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A Note on Gauged Baby Skyrmions
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Abstract. In this paper we study a gauged version of the two dimen-
sional Skyrme model of nuclear physics; the field configurations are cou-
ples (u, A), where u : R2 → S2 is a map constant at infinity, which can be
classified by its topological degree, and A : R2 → R

2 is the gauge field. We
prove the existence of rotationally symmetric field configurations which
minimize the gauged Skyrme energy on every topological sector (gauged
baby skyrmions). Moreover we study the behavior of these skyrmions in
the case of weak or strong coupling with the gauge field. In particular,
we show that, as observed by many authors by means of numerical sim-
ulations, in the strong coupling regime the magnetic flux associated with
the gauge field becomes quantized.
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1. Introduction and Statement of the Results

The baby Skyrme model is a two dimensional version of the original Skyrme
model for baryons and mesons (see [16,17]); in the static case, the two dimen-
sional Skyrme field is a map u : R2 → S2 which goes to a constant at infinity,
so it can be identified with a map from S2 to S2 with a given topological
degree Q(u), where

Q(u) =
1
4π

∫
R2

u · ∂1u × ∂2u dx,

and the problem is to minimize the energy functional

E(u) =
∫
R2

(1
2
|∇u|2 + |∂1u × ∂2u|2 + V (u)

)
dx
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over the maps with a fixed degree Q(u) �= 0; these energy-minimizing fields
are called baby skyrmions. The first two terms in the energy density are,
respectively, the sigma model term and the two dimensional Skyrme term,
quartic in derivatives. The third term is a non negative potential which is
mandatory in two dimensions, otherwise E(u) can be decreased by a simple
scaling argument (see [6]), and the minimum is not attained.

Notice that the convergence of a minimizing sequence is not trivial be-
cause of the lack of compactness of E(u). The existence of baby skyrmions is
proved in [10,11] for the potential V (u) = |u − e3|4, where e3 = (0, 0, 1) is the
north pole of the sphere S2, and in [9] for more general potentials.

Gauged versions of the baby Skyrme (and related) models have been
recently studied with numerical methods by many authors (see [1–3,5,8,12,
13,15] and their bibliographies), in general by using the Skyrme ansatz in order
to reduce the problem to a system of ordinary differential equations.

In this paper, we consider the gauged version of E(u) introduced in [8],
namely the functional

F (u,A) =
1
2

∫
R2

(|D1u|2 + |D2u|2 + |D1u × D2u|2 + 2(1 − e3 · u)

+γ(∂1A2 − ∂2A1)2
)
dx

where A : R2 → R
2 is the gauge field, with A(x) = (A1(x), A2(x)), Diu =

∂iu + Aie3 × u are the covariant derivatives, and ∂1A2 − ∂2A1 ≡ F1,2 is the
magnetic component of the field strength. We have, for simplicity, fixed the
coefficient of the Skyrme term and the potential, while γ > 0 represents the
coupling strength of the gauge field.

Since 2(1 − e3 · u) ≥ (1 − e3 · u)2, using the well known topological lower
bound (see [14]):

1
2

∫
R2

(|D1u|2 + |D2u|2 + (1 − e3 · u)2 + (∂1A2 − ∂2A1)2
)
dx ≥ 4π|Q(u)|,

we get

F (u,A) ≥ 4π min(1, γ)|Q(u)|

(provided that u(x) and A(x) have an appropriate behavior at infinity) so that
F (u,A) is bounded away from zero on every non trivial topological sector.
Using the Skyrme ansatz, namely functions of the form

uθ(x) = (sin(θ(r)) cos(kϕ), sin(θ(r)) sin(kϕ), cos(θ(r))),

A(x) = k
a(r)
r2

(−x2, x1), (1)
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where k ∈ Z, x = (x1, x2), r = |x|, and θ(r), a(r) are functions defined for
r > 0, the functional F (u,A) becomes

F (θ, a) = π

∫ +∞

0

(
k2(1 + a(r))2(1 + θ′(r)2)

sin2(θ(r))
r2

+θ′(r)2 + γ
k2a′(r)2

r2
+ 2

(
1 − cos(θ(r))

))
r dr.

We aim to prove the existence of topologically non trivial minimum points
(θ, a) of F (θ, a), and to study the behavior of (θ, a) as the electromagnetic
coupling constant γ tends to infinity or to zero, namely in the regime of weak
or strong coupling respectively. More precisely, we consider the set X of the
couples (θ, a) of continuous functions θ, a : [0,+∞[→ R which are absolutely
continuous on every compact subinterval of ]0,+∞[, such that F (θ, a) < +∞,
and the usual boundary conditions θ(0) = π, θ(∞) = 0, a(0) = 0 are satisfied.
If (θ, a) ∈ X, for the function uθ(x) in (1) we have Q(uθ) = −k (see Remark 1).
From now on we assume k �= 0. The following theorem holds.
Theorem 1.1. There exists (θ, a) ∈ X such that F (θ, a) = inf{F (θ, a) | (θ, a) ∈
X}, where θ ∈ C([0,+∞[) ∩ C∞(]0,+∞[), a ∈ C2([0,+∞[) ∩ C∞(]0,+∞[).
Moreover 0 < θ(r) < π and −1 < a(r) < 0 for every r > 0. Finally, a(r) is
strictly decreasing on [0,+∞[ from zero to a value a(∞) ∈ [−1, 0[, and θ(r) is
strictly decreasing for large values of r.

In Theorem 1.1 we prove the existence of a minimizer of F (θ, a) by using
analytical methods rather than numerical simulations. In the three dimensional
case (without potential) an existence result has been proven in [18], always
using Skyrme anzatz.

Moreover we recall that the existence of a minimizer of the ungauged
functional F (θ, 0) is well known (see [4] or [11]).

We want now to study what happens when γ → +∞ or γ → 0. To
highlight the dependence of the minimizer (θ, a) on the coupling constant
γ, sometimes we will denote it by (θγ , aγ). Then we can state the following
theorems.
Theorem 1.2. Let (γn)n be a sequence of coupling constants such that γn →
+∞; then we have limn→+∞ aγn

(∞) = 0 and limn→+∞ aγn
(r) = 0 uniformly

on [0,+∞[; we have moreover, up subsequences, limn→+∞ θγn
(r) = θ̂(r) uni-

formly on every compact subinterval of ]0,+∞[, where θ̂ is a minimizer of the
ungauged functional F (θ, 0).
Theorem 1.3. Let (γn)n be a sequence of coupling constants such that γn → 0;
then we have limn→+∞ an(∞) = −1; moreover, for every R > 0, we have, up
subsequences, lim

n→+∞ aγn
(r) = −1 and lim

n→+∞ θγn
(r) = 0 uniformly on [R,+∞[.

Notice that, since∫
R2

(∂1A2 − ∂2A1) dx = 2π

∫ +∞

0

ka′
γ(r) dr = 2πk aγ(∞),
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aγ(∞) is proportional to the magnetic flux, and Theorem 1.3 says that, even
if the magnetic flux can be any value in the interval [−2πk, 0[, in the strong
coupling regime it is quantized, and the skyrmion profile as well as the magnetic
field are localized at the origin.

The behavior of (θγ , aγ) described in the theorems above was observed,
by means of numerical simulations, in [8], and also, for different gauged baby
Skyrme models, in [12,13,15].

2. The Functional Framework

The natural domain of the functional F (θ, a) in the Introduction is the set Y
of the functions (θ, a) continuous on ]0,+∞[, absolutely continuous on every
compact subinterval of ]0,+∞[, such that F (θ, a) < +∞. Clearly this implies

∫ +∞

0

a′(r)2

r
dr < +∞,

so that a′(r) = a′(r)√
r

√
r ∈ L1([0, R]) for every R > 0, and a(r) is absolutely

continuous on [0, R] for every R > 0. In particular, a(0) ∈ R. Moreover, since

|a(r) − a(0)|
r

≤ 1
r

∫ r

0

|a′(s)|√
s

√
s ds ≤

√
1
2

∫ r

0

a′(s)2

s
ds,

we have a′(0) = 0. We have now the following simple lemmas.

Lemma 2.1. If (θ, a) ∈ Y and a(0) �= −1, then there exists p ∈ Z such that
lim
r→0

θ(r) = pπ.

Proof. Since a(0) �= −1 and F (θ, a) < +∞, we have

2
∫ δ

0

|sin(θ(r))||θ′(r)| dr ≤
∫ δ

0

( sin2(θ(r))
r

+ θ′(r)2r
)

dr < +∞ (2)

for some δ > 0, so that ∂r sin2(θ(r)) ∈ L1([0, δ]), and, in particular, sin2(θ(r))
tends to some � ∈ [0, 1] for r → 0; but (2) implies � = 0, and since the set
sin2 x < ε is disconnected for small ε, we get the lemma. �

Lemma 2.2. If (θ, a) ∈ Y , then there exists q ∈ Z such that lim
r→+∞ θ(r) = 2πq.

Proof. (θ, a) ∈ Y implies
∫ +∞

0

(
θ′(r)2r +

(
1 − cos(θ(r))

)
r
)
dr < +∞,
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so that lim infr→+∞(1 − cos(θ(r))) = 0. On the other hand, since for 1 < R <
r1 < r2 we have

∣∣(1 − cos(θ(r2))
)2 − (

1 − cos(θ(r1))
)2∣∣

≤ 2

√∫ +∞

R

(
1 − cos(θ(r))

)2
r dr

√∫ +∞

R

θ′(r)2r dr,

and (1 − cos x)2 ≤ 2(1 − cos x), the function 1 − cos(θ(r) verifies the Cauchy
condition at infinity, so limr→+∞(1 − cos(θ(r))) = 0, and we can conclude as
in the previous lemma. �

Remark 1. If (θ, a) ∈ Y and a(0) �= −1, the topological degree Q(u) of the
function u(x) = (sin(θ(r)) cos(kϕ), sin(θ(r)) sin(kϕ), cos(θ(r))) is well defined
and Q(u) = 0 or Q(u) = −k, in fact

Q(u) =
k

2

∫ +∞

0

sin(θ(r))θ′(r) dr = −k

2
(
1 − cos(θ(0))

)
=

k

2
(
(−1)p − 1

)

since θ(0) = pπ (Lemma 2.1). Clearly Q(u) �= 0 implies k �= 0, p odd, and
Q(u) = −k.

Let us consider now the set X defined in Sect. 1, namely the functions
(θ, a) ∈ Y which satisfy the boundary conditions θ(0) = π, θ(∞) = 0, a(0) = 0.
As we shall see soon, the functional F (θ, a) can be studied in the set X0 =
{(θ, a) ∈ X | 0 ≤ θ(r) ≤ π,−1 ≤ a(r) ≤ 0}. In fact we have the following
result.

Lemma 2.3. If (θ, a) ∈ X, then there exists (θ̃, ã) ∈ X0 such that F (θ̃, ã) ≤
F (θ, a).

Proof. Set h(s) = arccos(cos(s)) and θ̃(r) = h(θ(r)). Clearly 0 ≤ θ̃(r) ≤ π,
cos(θ̃(r)) = cos(θ(r)), sin2(θ̃(r)) = sin2(θ(r)), and θ̃(r) fulfills the boundary
conditions θ̃(0) = π, θ̃(∞) = 0. Since h(s) is Lipschitz continuous, θ̃(r) is
continuous on [0,+∞[ and absolutely continuous on every compact subinterval
of ]0,+∞[; moreover the chain rule holds true, namely θ̃′(r) = h′(θ(r))θ′(r)
if h is derivable at θ(r), and θ̃′(r) = 0 if θ(r) is a corner point of h (see [7],
Theorem 7.8). Since h′(s) = ±1 for s �= nπ, we have clearly |θ̃′(r)| ≤ |θ′(r)|
a.e. on [0,+∞[, and the inequality F (θ̃, a) ≤ F (θ, a) follows immediately.

In a similar way, if we set now h(s) = (|1 + s| − 1 − ||1 + s|−1|)/2 and
ã(r) = h(a(r)), it is easy to check that ã(0) = 0 and −1 ≤ ã(r) ≤ 0. Moreover,
since (1 + h(s))2 ≤ (1 + s)2, we have (1 + ã(r))2 ≤ (1 + a(r))2 for every r ≥ 0.
Finally |ã′(r)| ≤ |a′(r)| a.e. on [0,+∞[, so that F (θ̃, ã) ≤ F (θ, a), and the
lemma is proved. �

We notice the following property of (θ, a) ∈ X0.
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Lemma 2.4. If (θ, a) ∈ X0, then, for every r ≥ 1, we have:

θ(r) ≤
√

π2 + 2F (θ, a)
1√
r
.

Proof. Since 0 ≤ θ(r) ≤ π, and x2 ≤ π2(1 − cos x)/2 on [0, π], we have∫ +∞

0

(
θ′(r)2 + θ(r)2

)
r dr ≤ F (θ, a);

therefore, for every r ≥ 1 we get:

rθ(r)2 − θ(1)2 =
∫ r

1

(
θ(s)2 + 2sθ(s)θ′(s)

)
ds ≤

∫ r

1

(
θ(s)2s + 2sθ(s)θ′(s)

)
ds

≤
∫ r

1

θ(s)2s ds + 2

√∫ r

1

θ(s)2s ds

√∫ r

1

θ′(s)2s ds

≤
∫ +∞

0

(
θ′(r)2 + 2θ(r)2

)
r dr ≤ 2F (θ, a),

so that rθ(r)2 ≤ π2 + 2F (θ, a), and we get the lemma. �

We conclude this section by proving that F (θ, a) is bounded away from
zero on X.

Lemma 2.5. For every (θ, a) ∈ X we have F (θ, a) ≥ 4π min(1, γ)|k|.
Proof. Clearly we can assume (θ, a) ∈ X0; from the decomposition (see [14]):

1
2

(
|D1u|2 + |D2u|2 + (1 − e3 · u)2 + (∂1A2 − ∂2A1)2

)

= ±u · D1u × D2u ± (∂1A2 − ∂2A1)(1 − e3 · u)

+
1
2
|D1u ± u × D2u|2 +

1
2

(
∂1A2 − ∂2A1 ∓ (1 − e3 · u)

)2

we get

F (θ, a) ≥ ±2π min(1, γ)

∫ +∞

0

(k sin(θ(r))θ′(r)
r

+
k∂r((1 − cos(θ(r)))a(r))

r

)
r dr

= ±2π min(1, γ)
(

− 2k + k

∫ +∞

0

∂r((1 − cos(θ(r)))a(r)) dr
)
;

since a(0) = 0, and −1 ≤ a(r) ≤ 0, the last integral is equal to zero, and the
lemma follows. �

3. Existence of Gauged Baby Skyrmions

In this Section we want to show that the infimum of F (θ, a) on X is attained.

Proposition 3.1. There exists (θ, a) ∈ X0 such that F (θ, a) = min
X

F (θ, a).
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Proof. Let us consider a minimizing sequence (θn, an)n for F (θ, a); from
Lemma 2.3 we can assume (θn, an)n ⊂ X0; moreover F (θn, an) ≤ M for some
M > 0 that does not depend on n. Since

∫ +∞

0

(
θ′

n(r)2 + θn(r)2
)
r dr ≤ F (θn, an),

the sequence (θn)n is bounded in W 1,2([r1, r2]) for every [r1, r2] ⊂]0,+∞[,
so that, by using a standard diagonal subsequence argument (see for instance
[4]), we get a function θ : ]0,+∞[→ R such that (modulo subsequences) θn → θ
weakly in W 1,2([r1, r2]) and strongly in C([r1, r2]) for every [r1, r2] ⊂]0,+∞[.
We observe now that since −1 ≤ an(r) ≤ 0 and

∫ R

0

a′
n(r)2 dr ≤ R

∫ R

0

a′
n(r)2

r
dr ≤ R

πk2γ
F (θn, an),

the sequence (an)n is bounded in W 1,2([0, R]) for every R > 0, so that, arguing
as above, there exists a function a : [0,+∞[→ R such that an → a weakly in
W 1,2([0, R]) and strongly in C([0, R]) for every R > 0. Clearly 0 ≤ θ(r) ≤ π,
−1 ≤ a(r) ≤ 0, and moreover a(0) = 0.

We have also F (θ, a) < +∞; in fact, let us denote by F (θ, a; [r1, r2]) the
integral of the energy density on the interval [r1, r2] ⊂]0,+∞[. From the weak
lower semicontinuity of F (θ, a; [r1, r2]), we get

F (θ, a; [r1, r2]) ≤ lim inf
n→+∞ F (θn, an; [r1, r2]) ≤ lim inf

n→+∞ F (θn, an) ≤ M

and since [r1, r2] was arbitrary, the claim is proved.
From F (θ, a) < +∞ and Lemma 2.2 we get θ(+∞) = 0. To conclude

the proof, it remains to show the crucial fact that θ(0) = π, and therefore the
minimum is not topologically trivial.

In fact, since a(0) = 0 and an → a uniformly on every interval [0, R], the
sequence (1 + an(r))n is bounded away from zero on [0, δ] for some δ > 0, so
that the bound F (θn, an) ≤ M implies

∫ δ

0

sin2(θn(r))
r

θ′
n(r)2 dr ≤ c,

where c > 0 does not depend on n. Then, since θn(0) = π, for every r ∈]0, δ[
we have

cos(θn(r)) + 1 ≤
∫ r

0

|sin(θn(s))||θ′
n(s)|√

s

√
s ds

≤
√∫ r

0

sin2(θn(s))
s

θ′
n(s)2 ds

r√
2

≤
√

c√
2
r.

For n → +∞ we get cos(θ(r)) + 1 ≤
√

c√
2
r, an so θ(0) = π. �
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Let (θ, a) ∈ X0 be a minimum point for the functional F (θ, a); by using
variations of the form (θ + ε1ϕ1, a + ε2ϕ2), where ϕi, i = 1, 2 are smooth
functions with compact support in ]0,+∞[, we obtain the Euler–Lagrange
equations for F (θ, a); namely (see also [8]):

(
1 + k2 (1 + a(r))2

r2
sin2(θ(r))

)
θ′′(r) = −k2(1 + a(r))2

sin(2θ(r))
2r2

θ′(r)2

−1
r

(
1 − k2(1 + a(r))(1 + a(r) − 2ra′(r)

) sin2(θ(r))
r2

θ′(r)

+k2(1 + a(r))2
sin(2θ(r))

2r2
+ sin(θ(r)) (3)

and

∂r
a′(r)

r
=

1
γ

(1 + a(r))(1 + θ′(r)2)
sin2(θ(r))

r
. (4)

To shorten notations we will write in the following the first Euler–Lagrange
equation as

A(r)θ′′(r) = B(r)θ′(r)2 + C(r)θ′(r) + D(r). (5)

From (3) we get θ′ ∈ W 1,1([r1, r2]) for every [r1, r2] ⊂]0,+∞[, so that θ ∈
C1(]0,+∞[), and, from (4), a ∈ C2(]0,+∞[). We observe now that the right
hand side of (4) is summable on every interval [0, R]; in fact, since 1 + a(r)
is bounded away from zero on some [0, δ], from F (θ, a) < +∞ we get the
summability on [0, δ]; moreover∫ R

δ

1
γ

(1 + a(r))(1 + θ′(r)2)
sin2(θ(r))

r
dr ≤

∫ R

δ

1
γ

(1 + θ′(r)2)
1
r

dr

≤ 1
δ2

∫ R

δ

1
γ

(1 + θ′(r)2)r dr < +∞

because of
∫ +∞
0

θ′(r)2r dr < +∞. Then r → a′(r)/r is uniformly continuous
on ]0, R] for every R > 0; in particular, limr→0 a′(r)/r = a′′(0) ∈ R, and
a ∈ C2([0,+∞[). Proceeding in the same way, we get the regularity stated in
Theorem 1.1.

We can prove now Theorem 1.1.

Proof of Theorem 1.1. The existence of a minimizer (θ, a) and the regularity
of θ(r) and a(r) have been proved above. Moreover we know that 0 ≤ θ(r) ≤ π
and −1 ≤ a(r) ≤ 0; if θ(r0) = π for some r0 > 0 then θ′(r0) = 0, and,
from the Euler–Lagrange equations we get θ(r) = π for every r > 0, which is
impossible, so that θ(r) < π. Arguing in the same way we have 0 < θ(r) < π
and −1 < a(r) < 0 for every r > 0.

Moreover the function a′(r)/r is strictly increasing because of (4), so that
a′(r) < 0 (for if not, we would have a′(r0)/r0 > 0 for some r0 > 0, and then
a′(r) > a′(r0)r/r0 for r > r0, so that a(+∞) = +∞); then a(r) is strictly
decreasing on [0,+∞[.
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It remain to prove that θ(r) is strictly decreasing for large value of r;
more precisely, since θ(+∞) = 0, there exists R > 0 such that θ(r) < π/2 for
r > R. We claim that θ(r) is strictly decreasing on [R,+∞[. In fact, let us
suppose that θ′(r1) > 0 for some r1 ≥ R; then there exists r2 > r1 such that
θ(r1) = θ(r2) ≡ t and θ(r) > t on ]r1, r2[; let us consider now the function
θ̃(r) = t for r ∈ [r1, r2], and θ̃(r) = θ(r) for r /∈ [r1, r2]; since sin2 x and
2(1 − cos x) are increasing on [0, π/2], we get F [θ̃, a] < F (θ, a), which is a
contradiction, so θ′(r) ≤ 0 on [R,+∞[. On the other hand, from Eqs. (3), (4)
we see that θ(r) can not be constant on a subinterval of ]0,+∞[, and the claim
is proved. �

Remark 2. Let (θ, a) be a minimizer of F (θ, a) on X as in Theorem 1.1; for
future references we point out that

lim
r→+∞ ra′(r) = 0. (6)

and

− 2
r

≤ a′(r) < 0 (7)

for every r > 0.
In fact, since sin2 x ≤ π2(1 − cos x)/2 for x ∈ [0, π] and F (θ, a) < +∞,

we have sin2(θ(r))r ∈ L1(]0,+∞[). Then, from (4) we get

0 < r2∂r
a′(r)

r
<

1
γ

(1 + θ′(r)2) sin2(θ(r))r

≤ 1
γ

(sin2(θ(r))r + θ′(r)2r) ∈ L1(]0,∞[);

but ∂r(ra′(r)) = 2a′(r) + r2∂r(a′(r)/r), so that ∂r(ra′(r)) ∈ L1(]0,+∞[),
and the limit (6) exists and it is ≤ 0. Clearly limr→+∞ ra′(r) < 0 implies
ra′(r) < K < 0 on some interval [R,+∞[, and this gives a(+∞) = −∞,
whereas a(+∞) ≥ −1, so that (6) is proved.

Moreover, for every s, r > 0, with s ≤ r, we have a′(s)/s ≤ a′(r)/r, so
that a′(s) ≤ (a′(r)/r)s; integrating over [0, r] we get (7).

4. The Weak Coupling Regime

In this section we have to prove Theorem 1.2. We start by proving that
(F (θγ , aγ))γ is bounded from above.

Lemma 4.1. There exists C > 0 such that, for every γ > 0, we have F (θγ , aγ) ≤
C.

Proof. Let θ(r) be such that

π

∫ +∞

0

(
k2(1 + θ′(r)2)

sin2(θ(r))
r2

+ θ′(r)2+2
(
1 − cos(θ(r))

))
r dr ≡ C1 <+∞,



138 Page 10 of 16 C. Greco Results Math

and let

ã(r) =

{
− 1

γ r2 if 0 ≤ r ≤ √
γ

−1 if r >
√

γ

Then

F (θ, ã) ≤ C1 + π

∫ +∞

0

γ
k2ã′(r)2

r
dr = C1 + 2k2π,

and since F (θγ , aγ) ≤ F (θ, ã), the lemma is proved. �
The following lemma show that F (θ, a) can be written in a simpler form

at a minimizer (θγ , aγ).

Lemma 4.2. For every γ > 0 we have:

F (θγ , aγ) = π

∫ +∞

0

(
k2(1 + aγ(r))(1 + θ′

γ(r)2)
sin2(θγ(r))

r2

+θ′
γ(r)2 + 2

(
1 − cos(θγ(r))

))
r dr.

Proof. By multiplying the Eq. (4) by aγ(r) and integrating, we have∫ +∞

0

a′
γ(r)2

r
dr = −

∫ +∞

0

1
γ

(1 + aγ(r))aγ(r)(1 + θ′
γ(r)2)

sin2(θγ(r))
r

dr,

so, inserting the right hand side of this equation in the expression of F (θγ , aγ)
we get the lemma. �
Proof of Theorem 1.2. Let (γn)n be a sequence of coupling constants such that
γn → +∞, and set for brevity, (θγn

, aγn
) = (θn, an). By multiplying the Eq. (4)

by r2 and integrating we have (see also (6)):

− an(∞) =
∫ +∞

0

1
2γn

(1 + an(r))(1 + θ′
n(r)2) sin2(θn(r))r dr. (8)

But, since sin2 x ≤ π2(1 − cos x)/2 on [0, π], and by using the Lemma 4.1:∫ +∞

0

(1 + an(r))(1 + θ′
n(r)2) sin2(θn(r))r dr

≤
∫ +∞

0

(π2

2
(
1 − cos(θn(r))

)
+ θ′

n(r)2
)
r dr ≤ F (θn, an) ≤ C,

so that −an(∞) ≤ C/2γn; passing to the limit for n → +∞, we get the first
claim of Theorem 1.2.

To complete the proof, let us denote by X̄ the set of continuous functions
θ : [0,+∞[→ R which are absolutely continuous on every compact subinterval
of ]0,+∞[, satisfies the boundary conditions θ(0) = π, θ(∞) = 0 and, more-
over, F (θ, 0) < +∞. Clearly (θn)n ⊂ X̄; we claim that (θn)n is a minimizing
sequence for the ungauged functional F (θ, 0). In fact, we have

F (θn, an) ≤ inf
θ∈X̄

F (θ, 0) ≤ F (θn, 0);
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moreover, since an(∞) → 0, we can assume 1 + an(r) > 1
2 , so that

π

∫ +∞

0

k2(1 + θ′
n(r)2)

sin2(θn(r))
r

dr

≤ 4π

∫ +∞

0

k2(1 + an(r))2(1 + θ′
n(r)2)

sin2(θn(r))
r

dr

≤ 4F (θn, an) ≤ 4C,

where C > 0 is the constant of Lemma 4.1. Then, from Lemma 4.2 we have

0 < F (θn, 0) − F (θn, an) = π

∫ +∞

0

k2(−an(r))(1 + θ′
n(r)2)

sin2(θn(r))
r

dr

< −4an(∞)C → 0,

therefore F (θn, 0) → infθ∈X̄ F (θ, 0) and the claim is proved. But, for the un-
gauged functional F (θ, 0), it is well known (from [4], or by using the arguments
of Theorem 1.1) that there exists θ̂ ∈ X̄, such that F (θ̂, 0) = infθ∈X̄ F (θ, 0),
and (up a subsequence) θn → θ̂ weakly in W 1,2([r1, r2]) and uniformly on every
compact subinterval [r1, r2] ⊂]0,+∞[, and the proof is complete. �

5. The Strong Coupling Regime

Let us consider a sequence (γn)n such that γn → 0, and set again (θγn
, aγn

) =
(θn, an). From (7) and the fact that −1 ≤ an(r) ≤ 0, we get that for every
[r1, r2] ⊂]0,+∞[, (an)n is bounded in W 1,2([r1, r2]). Then, there exists a con-
tinuous function ā : ]0,+∞[→ R such that, up subsequences, an → ā weakly
in W 1,2([r1, r2]) and uniformly on [r1, r2] for every [r1, r2] ⊂]0,+∞[; of course
we have −1 ≤ ā(r) ≤ 0 and ā(r) is decreasing.

Since F (θn, an) ≤ C (see Lemma 4.1) implies that the
sequence

( ∫ +∞
0

(θn(r)2 + θ′
n(r)2)r dr

)
n

is bounded, we get in the same way
a continuous function θ̄ : ]0,+∞[→ R such that, up subsequences, θn → θ̄
weakly in W 1,2([r1, r2]) and uniformly on [r1, r2] for every [r1, r2] ⊂]0,+∞[;
clearly 0 ≤ θ̄(r) ≤ π, and moreover

∫ +∞
0

(θ̄(r)2 + θ̄′(r)2)r dr < +∞, so that
we have θ̄(∞) = 0.

We aim to show that ā(r) ≡ −1 and θ̄(r) ≡ 0. We start by proving the
following lemma.

Lemma 5.1. There exists R > 0 such that ā(R) = −1.

Proof. Let us suppose, by contradiction, that ā(R) > −1 for every R > 0, and
fix R > 0; since an(r) is strictly decreasing, from (8) we have∫ R

0

sin2(θn(r))r dr ≤ 1
1 + an(R)

∫ R

0

(1 + an(r))(1 + θ′
n(r)2) sin2(θn(r))r dr

≤ −2γnan(∞)
1 + an(R)

≤ 2γn

1 + an(R)
→ 0,
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and since for every r with 0 < r < R we have θn → θ̄ uniformly on [r,R], we
obtain

∫ R

r
sin2(θ̄(r))r dr = 0, so that θ̄(r) ≡ 0 or θ̄(r) ≡ π on ]0, R]. On the

other hand, from Lemma 4.1 we have
∫ R

0

θ′
n(r)2

sin2(θn(r))
r

dr ≤
∫ R

0

(1 + θ′
n(r)2)

sin2(θn(r))
r

dr

≤ 1
πk2(1 + an(R))2

π

∫ R

0

k2(1 + an(r))2(1 + θ′
n(r)2)

sin2(θn(r))
r

dr

≤ C

πk2(1 + an(R))2
,

so that, for every r ∈ [0, R]:

cos(θn(r)) + 1 ≤
∫ r

0

|sin(θn(s))||θ′
n(s)|√

s

√
s ds

≤
√∫ R

0

θ′
n(s)2

sin2(θn(s))
s

ds
r√
2

≤
√

C√
2π|k|(1 + an(R))

r.

Passing to the limit we get cos(θ̄(r)) + 1 ≤ (
√

C/
√

2π|k|(1 + ā(R)))r for every
r ∈ [0, R], and then we must have θ̄(r) ≡ π on ]0, R]. Since R is arbitrary, we
have θ̄(r) ≡ π on ]0,+∞[, and this is impossible, since θ̄(∞) = 0. �

From now on we set R0 = inf{r > 0 | ā(R) = −1}. Of course R0 ≥ 0 and
ā(r) ≡ −1 on [R0,+∞[; moreover, if R0 > 0, we have, from the proof of the
lemma above, θ̄(r) ≡ π on ]0, R0].

Lemma 5.2. For every [r1, r2] ⊂]R0,+∞[ we have limn→+∞ a′
n(r) = 0 uni-

formly on [r1, r2].

Proof. Let r > R0 be fixed; for every s ∈ [R0, r] we have a′
n(s) < (a′

n(r)/r)s;
then, by integration, an(r) − an(R0) < a′

n(r)(r2 − R2
0)/2r < 0, so that, since

an(r) − an(R0) → 0, we have a′
n(r) → 0 for every r > R0. Therefore a′

n(r)/r
goes to zero uniformly on every [r1,+∞[⊂]R0,+∞[, and so a′

n(r) → 0 on every
[r1, r2] ⊂]R0,+∞[. �

Lemma 5.3. For every [r1, r2] ⊂]0,+∞[, the sequences (θ′
n)n and (θ′′

n)n are
bounded in L∞([r1, r2]).

Proof. Let [r1, r2] ⊂]0,+∞[; for every n there exists Rn ∈ [r1, r2] such that
θn(r2)−θn(r1) = θ′

n(Rn)(r2−r1), and since θn(r2)−θn(r1) → θ̄(r2)−θ̄(r1), the
sequence (θ′

n(Rn))n is bounded. Moreover θn(r) satisfies the Eq. (5), namely

An(r)θ′′
n(r) = Bn(r)θ′

n(r)2 + Cn(r)θ′
n(r) + Dn(r),
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where the coefficients depend on n. Recalling that −1 < an(r) < 0 and −2 ≤
ra′

n(r) < 0 because of (7), it is easy to check that Bn(r), Cn(r) and Dn(r) are
bounded in L∞([r1, r2]), so that

|θ′′
n(r)| ≤ C1θ

′
n(r)2 + C2|θ′

n(r)| + C3 (9)

on [r1, r2], where Ci, i = 1, 2, 3, does not depend on n; Lemma 4.1 implies
that (θ′

n)n is bounded in L2([r1, r2]), so that (θ′′
n)n is bounded in L1([r1, r2]).

Since clearly |θ′
n(r) − θ′

n(Rn)| ≤ ∫ r

Rn
|θ′′

n(r)| dr, we get the boundness of (θ′
n)n

in L∞([r1, r2]) and, by (9), also (θ′′
n)n is bounded in L∞([r1, r2]) as claimed.

�

Lemma 5.4. The function θ̄(r) is differentiable on ]0,+∞[, twice differentiable
on ]R0,+∞[, and limn→+∞ θ′

n(r) = θ̄′(r) uniformly on every [r1, r2] ⊂]0,+∞[,
limn→+∞ θ′′

n(r) = θ̄′′(r) uniformly on every [r1, r2] ⊂]R0,+∞[. Moreover θ̄(r)
satisfies the equation ∂r(rθ̄′(r)) = sin(θ̄(r))r on ]R0,+∞[.

Proof. Let us consider the sequence (θ′
n)n; since (θ′′

n)n is bounded over the
compact subsets of ]0,+∞[, by the Ascoli-Arzelà theorem there exists a con-
tinuous function η : ]0,+∞[→ R such that, up subsequences, θ′

n → η uniformly
on every [r1, r2] ⊂]0,+∞[. But we know that θn → θ̄, so that θ̄ is differentiable
and θ̄′ = η, and the first claim is proved.

We observe now that, since θn → θ̄, an → −1 and a′
n → 0 uniformly on

every [r1, r2] ⊂]R0,+∞[, by the Eq. (3) the same holds true for the sequence
(θ′′

n)n; but θ′
n → θ̄′, so that θ̄′ is differentiable on ]R0,+∞[, and θ′′

n(r) → θ̄′′(r)
uniformly on every [r1, r2] ⊂]R0,+∞[. Moreover, from (3) we get also the
equation ∂r(rθ̄′(r)) = sin(θ̄(r))r. �

We can prove now Theorem 1.3.

Proof of Theorem 1.3. First of all, we claim that R0 = 0; in fact, let us suppose
R0 > 0; then θ̄(r) ≡ π on ]0, R0]; since θ̄(r) is differentiable at R0, we must have
θ̄′(R0) = 0, and, from the equation ∂r(rθ̄′(r)) = sin(θ̄(r))r we get θ̄(r) ≡ π;
but this is impossible since θ̄(∞) = 0. Therefore R0 = 0, so that ā(r) ≡ −1,
and, since an(r) is strictly decreasing, an(r) → −1 uniformly on [R,+∞[ for
every R > 0; in particular, an(∞) → −1.

We want to show now that θ̄(r) ≡ 0; in fact, since 0 ≤ θ̄(r) ≤ π, from
equation ∂r(rθ̄′(r)) = sin(θ̄(r))r, we deduce that rθ̄′(r) is not decreasing;
clearly we must have θ̄′(r) ≤ 0; for if not 0 < r0θ̄

′(r0)/r ≤ θ̄′(r) on some
interval [r0,+∞[, and, by integration, θ̄(∞) = +∞. Therefore the function
rθ̄′(r) is ≤ 0 and not decreasing. In particular, there exists the limit

lim
r→0

rθ̄′(r) ≤ 0.

We claim that the above limit is equal to zero. For if not, there exists K ∈ R

with K < 0, and a neighbourhood ]0, r0[ of zero such that θ̄′(r) < K/r on
]0, r0[ and, by integration, θ̄(r0) − θ̄(r) < K log(r0/r) for every r ∈]0, r0[, so
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that θ̄(r) → +∞ as r → 0, whereas 0 ≤ θ̄(r) ≤ π. Then θ̄′(r) ≡ 0, and so
θ̄(r) ≡ 0 as claimed, and therefore θn(r) → 0 on ]0,+∞[.

Finally, let R > 0 be fixed; for every n there exists Rn > 0 such that
θn(Rn) = π/2, and θn(r) is strictly decreasing on [Rn,+∞[ (see the proof of
Theorem 1.1). From Lemmas 2.4 and 4.1 we have

Rn ≤ max
(
1,

4
π2

(
π2 + 2C

))
;

on the other hand, θn(r) → 0 uniformly on every [r1, r2] ⊂]0,+∞[, so that we
must have Rn → 0. Then, for n large enough, we have Rn < R, so θn(r) is
strictly decreasing on [R,+∞[, and, since θn(R) → 0, we get θn → 0 uniformly
on [R,+∞[. �
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