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1. Introduction

The paper deals with the problem of Hilbert–Schmidt type analytic extensions
in the Hardy space H2

χ of complex functions over the infinite-dimensional group
U(∞) =

⋃ {U(m) : m ∈ N} endowed with an invariant probability measure χ
where U(m) are subgroups of unitary m×m-matrices. The measure χ is defined
as a projective limit χ = lim←−χm of the Haar probability measures χm on U(m).
Moreover, χ is supported by a projective limit U = lim←−U(m) and is invariant
under the right action of U2(∞) := U(∞) × U(∞) on U.

A goal of this work is to find integral formulas for Hilbert–Schmidt an-
alytic extensions of functions from H2

χ and to describe their radial boundary
values on the open unit ball in a Hilbert space E where U(∞) acts irreducibly.

The measure χ on U was described by Olshanski [13] and Neretin [12]. The
notion U is related to Pickrell’s space of a virtual Grassmannian [16]. Hardy
spaces in infinite-dimensional settings were discussed in the works of Cole and
Gamelin [5], Ørsted and Neeb [14]. Spaces of analytic functions of Hilbert–
Schmidt holomorphy types were considered by Dwyer III [6] and Petersson [15].
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More general classes of analytic functions associated with coherent sequences
of polynomial ideals were described by Carando et al. [4]. Integral formulas for
analytic functions employing Wiener measures on infinite-dimensional Banach
spaces were suggested by Pinasco and Zalduendo [17].

Note that spaces of integrable functions with respect to invariant mea-
sures over infinite-dimensional groups have been widely applied in stochastic
processes [2,3], as well as in other areas.

This paper presents the following results. In Theorem 3.2, we describe
an orthogonal basis in the Hardy space H2

χ indexed by means of Yang dia-
grams, consisting of χ-essentially bounded functions. Using this basis, in The-
orem 4.2 the reproducing kernel of H2

χ is calculated. It also allows us to define
an antilinear isometric isomorphism J between H2

χ and the symmetric Fock
space Γ generated by E. This isomorphism equips H2

χ with a suitable infinite-
dimensional analytic structure. By means of J, we establish in Theorem 6.2
an integral formula for Hilbert–Schmidt analytic extensions of functions from
H2

χ on the open unit ball B ⊂ E. The radial boundary values of these analytic
extensions are described in Theorem 7.1.

2. Background on Invariant Measure

Let U(m) (m ∈ N) be the group of unitary (m × m)-matrices. We endow
U(∞) =

⋃
U(m) with the inductive topology under every continuous inclusion

U(m) � U(∞) which assigns to any um ∈ U(m) the matrix
[
um 0
0 1

]

∈ U(∞).

The right action over U(∞) is defined via

u.g = w−1uv, u ∈ U(∞), g = (v, w) ∈ U2(∞) (2.1)

(the right action over U(m) is defined similarly with u ∈ U(m) and g =
(v, w) ∈ U2(m) where U2(m) := U(m) × U(m)).

Following [12,13], every um ∈ U(m) with m > 1 can be written as um =[
zm−1 a

b t

]

so that zm−1 is a (m− 1)× (m− 1)-matrix and t ∈ C. It was proven

that the Livšic-type mapping (which is not a group homomorphism)

πm
m−1 : um �−→ um−1 :=

{
zm−1 − [a(1 + t)−1b] : t �= −1
zm−1 : t = −1 (2.2)

from U(m) onto U(m − 1) is Borel and surjective.
Consider the projective limit U = lim←−U(m) taken with respect to πm

m−1.
The embedding ρ : U(∞) � U assigns to every um ∈ U(m) the stabilized
sequence u = (uk)k∈N (see [13, n.4]) so that
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ρ : U(m) 	 um �−→ (uk) ∈ U, uk =

⎧
⎪⎪⎨

⎪⎪⎩

πm
k (um) : k < m,
um : k = m,[

um 0
0 1

]

: k > m
(2.3)

where the projections πm : U 	 u −→ um ∈ U(m) such that πm
m−1 ◦ πm = πm−1

are surjective and πm
k := πk+1

k ◦ · · · ◦ πm
m−1 for k < m. Using (2.1), the right

action of U2(∞) over U can be defined as

πm(u.g) = w−1πm(u)v, u ∈ U (2.4)

where m is so large that g = (v, w) ∈ U2(m) (see [13, Def 4.5]).
We endow every group U(m) with the probability Haar measure χm. It

is known [12, Thm 1.6] that the pushforward of χm to U(m − 1) under πm
m−1

is the probability Haar measure χm−1 on U(m). Let U ′(m) be the subset
in U(m) of matrices which do not have −1 as an eigenvalue. Then U ′(m) is
open in U(m) and U(m) \ U ′(m) is χm-negligible. Moreover, the restriction
πm

m−1 : U ′(m) −→ U ′(m − 1) is continuous and surjective [13, Lem. 3.11].
Following [13, Lem. 4.8], [12, n.3.1], via of the Kolmogorov consistency

theorem we uniquely define on U the probability measure χ which is the pro-
jective limit under the mapping (2.2), i.e., we put

χ = lim←−χm with χm = χ ◦ π−1
m for all m ∈ N. (2.5)

If U′ = lim←−U ′(m) is the projective limit with respect to πm
m−1 |U ′(m) then U\U′

is χ-negligible, because χm is zero on U(m) \ U ′(m) for any m.
A complex-valued function on U is called cylindrical if it has the form

f = fm ◦ πm for a certain m ∈ N and a complex function fm on U(m) [13,
Def. 4.5]. By L∞

χ we denote the closed linear hull of all cylindrical χ-essentially
bounded Borel functions endowed with the norm ‖f‖L∞

χ
= ess supu∈U |f(u)|.

The measure (2.5) is a probability measure and is U2(∞)-invariant under
the right actions (2.4) over U [12, Prop. 3.2]. Moreover, this measure is Radon
so that

∫

U

f(u.g) dχ(u) =
∫

U

f(u) dχ(u), g ∈ U2(∞), f ∈ L∞
χ (2.6)

and it satisfies the property: (χ ◦ π−1
m )(K) = χm(K) for any compact set K in

U(m) [11, Lem. 1]. Using the invariance property (2.6) and the Fubini theorem
(see [11, Lem. 2]), we obtain

∫

U

f dχ =
∫

U

dχ(u)
∫

U2(m)

f(u.g) d(χm ⊗ χm)(g), (2.7)

∫

U

f dχ =
1
2π

∫

U

dχ(u)
∫ π

−π

f [exp(iϑ)u] dϑ (2.8)
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for all f ∈ L∞
χ . The closed linear hull of cylindrical complex functions endowed

with the norm ‖f‖L2
χ

=
(∫

U
|f |2 dχ

)1/2 is denoted by L2
χ. It is clear that

L∞
χ � L2

χ and ‖f‖L2
χ

≤ ‖f‖L∞
χ

for all f ∈ L∞
χ .

3. Hardy Spaces

Throughout the paper E is a separable complex Hilbert space with an ortho-
normal basis {ek : k ∈ N}, scalar product 〈· | ·〉 and norm ‖ · ‖ = 〈· | ·〉1/2. So,
for any element x ∈ E the following Fourier decomposition holds,

x =
∑

ekx̂k, x̂k = 〈x | ek〉. (3.1)

In what follows, let B = {x ∈ E : ‖x‖ < 1} and S = {x ∈ E : ‖x‖ = 1}.
Let E⊗n be the complete nth tensor power of E endowed with the scalar

product and norm
〈
ψ | φ

〉
= 〈x1 | y1〉 · · · 〈xn | yn〉, ‖ψ‖ = 〈ψ | ψ〉1/2

for all ψ = x1⊗· · ·⊗xn, φ = y1⊗· · ·⊗yn ∈ E⊗n with xi, yi ∈ E (i = 1, . . . , n). As
σ : {1, . . . , n} �−→ {σ(1), . . . , σ(n)} runs through all n-elements permutations,
the symmetric complete nth tensor power E�n is defined to be a codomain of
the orthogonal projector

E⊗n 	 ψ �−→ x1 � · · · � xn :=
1
n!

∑

σ

xσ(1) ⊗ · · · ⊗ xσ(n) ∈ E�n.

Note that x⊗n = x ⊗ · · · ⊗ x = x � · · · � x = x�n. Put E⊗0 = E�0 = C.
Let λ = (λ1, . . . , λm) ∈ N

m be a partition of an integer n ∈ N with
m ≤ n and λ1 ≥ λ2 ≥ · · · λm > 0, i.e., |λ| = n where |λ| := λ1 + · · · + λm. We
identify partitions with Young diagrams. By 
(λ) = m we denote the length
of λ defined as the number of rows in λ. Let Y denote all Young diagrams
and Yn := {λ ∈ Y : |λ| = n}. Assume that Y includes the empty partition
∅ = (0, 0, . . .).

An orthogonal basis in E�n is formed by the system of symmetric tensor
products (see e.g. [1, Sec. 2.2.2])

e�Yn =
⋃

λ∈Yn

{
e�λ
ı := e⊗λ1

ı1 � · · · � e⊗λm
ım

: ı ∈ N
m
∗ , m = 
(λ)

}
, e�∅

ı = 1

where N
m
∗ := {ı = (ı1, . . . , ım) ∈ N

m : ıj =/ ık, ∀ j =/ k}. As is well known,
∥
∥e�λ

ı

∥
∥2 =

λ!
|λ|! , λ! := λ1! · · · · · λm!. (3.2)

In what follows, we will use the fact that for every ψ ∈ E�n one can
uniquely define the so-called Hilbert–Schmidt n-homogenous polynomial

ψ∗(x) :=
〈
x⊗n | ψ

〉
, x ∈ E.
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In fact, the polarization formula for symmetric tensor products (see [8, 1.5])

z1 � · · · � zn =
1

2nn!

∑

θ1,...,θn=±1

θ1 . . . θn x⊗n, x =
n∑

k=1

θkzk (3.3)

(z1, . . . , zn ∈ E) implies that the n-homogenous polynomial 〈x⊗n | ψ〉 is
uniquely determines ψ, because the set of all z1 � · · · � zn is total in E�n.

Using the embedding (2.3), we define the E-valued mapping

ζ : U 	 u �−→ ρ−1(u)e1

which do not depend on the choice of e1 in

S(∞) := {ζ(u) : u ∈ U} =
⋃

{S(m) : m ∈ N}
where S(m) is the m-dimensional unit sphere. In fact, for each stabilized se-
quence u = (uk) ∈ U there exists an index m such that ρ−1(u)e1 = uke1
belongs to S(m) for all k ≥ m. On the other hand, for each e ∈ S(k) there
exists v ∈ U(k) such that ve = e1. Defining u.g ∈ U with g = (1, v) ∈ U2(k) by
means of (2.3)–(2.4), we have ρ−1(u.g)e = πk(u.g)e = πk(u)e1 = ρ−1(u)e1.

Consider the following system of cylindrical Borel functions

εk(u) :=
〈
ζ(u)

∣
∣ ek

〉
, k ∈ N

where εk := e∗k ◦ ζ. Using ζ, we may define the E�n-valued Borel mapping

ζ⊗n : U 	 u �−→ ζ(u) ⊗ · · · ⊗ ζ(u)
︸ ︷︷ ︸n

, ζ⊗0 ≡ 1.

The following assertion, which is a consequence of the polarization formula
(3.3), is proved in [11, Lem. 3].

Lemma 3.1. The equality S(∞) = {ζ(u) : u ∈ U′} holds. As a consequence, to
every ψ ∈ E�n

ı there uniquely corresponds the function in L∞
χ

ψζ(u) :=
〈
ζ⊗n(u)

∣
∣ ψ

〉
, u ∈ U

given by continuous restriction to U′. In particular, to every e�λ
ı ∈ e�Yn there

corresponds in L∞
χ the cylindrical function in the variable u ∈ U,

ελ
ı (u) :=

〈
ζ⊗n(u)

∣
∣ e�λ

ı

〉
=

�(λ)∏

k=1

〈
ζ(u)

∣
∣ eık

〉λk . (3.4)

Lemma 3.1 straightforwardly implies that the system e�Y :=
⋃
e�Yn of

tensor products e�λ
ı = e⊗λ1

ı1 �· · ·�e⊗λm
ım

, indexed by λ = (λ1, . . . , λm) ∈ Y and
ı = (ı1, . . . , ım) ∈ N

m
∗ with m = 
(λ), uniquely defines the appropriate system

εY :=
⋃

λ∈Y

{
ελ
ı := ελ1

ı1 · · · · · ελm
ım

: ı ∈ N
m
∗ , m = 
(λ)

}
, ε∅

ı ≡ 1,

of χ-essentially bounded cylindrical functions in the variable u ∈ U that possess
continuous restrictions to U′.
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Theorem 3.2. For any ı ∈ N
m
∗ and ψ, φ ∈ E�n

ı , the following equality holds,
(

n + m − 1
n

)∫

U

φζ ψ̄ζ dχ = 〈ψ | φ〉 . (3.5)

As a consequence, given (λ, ı) ∈ Y × N
m
∗ with m = 
(λ), the system εY of

functions ελ
ı is orthogonal in the space L2

χ and

∥
∥ελ

ı

∥
∥

L2
χ

=
(

(m − 1)!λ!
(m − 1 + |λ|)!

)1/2

. (3.6)

Proof. Let Eı with ı = (ı1, . . . , ım) ∈ N
m
∗ be the m-dimensional subspace in E

spanned by {eı1 , . . . , eım
} and U(ı) be the unitary subgroup of U(∞) acting

in Eı. The symbol E�n
ı means the nth symmetric tensor power of Eı. Briefly

denote ψ†[vζ(u)] :=
〈(

[vρ−1(u)]e1
)⊗n ∣∣ψ

〉
with ψ ∈ E�n

ı for all v ∈ U(ı) and
u ∈ U. Using (2.7) with U(ı) instead of U(m), we have

∫

U

φζ ψ̄ζ dχ =
∫

U

dχ(u)
∫

U(ı)

φ†[vζ(u)] · ψ̄†[vζ(u)] dχı(v) (3.7)

for all ψ, φ ∈ E�n
ı . It is clear that

∣
∣
∣

∫

U(ı)

φ† ψ̄† dχı

∣
∣
∣ ≤ sup

v∈U(ı)

∣
∣φ†[vζ(u)]

∣
∣
∣
∣ψ†[vζ(u)]〉∣∣ ≤ ‖φ‖ ‖ψ‖

for all u ∈ U. Hence, the corresponding sesquilinear form in (3.7) is continuous
on E�n

ı . Thus, there exists a linear bounded operator A over E�n
ı such that

〈Aψ | φ〉 =
∫

U(ı)

φ† ψ̄† dχı.

Next we show that A commutes with all operators w⊗n ∈ L (E�n
ı ) with

w ∈ U(ı) acting as w⊗nx⊗n = (wx)⊗n, (x ∈ Eı). Invariance properties (2.6) of
χı under the right action (2.4) yield

〈
(A ◦ w⊗n)ψ | φ

〉

=
∫

U(ı)

〈
[vζ(u)]⊗n | φ

〉 〈[vζ(u)]⊗n | w⊗nψ〉dχı(v)

=
∫

U(ı)

〈
[w−1vζ(u)]⊗n | (w−1)⊗nφ

〉 〈[w−1vζ(u)]⊗n | ψ〉dχı(v)

=
∫

U(ı)

〈
[vζ(u)]⊗n | (w−1)⊗nφ

〉 〈[vζ(u)]⊗n | ψ〉dχı(v)

=
〈
Aψ | (w−1)⊗nφ

〉
=
〈
(w⊗n ◦ A)ψ | φ

〉
,

where w−1 ∈ U(ı) is the hermitian adjoint matrix of w. Hence, the equality

A ◦ w⊗n = w⊗n ◦ A, w ∈ U(ı) (3.8)
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holds. Let us check that the operator A, satisfying the condition (3.8), is
proportional to the identity operator on E⊗n

ı . To this end we form the nth
tensor power of the unitary group U(ı),

[U(ı)]⊗n =
{
w⊗n ∈ L

(
E�n

ı

)
: w ∈ U(ı)

}
, [U(ı)]⊗0 = 1.

Clearly, [U(ı)]⊗n is a unitary group over E�n
ı . Let us check that the corre-

sponding unitary representation

U(ı) 	 w �−→ w⊗n ∈ L
(
E�n

ı

)
(3.9)

is irreducible. This means that there is no subspace in E�n
ı other than {0} and

the whole space which is invariant under the action of [U(ı)]⊗n.
Suppose, on the contrary, that there is an element ψ ∈ E�n

ı such that
the equality

〈(
[wρ−1(u)]e1

)⊗n ∣∣ψ
〉

= 0 holds for all w ∈ U(ı) and u ∈ U(∞).
By Lemma 3.1 the elements wρ−1(u) act transitively on S(∞). Hence, by n-
homogeneity, we obtain 〈x⊗n | ψ〉 = 0 for all x ∈ Eı. Applying the polarization
formula (3.3), we get ψ = 0. Hence, (3.9) is irreducible.

Thus, we can apply to (3.9) the Schur lemma [10, Thm 21.30]: a non-
zero matrix which commutes with all matrices of an irreducible representation
is a constant multiple of the unit matrix. As a result, we obtain that the
operator A, satisfying (3.8), is proportional to the identity operator on E�n

ı

i.e. A = α(n,ı)1E�n
ı

with a constant α(n,ı) > 0. It follows that
∫

U(ı)

φ† ψ̄† dχı = α(n,ı) 〈ψ | φ〉 , φ, ψ ∈ E�n
ı . (3.10)

In particular, the subsystem of cylindrical functions ελ
ı with a fixed ı ∈ N

m
∗ is

orthogonal in L2
χ, because the corresponding system of tensor products e�λ

ı

indexed by λ ∈ Yn with 
(λ) = m forms an orthogonal basis in E�n
ı .

It remains to note that the set of all indices ı = (ı1, . . . , ım) ∈ N
m
∗ with

all m = 
(λ) is directed with respect to the set-theoretic embedding, i.e., for
any ı, ı′ there exists ı′′ so that ı ∪ ı′ ⊂ ı′′. This fact and the above reasoning
imply that the whole system εY is also orthogonal in L2

χ.
Taking into account (3.2), we can choose φn = ψn = ελ

ı

√
n!/λ! in (3.10).

As a result, we obtain

α(n,ı) =
n!
λ!

∫

U(ı)

∣
∣ελ

ı

∣
∣2 dχı =

n!
λ!

∥
∥ελ

ı

∥
∥2

L2
χ

.

The well known formula [18, 1.4.9] for the unitary m-dimensional group gives
∫

U(ı)

∣
∣ελ

ı

∣
∣2 dχı =

λ!(m − 1)!
(n + m − 1)!

, |λ| = n, 
(λ) = m.

Using the last two formulas, we arrive at the relation

α(n,ı) =
n!
λ!

∫

U(ı)

∣
∣ελ

ı

∣
∣2 dχı =

n!
λ!

λ!(m − 1)!
(n + m − 1)!

=
n!(m − 1)!

(n + m − 1)!
. (3.11)
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Combining (3.7) and (3.11), we get (3.5) and, as a consequence, (3.6). �

Definition 3.3. By H2
χ we denote the Hardy space over U(∞) defined as the

L2
χ-closure of the complex linear span of the orthogonal system εY.

Let the space H2,n
χ be the L2

χ-closure of the complex linear span of the

subsystem εYn :=
{
ελ
ı ∈ εY : (λ, ı) ∈ Yn × N

�(λ)
∗

}
with a fixed n ∈ Z+.

Corollary 3.4. For any positive integers n=/ k the orthogonality H2,n
χ ⊥ H2,k

χ

holds in L2
χ. As a consequence, the following orthogonal decomposition holds,

H2
χ = C ⊕ H2,1

χ ⊕ H2,2
χ ⊕ · · · . (3.12)

Proof. The orthogonal property εμ
j ⊥ ελ

ı with |μ| �= |λ| for any ı ∈ N
�(λ)
∗ and

j ∈ N
�(μ)
∗ follows from (2.8), since

∫

U

εμ
j ε̄λ

ı dχ =
∫

U

εμ
j

(
exp(iϑ)u

)
ε̄λ
ı

(
exp(iϑ)u

)
dχ(u)

=
1
2π

∫

U

εμ
j ε̄λ

ı dχ

∫ π

−π

exp
(
i(|μ| − |λ|)ϑ) dϑ = 0

for all λ ∈ Y and μ ∈ Y \ {∅}. This yields H
2,|μ|
χ ⊥ H

2,|λ|
χ in the space L2

χ. �

4. Reproducing Kernels

Let us construct the reproducing kernel of H2
χ. We refer to [19] for the basic

definitions and properties of reproducing kernels.

Lemma 4.1. For every u, v ∈ U there exists a q ∈ N such that the reproducing
kernel of the subspace H2,n

χ in L2
χ has the form

hn(v, u) =
∑

m≤q

(
n + m − 1

n

)

〈ζ(v) | ζ(u)〉n

=
∑

(λ,ı)∈Yn×N
�(λ)
∗

ελ
ı (v) ε̄λ

ı (u)
‖ελ

ı ‖2L2
χ

, u, v ∈ U.

(4.1)

Proof. Note that h0 ≡ 1. From (2.3) it follows that for each stabilized sequence
u ∈ U there exists um ∈ U(m) with a certain m = m(u) such that u = ρ(um).
So, the element ζ(u) = ρ−1(u)e1 is located on the m-dimensional sphere S(m).
It means that its Fourier series ζ(u) =

∑
ekεk(u) has m(u) terms. The tensor

multinomial theorem yields the Fourier decomposition

[ζ(u)]⊗n =
(∑

ekεk(u)
)⊗n

=
∑

(λ,ı)∈Yn×N
�(λ)
∗

n!
λ!
e�λ
ı ελ

ı (u)
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in the space E�n. Using the formula (3.2), we obtain

〈ζ(v) | ζ(u)〉n =
〈
[ζ(v)]⊗n | [ζ(u)]⊗n

〉

=
∑

(λ,ı)∈Yn×N
�(λ)
∗

(n!
λ!

)2 〈
e�λ
ı | e�λ

ı

〉
ελ
ı (v) ε̄λ

ı (u)

=
∑

(λ,ı)∈Yn×N
�(λ)
∗

ελ
ı (v) ε̄λ

ı (u)
‖e�λ

ı ‖2

where 〈ζ(v) | ζ(u)〉 is decomposed into q = min{m(u),m(v)} summands in
virtue of orthogonality. Multiplying both sides by

(
n+m−1

n

)
and summing over

all m ≤ q, we get (4.1). It follows that
∫
U
hn(v, u)ελ

ı (u) dχ(u) = ελ
ı (v) for each

v ∈ U. Via Theorem 3.1 the system εYn of functions ελ
ı forms an orthogonal

basis in H2,n
χ . So, the integral operator

∫

U

hn(v, u)ψζ(u) dχ(u) = ψζ(v), ψζ ∈ H2,n
χ (4.2)

acts identically on H2,n
χ . Thus, the kernel (4.1) is reproducing in H2,n

χ . �

Let us consider the complex-valued kernel

h(z; v, u) =
∏

m≤min{m(u),m(v)}

[
1 − z 〈ζ(v) | ζ(u)〉]−m

, u, v ∈ U, |z| < 1

where m(u) is the number of terms in the Fourier series ζ(u) =
∑

ekεk(u).

Theorem 4.2. The expansion h(z; v, u) =
∑

znhn(v, u) holds for any u, v ∈ U
and |z| < 1. The kernel h(1; v, u) =

∑
hn(v, u) is reproducing in H2

χ in the
sense that

∫

U

h(1; v, u)f(u) dχ(u) = f(v), f ∈ H2
χ, v ∈ U. (4.3)

Proof. Let q = min{m(u),m(v)} and m ≤ q. As is well known [18, 1.4.10],

[
1 − z 〈ζ(v) | ζ(u)〉]−m =

∑

n∈Z+

(
n + m − 1

n

)

〈zζ(v) | ζ(u)〉n (4.4)

for all |z| < 1. By the Vandermonde identity, we have
(

n + m − 1

n

)

〈zζ(v) | ζ(u)〉n =

(
r + k + p + l − 2

r + k

)

〈zζ(v) | ζ(u)〉r+k

=

n∑

r=0

(
r + p − 1

r

)(
n − r + l − 1

n − r

)

〈zζ(v) | ζ(u)〉r+k



120 O. Lopushansky Results Math

for all n = r + k and m = p + l − 1. Applying recursively this identity to the
series (4.4) with any m ≤ q and using Lemma 4.1, we obtain

h(z; v, u) =
∏

m≤q

∑

n∈Z+

(
n + m − 1

n

)

〈zζ(v) | ζ(u)〉n

=
∑

n∈Z+

zn
∑

(λ,ı)∈Yn×N
�(λ)
∗

ελ
ı (v) ε̄λ

ı (u)
‖ελ

ı ‖2L2
χ

=
∑

n∈Z+

znhn(v, u).

Hence, the required expansion holds. By (3.12) we have f =
∑

n fn for any
f ∈ H2

χ where fn ∈ H2,n
χ is the orthogonal projection of f . Observing that

hk(z; ·, u) ⊥ fn(·) with n=/ k holds in L2
χ, we obtain

∫

U

h(1; v, u)f(u) dχ(u) =
∑∫

U

hn(v, u)fn(v) dχ(u) =
∑

fn(v) = f(v)

for all v ∈ U and f ∈ H2
χ. Hence, (4.3) is valid. �

5. The Hilbert–Schmidt Analyticity

Recall (see e.g. [7]) that a function f on an open domain in a Banach space is
said to be analytic if it is Gâteaux analytic and norm continuous. Similarly to
[6,15], we say that f is Hilbert–Schmidt analytic if its Taylor coefficients are
Hilbert–Schmidt polynomials. Now we describe a space H2 of Hilbert–Schmidt
analytic complex functions on the open ball B.

The symmetric Fock space is defined to be the orthogonal sum

Γ =
⊕

n∈Z+

E�n, 〈ψ | φ〉 =
∑

n∈Z+

〈ψn | φn〉

for all elements ψ =
⊕

n ψn, φ =
⊕

n φn ∈ Γ with ψn, φn ∈ E�n. The subset
{x⊗n : x ∈ B} is total in E�n by virtue of (3.3). This provides the total property
of the subsets

{
(1 − x)−⊗1 : x ∈ B

}
in Γ where we denote

(1 − x)−⊗1 :=
∑

x⊗n, x⊗0 = 1.

The Γ-valued function (1 − x)−⊗1 in the variable x ∈ B is analytic, since
∥
∥(1 − x)−⊗1

∥
∥2 =

∑
‖x‖2n =

(
1 − ‖x‖2)−1

< ∞. (5.1)

Let us define the Hilbert space of analytic complex functions in the vari-
able x ∈ B, associated with the Fock space Γ, as follows

H2 =
{
ψ∗(x) =

〈
(1 − x)−⊗1 | ψ

〉
: ψ ∈ Γ

}
, ‖ψ∗‖H2 := ‖ψ‖

for all x ∈ B. This description is correct, because each function ψ∗ in the
variable x ∈ B is analytic by virtue of [9, Prop. 2.4.2], as a composition of
the analytic Γ-valued function (1 − x)−⊗1 in the variable x ∈ B and the linear
functional 〈· | ψ〉 on Γ.
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Similarly, we define the closed subspace in H2 of n-homogenous Hilbert–
Schmidt polynomials ψ∗

n in the variable x ∈ E as

H2
n =

{
ψ∗

n(x) =
〈
x⊗n | ψn

〉
: ψn ∈ E�n

}
.

Differentiating at zero any function ψ∗ =
⊕

ψ∗
n ∈ H2 with ψ∗

n ∈ H2
n, we obtain

that its Taylor coefficients at zero (n!)−1dn
0ψ∗ = ψ∗

n are Hilbert–Schmidt poly-
nomials. Hence, every function from H2 is Hilbert–Schmidt analytic. Clearly,
the following orthogonal decomposition holds,

H2 = C ⊕ H2
1 ⊕ H2

2 ⊕ · · · . (5.2)

One can show that
(
H2

n

)
n

is a coherent sequence of polynomial ideals
over E in the meaning of [4, Def. 1.1].

For each pair (λ, ı) ∈ Yn × N
�(λ)
∗ , we can uniquely assign the Hilbert–

Schmidt n-homogenous polynomial

x̂λ
ı :=

〈
x⊗n

∣
∣ e�λ

ı

〉
, x ∈ E,

defined via the Fourier coefficients x̂k := e∗k(x) = 〈x | ek〉 of an element x ∈ E.
Taking into account (3.2), the tensor multinomial theorem yields the following
orthogonal decompositions with respect to the basis e�Y in Γ,

(1 − x)−⊗1 =
∑

(λ,ı)∈Y×N
�(λ)
∗

x̂λ
ı e

�λ
ı

‖e�λ
ı ‖2 , x ∈ B. (5.3)

Hence, any function ψ∗ ∈ H2 has the orthogonal expansion

ψ∗(x) =
〈
(1 − x)−⊗1 | ψ

〉
=

∑

(λ,ı)∈Y×N
�(λ)
∗

ψ̂(λ,ı)x̂
λ
ı , x ∈ B (5.4)

where ψ̂(λ,ı) := 〈e�λ
ı | ψ〉‖e�λ

ı ‖−2 are the Fourier coefficients of ψ ∈ Γ with
respect to the basis e�Y and, moreover, ‖ψ∗‖2H2 =

∑
(λ,ı) |〈e�λ

ı | ψ〉|2‖e�λ
ı ‖−2.

Thus, ‖ψ∗‖H2 is a Hilbert–Schmidt type norm on H2.

6. Integral Formulas

The one-to-one correspondence e�λ
ı ↔ ελ

ı allows us to construct an antilin-
ear isometric isomorphism J : Γ −→ H2

χ and its adjoint J∗ : H2
χ −→ Γ by the

following change of orthonormal bases

J : Γ 	 e�λ
ı

∥
∥e�λ

ı

∥
∥−1 �−→ ελ

ı

∥
∥ελ

ı

∥
∥−1

L2
χ

∈ H2
χ, λ ∈ Y, ı ∈ N

�(λ)
∗ .

Clearly, J∗ : ελ
ı

∥
∥ελ

ı

∥
∥−1

L2
χ

�−→ e�λ
ı

∥
∥e�λ

ı

∥
∥−1, because

〈
Je�λ

ı

∣
∣ f

〉
L2

χ
=
〈
e�λ
ı

∣
∣ J∗f

〉

for any f ∈ H2
χ. Using Theorem 3.2, for any element ψ ∈ Γ with the Fourier

coefficients ψ̂(λ,ı) = 〈e�λ
ı | ψ〉‖e�λ

ı ‖−2, we obtain
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Jψ =
∑

(λ,ı)∈Y×N
�(λ)
∗

ψ̂(λ,ı)
‖e�λ

ı ‖2
‖ελ

ı ‖2L2
χ

ελ
ı where

‖e�λ
ı ‖2

‖ελ
ı ‖2L2

χ

=
(
(λ) − 1 + |λ|)!
(
(λ) − 1)!|λ|! .

In particular, Jx =
∑

x̂kεk for any elements x ∈ E with the Fourier coefficients
x̂k = 〈x | ek〉. Moreover, ‖Jx‖2L2

χ
=
∑ ‖x̂k‖2 = ‖x‖2.

In what follows, we assign to each x ∈ E the L2
χ-valued function

xJ : U 	 u �−→ (Jx)(u).

Lemma 6.1. The function J(1−x)−⊗1 = (1−xJ)−1 in the variable u ∈ U takes
values in L2

χ for all x ∈ B.

Proof. Applying J to the decompositions (3.1) and (5.3), we obtain

J(1 − x)−⊗1 =
∑

(λ,ı)∈Y×N
�(λ)
∗

x̂λ
ı ελ

ı

‖e�λ
ı ‖2

=
∑

n∈Z+

(∑

k∈N

x̂kεk

)n

= (1 − xJ)−1

(6.1)

where the following orthogonal series with a fixed n ∈ N,

xn
J =

(∑

k∈N

x̂kεk

)n

=
∑

(λ,ı)∈Yn×N
�(λ)
∗

x̂λ
ı ελ

ı

‖e�λ
ı ‖2 , (6.2)

is convergent in L2
χ. Moreover, taking into account the orthogonality, we get

∥
∥(1 − xJ)−1

∥
∥2

L2
χ

=
∑

n∈Z+

∑

(λ,ı)∈Yn×N
�(λ)
∗

|x̂λ
ı |2

‖e�λ
ı ‖2

=
∑

n∈Z+

(∑

k∈N

|x̂k|2
)n

=
(
1 − ‖x‖2)−1

.

Hence, the function (1 − xJ)−1 with x ∈ B takes values in L2
χ. �

Let f =
∑

n fn ∈ H2
χ with fn ∈ H2,n

χ . Then J∗f ∈ Γ and J∗fn ∈ E�n.
Briefly denote f̃ := (J∗f)∗ ∈ H2

n and f̃n := (J∗fn)∗ ∈ H2. Thus,

f̃(x) =
〈
(1 − x)−⊗1 | J∗f

〉
, x ∈ B,

f̃n(x) =
〈
x⊗n | J∗fn

〉
, x ∈ E.

Theorem 6.2. Each Hilbert–Schmidt analytic function f̃ ∈ H2 has the integral
representation

f̃(x) =
∫

U

f dχ

1 − xJ
, x ∈ B (6.3)

and its Taylor coefficients at zero have the form

dn
0 f̃(x)
n!

=
∫

U

xn
Jfn dχ, x ∈ E. (6.4)
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The mapping f �−→ f̃ produces a linear isometry H2
χ � H2.

Proof. Consider the Fourier decomposition of f with respect to the basis εY

and its J∗-image, respectively

f =
∑

(λ,ı)∈Y×N
�(λ)
∗

f̂(λ,ı)ε
λ
ı , J∗f =

∑

(λ,ı)∈Y×N
�(λ)
∗

¯̂
f(λ,ı)

‖ελ
ı ‖2L2

χ

‖e�λ
ı ‖2 e

�λ
ı

where f̂(λ,ı) = ‖ελ
ı ‖−2

L2
χ

∫
U

f ε̄λ
ı dχ. Substituting f̂(λ,ı) to f̃ = (J∗f)∗ and using

the orthogonal property and the relations (5.3) and (6.1), we obtain

f̃(x) =
∑

(λ,ı)∈Y×N
�(λ)
∗

f̂(λ,ı)x̂
λ
ı

〈
e�λ
ı | e�λ

ı

〉 ‖ελ
ı ‖2L2

χ

‖e�λ
ı ‖4

=
∫

U

∑

(λ,ı)∈Y×N
�(λ)
∗

x̂λ
ı ελ

ı

‖e�λ
ı ‖2 f dχ =

∫

U

f dχ

1 − xJ
.

Hence, (6.3) holds. Using (6.2), we similarly obtain

f̃n(x) =
〈
x⊗n

∣
∣ J∗fn

〉
=
∫

U

xn
Jfn dχ. (6.5)

Taking into account (6.5) and the orthogonal decomposition (3.12), we get

f̃ (αx) =
〈
(1 − αx)−⊗1

∣
∣ J∗f

〉
=
∑

αn

∫

U

xn
Jfndχ, |α| ≤ 1. (6.6)

Note that f̃ (αx) is analytic in α for all x ∈ B. Differentiating f̃ (αx) at α = 0
and using the n-homogeneity of derivatives, we obtain

dn

dαn

∑
αn

∫

U

xn
Jfn dχ

∣
∣
∣
α=0

= n!
∫

U

xn
Jfn dχ.

Hence, the functions (6.4) coincide with the Taylor coefficients at zero of f̃ .
Finally, since the image of εY under J∗ coincides with e�Y, the mapping

H2
χ 	 f �−→ f̃ ∈ H2 is an isometry. �

7. Radial Boundary Values

Using (6.3), for each f =
∑

n fn ∈ H2
χ with fn ∈ H2,n

χ we can rewrite (6.6) as

f̃(rx) =
〈
(1 − rx)−⊗1

∣
∣ J∗f

〉
=
∫

U

f dχ

1 − rxJ
, x ∈ K, r ∈ [0, 1)

where K = {x ∈ E : ‖x‖ ≤ 1}.

Theorem 7.1. The integral transform Cr : f �−→ Cr[f ], defined as

Cr[f ](x) :=
∫

U

f dχ

1 − rxJ
, x ∈ K, r ∈ [0, 1), (7.1)
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belongs to the space of bounded linear operators L (H2
χ,H2). The radial bound-

ary values of Cr[f ] ∈ H2 are equal to f̃ ∈ H2 in the following sense:

lim
r↗1

∥
∥Cr[f ] − f̃

∥
∥

H2 = 0. (7.2)

Moreover, the following equality holds,

‖f̃‖2H2 = sup
r∈[0,1)

‖Cr[f ]‖2H2 . (7.3)

Proof. Theorem 6.2 and (7.1) imply the equality Cr[f ] =
∑

rnf̃n for any
r ∈ [0, 1). By (5.2), we have f̃k ⊥ f̃n as n=/ k in H2. It follows that

‖Cr[f ]‖2H2 =
∥
∥
∥
∑

rnf̃n

∥
∥
∥
2

H2
=
∑

r2n‖f̃n‖2H2 =
∑

r2n‖fn‖2L2
χ
,

since J∗ acts isometrically from H2,n
χ onto the space E�n which is antilinear

isometric to H2
n by definition. Similarly, we obtain that

∥
∥Cr[f ] − f̃

∥
∥2

H2 =
∑(

r2n − 1
) ‖fn‖2L2

χ
−→ 0, r → 1.

Moreover, the Cauchy–Schwarz inequality implies that

‖Cr[f ]‖2H2 ≤ 1
(1 − r2)1/2

(∑
‖fn‖2L2

χ

)1/2

=
‖f‖L2

χ

(1 − r2)1/2

for all f ∈ H2
χ. Hence, the operator Cr belongs to L (H2

χ,H2) for all r ∈ [0, 1).
Finally, the equalities

sup
r∈[0,1)

‖Cr[f ]‖2H2 = sup
r∈[0,1)

∑
r2n‖f̃n‖2H2 =

∑
‖f̃n‖2H2 = ‖f̃‖2H2

give the required formula (7.3). �
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