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Juan F. Mañas–Mañas and Juan J. Moreno–Balcázar

Abstract. We tackle the study of a type of local asymptotics, known
as Mehler–Heine asymptotics, for some q–hypergeometric polynomials.
Some consequences about the asymptotic behavior of the zeros of these
polynomials are discussed. We illustrate the results with numerical exam-
ples.
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1. Introduction

The basic q-hypergeometric function rφs is defined by the series (see, for ex-
ample, [2] or [15, f. (1.10.1)]).

rφs

(
a1, . . . , ar

b1, . . . , bs
; q, z

)
=

∞∑
k=0

(a1, . . . , ar; q)k

(b1, . . . , bs; q)k

(−1)(1+s−r)kq(1+s−r)(k
2) zk

(q; q)k
,

(1)

where (a1, . . . , ar; q)k = (a1; q)k (a2; q)k · · · (ar; q)k. For our purposes we as-
sume throughout the paper 0 < q < 1. The expressions (aj ; q)k and (bj ; q)k
denote the q-analogues of the Pochhammer symbol, i.e., given a complex num-
ber a

(a; q)0 := 1 and (a; q)n =
n∏

k=1

(
1 − aqk−1

)
=

n−1∏
k=0

(
1 − aqk

)
, n ≥ 1, (2)
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with

(a; q)∞ =
∞∏

k=0

(
1 − aqk

)
. (3)

Obviously, the series (1) is well–defined when the quantities, known as
q–shifted factorials or q-Pochhammer symbols, (bj ; q)k �= 0, for j = 0, . . . , s.
It is well known that the radius of convergence ρ of the q−hypergeometric
functions (1) is given by (see for example [15, p. 15])

ρ =

⎧⎨
⎩

∞, if r < s + 1;
1, if r = s + 1;
0, if r > s + 1.

In particular, for our interest sφs is always convergent. In this paper we con-
sider r = s because it is the context where we can establish our main goal (see
Theorem 1).

The q-series (1) is the analogous series in the framework of the q-analysis
to the hypergeometric function given by (see, for example, [3] or [4])

rFs

(
a1, . . . , ar

b1, . . . , bs
; z

)
=

∞∑
k=0

(a1)k · · · (ar)k

(b1)k · · · (br)k

zk

k!
.

They are connected by the limit relation

lim
q→1

rφs

(
qa1 , . . . , qar

qb1 , . . . , qbs
; q, (q − 1)1+s−rz

)
= rFs

(
a1, . . . , ar

b1, . . . , bs
; z

)
.

In particular, when r = s, we get

lim
q→1

sφs

(
qa1 , . . . , qas

qb1 , . . . , qbs
; q, (q − 1)z

)
= sFs

(
a1, . . . , as

b1, . . . , bs
; z

)
. (4)

When one of the parameters aj in (1) is equal to q−n, where n is a nonneg-
ative integer, the basic q-hypergeometric function is a polynomial of degree at
most n in the variable z. Thus, our objective is to obtain a type of asymptotics
for these q-polynomials. Concretely, by scaling adequately these polynomials
we intend to get a limit relation between them and a q-analogue of the Bessel
function of the first kind. In the framework of orthogonal polynomials, this
type of asymptotics is known as Mehler–Heine asymptotics (also as Mehler–
Heine formula). Originally, this type of local asymptotics was introduced for
a special case of orthogonal polynomials (OP), Legendre polynomials, by the
German mathematicians H. E. Heine and G. F. Mehler in the 19th century.
Later, it was extended to the families of classical OP: Jacobi, Laguerre, Her-
mite (see, for example, [19]). More recently, these formulae were obtained for
other families of polynomials such as OP in the Nevai’s class [5], discrete OP
[7], generalized Freud polynomials [1], multiple OP [20,21] or Sobolev OP (in
this context there are many papers in this century, being [17] one of the first),
among others.
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These formulae have a nice consequence about the scaled zeros of the
polynomials, i.e. using the well-known Hurwitz’s theorem we can establish a
limit relation between these scaled zeros and the ones of a Bessel function of
the first kind. Thus, in [6] the authors, starting from a Mehler–Heine formula
for hypergeometric polynomials, make a study of the zeros of these polynomi-
als. Notice that in this case the polynomials are not necessarily orthogonal. In
this way, we are looking for a similar result in the context of the q-analysis.
In fact, we can find several nice works where the authors study Placherel–
Rotach asymptotics for basic hypergeometric polynomials (see, for example
[10–14,16,22] and [24–27]). In this type of asymptotics, most authors scale the
variable z using a divergent sequence, this is, z → anz with an → ∞ when
n → +∞. In these works the authors usually obtain relations between the basic
hypergeometric polynomials and the q-Airy function. We would like to high-
light the work [16] where the authors obtain a relation between the Stieltjes–
Wigert orthogonal polynomials Sn(z; q) and the q-Airy function Aq(z) using a
scaling of the variable satisfying an → 0 when n → +∞. In fact, the authors
prove that (see [16, Th. 1])

Sn(z; q) =
1

(q; q)n
(Aq(z) + rn(z)) ,

where z = uq−nt with −∞ < t < 2, u ∈ C\{0} and being rn(z) a remainder
function (for more details see [16, Th. 1]). Clearly, uq−nt → 0 when t < 0 and
n → +∞. To prove their results the authors use a symmetry property of the
Stieltjes–Wigert orthogonal polynomials given by

Sn(z; q) = (−zqn)Sn

(
1

zq2n
; q

)
.

In our case, we will show that the variable is scaled z → anz by a sequence
an satisfying an → 0 when n → +∞. So, we can establish asymptotic relations
between these q-polynomials and a q-Bessel function. Thus, the novelty of
our approach is to extend the classical Mehler–Heine formulae to these q-
hypergeometric polynomials.

Now, we establish the notation that we will use in the following sections
and we will show our main result. We denote by [z]q the well-known q-number
given by

[z]q =
1 − qz

1 − q
, (5)

for 0 < q < 1, it is easy to prove that

lim
q→1

[z]q = z. (6)
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In addition, we will use the q-Gamma function given by (see, for example, [3,
f. (10.3.3)])

Γq(z) =
(q; q)∞
(qz; q)∞

(1 − q)1−z, 0 < q < 1. (7)

This function is a q-analogue of the Gamma function. It is a meromorphic
function, without zeros and with poles in z = −n±2πik/ log(q) where n and k
are nonnegative integers. This function verifies the relation (see [3, Pag. 495])

lim
q→1

Γq(z) = Γ(z), (8)

and satisfies

Γq(z + 1) = [z]qΓq(z) with Γq(1) = 1. (9)

An important role in this paper is played by the q-Bessel function J
(2)
α (z; q)

given by (see, for example, [15, f. (1.14.8)])

J (2)
α (z; q) =

(
qα+1; q

)
∞

(q; q)∞

(z

2

)α

0φ1

( −
qα+1 ; q,

−qα+1z2

4

)
, (10)

which is an extension of the Bessel function of the first kind Jα(z), i.e.

lim
q→1

J (2)
α ((1 − q)z; q) = Jα(z). (11)

With this notation, we will prove in the Theorem 1 that, for s ≥ 2,

lim
n→+∞ sφs

(
q−n, qasn+bs

qα, qcsn+ds
; q,

qn+α[n]qcs

[n]q[n]qas

(q − 1)z
)

=
(

[as]q
[cs]q

z

) 1−α
2

Γq(α)J (2)
α−1

(
2(1 − q)

√
[as]q
[cs]q

z; q

)
,

where

qasn+bs = qa1n+b1 , qa2n+b2 , . . . , qas−1n+bs−1 , (12)

[n]qas = [n]qa1 [n]qa2 · · · [n]qas−1 , (13)

[as]q = [a1]q[a2]q · · · [as−1]q. (14)

The above result is also true when s = 1, getting in this case the following
relation:

lim
n→+∞ 1φ1

(
q−n

qα,
; q,

qn+α

[n]q
(q − 1)z

)
= z

1−α
2 Γq(α)J (2)

α−1

(
2(1 − q)

√
z; q

)
.

We also discuss the case r − 1 ≤ s in Proposition 4. In addition, one of
the referees asked us what result would be obtained when we take the scale
z → qnz. These results are shown in Propositions 5 and 6. They are very nice
but, as far as we know, they cannot be used to deduce the result obtained in
[6], so we have included both scaling.

We structure the paper as follows. Section 2 is devoted to technical results
which will be necessary in Sect. 3 to prove the main result, Theorem 1, as well
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as Propositions 4, 5 and 6. Finally, in Sect. 4 we discuss the consequences of
the Mehler–Heine formula on the asymptotic behavior of the zeros of these
q-hypergeometric polynomials. We illustrate this discussion with a variety of
numerical examples and we leave some questions open, concretely one about
the zeros of the q-function z1−αJ

(2)
α−1 (z(1 − q); q) .

2. Technical Results

This section is devoted to obtaining some properties about the q-Pochhammer
symbol defined in (2) and the q-Gamma function given by (7). Actually, we are
going to establish six technical statements which are indispensable to prove
our main result in the following section. We do not claim that these results are
new, but we have not found anything like them in our search in the literature.

Lemma 1. Let k be a nonnegative integer and z a complex number, such that
Γq(z) is well defined, then

Γq(z + k)
Γq(z)

=
(qz; q)k

(1 − q)k
. (15)

Proof. Using (2) and (9) it follows that

Γq(z + k)
Γq(z)

= [z]q[z + 1]q . . . [z + k − 1]q =
(qz; q)k

(1 − q)k
.

�

Lemma 2. Let a be a positive real number and b a complex number. Then, we
have, for any k ∈ Z fixed,

lim
n→+∞

Γq(an + b + k)
Γq(an + b)

[an + b]−k
q = 1. (16)

Proof. First, we prove the result for a nonnegative integer k. Then, using (9)
in a recursive way, we get

Γq(an + b + k)
Γq(an + b)

[an + b]−k
q =

k−1∏
j=0

[an + b + j]q
[an + b]q

.

Since limn→+∞
[an + b + j]q

[an + b]q
= 1 for all j ∈ {0, 1, . . . , k − 1} we get the result.

When k is a negative integer, we can adapt the above proof easily applying
(9) to the denominator instead of the numerator. �

Lemma 3. Let k be a nonnegative integer. Then,

lim
n→+∞

(q−n; q)k

[n]kqq−nk
= (−1)kq(

k
2)(1 − q)k. (17)
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Proof. From [15, f. (1.8.18)], we have

lim
n→+∞

(q−n; q)k

[n]kqq−nk
= (−1)kq(

k
2) lim

n→+∞
(q; q)n

(q; q)n−k[n]kq
.

Now, using (15) and (16), the limit on the right side of the above expression
can be computed as

(−1)kq(
k
2) lim

n→+∞
(q; q)n

(q; q)n−k[n]kq
= (−1)kq(

k
2)(1 − q)k lim

n→+∞
Γq(n + 1)[n]−k

q

Γq(n − k + 1)

= (−1)kq(
k
2)(1 − q)k,

from where the result arises. �

Lemma 4. Let b be a complex number. Then, for a positive real number a, it
holds

lim
n→+∞

(
qan+b; q

)
k

(1 − q)k[n]kqa

= [a]kq . (18)

Proof. For a > 0 and 0 < q < 1 we deduce easily limn→+∞
[n]q
[n]qa

= [a]q and

limn→+∞
[an + b]q

[n]q
= 1. Then, using (15), (16) and the above limits the result

follows. �

For the next results, we assume
(

i
j

)
= 0 when i < j.

Lemma 5. We have for n ≥ 1,∣∣∣∣ (q
−n; q)k

[n]kqq−nk

∣∣∣∣ ≤ q(
k
2), k = 0, 1, . . . , n. (19)

Proof. For k = 0 the proof is trivial and the equality is reached. For k ≥ 1,
using [15, f. (1.8.18)], we have∣∣∣∣ (q

−n; q)k

[n]kqq−nk

∣∣∣∣ =

∣∣∣∣∣
(q; q)n

(q; q)n−k

(−1)kq(
k
2)−kn

[n]kq q−kn

∣∣∣∣∣
= q(

k
2) (q; q)n

(q; q)n−k[n]kq
= q(

k
2)

(
1 − q

1 − qn

)k n−1∏
j=n−k

(
1 − qj+1

)
.

Clearly,
(

1 − q

1 − qn

)k

≤ 1 and
n−1∏

j=n−k

(
1 − qj+1

)
< 1. Then,

q(
k
2)

(
1 − q

1 − qn

)k n−1∏
j=n−k

(
1 − qj+1

) ≤ q(
k
2),

which proves the result. �
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In the next two statements we provide useful bounds for∣∣∣∣∣
(
qan+b; q

)
k

(1 − q)k[n]kqa

∣∣∣∣∣ , k = 0, 1, . . . , n.

where b is a complex number with some restrictions (see Proposition 2) and a
is a positive real number. These bounds allow us to prove the main result of
this paper.

Proposition 1. Let a be a positive real number and b = γ + iβ a complex
number. Then, we have for n ≥ 1,∣∣∣∣∣

(
qan+b; q

)
k

(1 − q)k[n]kqa

∣∣∣∣∣ ≤ [a]kq
(1 − qa)k

(√
1 + q2a+2γ + 2qa+γ

)k

, k = 0, 1, . . . , n.

Proof. We notice that 1 > qa ≥ qan > 0 for n ≥ 1, then

0 <
1

1 − qan
≤ 1

1 − qa
, n ≥ 1.

We are going to use (5) and this inequality to prove the result, so∣∣∣∣∣
(
qan+b; q

)
k

(1 − q)k[n]kqa

∣∣∣∣∣ =
[a]kq

(1 − qan)k

k−1∏
j=0

∣∣1 − qan+γ+j+iβ
∣∣

≤ [a]kq
(1 − qa)k

k−1∏
j=0

∣∣1 − qan+γ+j+iβ
∣∣ =

[a]kq
(1 − qa)k

k−1∏
j=0

∣∣∣1 − qan+γ+jeiβ ln(q)
∣∣∣

=
[a]kq

(1 − qa)k

k−1∏
j=0

√
1 + q2(an+γ+j) − 2qan+γ+j cos(β ln(q))

≤ [a]kq
(1 − qa)k

k−1∏
j=0

√
1 + q2(an+γ+j) + 2qan+γ+j

≤ [a]kq
(1 − qa)k

(√
1 + q2(a+γ) + 2qa+γ

)k

.

�

Next, we use the notation Z− for the set formed by the number 0 and
the negative integers, i.e. Z− = {0,−1,−2, . . .}.

Proposition 2. Let a be a positive real number and b = γ + iβ a complex
number. We assume that an+γ /∈ Z− for all n positive integer. Then, it exists
ε > 0 such that for n ≥ 1 and k = 0, 1, . . . , n, we have∣∣∣∣∣

(
qan+b; q

)
k

(1 − q)k[n]kqa

∣∣∣∣∣ ≥
⎧⎨
⎩

[a]kq > 0 if γ ≥ 0,

[a]kqεk > 0 if γ < 0.
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Proof. To prove this lower bound, we will use the well-known inequality |z −
w| ≥ ∣∣|z| − |w|∣∣ where z and w are complex numbers, and the equality∣∣qan+γ+j+iβ

∣∣ = qan+γ+j .

Then, we have∣∣∣∣∣
(
qan+b; q

)
k

(1 − q)k[n]kqa

∣∣∣∣∣ =
[a]kq

(1 − qan)k

k−1∏
j=0

∣∣1 − qan+γ+j+iβ
∣∣ = [a]kq

k−1∏
j=0

∣∣1 − qan+γ+j+iβ
∣∣

1 − qan

≥ [a]kq
k−1∏
j=0

∣∣1 − ∣∣qan+γ+j+iβ
∣∣∣∣

1 − qan
= [a]kq

k−1∏
j=0

∣∣1 − qan+γ+j
∣∣

1 − qan
.

Now, we distinguish two cases:

• When γ ≥ 0, taking into account qan ≥ qan+γ+j , we obtain that

k−1∏
j=0

1 − qan+γ+j

1 − qan
≥ 1,

and the result follows.
• When γ < 0, we have

[a]kq
k−1∏
j=0

∣∣1 − qan+γ+j
∣∣

1 − qan
=

[a]kq
q−kγ

k−1∏
j=0

∣∣q−γ − qan+j
∣∣

1 − qan
≥ [a]kq

k−1∏
j=0

∣∣q−γ − qan+j
∣∣ .

Now, on the one hand, assuming a and b fixed, it exits a positive integer n0

that depends on γ such that for all n > n0, we have

q−γ >
q−γ

2
> qan ≥ qan+j > 0,

with j ∈ {0, 1, . . . , k − 1}. So, we get

0 <
q−γ

2
= q−γ − q−γ

2
< q−γ − qan ≤ q−γ − qan+j .

Thus, we can affirm that for n > n0,

[a]kq
k−1∏
j=0

∣∣q−γ − qan+j
∣∣ ≥ [a]kq

q−kγ

2k
.

On the other hand, for n ∈ {1, 2, . . . , n0}, k = 0, . . . , n, and assuming an+γ /∈
Z− with n any positive integer, we have that −γ �= an+j for any j nonnegative
integer. Thus, we define

Δ =
{
1, |q−γ − q2a|, |q−γ − q2a+1|, |q−γ − q3a|,

|q−γ − q3a+1|, |q−γ − q3a+2|, . . . , |q−γ − qn0a+n0−1|} .
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Taking δ := min Δ > 0, we obtain

[a]kq
k−1∏
j=0

∣∣q−γ − qan+j
∣∣ ≥ [a]kqδk.

Finally, if we define ε := min{ q−γ

2 , δ} > 0 the result holds for n ≥ 1. �

Remark 1. Under the assumptions posed in the previous propositions, we have

an upper bound and a lower bound for the quantity
∣∣∣∣ (qan+b;q)

k

(1−q)k[n]kqa

∣∣∣∣ . For our

purposes, and without loss of generality, we can affirm that there are two
constants, Ca and Da, independent of n, so that

0 < Ck
a ≤

∣∣∣∣∣
(
qan+b; q

)
k

(1 − q)k[n]kqa

∣∣∣∣∣ ≤ Dk
a. (20)

3. Main Result

In this section we obtain the main goal of this paper: the Mehler–Heine asymp-
totics for some q-hypergeometric polynomials. Before stating this result, we
still have to take a further step on this issue giving a relation for the q-Bessel
function (10).

Proposition 3. Let α ∈ R\Z− be. Then,

Γq(α)z
1−α
2 J

(2)
α−1(2

√
z(1 − q); q) = 0φ1

( −
qα ; q,−z(q − 1)2qα

)
.

Proof. From (10), we have

J
(2)
α−1(x; q) =

(qα; q)∞
(q; q)∞

(x

2

)α−1

0φ1

( −
qα ; q,

−qαx2

4

)

=
(qα; q)∞
(q; q)∞

(x

2

)α−1 ∞∑
k=0

q2(k
2) (−1)kx2kqαk

4k (qα; q)k (q; q)k
.

Then, making the change x2 = 4z and introducing the factor (1 − q)1−α, we
have the following identity,

(q; q)∞
(qα; q)∞

(1 − q)1−αz
1−α
2 J

(2)
α−1(2

√
z; q) = (1 − q)1−α

∞∑
k=0

q2(k
2)(−1)kzkqαk

(qα; q)k (q; q)k
.

Now, using (1) and (7), we get

Γq(α)z
1−α
2 J

(2)
α−1(2

√
z; q) = (1 − q)1−α

0φ1

(−
qα ; q,−zqα

)
.

Finally, it is enough to make the change of variable
√

z → √
z(1 − q) to end

the proof. �
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We have all the ingredients to establish our main result.

Theorem 1 (Mehler–Heine asymptotics). We use the notation from (12)–(14),
assuming that α ∈ R\Z−, aj > 0, cj > 0 and that bj and dj are com-
plex numbers satisfying ajn + Re(bj) /∈ Z− and cjn + Re(dj) /∈ Z− with
j ∈ {1, 2, . . . , s − 1} and s ≥ 2. Then,

lim
n→+∞ sφs

(
q−n, qasn+bs

qα, qcsn+ds
; q,

qn+α[n]qcs

[n]q[n]qas

(q − 1)z
)

=
(

[as]q
[cs]q

z

) 1−α
2

Γq(α)J (2)
α−1

(
2(1 − q)

√
[as]q
[cs]q

z; q

)
, (21)

uniformly on compact subsets of the complex plane. For s = 1, it holds

lim
n→+∞ 1φ1

(
q−n

qα,
; q,

qn+α

[n]q
(q − 1)z

)
= z

1−α
2 Γq(α)J (2)

α−1

(
2(1 − q)

√
z; q

)
. (22)

Proof. First, we observe that the quantities ajn + bj and cjn + dj , for j =
1, . . . , s − 1 and s ≥ 2, satisfy the hypothesis posed in Proposition 2.

Now, scaling the variable z in (1) in the following way z → qn+α[n]qcs

[n]q[n]qas

(q−
1)z, we get

sφs

(
q−n, qasn+bs

qα, qcsn+ds
; q,

qn+α[n]qcs

[n]q[n]qas

(q − 1)z
)

=
n∑

k=0

(
q−n, qasn+bs ; q

)
k

(qα, qcsn+ds ; q)k

(−1)kq(
k
2) q(n+α)k[n]kqcs (q − 1)kzk

[n]kq [n]kqas (q; q)k

:=
n∑

k=0

gn,k(z).

Using (17) and (18), we have for k fixed

lim
n→+∞ gn,k(z) = q2(k

2)(1 − q)k
[as]kq
[cs]kq

zkqαk(−1)k(1 − q)k

(qα; q)k (q; q)k

, (23)

uniformly on compact subsets of the complex plane. Furthermore, we take z
on a compact subset Ω of the complex plane, so |z| ≤ CΩ. Then, for n ≥ 0 and
0 ≤ k ≤ n, we get

|gn,k(z)| ≤ Dk
a1
Dk

a2
· · ·Dk

as−1

Ck
c1C

k
c2 · · ·Ck

cs−1

q2(k
2)qαk(1 − q)k

|(qα; q)k| (q; q)k
Ck

Ω := gk(z), (24)

where we have used (19) and (20). Thus, we have found a dominant for∑n
k=0 gn,k(z). This dominant is convergent, i.e. the series

∑+∞
k=0 gk(z) con-

verges. We can see this by applying the D’Alembert (or quotient) criterion for
series of nonnegative terms.
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Now, to apply the Lebesgue’s dominated convergence theorem, for n, k ≥
0 we define Fn,k(z) as

Fn,k(z) :=
{

gn,k(z), if 0 ≤ k ≤ n;
0, if n < k.

Then, using (23) and (24) and taking z on a compact subset Ω of the complex
plane, we have for each k

lim
n→+∞ Fn,k(z) = q2(k

2)(1 − q)k
[as]kq
[cs]kq

zkqαk(−1)k(1 − q)k

(qα; q)k (q; q)k

,

|Fn,k(z)| ≤ gk(z).

Thus, we can write
n∑

k=0

gn,k(z) =
∫

Fn,k(z)dμ(k),

where dμ(k) is the discrete measure with support on the nonnegative integers
(k = 0, 1, . . . ) and with a mass equal to one in each point of the support. Then,
we apply the Lebesgue’s dominated convergence theorem and (23), obtaining

lim
n→+∞

n∑
k=0

(
q−n, qasn+bs ; q

)
k

(qα, qcsn+ds ; q)k

(−1)kq(
k
2) q(n+α)k[n]kqcs (q − 1)kzk

[n]kq [n]kqas (q; q)k

= lim
n→+∞

n∑
k=0

gn,k(z)

= lim
n→+∞

∫
Fn,k(z)dμ(k) =

∫
lim

n→+∞ Fn,k(z)dμ(k)

=
+∞∑
k=0

(−1)kq2(k
2) [as]kq

[cs]kq

zkqαk(1 − q)2k

(qα; q)k (q; q)k

= 0φ1

(
−
qα ; q,−z[as]kq

[cs]kq
(q − 1)2qα

)
.

Finally, using Proposition 3 we get (21). The proof of (22) is similar, but now
it is not necessary to use either the limit (4) or the bounds (20). �

Now, we can tackle the case r−1 ≤ s. As we have commented previously,
in this case, as far as we know, the limit function cannot be expressed as a
known q-hypergeometric function except when r = s, then we get the same
result as in Theorem 1.

Proposition 4. We take r ≥ 1, s ≥ 1, r − 1 ≤ s, and α ∈ R\Z−. We consider
bj and d� complex numbers satisfying ajn + Re(bj) /∈ Z−, c�n + Re(d�) /∈ Z−
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where aj > 0, c� > 0 with j ∈ {1, 2, . . . , r − 1} and 
 ∈ {1, 2, . . . , s − 1}. Then,
for r ≥ 2 and s ≥ 2,

lim
n→+∞ rφs

(
q−n, qarn+br

qα, qcsn+ds
; q,

qn+α[n]qcs

[n]q[n]qar
(q − 1)z

)

=
+∞∑
k=0

(−1)(1+r−s)kq(2+s−r)(k
2) [ar]kq

[cs]kq

zkqαk(1 − q)(2+r−s)k

(qα; q)k (q; q)k

.

In addition,

lim
n→+∞ 1φs

(
q−n

qα, qcsn+ds
; q,

qn+α[n]cs
q

[n]q
(q − 1)z

)

=
+∞∑
k=0

(−1)skq(s+1)(k
2) zkqαk(1 − q)(3−s)k

[cs]kq (qα; q)k (q; q)k

, (25)

lim
n→+∞ rφ1

(
q−n, qarn+br

qα ; q,
qn+α

[n]q[n]qar
(q − 1)z

)

=
+∞∑
k=0

(−1)rkq(3−r)(k
2)[ar]kq

zkqαk(1 − q)(r+1)k

(qα; q)k (q; q)k

. (26)

Proof. Observe that when r ≥ 2 and s ≥ 2, we can write

rφs

(
q−n, qarn+br

qα, qcsn+ds
; q,

qn+α[n]qcs

[n]q[n]qar
(q − 1)z

)

=
n∑

k=0

(
q−n, qarn+br ; q

)
k

(qα, qcsn+ds ; q)k

(−1)(1+s−r)kq(1+s−r)(k
2) q(n+α)k[n]kqcs (q − 1)kzk

[n]kq [n]kqas (q; q)k

:=
n∑

k=0

g
[r,s]
n,k (z).

Moreover, we can prove for k fixed that

lim
n→+∞ g

[r,s]
n,k (z) = (−1)(1+r−s)kq(2+s−r)(k

2) [ar]kq
[cs]kq

qαk(1 − q)(2+r−s)kzk

(qα; q)k (q; q)k

.

uniformly on compact subsets of the complex plane. Then, acting like in the
proof of Theorem 1 we can apply the Lebesgue’s dominated convergence theo-
rem, getting the result. Finally, the asymptotic relations (25) and (26) can be
obtained in the same way by handling the notation adequately. �
Remark 2. It is worth noting that the condition r−1 ≤ s is necessary to apply
the Lebesgue’s dominated convergence theorem in the two previous proofs.

Remark 3. We can observe that Theorem 1 recovers partially one result for

hypergeometric polynomials rFs

(
a1, . . . , ar

b1, . . . , bs
; z

)
given in [6, Th. 1]. This oc-

curs when r = s. To see this, it is enough to consider (6) and notice that when
q → 1 we have
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lim
q→1

qn+α[n]cs
q z

[n]q[n]as
q

=
z

n
.

Then, using (4), (8), (10) and (11) in Theorem 1, we deduce Theorem 1 in [6]
when r = s.

As we have mentioned previously in the introduction, one of the refer-
ees proposed us to use the scaling z → qnz. We have obtained the following
statements.

Proposition 5. We use the notation from (12)–(14), assuming that α ∈ R\Z−,
aj > 0, cj > 0 and that bj and dj are complex numbers satisfying ajn+Re(bj) /∈
Z− and cjn + Re(dj) /∈ Z− with j ∈ {1, 2, . . . , s − 1} and s ≥ 2. Then,

lim
n→+∞ sφs

(
q−n, qasn+bs

qα, qcsn+ds
; q, qnz

)
= 0φ1

( −
qα ; q, z

)

=
( −z

(q − 1)2qα

) 1−α
2

Γq(α)J (2)
α−1

(
2
√−z

qα
; q

)
.

For s = 1, we have

lim
n→+∞ 1φ1

(
q−n

qα ; q, qnz

)
= 0φ1

( −
qα ; q, z

)

=
( −z

(q − 1)2qα

) 1−α
2

Γq(α)J (2)
α−1

(
2
√−z

qα
; q

)
, (27)

uniformly on compact subsets of the complex plane.

Proof. We need to modify appropriately some of the results from Sect. 2. From
Lemmas 3, 4 and 5 we can deduce

lim
n→+∞ qnk

(
q−n; q

)
k

= (−1)kq(
k
2), (28)

lim
n→+∞

(
qan+b; q

)
k

= 1, (29)
∣∣qnk

(
q−n; q

)
k

∣∣ ≤ q(
k
2), k = 0, 1, . . . , n. (30)

In addition, under the assumptions posed in Propositions 1 and 2, we use
the same technique to establish that there are two constants, Ĉa and D̂a,
independent of n, satisfying

0 < Ĉk
a ≤ ∣∣(qan+b; q

)
k

∣∣ ≤ D̂k
a. (31)

From (28-31) we can prove the result in the same way as in Theorem 1. The
proof of (27) is similar, but now it is not necessary to use either the limit (29)
or the bounds (31). �

Remark 4. Notice that the result in Proposition 5 does not depend on s. This
is due to the type of scaling and to the fact that all q-numbers disappear in
the limits (28)–(29).
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Now, we discuss the case r − 1 ≤ s making the scaling z → qnz.

Proposition 6. We take r ≥ 1, s ≥ 1, r − 1 ≤ s, and α ∈ R\Z−. We consider
bj and d� complex numbers satisfying ajn + Re(bj) /∈ Z−, c�n + Re(d�) /∈ Z−
where aj > 0, c� > 0 with j ∈ {1, 2, . . . , r − 1} and 
 ∈ {1, 2, . . . , s − 1}. Then,
for r ≥ 2 and s ≥ 2,

lim
n→+∞ rφs

(
q−n, qarn+br

qα, qcsn+ds
; q, qnz

)
=

+∞∑
k=0

(−1)(r−s)kq(2+s−r)(k
2)

(qα; q)k (q; q)k

zk.

In addition,

lim
n→+∞ 1φs

(
q−n

qα, qcsn+ds
; q, qnz

)
=

+∞∑
k=0

(−1)(1−s)kq(s+1)(k
2)

(qα; q)k (q; q)k

zk,

lim
n→+∞ rφ1

(
q−n, qarn+br

qα ; q, qnz

)
=

+∞∑
k=0

(−1)(r−1)kq(3−r)(k
2)

(qα; q)k (q; q)k

zk.

Proof. The proof is totally similar to the one of Proposition 4 but in this case
we use (28)–(31). �
3.1. Two Classical Examples

Now, we use Theorem 1 and Proposition 4 to obtain the Mehler–Heine formula
for two important families of basic hypergeometric polynomials.

Example 1. Using this theorem we can obtain a well-known type of asymp-
totics for the q-Laguerre orthogonal polynomials given by Moak [18, Theorem
5], although the author uses another standardization for the polynomials. A
generalization of Moak’s result was given by Ismail in [9, Theorem 21.8.4] where
he provided an asymptotic expansion. These q-Laguerre orthogonal polynomi-
als, which we denote by L

(α)
n (x; q), are orthogonal with respect to (see [9, f.

(21.8.4)])∫ ∞

0

L(α)
m (z; q)L(α)

n (z; q)
zαdx

(−z; q)∞
= − π

sin(πα)
(q−α; q)∞
(q; q)∞

(
qα+1; q

)
n

qn(q; q)n
δm,n,

with α > −1 and if α = k with k = 0, 1, 2, . . . the right-hand side is interpreted
as (

ln q−1
)
q−(k+1

2 )−n
(
qn+1; q

)
k
δm,n.

These polynomials can be written as (see [9, f. (21.8.2)])

L(α)
n (z; q) =

(
qα+1; q

)
n

(q; q)n

n∑
k=0

(q−n; q)k

(q; q)k
q(

k+1
2 ) zkq(α+n)k

(qα+1; q)k

.

After some simple algebraic computations we obtain

L(α)
n (z; q) =

(
qα+1; q

)
n

(q; q)n
1φ1

(
q−n

qα+1 ; q,−qn+α+1z

)
.
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Now, scaling the variable adequately and applying Theorem 1 and (7), we get

lim
n→+∞ L(α)

n

(
z

(1 − q)[n]q
; q

)
= lim

n→+∞

(
qα+1; q

)
n

(q; q)n
1φ1

(
q−n

qα+1 ; q,
−qn+α+1z

(1 − q)[n]q

)

=

(
qα+1; q

)
∞

(q; q)∞
2αΓq(α + 1)

(
2
√

z

(q − 1)2

)−α

J (2)
α

(
2
√

z

(q − 1)2
(1 − q); q

)

=

(
qα+1; q

)
∞

(q; q)∞
Γq(α + 1)z−α/2(1 − q)αJ (2)

α

(
2
√

z; q
)

= z−α/2J (2)
α

(
2
√

z; q
)
,

But, we know by Moak’s (or Ismail’s) result that

lim
n→+∞ L(α)

n (z; q) = z−α/2J (2)
α

(
2
√

z; q
)
,

uniformly on compact subsets of the complex plane. Then, we have

lim
n→+∞ L(α)

n (z; q) = lim
n→+∞ L(α)

n

(
z

(1 − q)[n]q
; q

)
= z−α/2J (2)

α

(
2
√

z; q
)
,

uniformly on compact subsets of the complex plane.
In fact, the first equality in the above expression is expected, for example,

adapting conveniently the proof of Corollary 1 in [1]. But, as we have seen, it
is also easy to obtain it using Theorem 1.

Example 2. The Little q-Jacobi orthogonal polynomials are usually denoted
by pn(z; a, b|q). For 0 < aq < 1 and bq < 1 these polynomials are orthogonal
with respect to (see [15, f. (14.12.2)])

∞∑
k=0

(bq; q)k

(q; q)k
(aq)kpm

(
qk; a, b|q) pn

(
qk; a, b|q)

=

(
abq2; q

)
∞

(aq; q)∞
(1 − abq)(aq)n

(1 − abq2n+1)
(q, bq; q)n

(aq, abq; q)n
δmn.

These polynomials have a basic hypergeometric representation given by (see
[15, f. (14.12.1)])

pn(z; a, b|q) = 2φ1

(
q−n, abqn+1

aq
; q, qz

)
= 2φ1

(
q−n, qn+1+ln(ab)/ ln(q)

q1+ln(a)/ ln(q) ; q, qz
)

,

where we have used

cqan+b = qan+b+ln(c)/ ln(q), (32)

for c > 0. Then, using (32), Proposition 4 and scaling the variable as

qz → qn+1+ln(a)/ ln(q)

[n]2q
(q − 1)z,

we obtain

lim
n→+∞

pn

(
qn+1+ln(a)/ ln(q)

[n]2q
(q − 1)z; a, b|q

)
=

+∞∑
k=0

q(
k
2) z

kq(1+ln(a)/ ln(q))k(1− q)3k

(q1+ln(a)/ ln(q); q)k (q; q)k
,
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assuming the condition 1 + ln(a)/ ln(q) > −1.

4. Discussion About the Zeros

Throughout this section we have assumed that the assumptions of Theo-
rem 1 hold. The values bj and dj in (21) can be complex numbers so the
q−hypergeometric polynomial (1)

sφs

(
q−n, qasn+bs

qα, qcsn+ds
; q, z(q − 1)

)
,

is a polynomial of degree n with complex coefficients, and all its zeros can be
nonreal complex. We enumerate them by xq,n,k with 1 ≤ k ≤ n, but obviously
they do not have to be ordered. Taking this into consideration together with
Hurwitz’s Theorem (see [19, Th. 1.91.3]), then there exits a limit relation
between the scaled zeros of these q-hypergeometric polynomials and the zeros
of the limit function in Theorem 1. Concretely, the scaled zeros

x∗
q,n,k :=

[n]q[n]qas

qn+α[n]qcs

xq,n,k, (33)

converge to the zeros of the function
(

[as]q
[cs]q

z

) 1−α
2

J
(2)
α−1

(
2(1 − q)

√
[as]q
[cs]q

z; q

)
, (34)

when n → +∞ that we will denote by z�. Moreover, when α > 0 the zeros of
(34) are real and simple (see [8, Th. 4.2]), so the zeros x∗

q,n,k, given by (33),
converge to real numbers.

However, as far as we know, when α < 0 (α /∈ Z−) there are not any
results about the zeros of the function z

1−α
2 J

(2)
α−1 (2

√
z(1 − q); q) analogous to

the ones for the function z
1−α
2 Jα−1(2

√
z) given, for example, in [23, Pag. 483-

484]. Thus, we have not been able to establish a result for the zeros as detailed
as in Proposition 1 in [6].

Following the analysis of [6, Remark 3] (see also [23, Pag. 483-484]), we
know that the number of nonreal zeros of z

1−α
2 Jα−1(2

√
z) depend on the value

of α. In fact, w1−αJα−1(w) has at most two purely imaginary zeros. Taking
into account the change of variable w = 2

√
z, these two purely imaginary

zeros are transformed into a negative real zero of function z
1−α
2 Jα−1(2

√
z).

Furthermore, we know exactly when these purely imaginary zeros appear.
In our framework, taking into account the numerical experiments that

we have made, we believe that the number of nonreal zeros of w1−αJ
(2)
α−1

(w(1 − q); q) also depends on α and coincides with the number of nonreal zeros
of w1−αJα−1(w). However, we feel that there is a relevant fact: the number
of purely imaginary zeros can be greater than two and depends on the value
of q too. In this way, we observe that when q → 1 the number of purely
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imaginary zeros of the function w1−αJ
(2)
α−1 (w(1 − q); q) is the same as the one

of w1−αJα−1(w). We are posing these comments as a conjecture.
To illustrate the previous conjecture we are going to show some numerical

experiments. We have used the symbolic computer program Mathematica�

language 12.1.1 (also known as Wolfram language) to make them.
We take the following data:

s = 3, q = 1/2,

and

a1 = 3 b1 = 6 c1 = 4/3 d1 = 2 − 3i
a2 = 5/4 b2 = −2/3 + 2i c2 = 5/6 d2 = 1

With this choice the q-hypergeometric polynomials have complex coefficients.
We denote a zero of the limit function (34) by z�.

First experiment. We take α = 1. In this situation, using (see [8, Th. 4.2]), all
the zeros of (34) are real and simple. In the next tables we show the behavior
of the scaled zeros converging to the first three positive zeros of (34).

x∗
1/2,n,1

n = 10 1.192838457109 − 0.000373946559i
n = 20 1.191325673237 − 6.242164358333 × 10−8i
n = 40 1.191320585494 − 1.806507624485 × 10−15i
z� 1.191320585443

x∗
1/2,n,2

n = 10 10.5677725749753 − 0.001544756947i
n = 20 10.5384014795907 − 2.574926397462 × 10−7i
n = 40 10.5383205870082 − 7.451913839285 × 10−15i
z� 10.5383205862745

x∗
1/2,n,3

n = 10 54.673251810109 − 0.003501823800i
n = 20 54.420541178838 − 5.826491777755 × 10−7i
n = 40 54.419973744204 − 1.686199155483 × 10−15i
z� 54.419973739632
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Second experiment. Let’s take α = −51/100. With this value the function
w1−αJα−1(w) has two purely imaginary zeros and the rest of them are positive
real zeros. This also occurs for the function w1−αJ

(2)
α−1 (w(1 − q); q). Thus, the

limit function (34) has a negative zero and the rest of them are positive real
zeros. We only show the convergence to the first two positive zeros and to the
negative zero of (34).

x∗
1/2,n,1

n = 10 −0.257907814869 + 0.000069310549i
n = 20 −0.257444571262 + 1.156063483173 × 10−8i
n = 40 −0.257443205893 + 3.345689303361 × 10−16i
z� −0.257443205880

x∗
1/2,n,2

n = 10 1.717581648483 − 0.000304499740i
n = 20 1.712978988208 − 5.076635738362 × 10−8i
n = 40 1.712966620706 − 1.469194883628 × 10−15i
z� 1.712966620595

x∗
1/2,n,3

n = 10 15.162942911386 − 0.001127913056i
n = 20 15.093385289371 − 1.877379036189 × 10−7i
n = 40 15.093230236139 − 5.433179181139 × 10−15i
z� 15.093230234896

Third experiment. We take α = −78/10. Then, the function w1−αJα−1 (w) has
16 nonreal zeros, but they are not purely imaginary zeros, and the rest of them
are positive real zeros. However, in our case the function w1−αJ

(2)
α−1 (w(1 − q); q)

has 16 nonreal zeros, 8 of which are purely imaginary zeros being the rest of
them positive real zeros. As we have previously commented in the conjecture,
the number of purely imaginary zeros of the function w1−αJ

(2)
α−1 (w(1 − q); q)

can be greater than 2 according to the value of q. Therefore, the limit func-
tion (34) has 4 nonreal zeros and 4 negative real zeros being the rest of them
positive.

Fourth Experiment. We take α = −88/10. Then, the function w1−αJα−1 (w)
has 18 nonreal zeros, 2 of which are purely imaginary zeros, and the rest of
them are positive real zeros. Again, the function w1−αJ

(2)
α−1 (w(1 − q); q) also
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x∗
1/2,n,1

n = 10 −26.583782080249 + 13.144830793624i
n = 20 −24.217517881849 + 13.495110134590i
n = 40 −24.215268341967 + 13.495244741513i
z� −24.215268337780 + 13.495244740537i

x∗
1/2,n,2

n = 10 −26.584069012013 − 13.145175170701i
n = 20 −24.217517928700 − 13.495110193829i
n = 40 −24.215268341967 − 13.495244741517i
z� −24.215268337780 − 13.495244740538i

x∗
1/2,n,3

n = 10 −11.012428251874 + 62.145264518016i
n = 20 −6.977745534060 + 56.644723043027i
n = 40 −6.974490887747 + 56.639531189402i
z� −6.974490884028 + 56.639531179756i

x∗
1/2,n,4

n = 10 −11.012731503979 − 62.145767769738i
n = 20 −6.977745580595 − 56.644723126264i
n = 40 −6.974490887747 − 56.639531189402i
z� −6.974490884028 − 56.639531179756i

x∗
1/2,n,5

n = 10 −16.166116185151 − 0.00004242253i
n = 20 −15.859752369736 − 9.93118142529 × 10−9i
n = 40 −15.859327530746 − 2.87493401651 × 10−16i
z� −15.859327529012

has 18 nonreal zeros, but now 10 of them are purely imaginary zeros, being
the rest of them positive real zeros. Thus, the limit function (34) has 4 nonreal
zeros and 5 negative real zeros being the rest of them positive.
Fifth Experiment. We consider the same data as in the third experiment, but
changing the value of q. Thus, we take q = 9/10. Now, we can observe that the
function w1−αJ

(2)
α−1 (w(1 − q); q) has 16 nonreal zeros but it has not any purely
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x∗
1/2,n,6

n = 10 −8.372365289781 + 1.061870351232 × 10−6i
n = 20 −8.358589490584 + 2.877523388912 × 10−10i
n = 40 −8.358521100270 + 8.331309933918 × 10−18i
z� −8.358521099510

x∗
1/2,n,7

n = 10 −4.183493772518 + 7.184651279381 × 10−6i
n = 20 −4.174952644245 + 1.169874676784 × 10−12i
n = 40 −4.174916567642 − 8.016528868055 × 10−20i
z� −4.174916567260

x∗
1/2,n,8

n = 10 −2.085524807895 + 0.001212554069i
n = 20 −2.087470339683 + 2.036177391751 × 10−7i
n = 40 −2.087472421386 + 5.892871393618 × 10−15i
z� −2.087472421388

x∗
1/2,n,9

n = 10 222.192716349085 − 0.000476699235i
n = 20 185.503465533781 − 7.245543670015 × 10−8i
n = 40 185.473370922148 − 2.096712467864 × 10−15i
z� 185.473370878074

x∗
1/2,n,1

n = 10 −58.731778291761 + 24.983339723902i
n = 20 −48.142375334033 + 27.211453956792i
n = 40 −48.133792760941 + 27.212205588614i
z� −48.133792748725 + 27.212205587084i

imaginary zeros, so the limit function (34) has not any negative real zeros. In
fact, it has 8 nonreal zeros and the rest of them are positive numbers. In the
next tables we can also notice that the convergence is slower than in the other
experiments. Thus, we have observed in all the numerical experiments made
that when q approaches to 1 the convergence slows down.
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x∗
1/2,n,2

n = 10 −58.732065276581 − 24.983660249396i
n = 20 −48.142375378613 − 27.211454014981i
n = 40 −48.133792760941 − 27.212205588614i
z� −48.133792748725 − 27.212205587084i

x∗
1/2,n,3

n = 10 −34.303303302277 + 138.270486284223i
n = 20 −13.528504443799 + 113.526606000274i
n = 40 −13.515626962528 + 113.506768620178i
z� −13.515626949090 + 113.506768591833i

x∗
1/2,n,4

n = 10 −34.303631075141 − 138.270994273937i
n = 20 −13.528504488949 − 113.526606084040i
n = 40 −13.515626962528 − 113.506768620178i
z� −13.515626949090 − 113.506768591833i

x∗
1/2,n,5

n = 10 −32.743951055138 − 0.000026360939i
n = 20 −31.625976675655 − 9.688310475475 × 10−9i
n = 40 −31.624501885216 − 2.805403876599 × 10−16i
z� −31.624501881169

x∗
1/2,n,6

n = 10 −16.740893534529 + 5.765133760916 × 10−7i
n = 20 −16.719718514606 + 2.835085312132 × 10−10i
n = 40 −16.719591520682 + 8.212134980550 × 10−18i
z� −16.719591519169

To avoid including many tables, we provide the values of 8 nonreal zeros
of (34) and two examples. These zeros are

−2.899672548545819 ± 0.866690762364998i,
−2.054705381959291 ± 2.480492842076364i,
−0.280308180558639 ± 3.667024750741143i,

2.632871686846202 ± 3.803425181595050i.
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x∗
1/2,n,7

n = 10 −8.367018219885 − 8.764399202657 × 10−10i
n = 20 −8.349886270829 − 2.470953096732 × 10−12i
n = 40 −8.349814077147 − 7.157189188727 × 10−20i
z� −8.349814076382

x∗
1/2,n,8

n = 10 −4.183511394310 + 7.147780631497 × 10−6i
n = 20 −4.174980970526 + 3.925233400802 × 10−12i
n = 40 −4.174944906183 + 3.561296499329 × 10−22i
z� −4.174944905801

x∗
1/2,n,9

n = 10 −2.085538601937 + 0.001209882024i
n = 20 −2.087470352958 + 2.031659087739 × 10−7i
n = 40 −2.087472390014 + 5.879794684903 × 10−15i
z� −2.087472390016

x∗
1/2,n,10

n = 10 568.386160039012 − 0.000543294101i
n = 20 371.816049857173 − 7.279580302175 × 10−8i
n = 40 371.698707738027 − 2.106396160012 × 10−15i
z� 371.698707595280

x∗
9/10,n,7

n = 20 3.163297460938 + 4.534270108808i
n = 40 2.688577412718 + 3.889727638001i
z� 2.632871686846 + 3.803425181595i

The third and fourth experiments show the differences pointed out in the con-
jecture about the number of purely imaginary zeros of the functions
w1−αJα−1 (w) and w1−αJ

(2)
α−1 (w(1 − q); q) depending on the value of α. The

third and fifth experiments also show the existence of purely imaginary zeros
depending on q too.
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x∗
9/10,n,8

n = 20 2.983050648402 − 4.679512324145i
n = 40 2.678631275315 − 3.897696238845i
z� 2.632871686846 − 3.803425181595i

x∗
9/10,n,9

n = 20 9.365586442180 − 0.176724181442i
n = 40 7.857805351203 − 0.009728505494i
z� 7.668210419914

In conclusion, to obtain more asymptotic properties about the zeros of
the q-hypergeometric polynomials

sφs

(
q−n, qasn+bs

qα, qcsn+ds
; q, z(q − 1)

)
,

we need to go further in the knowledge of the zeros of the function w1−αJ
(2)
α−1

(w(1 − q); q) . That question remains open as far as we know.
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Campus Fuentenueva s/n 18071
Granada
Spain

Received: March 6, 2021.



146 Page 26 of 26 J. F. Mañas–Mañas and J. J. Moreno–Balcázar Results Math

Accepted: May 17, 2022.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


	Asymptotics for Some q-Hypergeometric Polynomials
	Abstract
	1. Introduction
	2. Technical Results
	3. Main Result
	3.1. Two Classical Examples

	4. Discussion About the Zeros
	Acknowledgements
	References




