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Abstract. Let k, n, and r be positive integers with k < n and r < LZJ . We determine the facets
of the r-stable n, k-hypersimplex. As a result, it turns out that the r-stable n, k-hypersimplex
has exactly 2n facets for every r < MJ We then utilize the equations of the facets to study
when the r-stable hypersimplex is Gorenstein. For every k > 0 we identify an infinite collec-
tion of Gorenstein r-stable hypersimplices, consequently expanding the collection of r-stable
hypersimplices known to have unimodal Ehrhart §-vectors.
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1. Introduction

The (n, k)-hypersimplices are an important collection of integer polytopes arising nat-
urally in the settings of convex optimization, matroid theory, combinatorics, and alge-
braic geometry. Generalizing the standard (n — 1)-simplex, the (n, k)-hypersimplices
serve as a useful collection of examples in these various contexts. While these poly-
topes are well studied, there remain interesting open questions about their properties
in the field of Ehrhart theory, the study of integer point enumeration in dilations of
rational polytopes (see, for example, [4]). The r-stable (n, k)-hypersimplices are a
collection of lattice polytopes within the (n, k)-hypersimplex that were introduced
in [2] for the purpose of studying unimodality of the Ehrhart §-polynomials of the
(n, k)-hypersimplices. However, they also exhibit interesting geometric similarities
to the (n, k)-hypersimplices which they generalize. For example, it is shown in [2]
that a regular unimodular triangulation of the (n, k)-hypersimplex, called the circuit
triangulation, restricts to a triangulation of each r-stable (n, k)-hypersimplex.
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In the present paper, we compute the facets of the r-stable (n, k)-hypersimplices
for1 <r< LZJ and then study when they are Gorenstein. In Section 2, we compute
their facet-defining inequalities (Theorem 2.1). From these computations, we see that
the geometric similarities between the (n, k)-hypersimplex and the r-stable (n, k)-
hypersimplices within are apparent in their minimal H-representations. Moreover, it
turns out that each r-stable (n, k)-hypersimplex has exactly 2n facets for 1 < r < LZJ
(Corollary 2.2). In Section 3, we classify 1 <r < [ZJ for which these polytopes are
Gorenstein (Theorem 3.6). We conclude that the Ehrhart 6-vector of each Gorenstein
r-stable hypersimplex is unimodal (Corollary 3.7), thereby expanding the collection
of r-stable hypersimplices known to have unimodal 8-polynomials.

2. The H-Representation of the r-Stable (n, k)-Hypersimplex

We first recall the definitions of the (n, k)-hypersimplices and the r-stable (n, k)-
hypersimplices. For integers 0 < k < n let [n] := {1,2,...,n} and let ([Z]) denote
the collection of all k-subsets of [n]. The characteristic vector of a subset I of [n] is
the (0, 1)-vector & = (g1,..., &,) for which & = 1 fori € I and & = 0 for i ¢ I. The
(n, k)-hypersimplex is the convex hull in R” of the collection of characteristic vectors
{eg: 1€ ([Z]) }, and it is denoted A, k- Label the vertices of a regular n-gon embedded
in R? in a clockwise fashion from 1 to n. Given a third integer 1 < r < |} |, a subset
I C [n] (and its characteristic vector) is called r-stable if, for each pair i, j € I, the path
of shortest length from i to j about the n-gon uses at least » edges. The r-stable n, k-
hypersimplex, denoted by A;ﬁa,? (r), is the convex polytope in R” which is the convex
hull of the characteristic vectors of all r-stable k-subsets of [n]. For fixed n and k the
r-stable (n, k)-hypersimplices form the nested chain of polytopes

» " stab( |
Ani D A;t“f(z) ») A;t“f(3) S5 D A:lu}c ()

Notice that A, j is precisely the 1-stable (n, k)-hypersimplex.

stab(r)

The definitions of A, , and A] ", provided are V-representations of these poly-

topes. In this section, we provide the minimal H-representation of A;ta,?(r) , 1.e., its

collection of facet-defining inequalities. It is well known that the facet-defining in-
equalities of A, x are Y1 x; = k together with x, > 0 and x, < 1 for all £ € [n]. Let
H denote the hyperplane in R” defined by the equation Y7, x; = k. For 1 <r < | 7]
and ¢ € [n] consider the closed convex subsets of R”

HZH) ={(x1,x2,..., %) ER": x, >0}NH, and

l4r—1
HZ(;):: (x1,%2,..., %) ER™: ingl NH.
i=0

In the definition of Hé‘;) the indices i of the coordinates xi,..., x, are taken to be
elements of Z/nZ. We also let Hy and Hy , denote the (n — 2)-flats given by strict
equality in the above definitions. In the following we will say an (n — 2)-flat is facet-

defining (or facet-supporting) for A::a,:’(r) if it contains a facet of Af:a,? @,
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Theorem 21. Let 1 <k<n—1. For1 <r< L”J the facet-defining inequalities
stab(r are Y | x; = k together with ):”r 'yi<land x; >0 for L€ n]. In

for An X
partlcular

tab(r

bd ﬂ H/ m ﬂ H/ r
€ln]

The following is an immediate corollary to these results.

Corollary 2.2. All but possibly the smallest polytope in the nested chain

(1)

n,k

stab(2) stab(3)

Ak DA DA DD

has 2n facets.

This is an interesting geometric property since the number of vertices of these
polytopes strictly decreases down the chain. To prove Theorem 2.1 we will utilize
the geometry of the circuit triangulation of A,, ; as defined in [8], the construction of
which we will now recall.

2.1. The Circuit Triangulation

Fix 0 < k < n, and let G, ; be the labeled, directed graph with the following vertices
and edges. The vertices of G, ; are all the vectors & € R”" where I is a k-subset of [n].
We think of the indices of a vertex of G, ; modulo n. Now suppose that € and €’ are
two vertices of G, x such that for some i € [n] (g, &+1) = (1,0) and €’ is obtained
from € by switching the order of & and &;;. Then the directed and labeled edge

eS¢ isan edge of G, ;. Hence, an edge of G,  corresponds to a move of a single
1 in a vertex € one spot to the right, and such a move can be done if and only if the
next spot is occupied by a 0.

We are interested in the circuits of minimal length in the graph G, ;. Such a
circuit is called a minimal circuit. Suppose that € is a vertex in a minimal circuit of
Gy, k- Then the minimal circuit can be thought of as a sequence of edges in G,  that
moves each 1 in € into the position of the 1 directly to its right (modulo #). It follows
that a minimal circuit in G,  has length n. An example of a minimal circuit in Gg 3
is provided in Figure 1. Notice that for a fixed initial vertex of the minimal circuit the
labels of the edges form a permutation ® = @, - - - @, € S, the symmetric group on
n elements. Following the convention of [8], we associate a minimal circuit in G, ¢
with the permutation consisting of the labels of the edges of the circuit for which
o, = n. Let (@) denote the minimal circuit in G, ; corresponding to the permutation
o € S, with @, = n. Let O(w) denote the convex hull in R” of the set of vertices of
(). Notice that 0() will always be an (n — 1)-simplex.

Theorem 2.3. (Lam and Postnikov [8]) The collection of simplices O ) given by the
minimal circuits in Gy i are the maximal simplices of a triangulation of the hyper-
simplex Ay, . We call this triangulation the circuit triangulation.

Denote the circuit triangulation of A, ; by V,, i, and let max 'V, ; denote the set of
maximal simplices of V, ;. To simplify notation we will write @ to denote the sim-
plex 0(p) € max 'V, ;. In[2] itis shown that the collection of simplices in V,, 4 that lie
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) forms a triangulation of this polytope. We let V; , denote
btdb( r)

completely within A},

this triangulation of A} and let max V; , denote the set of maximal 51mplices of

V! - Inthe followmg, we compute the facet-defining inequalities for A ( ) using

the nestmg of triangulations:

]

Lk
VnkDVnkDVnkD OV,

The method by which we will do this is outlined in the following remark.

ab(r)

we first consider
stab( )

Remark 2.4. To compute the facet-defining inequalities of ASt

the geometry of their associated facet-defining (n — 2)-flats. Suppose that A
stab(r 1) 5 Astab()

5tdb(r 1)

then a facet-defining (n — 2)-ﬂat of
stab(r 1)

(n—1)-dimensional. Since A,

A;td,:’( 7) either also defines a facet of A

stab(r 1)

or it intersects relintA} , the rel-

ative interior of A

A::a,?( ") it suffices to compute the former and latter collections of (n — 2)-flats inde-

pendently To identify the former collection we will use an induction argument on r.
To identify the latter collection we work with pairs of adjacent (n — 1)-simplices in
the set maxV; ;. Note that two simplices u, ® € max 'V, , are adjacent (i.e., share a
common facet) if and only if they differ by a single vertex. Therefore, their common
vertices span an (n — 2)-flat which we will denote by H[u, ®]. Thus, we will iden-
tify adjacent pairs of simplices # € max V;fkl and ® € max V;Tkl\max V... for which
Hu, o] is facet-defining.

Therefore, to compute the facet-defining (n —2)-flats of

2.2. Computing Facet-Defining Inequalities via a Nesting of Triangulations

Suppose 1 < k < n—1. In order to prove Theorem 2.1 in the fashion outlined by

itab( ) .

Remark 2.4 we require a sequence of lemmas. Notice that A is contained in

é ) and Hé‘r) for all £ € [n]. So in the following we simply show that Hy and Hy ,
form the complete set of facet-defining (n — 2)-flats.

Lemma 2.5. Let 1 <r < |}|. Forall ¢ € [n], Hy is facet-defining for AStdb 2

Proof. First notice that the result clearly holds for » = 1. So we need only show that

n— 1 affinely independent vertices of Am,f’ ") lie in H,. Hence, to prove the claim it

suffices to identify a simplex @ € max V”  such that Hy supports a facet of ®. Since
r < | 7] — 1italso suffices to work with r = |7 | — 1.

Fix £ € [n]. For r = |} | — 1 we construct a minimal circuit in the graph G, x that
corresponds to a simplex in max V; , for which Hy is facet-supporting. To this end,
consider the characteristic vector of the k-subset {(¢{ —1) — (s—1)r: s € [k]} C [n].
Denote this characteristic vector by £, and think of its indices modulo n. Labeling
the 1 in coordinate (¢ — 1) — (s — 1)r of e’ as 1,, we see that 1, and 1, are separated
by r— 1 zeros for s € [k — 1]. That is, the coordinate &/ = 0 for every (£ — 1) —sr <
i< ({—1)—(s—1)r (modulo n), and there are precisely r — 1 such coordinates.
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¢ =(0,1,0,1,0,0,0,0,1) —— (0,1,0,0,1,0,0,0,1) —— (0,1,0,0,0,1,0,0,1)
2
s (0,0,1,0,0,1,0,0,1)
9
(0,1,0,1,0,0,0,1,0) (1,0,1,0,0,1,0,0,0)

7 6

(0,1,0,1,0,0,1,0,0) < (1,0,0,1,0,0,1,0,0) <> (1,0,1,0,0,0,1,0,0)

Figure 1: The minimal circuit (®‘) for n = 9,k = 3, and ¢ = 5 constructed in
Lemma 2.5.

Moreover, since kr = k (| | — 1) < n then there are at least r — 1 zeros between 1;
and 1;. Hence, this vertex is r-stable. From et

" we can now construct an r-stable
circuit (a)é) by moving the 1’s in &’ one coordinate to the right (modulo 7), one at a
time, in the following pattern:

(1) Move 1;.

(2) Move 1. Then move 1,. Then move 13. ... Then move 1;.
(3) Repeat step (2) r — 1 more times.

(4) Move 1; until it rests in entry £ — 1.

An example of (®') forn =9, k=3, and £ =5 is provided in Figure 1. This produces
a minimal circuit in G, x since each 1; has moved precisely enough times to replace
15+1. Moreover, since k > 1 then k (|} | — 1) < n—2. So there are at least 7+ 1 0’s
between 17 and 1; in €’. From here, it is a straightforward exercise to check that
every vertex in (wz) is r-stable. Therefore, ®’ € max VZ‘ - Finally, since r > 1, the

simplex @’ has only one vertex satisfying x, = 1, and this is the vertex following £°
in the circuit (a)ﬁ) Hence, all other vertices of @’ satisfy x, = 0. So Hy supports a

facet of ’. Thus, we conclude that H is facet-defining for Af:a;’ ") for r < |7].

The following theorem follows immediately from the construction of the (n — 1)-

simplex @’ in the proof of Lemma 2.5, and it justifies the assumption on the dimen-

stab(r)

sion of An‘ « ~ made in Remark 2.4.

Theorem 2.6. The polytope A;t‘a,?(r) is (n — 1)-dimensional for all r < LZJ
stab(r) .
Lemma 2.7. Suppose r > 1 and Ay i

facet-defining for A;ﬁa,? ™,

s (n—1)-dimensional. Then Hy ,_, is not
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Proof. Suppose for the sake of contradiction that Hy ,_; is facet-defining for Abtdb( 2

Since Abmb( o s (n— 1)-dimensional then there exists an (n— 1)-simplex ® € max V,
such that Hy ,_ is facet-defining for @. In other words, every vertex in () satisfies
):f;r[’ ~2x; = 1 except for exactly one vertex, say £*. Since all vertices in (w) are
(0, 1)-vectors, this means that all vertices other than £* have exactly one coordinate in
the subvector (&, €41, ..., €&+r—2) being 1 and all other coordinates are 0. Similarly,
this subvector is the O-vector for €*. Since (®) is a minimal circuit this means that
the move preceding the vertex £* in (®) results in the only 1 in (&, &1, .., &4+r-2)
exiting the subvector to the right. Similarly, the move following the vertex €* in (®)
results in a single 1 entering the subvector on the left. Suppose that

* * * * * *
S :(...78[_1,8[,8[_,’_1,...78[+r_2,8£+r_1,...):(...,170,07...,071,...).

Then this situation looks like

(...,1,0,0,...,1,0,...) (...,0,1,0,...,0,1,...)

Hence, neither the vertex preceding or following the vertex €* is r-stable. For
example, in the vertex following €* there is a 1 in entries ¢ and ¢+ r — 1. This
contradicts the fact that @ € max V] ;.

To see why Lemma 2.7 will be useful, suppose that Theorem 2.1 holds for

A for some 1 < r < |#]. Then Lemmas 2.5 and 2.7 tell us that the collection

n,k
of facet-defining (n — 2)-flats for Abtdb(r Y that are also facet- defining for Abtdb( ")

{Hy: ¢ € [n]}. This is the nature of the induction argument mentioned in Remark 2.4.

To identify the facet-defining (n — 2)-flats of Agmb( ") that intersect rehntA::a,? (r=1)
will use the following definition.

is

we

Definition 2.8. Suppose u and @ are a pair of simplices in max'V, i satisfying

e ycmaxV, ,,

e (o € max V;’kl\max V! and
e m uses exactly one vertex that is not r-stable, called the key vertex, and this is
the only vertex by which u and o differ.

We say that the ordered pair of simplices (u, @) is an r-supporting pair of H[u, ©],
where Hu, ®) is the flat spanned by the common vertices of u and @.
Lemma 2.9. Suppose I<r< L”J Suppose also that Hr is a (n — 2)-flat defining

afacet F ongmb such that Hp N rehntAgtab r-1) ;é 0. Then Hp = Hu, ®] for some
r-supporting pair of simplices (u, ®).
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Proof. Since Hy mrehntAStdb "V 40 and A ( ) is contained in Amb(’ h

stab (r—1)

then F N

5tdb(r 1)

relintA, ;é 0. That is, there exists some & € F' such that o € relintA

Recall that Vi~ is a triangulation of A“ab(r D

A;tdb( ") 1t follows that V. cand Vi 1\V  give identical triangulations of dA,

rehntA“ab(r D Since Agtab( " is (n — 1)-dimensional we may assume, without loss of
generahty, that o lies in the relative interior of an (n — 2)-dimensional simplex in the

triangulation of JA’ )ﬁrehntAbtdb(V " induced by V" and V7 '\V" . Therefore,
there exists some u € max v * such that Hr is facet- deﬁmng for uand @ € u NHE,

that restricts to a triangulation V’ xof
stab (r) n

and there exists some @ € mafoL l\maxV;‘k such that @ € @ N Hp. Since V, !

is a triangulation of Agmb(f D it follows that u N Hr = w N Hr. Hence, u and @ are

adjacent simplices that share the facet-defining (n — 2)-flat Hp, and they form an
r-supporting pair (u, @) with H[u, ©] = Hp.

It will be helpful to understand the key vertex of an r-supporting pair (u, ®). To
do so, we will use the following definition.

Definition 2.10. Let € € R" be a vertex of A, . A pair of 1's in € is an ordered pair of
two coordinates of €, (i, j), such that & =€j =1, and & =0 for all i <t < j (modulo
n). A pair of 1’s is called an r-stable pair if there are at least r — 1 0’s separating the
two 1’s.

Lemma 2.11. Suppose (u, ®) is an r-supporting pair, and let € be the key vertex of
this pair. Then € contains precisely one (r — 1)-stable but not r-stable pair, (¢, £+ r—
1). Moreover, Hu, ®) = Hy ,.

Proof. We first show that € has precisely one (r— 1)-stable but not r-stable pair, (¢, £+
r—1). To see this, consider the minimal circuit (@) in the graph G, ; associated with
the simplex @. Think of the key vertex € as the initial vertex of this circuit, and recall
that each edge of the circuit corresponds to a move of exactly one 1 to the right by
exactly one entry. Hence, in the circuit (@) the vertex following € differs from € by a
single right move of a single 1. Since € is the only vertex in (@) that is (r — 1)-stable
but not r-stable, then the move of this single 1 to the right by one entry must eliminate
all pairs that are (r — 1)-stable but not r-stable. Moreover, this move cannot introduce
any new (r — 1)-stable but not r-stable pairs. Since a single 1 can be in at most two
pairs, and this 1 must move exactly one entry to the right, then this 1 must be in entry
j in the pairs (i, j) and (j, t) where (i, j) is (r — 1)-stable but not r-stable, and (j, 7)
is (r+ 1)-stable. Moreover, since the move of the 1 in entry j can only change the
stability of the pairs (i, j) and (J, ¢), then it must be that all other pairs are r-stable.

Finally, since  has the unique (r — 1)-stable but not r-stable vertex €, and since €
has the unique (r — 1)-stable but not r-stable pair (¢, £ 4+ r — 1) then all other vertices
in o satisfy Z/“ "x; = 1. Hence, H[u, ®] = Hy .

Lemma 2.12. Suppose I<r< L”J Suppose also that Hg is an (n — 2)-flat defining
a facet F ofA“ab and Hr ﬁrehntAqtab r-1) ;é 0. Then Hp = Hy . for some { € [n].
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Proof. By Lemma 2.9 Hp = H{[u, ®] for some r-supporting pair (¢, ®). By Lemma
2.11 @ has a unique vertex that is (r — 1)-stable but not r-stable with a unique (r— 1)-
stable but not r-stable pair (¢, {4 r— 1) for some ¢ € [n]. Thus, Hr = H[u, ®]| = H ,.

We now show that Hy,, is indeed facet-defining for A;tf(r) for all £ € [n].

Lemma 2.13. Suppose 1 <r < LZJ or n=kr+1. Then Hy , is facet-defining for
stab
) forall t [n].

Proof. First we note that the result is clearly true for » = 1. So in the following we
assume r > 1. To prove the claim we show that Hy , supports an (n — 1)-simplex
@ € max V; X
To this end, consider the characteristic vector of the k-subset

{(¢—1)+(s—1)r: s € [k]} C [n]. Denote this characteristic vector by &’, and think
of its indices modulo n. Labeling the 1 in coordinate (¢ — 1)+ (s — 1)r of €’ as 14, it
is quick to see that 15 and 14 are separated by » — 1 zeros for every s € [k]. That is,
&/ =0forevery ({—1)4(s—1)r <i< ({—1)+sr (modulon), and there are precisely
r — 1 such coordinates. Moreover, since r < LZJ orn=kr+1thenn>kr+1. So
there are at least r zeros between 1; and 1. Hence, this vertex is r-stable. From e’
we can now construct an r-stable circuit (wz ) by moving the 1’s in £’ one coordinate
to the right (modulo n), one at a time, in the following pattern:

(1) Move 1;. Then move 1;_;. Then move 1;_5. ... Then move 1;.

(2) Repeat step (1) r — 1 more times.

(3) Move 1 to entry /.

Each move in this pattern produces a new r-stable vertex since there are always at
least r — 1 zeros between each pair of 1’s. So ©’ € max V] , and Hy , supports o’
since every vertex of ( o’ ) lies in Hy , except for the vertex preceding the first move
of 1; in the circuit (o).

Remark 2.14. When n = kr+ 1 then @ = A““‘b( ")

inequalities for @’ = A;f“‘,:’( " are precisely H/( Vfort e [n].

forall £ € [n]. So the facet-defining

From Lemmas 2.12 and 2.13 we see that when 1 < r < LZJ the facet-defining

(n—2)-flats for Abtdb( ") that intersect rehntAStdb(r D
are now ready to prove Theorem 2.1.

are precisely Hy, . for £ € [n]. We

2.2.1. Proof of Theorem 2.1
First recall that Theorem 2.1 is known to be true for r = 1. Now let 1 <r < [}].
By Theorem 2.6 we know that Agtab( 7 s (n— 1)-dimensional. First let r =2. By

St"b( 'forall £ € [n]. By Lemma 2.7
itab( )

Lemma 2.5 we know that H is facet-defining for A

. Thus, the collec-
stab( )

we know that for every ¢ € [n] Hy | is not facet- deﬁmng for A,

tion of facet-defining (n — 2)-flats for A, ; that are also facet- deﬁmng for A, are
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Hy: (e , and all other facet-defining (n — 2)-flats for Abtdb( ) must intersect the
{ g

relative interior of A, . Therefore, by Lemmas 2.12 and 2. 13 the remaining facet-

defining (n — 2)-flats for ASt ) are Hy , for ¢ € [n]. Since An‘k(r) is contained in

H [(,+) and H tf r), this proves the result for » = 2. Theorem 2.1 then follows by iterating
this argument for 2 < r < [ 7.

3. Gorenstein r-Stable Hypersimplices

In [2], the authors note that the r-stable hypersimplices appear to have unimodal
Ehrhart §-vectors, and they verify this observation for a collection of these polytopes

in the k = 2 case. In [3], it is shown that a Gorenstein integer polytope with a regular

unimodular triangulation has a unimodal §-vector. In [2], it is shown that A“ab( " has

a regular unimodular triangulation. One application for the equations of the facets
of a rational convex polytope is to determine whether or not the polytope is Goren-

stein [6]. We now utilize Theorem 2.1 to identify 1 < r < L J for which Amb( "
Gorenstein. We identify a collection of such polytopes for every k > 2, thereby ex-
panding the collection of r-stable hypersimplices known to have unimodal §-vectors.
In this section we let 1 < k <n— 1. This is because A, | and A,, ,_; are simply copies
of the standard (n — 1)-simplex, which are well known to be Gorenstein [1, p. 29].

First we recall the definition of a Gorenstein polytope. Let P C R" be a rational
convex polytope of dimension d, and for an integer ¢ > 1 let gP:= {gqa: a € P}. Let
X1,X2,..., XN, and z be indeterminates over some field K. Given an integer g > 1, let
A(P)4 denote the vector space over K spanned by the monomials x{"x3? - - - xyVz¢ for
(a1, ..., 0y) € gPNZYN. Since P is convex we have that A(P)pA(P)y C A(P) p+q
forall p and q. It then follows that the graded algebra

is finitely generated over K = A(P)o. We call A(P) the Ehrhart Ring of P, and we say
that P is Gorenstein if A(P) is Gorenstein.

We now recall the combinatorial criterion given in [5] for an integral convex poly-
tope P to be Gorenstein. Let d P denote the boundary of P and let relint(P) = P — dP.
We say that P is of standard type if d = N and the origin in R¢ is contained in
relint(P). When P C R is of standard type we define its polar set

d
P = {(al,ag,...,ad) eR?: Zaiﬁi <1 forevery (B1, B2, .-, Ba) EP}.

i=1

The polar set P* is again a convex polytope of standard type, and (P*)* = P. We call
P* the dual polytope of P. Suppose (a1, 0%, ..., 0;) € R, and K is the hyperplane in
R? defined by the equation Efl:1 o;x; = 1. A well-known fact is that (o, 0g, ..., @)
is a vertex of P* if and only if KNP is a facet of P. It follows that the dual polytope
of a rational polytope is always rational. However, it need not be that the dual of an
integral polytope is always integral. If P is an integral polytope with integral dual
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we say that P is reflexive. This idea plays a key role in the following combinatorial
characterization of Gorenstein polytopes.

Theorem 3.1. (De Negri and Hibi [5]) Let P C R be an integral polytope of dimen-
sion d, and let q denote the smallest positive integer for which

g(relint(P)) N Z4 # 0.

Fix an integer point o € q(relint(P)) NZ4, and let Q denote the integral polytope
gP — a C RY. Then the polytope P is Gorenstein if and only if the polytope Q is
reflexive.

Since Theorem 3.1 requires that the polytope be full-dimensional we consider

¢! (A;ﬁ‘f(r)), where ¢ : R"~! — H is the affine isomorphism

n—1
Q: (a1, 00,..., 0 1) — <oc1, ..., Oy, k— (Z 0@)).
i=1

Notice that ¢ is also a lattice isomorphism. Hence, we have the isomorphism of
Ehrhart Rings as graded algebras

A (qr‘ (A;f}(b“))) ~ A (Aj,fa,f’(r)) .

Le tP;th( .= ! (A;tf‘,?(r)), and recall from Theorem 2.1 that

itab <ﬂH ) N < Hf(r)> .
= V4 1
b(r)

btdb( r)
We now give a description of the facet-defining inequalities for P;t;lc
itab( ) '

ID-

3.1. The H-Representation for P,

in terms of

those defining A, In the following, it will be convenient to let 7' (¢) = {¢, £ +
1,0+2,... 0+r— 1} for £ € [n]. We also let T'(£)° denote the complement of T'(¢)
in [n]. Notice that for a fixed 1 <r<|7?|and € [n], the set T (£) is precisely the set of
summands in the defining equation of the (n —2)-flat Hy ,. The defining inequalities
of P:fib(r) corresponding to the (n —2)-flats H; , come in two types, dependent on
whethern ¢ T(¢) orn € T(¢). If n ¢ T(¢) then

Ké;) = (p‘1 (Hé;)):{(xl,xz,...,xn 1) ER" 1. Z x,<l}
i€T(0)
Ifn € T(¢) then

zzzf;%:q)—l(H;,—g):{m o) R zx,>k_1}

€T (¢
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Similarly, if £ # n then
Ké+) = (p*1 (H,FH) = {(xl,xz, vy Xp—1) € R x> O}.

Finally, if £ = n then

n—1
K,(l_) = ! (H,(,+)) = {(xl,xz,...7x,,1) eR" 1 in < k} .

i=1

b(r)

Thus, we may write P;tz as the intersection of closed halfspaces in R" !

n—1
U= N k) |n| N &Y m(ﬂ K,§+>> Nk
i=1

n¢T (L) neT ()
To denote the supporting hyperplanes corresponding to these halfspaces we simply

drop the superscripts (+) and (—).

3.2. The Codegree of Pbtdb( "

sta b( )
positive integer g for which qP ( ) contains a lattice point in its relative interior. To

do so, recall that for a lattice polytope P of dimension d we can define the (Ehrhart)
S-polynomial of P. If we write this polynomial as

Given the above description of P, , we would now like to determine the smallest

Sp(z) = 8o+ 812+ 8227 + -+ 8427,

then we call the coefficient vector &(P) = (8, 61, &, ..., O4) the 8-vector of P. We
let s denote the degree of 8p(z), and we call g = (d + 1) — s the codegree of P. It
is a consequence of Ehrhart Reciprocity that ¢ is the smallest positive integer such

that gP contains a lattice point in its relative interior [1]. Hence, we would like to

compute the codegree of PStdb( 2

To do so requires that we first prove two lemmas.
In the following let g = ( k} . Our first goal is to show that there is at least one integer
point in relint (qub( )) for 1 <r < |7 |. We then show that g is the smallest positive

integer for which this is true. Recall that g = "*,;0‘ for some a € {0, 1,...,k—1}.
Also recall that for fixed n and k we have the nesting of polytopes

(L)1) ) pan([ 1))

n,k n,k

stab(2) stab(3)

PnkDP DPnk DEEEED)

b(| %] -1
Hence, if we identify an integer point inside relint (qan (L]-1) ) then this same
integer point lives inside relint (quz (r)) for every 1 < r < [} |. Given these facts,
we now prove two lemmas.

Lemma 3.2. Suppose that g = [}| = "1* where a € {0, 1}. Then the integer point
(1,1,..., 1) € R"! lies inside relint (qPStdb )for every 1 <r< { J
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Proof. Tt suffices to show that (xi,xp,...,x,—1) = (1, 1,..., 1) satisfies the set of
inequalities

(i) x;>0,forie[n—1],

(i) i) x < kg,
(iil) Yier(oXi < g, forn ¢ T(¢), and
(V) Yier(pexi > (k—1)g, forn € T(f).

We do this in two cases. First suppose that & = 0. Then k divides n and ¢ = }.
Clearly, (i) is satisfied. To see that (ii) is also satisfied simply notice that n — 1 < kq.
To see that (iii) is satisfied recall that #7'(¢) = r and r < |} | = g. Finally, to see that
(iv) is satisfied notice that #7 (¢)° = n—r. So we would like that n —r > (k—1)q.
However, this follows quickly from the fact that » < .

Now consider the case where @ = 1. Recall that it suffices to consider the case
when r = |} | — 1. Inequalities (i), (ii), and (iii) are all satisfied in the same fashion
as the case when oo = 0. So we need only check that (iv) is also satisfied. Again we
would like that n — r > (k— 1)q. Notice since & = 1 then k does not divide n, and so

[%]=|%]+1. Hence, g = r+2. The desired inequality then follows from n+2 >
n+ a. Thus, whenever o € {0, 1}, the lattice point (1, 1,..., 1) € relint (qpifé;{b(r))
forevery 1 <r< |7].

Next we would like to identify an integer point in the relative interior of qP;tib(r)

for 1 <r < |7| when o > 2. In this case, the point (1, 1,..., 1) does not always
work, so we must identify another point. Recall that it suffices to identify such a
point for r = [ZJ — 1. To do so, we construct the desired point using the notions of
r-stability. Fix n and k such that g = "% for & > 2, and let r = |} | — 1. This also
fixes the value o € {2,3,..., k— 1}. Since r = | 7 | — 1 we may construct an r-stable

vertex in R” as the characteristic vector of the set

{n—rn—=2r,n=3r...,n—(k—1)r} C [n].

Notice that there are at least r 0’s between the n'" coordinate of the vertex and the

n— (k—1)r'" coordinate (read from right-to-left modulo 7). In particular, this implies
that the n'" coordinate (and the 1% coordinate) is occupied by a 0. To construct the
desired vertex replace the 1’s in coordinates

n—(a+1)rnn—(a+2)r,...,n—(k—1)r

with 0’s. Now add 1 to each coordinate of this lattice point. If the resulting point is
(x1, x2,...,X,) then replace x, = 1 with the value kg — (27;11 x;) . Call the resulting
vertex €%, and consider the isomorphism ¢: R~ — H,, defined analogously to ¢,
where H, is the hyperplane in R" deﬁvned by the equation Y. ; x; = kq. Notice that
by our construction of €%, the point ¢! (%) is simply €% with the last coordinate

projected off.

Lemma 3.3. Suppose that q= ||| = "% for a € {2,3,..., k—1}. Then the lattice

k
point ¢~ (%) lies inside relint (qP;_th(r)) forevery 1 <r< MJ
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Proof. It suffices to show that when r = |7 | — 1 the lattice point (x|, x2, ..., X,—1) =
¢! (%) satisfies inequalities (i), (ii), (iii), and (iv) from the proof of Lemma 3.2. It
is clear that (i) is satisfied. To see that (ii) is satisfied notice that Z" | Xi=n—1+o.
This is because « coordinates of ¢! are occupied by 2’s and all other coordinates
are occupied by 1’s. Thus, inequality (ii) is satisfied since n — 1 + & < kq. To see that
(iii) is satisfied first notice that for 7'(¢) with n ¢ T ({)

W

{ r, if T () contains no entry with value 2,
ieT(¢)

r+1, otherwise.

This is because we have chosen the 2’s to be separated by at least r — 1 0’s. Thus,
since k does not divide n we have that } ;crpxi <r+1= LZJ < g. Finally, to see
that (iv) is satisfied first notice that for T'(¢) with n € T'(¢)

Y -

{ n—r+o—1, if T({) contains an entry with value 2,
i€T (¢

n—r+ao, otherwise.

n

Hence, we must show that n —r+ o — 1> (k— 1)g. However, since [}] = |} ]|+
1 then r = g — 2, and so the desired inequality follows from n+ o +1 > n+ a.

Therefore, ¢! (¢%) € relint (qP;tzb(r)) forevery 1 <r<|7].

Using Lemmas 3.2 and 3.3 we now show that g = {ﬂ is indeed the codegree of
these polytopes.

Theorem 3.4, Let 1 <r < L J The codegree ofP Vis q= [ ]

Proof. First recall that Pbtdb( oF

follows that & (P, mb ) < 8(Anx). Therefore, the codegree of P () 5 no smaller

than the codegree of Ay In[7, Corollary 2.6], Katzman determlnes that the codegree
stab(r)

is a subpolytope of A, x. By [9, Theorem 3.3], it then

of A, is ¢ = [7]. Since Lemmas 3.2 and 3.3 imply that P, " contains a lattice
point inside its relative interior we conclude that the codegree of Pbmb( Dis g = [7].

Recall that if an integral polytope P of dimension d with codegree g is Gorenstein
then
# (relint (qP)NZ? ) ~1.

With this fact in hand, we have the following corollary.

Corollary 3.5. Suppose that g =[] = "%, where a € {2,3,. —1}. Then the
polytope A;ta,?(r) is not Gorenstein for every 1 <r < LkJ

Proof. Recall the vertex (x1, x2, ..., X,) from which we produce €%. Since x; = 1 then
cyclically shifting the entries of this vertex one entry to the left, and then applying the
construction for £ results in a second vertex, say {%, such that ¢ ({%) ™" also lies in

the relative interior of qP“ab( ") Thus, #(relint (qub( )) NZ*) > 1, and we conclude

tha tA“ab( ") is not Gorenstein.
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3.3. Gorenstein r-Stable Hypersimplices and Unimodal &-Vectors

Notice that by Corollary 3.5 we need only consider those r-stable hypersimplices
satisfying the conditions of Lemma 3.2. For these polytopes we now consider the
translated integral polytope

Q:=gP™) _(1,1,...,1).

From our H-representation of P;_tzb(r)

hyperplanes

we see that the facets of Q are supported by the

(@) x;=—1,forien—1],

(b) Lo i = kg~ (n—1),

(©) Yier(n*i=q—r,forng T(£), and

(d) Yier@yexi=(k—1)g—(n—r),forn e T(£).

Given this collection of hyperplanes we may now prove the following theorem.

Theorem 3.6. Let 1 <r < |}|. Then A;tf‘,?(r) is Gorenstein if and only if n = kr + k.

Proof. By Theorem 3.1 we must determine when all the vertices of Q* are integral.
We do so by means of the inclusion-reversing bijection between the faces of Q and the
faces of Q*. Itis immediate that the vertices of Q* corresponding to hyperplanes given
in (a) are integral. So consider the hyperplane given in (b). Recall that g = [Z] = "*ko‘

for some o € {0, 1}. Hence, this hyperplane is equivalently expressed as

n—1 1
l.; a1 L

Therefore, the corresponding vertex in Q™ is integral only if o = 0. Notice next that
the hyperplanes given in (c¢) will have corresponding vertex of Q* integral only if
g—r=1. Since o = 0 we have that ¢ = | where k divides n, and so it must be that
n = kr+ k. Finally, when n = kr + k the hyperplanes given in (d) reduce to

Z x;:—l.

€T (0)¢

Hence, the corresponding vertex of Q* is integral, and we conclude that, for 1 < r <

LZJ stab(r)

, the polytope A’ is Gorenstein if and only if n = kr + k.

Theorem 3.6 demonstrates that the Gorenstein property is quite rare amongst the
r-stable hypersimplices. It also enables us to expand the collection of r-stable hyper-
simplices known to have unimodal §-vectors. Previously, this collection was limited
to the case when k = 2 or when A;tf‘,?(r) is a simplex [2]. Theorem 3.6 provides a

collection of r-stable hypersimplices with unimodal §-vectors for every k > 1.

Corollary 3.7. Let k > 1. The r-stable n, k-hypersimplices A;t‘a,?(r) for r > 1 and
n = kr+ k have unimodal &-vectors.
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Proof. By [2, Corollary 2.6], there exists a regular unimodular triangulation of A:tf(r) .
By Theorem 3.6, the polytope A:tf(r) is Gorenstein for n = kr + k when k > 1. By [3,

Theorem 1] we conclude that the d-vector of Af:a,? ") is unimodal. Finally, notice that

when k = 1 these polytopes are just the standard (n — 1)-simplices.
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