π) ≈ 0.33092. Generally, the r-th moment is asymptotically

given by

EHr
n ∼

2r/2+2

π
Γ
( r
2
+1

)
β (r+1)nr/2. (3.9)

Moreover, if η = h/
√
n satisfies 3/

√
logn< η <

√
logn/2 and h≡ n mod 2, we have

the local limit theorem

P(Hn = h) =
p(h)n

pn
∼ 2φ(η)√

n

=
8η
π
√
n ∑k≥0

(−1)k(2k+1)exp
(
− (2k+1)2η2

2

)
(3.10)

=
2
√
2π

η2√n ∑k≥0
(−1)k(2k+1)exp

(
−π2(2k+1)2

8η2

)
. (3.11)

Remark 3.6. The fact that the two series in (3.10) and (3.11) that represent the density
φ(η) are equal is a simple consequence of the Poisson sum formula. We also note
that the asymptotic behavior of the moments ofHn readily implies that the normalized
random variable Hn/

√
n converges weakly to the distribution whose density is given

by φ(η) (see [7, TheoremC.2]). The local limit theorem (3.10) is somewhat stronger.

Proof of Theorem 3.5. With (3.4) and the result of Lemma 3.2, obtaining an asymp-
totic expansion of p2m−1 is only a question of developing the shifted central binomial
coefficient and multiplying with the correct growth contributions from (3.5). By do-
ing so (with the help of SageMath [15]: a worksheet containing these computations
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as well as some numerical comparisons can be found at http://arxiv.org/src/
1503.08790/anc/random-walk_NN.ipynb), an asymptotic expansion in the half-
integer m is obtained. Substituting m= (n+1)/2 then gives (3.6).

The results in (3.7) and (3.8) are obtained by considering

E(Hn+1)r =
∑h≥0(h+1)rp(h)n

pn
,

making use of (3.4) and Lemma 3.2 again. Note that we have EHn = E(Hn+1)−1,
as well as VHn = E(Hn+1)2− [E(Hn+1)]2. For higher moments, we only give the
principal term of the asymptotics, which corresponds to the coefficient c00 in (3.4),
but in principle it would be possible to calculate further terms as well.

It remains to prove (3.10). To this end, we revisit the explicit expression (recall
that we set n= 2m−1)

p(h)2m−1 =
4
4m ∑k≥0

(−1)k
τh,k
m

(
2m

m− τh,k

)
.

First of all, we can eliminate all k with τh,k > m2/3, since their total contribution is at
most O

(
mexp

(
−m1/3

))
as before. For all other values of k, we replace the binomial

coefficient according to Lemma 3.1 by
(

2m
m− τh,k

)
=

4m√
πm

exp

(
−
τ2h,k
m

)(
1+O

(
1+ τh,k

m

))
.

Note here that

τh,k =
(h+1)(2k+1)

2
=

h
2
(2k+1)

(
1+O

(
1
h

))
,

and likewise,
τ2h,k
m

=
h2(2k+1)2

2n

(
1+O

(
1
h
+

1
n

))
.

It follows that

τh,k
m

exp

(
−
τ2h,k
m

)
=

h(2k+1)
n

exp
(
−h2(2k+1)2

2n

)(
1+O

(
1
h
+

hk2+1
n

))
.

We are assuming that τh,k ≤m2/3=((n+1)/2)2/3, which implies hk2/n=O(n1/3/h).
In view of our assumptions on h, this means that the error term is O

(
n−1/6√logn

)
.

Thus we have

p(h)n = p(h)2m−1

=
4
√
2h√

πn3
× ∑

k≥0
τh,k≤((n+1)/2)2/3

(−1)k(2k+1)exp
(
−h2(2k+1)2

2n

)(
1+O

(√
logn
n1/6

))

+O
(
nexp

(
−(n/2)1/3

))
.
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Adding all terms τh,k > m2/3 = ((n+1)/2)2/3 back only results in a negligible con-
tribution that decays faster than any power of n again, but we need to be careful with
the O-term inside the sum, as we have to bound the accumulated error by the sum of
the absolute values. We have

∑
k≥0

(2k+1)exp
(
−h2(2k+1)2

2n

)
= O

(
n/h2

)
,

which can be seen, e.g., by approximating the sum by an integral (or by means of the
Mellin transform again), so

p(h)n =
4
√
2h√

πn3 ∑k≥0
(−1)k(2k+1)exp

(
−h2(2k+1)2

2n

)
+O

(√
logn

hn2/3

)

=
4
√
2η√
πn ∑

k≥0
(−1)k(2k+1)exp

(
−h2(2k+1)2

2n

)
+O

(
logn
n7/6

)
.

Since pn =
√

π
2n

(
1+O

(
n−1)), this yields

p(h)n

pn
=

8η
π
√
n ∑k≥0

(−1)k(2k+1)exp
(
−η2(2k+1)2

2

)
+O

(
logn
n2/3

)

=
2φ(η)√

n
+O

(
logn
n2/3

)
.

For η ≥ 1, the sum is bounded below by a constant multiple of exp
(
−η2/2

)
(as

can be seen by bounding the sum of all terms with k ≥ 1), which in turn is at
least exp(−(logn)/8) = n−1/8 by our assumptions on η . Thus the first term indeed
dominates the error term in this case. If η < 1, we use the alternative represen-
tation (3.11), which shows that φ(η) is bounded below by a constant multiple of
η−2 exp

(
−π2/(8η)2

)
. This in turn is at least (1/9)n−π2/72 logn by the assumptions

on η , and since π2/72< 1/6, we can draw the same conclusion.

Remark 3.7. As stated in the introduction, the number 2npn gives the number of
extremal lattice paths on Z— and thus, with the asymptotic expansion of pn, we also
have an asymptotic expansion for the number of extremal lattice paths on Z of given
length.

This concludes our analysis of admissible random walks on N0. In the next sec-
tion, we investigate admissible random walks on Z.

4. Ballot Sequences and Admissible Random Walks on Z

In principle, the approach we follow for the analysis of the asymptotic behavior of
admissible random walks on Z is the same as in the previous section. However, due
to the different structure of (2.4), some steps will need to be adapted.
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With the notation of Lemma 3.1, we are able to express q2m−2 for a half-integer
m ∈ 1

2N with m≥ 1 as

q2m−2 ∼
4√
mπ

1
2m−1 ∑

h,k≥0
h≡2m mod 2

2υ2
h,k−m

m
exp

(
−
υ2
h,k

m

)

∑
�, j≥0

c�, j
υ2 j
h,k

m�
. (4.1)

In analogy to our investigation of admissible random walks on N0, we also want to
determine the expected height and variance of admissible random walks. These are
related to the random variable H̃n, which we defined by

P
(
H̃n = h

)
=

q(h)n

qn
.

To make things easier, we will investigate moments of the form E
(
H̃n+ 2

)r. They
can be computed by

E
(
H̃n+2

)r
= ∑

h≥0
(h+2)rP

(
H̃n = h

)
=

∑h≥0(h+2)rq(h)n

qn
.

Therefore, we are interested in the asymptotic contribution of

∑
h,k≥0

h≡2m mod 2

2υ2
h,k−m

m
υ2 j
h,k(h+2)r exp

(
−
υ2
h,k

m

)
,

which is discussed in the following lemma.

Lemma 4.1. Let K > 0 be fixed. Then we have the asymptotic expansion

∑
h,k≥0

h≡2m mod 2

2υ2
h,k−m

m
exp

(
−
υ2
h,k

m

)
=

√
mπ
4

+O
(
m−K) . (4.2)

For j ∈ N we have

∑
h,k≥0

h≡2m mod 2

2υ2
h,k−m

m
υ2 j
h,k exp

(
−
υ2
h,k

m

)

=

(
logm
2

+2γ+ log2+
1
2
ψ
(
j+

1
2

)
+

1
2 j

+ �m �∈N� · (2log2−2)
)

× j
2
Γ
(
j+

1
2

)
m j+1/2+O

(
m−K) , (4.3)
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where ψ(s) is the digamma function. Finally, for j ∈ N0, r ∈ N we find

∑
h,k≥0

h≡2m mod 2

2υ2
h,k−m

m
υ2 j
h,k(h+2)r exp

(
−
υ2
h,k

m

)

= jΓ
(
j+

1
2

)
κ2m(1− r)m j+1/2

+
1
2

(
j+

r
2

)
Γ
(
j+

r+1
2

)(
2r+1−1

)
ζ (r+1)m j+(r+1)/2+O

(
m−K) , (4.4)

where κ2m(s) = 2−sζ (s) for m ∈N and κ2m(s) = (1−2−s)ζ (s)−1 otherwise.

Proof. Let j, r ∈N0. We want to analyze the sum

∑
h,k≥0

h≡2m mod 2

2υ2
h,k−m

m
υ2 j
h,k(h+2)r exp

(
−
υ2
h,k

m

)

asymptotically, where m is a half-integer in 1
2N with m≥ 1.

In analogy to the proof of Lemma 3.2, we substitute x−2 = m, so that the sum
becomes

f (x) := ∑
h,k≥0

h≡2m mod 2

(
2x2υ2

h,k−1
)
υ2 j
h,k(h+2)r exp

(
−υ2

h,kx
2)

= 2x2 ∑
h,k≥0

h≡2m mod 2

υ2 j+2
h,k (h+2)r exp

(
−υ2

h,kx
2)

− ∑
h,k≥0

h≡2m mod 2

υ2 j
h,k(h+2)r exp

(
−υ2

h,kx
2)

=: 2x2 f1(x)− f2(x).

Both f1 and f2 are harmonic sums, and we determine their Mellin transforms as
we did earlier in the proof of Lemma 3.2. By elementary properties of the Mellin
transform, we know that f ∗(s) = 2 f ∗1 (s+2)− f ∗2 (s). Let Λ1 and Λ2 be the Dirichlet
series associated with the harmonic sums f1(x) and f2(x), respectively. We find

Λ1(s) = ∑
h,k≥0

h≡2m mod 2

υ2 j+2−s
h,k (h+2)r

= 2s−(2 j+2) ∑
h,k≥0

h≡2m mod 2

(h+2)2 j+2+r−s(2k+1)2 j+2−s

=
(
2s−(2 j+2)−1

)
ζ (s− (2 j+2)) ∑

h≥0
h≡2m mod 2

(h+2)2 j+2+r−s.
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We investigate the sum over h separately, and obtain

κ2m(s) := ∑
h≥0

h≡2m mod 2

(h+2)−s =

{
2−sζ (s), for m ∈ N,

(1−2−s)ζ (s)−1, for m �∈ N.

Therefore, we find the Mellin transform of the first harmonic sum to be

f ∗1 (s) =
1
2
Γ
( s
2

)
Λ1(s) =

1
2
Γ
( s
2

)(
2s−2 j−2−1

)
ζ (s−2 j−2)κ2m(s− (2 j+ r)−2).

TheMellin transform of the second sum can be found in a completely analogous way:
we have

f ∗2 (s) =
1
2
Γ
( s
2

)(
2s−2 j−1

)
ζ (s−2 j)κ2m(s− (2 j+ r)).

Altogether, this yields the Mellin transform

f ∗(s) = 2 f ∗1 (s+2)− f ∗2 (s)

=
s−1
2

Γ
( s
2

)(
2s−2 j−1

)
ζ (s−2 j)κ2m(s− (2 j+ r)).

As in the proof of Lemma 3.2, the growth conditions necessary for application of the
converse mapping theorem [6, Theorem 4] hold.

In order to analyze the poles of f ∗(s), we need to distinguish three cases, as
ζ (s− 2 j) has a simple pole at s = 2 j+ 1 and κ2m(s− (2 j+ r)) has a simple pole
at s = 2 j+ r+ 1. The poles of Γ(s/2) at even s ≤ 0 are canceled by the zeros of
ζ (s−2 j), unless s= j= 0. In that case, the pole is canceled by the factor

(
2s−2 j−1

)
.

First, let r = j = 0. Then, f ∗(s) has a simple pole at s = 1, because one of the
poles of ζ (s) or κ2m(s) cancels against the zero of (s−1). Here, the residue of f ∗(s)
is given by

√
π/4, which translates to a contribution of

√
mπ/4. This proves (4.2).

Second, for r= 0 and j> 0, the function f ∗(s) has a pole of order 2 at s= 2 j+1.
By expanding all the occurring functions, we find the Laurent expansion

f ∗(s)�





j
2Γ

(
j+ 1

2

)[ 1
(s−(2 j+1))2 +

1
2ψ( j+

1
2 )+2γ+log2+ 1

2 j
s−(2 j+1)

]
+O(1), for m ∈N,

j
2Γ

(
j+ 1

2

)[ 1
(s−(2 j+1))2 +

1
2ψ( j+

1
2 )+2γ+3 log2−2+ 1

2 j
s−(2 j+1)

]
+O(1), for m �∈N,

whereψ(s) is the digamma function (cf. [5, 5.2.2], see [5, §5.4(ii)] for special values).
As the pole of order 2 contributes the factor 1

2m
j+1/2 logm, and the pole of order 1

gives m j+1/2, (4.3) is proved.
Finally, consider r> 0. In this case we have two separate single poles at s= 2 j+1

and s= 2 j+ r+1. Computing the residues gives the growth contribution

jΓ
(
j+

1
2

)
κ2m(1− r)m j+1/2

+
(
j+

r
2

)
Γ
(
j+

r+1
2

)(
2r− 1

2

)
ζ (r+1)m j+(r+1)/2,

which proves (4.4).
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Fortunately, when explicitly computing the expansion, all the logarithmic terms
cancel out and we obtain the same behavior for admissible paths of even and odd
length. The following theorem summarizes our findings.

Theorem 4.2. (Asymptotic analysis of admissible random walks on Z) The proba-
bility that a random walk on Z is admissible has the asymptotic expansion

qn =
1
n
− 4

3n2
+

88
45n3

− 976
315n4

+
3488
675n5

− 276928
31185n6

+O
(

1
n7

)
. (4.5)

The expected height of admissible random walks on Z is given by

EH̃n =

√
2π3

4
√
n−2+

3
√
2π3

16
√
n

− 539
√
2π3

5760
√
n3

+
50713

√
2π3

483840
√
n5

+O
(

1√
n7

)
, (4.6)

where
√
2π3/4≈ 1.96870, and the variance of H̃n can be expressed as

VH̃n =
28ζ (3)−π3

8
n+

224ζ (3)−9π3

48
− 1792ζ (3)−67π3

2880n

+
107520ζ (3)−4189π3

120960n2
+O

(
1
n3

)
, (4.7)

where
(
28ζ (3)− π3

)
/8 ≈ 0.33141. Generally, the r-th moment is asymptotically

given by

EH̃r
n ∼

r√
π
Γ
(
r+1
2

)(
2r+1−1

)
2−r/2ζ (r+1)nr/2. (4.8)

Moreover, if η = h/
√
n satisfies 6/

√
logn < η <

√
logn/2, we have the local limit

theorem

P
(
H̃n = h

)
=

q(h)n

qn
∼ 2χ(η)√

n
=

4
√
2√

πn ∑k≥0

(
(2k+1)2η2−1

)
exp

(
− (2k+1)2η2

2

)

(4.9)

=
4π2

η3√n ∑k≥1
(−1)k−1k2 exp

(
−π2k2

2η2

)
. (4.10)

Remark 4.3. Again, the two expressions for the limiting density χ are equivalent, as
can be seen by an application of the Poisson sum formula.

Proof of Theorem 4.2. Analogous to Theorem 3.5. The asymptotic expansions were
again computedwith the help of SageMath [15], and a correspondingworksheet (con-
taining these computations as well as some numerical comparisons) can be found at
http://arxiv.org/src/1503.08790/anc/random-walk_ZZ.ipynb.

Remark 4.4. As every simple symmetric random walk of length n on Z occurs with
probability 2−n, we know that the number of admissible random walks on Z is 2nqn.
Thus, an asymptotic expansion for the number of admissible random walks follows
directly from (4.5) upon multiplication by 2n. This is sequence A167510 in [11].
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Figure 3: Numerical approximation of Bn/2n.

Furthermore, in the introduction we illustrated that admissible random walks are
strongly related to bidirectional ballot sequences. Since every bidirectional ballot
sequence of length n+2 corresponds to an admissible random walk of length n on Z(
i.e., Bn = 2n−2qn−2

)
, we are able to prove Zhao’s conjecture that was mentioned in

the introduction.

Corollary 4.5. (Bidirectional ballot walks) The number of bidirectional ballot walks
Bn of length n can be expressed asymptotically as

Bn = 2n
( 1
4n

+
1
6n2

+
7

45n3
+

10
63n4

+
764

4725n5
+

4952
31185n6

)
+O

(
2n

n7

)
. (4.11)

In Figure 3 we compare the exact values of Bn/2n with the values obtained from
the asymptotic expansion in (4.11).
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