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Abstract. Extending the notion of projective means we first generalize
an invariance identity related to the Carlson log given in Kahlig and
Matkowski (Math Inequal Appl 18(3):1143–1150, 2015), and then, more
generally, given a bivariate symmetric, homogeneous and monotone mean
M , we give explicit formula for a rich family of pairs of M -complementary
means. We prove that this method cannot be extended for higher dimen-
sion. Some examples are given and two open questions are proposed.
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1. Introduction

A function Φ : X → Y is called invariant with respect to a selfmap T : X → X
(briefly, T -invariant) if Φ ◦ T = Φ. Invariant functions appear in iteration
theory and fixed point theory. For instance, if X is a metric space, T is con-
tinuous and the sequence (Tn)n∈N

of iterates of T is pointwise convergent,
then the function Φ(x) = limn→∞ Tn(x) is T -invariant. A model illustration
offer the mean-type mappings, i.e. the mappings of the form (K,L) , where
the coordinate functions K,L are bivariate means. Some conditions guaran-
tying convergence of iterates (K,L)n to a unique (K,L)-invariant mean-type
mapping (M,M) , and M ◦ (K,L) = M ([7], also [4,6,11]), generalize in par-
ticular, the well-known theorem of Gauss [2] on the arithmetic-geometric iter-
ations. If the invariance equality M ◦ (K,L) = M is satisfies one says that the
means K and L are mutually M -complementary with respect to M (briefly,
M -complementary) [5].

It happens quite exceptionally, when a given mean-type mapping (K,L)
one can find the explicit form of the (K,L)-invariant mean. The identity G ◦
(A,H) = G, where A, G, H denote, respectively, arithmetic, geometric and
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harmonic mean, (equivalent to the classical Pythagorean harmony proportion
A
G = G

H ), meaning that G is (A,H)-invariant, and allowing to conclude that

lim
n→∞ (A,H)n (x, y) = (G (x, y) , G (x, y)) x, y > 0,

is an example.
In these circumstances it is natural to ask if, a given mean M, one can find

effectively some nontrivial pairs of M -complementary means. This problem
appeared in connection with [3] where the authors proved that for t ∈ [−1, 1] ,
t �= 0, the unsymmetric means

Kt = txt x − y

xt − yt
and Lt = tyt x − y

xt − yt

are mutually complementary with respect to the logarithmic mean L, i.e. they
satisfy the invariance equation

L◦(Kt, Lt) = L. (1)

In Sect. 3, we extend the notion of projective means by creating 2c pairs of
means (PA,PA′) satisfying {PA(x, y),PA′(x, y)} = {x, y}, so that the functions

Kt,A(x, y) = tPt
A(x, y)

x − y

xt − yt

and

Lt,A(x, y) = tPt
A′(x, y)

x − y

xt − yt
,

are L-complementary means. We also give necessary and sufficient conditions
for these means to be symmetric and/or homogeneous, thus we provide answer
to a question posed in [3].

In Sect. 4, following the ideas of [3,12], we prove that if M : R2
+ → R+

is a monotone, homogeneous and symmetric mean, then for every t ∈ (−1, 1)
the function Mt given by

Mt(x, y) =
(

M(x, y)
M(xt, yt)

) 1
1−t

is a mean and the functions

Kt(x, y) = xtM1−t
t (x, y) and Lt(x, y) = ytM1−t

t (x, y)

are homogeneous M -complementary means. Actually, a stronger result holds
true, namely the functions Kt,A = Pt

AM1−t
t and Lt,A = Pt

A′M
1−t
t are homoge-

neous M -complementary means. The construction the means Kt, Lt depends
on M , and they inherit the assumed symmetry and homogeneity of M , but in
general, the monotonicity is not hereditary.

In Sect. 5 we ask whether the projective means considered in previous
sections can be replaced by some other means. The examples constructed show
that in even in case of very classical means M,C,D the function
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Nt =
(

M
M◦(Ct,Dt)

) 1
1−t

may not be a mean. Nevertheless, we prove rather sur-
prising fact, that if M is a symmetric, homogeneous, monotone mean, C, D are
arbitrary means and t ∈ (0, 1), then the functions Kt = CtN1−t

t , Lt = DtN1−t
t

are M -complementary means.
Thus, the applied method gives explicit formulas for complementary

means in case of monotone, symmetric and homogeneous means M ; more-
over the means Kt and Lt inherit the symmetry and/or homogeneity from C
and D. Homogeneity of M is crucial here. We conclude that section with two
open questions, and one of them is whether the monotonicity condition can be
relaxed?

Noting that all the presented results have their translative counterparts,
we formulate in Sect. 7 the translative counterpart of Theorem 3. An ap-
plication of this result for the arithmetic mean A gives all possible pairs of
A-complementary weighted arithmetic means.

Finally in Sect. 8 we discuss the invariance equation for subtranslative
and subhomogeneous means.

2. Preliminaries

The set of positive real numbers is denoted by R+. A mean is a function
M : R2

+ → R+ satisfying

min{x, y} ≤ M(x, y) ≤ max{x, y}. (2)

Depending on additional properties a mean is called
strict if the inequalities in (2) are strict whenever x �= y,
symmetric if M(x, y) = M(y, x) for all x, y,
monotone if M(x1, y1) ≤ M(x2, y2) for x1 ≤ x2, y1 ≤ y2,
homogeneous if M(λx, λy) = λM(x, y) for all x, y, λ > 0.
Note that since there are no decreasing means, a “monotone mean” means in
fact an “increasing mean”.

Classical means will be denoted by sans-serif capital letters. Thus

A(x, y) =
x + y

2
, G(x, y) =

√
xy, H(x, y) =

2xy

x + y
,

L(x, y) =
x − y

log x − log y
, P1(x, y) = x, P2(x, y) = y

denote respectively the arithmetic, geometric, harmonic, logarithmic and the
two projective means. For historical reason the exception is made for minimum
and maximum means that are denoted by min and max.

If F : R2
+ → R+ is homogeneous (of the order 1), then F (x, y) = yF (xy , 1)

for all x, y > 0, so its values are uniquely determined by the trace function

f := F (·, 1).
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If F is also symmetric, then the identity F (x, 1) = xF (x−1, 1) shows that it
is uniquely determined by the restriction of the trace function f to any of the
intervals [1,∞) or (0, 1] .
A homogeneous function M is a mean if, and only if,

0 <
m (x) − 1

x − 1
≤ 1, x > 0, x �= 1; m (1) = 1;

moreover, if the trace function m is increasing and m (1) = 1, then M is a
mean.

The trace function will be denoted by corresponding lowercase letter.

3. Generalized Projective Means

In this section we construct 2c pairs of symmetric means satisfying (1).
Let X = R

2
+\{(x, x) : x ∈ R+}. For A ⊂ X we define the generalized

projective mean PA : R2
+ → R+ by

PA(x, y) =

{
x (x, y) ∈ A,

y (x, y) �∈ A.

A set A ⊂ X is called asymmetric if

(x, y) ∈ A ⇔ (y, x) /∈ A for x �= y.

We denote A′ = X\A.
Note the following elementary properties of generalized projective means:

1. P1 = PX, P2 = P∅,
2. min = P{(x,y):x<y}, max = P{(x,y):x>y},
3. {x, y} = {PA(x, y),PA′(x, y)},
4. PA is symmetric if and only if A is asymmetric,
5. PA is homogeneous if and only if A is a positive cone, i.e. A = λA for all

λ > 0.
The property 3 implies that we can replace the means in (1) by

Kt,A = tPt
A(x, y)

x − y

xt − yt
and Lt,A = tPt

A′(x, y)
x − y

xt − yt

preserving the invariance property. Playing with parameter A according to
properties 4 and 5, one obtains symmetric or/and homogeneous solutions.
Later we will construct a lot of other solutions to the invariance problem.

4. The L is Not Enough

In this section we follow the ideas developed in [3] to obtain complementary
means for other means than the logarithmic one. Given symmetric, homoge-
neous mean M we shall seek for a pair of means of the form xtM1−t

t (x, y),
ytM1−t

t (x, y), where −1 < t < 1. Let us give it a try.
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M(xtM1−t
t (x, y), ytM1−t

t (x, y)) = M1−t
t (x, y)M(xt, yt) = M(x, y).

Solving this equation for Mt we obtain

Mt(x, y) =
(

M(x, y)
M(xt, yt)

) 1
1−t

. (3)

If Mt happens to be a mean and t > 0, then obviously both Pt
1M

1−t
t and

Pt
2M

1−t
t are means and satisfy M ◦ (Pt

1M
1−t
t ,Pt

2M
1−t
t ) = M. They remain

means for t < 0, due to the identity xtM1−t
t = y−tM1+t

−t .
The following theorem gives a simple criterion for Mt to be means.

Lemma 1. If M is a homogeneous, symmetric mean, then the conditions are
equivalent:

(a) For every real −1 < t < 1 the function

Mt(x, y) =
(

M(x, y)
M(xt, yt)

) 1
1−t

is a mean.
(b) M is monotone.

Proof. Suppose M is monotone. Then for x < y we have

x1−t =
M(xtx1−t, ytx1−t)

M(xt, yt)
≤ M(x, y)

M(xt, yt)
≤ M(xty1−t, yty1−t)

M(xt, yt)
= y1−t,

so Mt is a mean.
Assume (a) holds. Since M is homogeneous and symmetric, it suffices to

show that its trace m increases. If x ≤ 1 ≤ y, then setting t = 0 we see that
m(x) ≤ 1 ≤ m(y). If 1 < x < y then there exists 0 < t < 1 such that x = yt

and then

1 ≤ m1−t
t (y) =

m(y)
m(x)

,

which concludes the proof, since the case x < y < 1 is similar. �

So we have proved the following fact.

Theorem 1. If M is a monotone, homogeneous and symmetric mean and for
−1 < t < 1 the functions Mt are given by (3), then

Kt(x, y) = xtM1−t
t (x, y) and Lt(x, y) = ytM1−t

t (x, y)

are homogeneous means and satisfy

M ◦ (Kt, Lt) = M.

Arguing as in the previous section we obtain the corollary.
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Corollary 1. If M is a monotone, symmetric and homogeneous mean, and
Mt is given by formula (3), then for any generalized projective mean PA the
functions

Kt,A(x, y) = Pt
A(x, y)M1−t

t (x, y) and Lt,A(x, y) = Pt
A′(x, y)M1−t

t (x, y)

are homogeneous means and satisfy

M ◦ (Kt,A, Lt,A) = M.

Note that the means Kt and Lt inherit the symmetry and homogeneity,
but in general, the monotonicity is not hereditary.

Theorem 2. If M �= max,Kt and Lt are as in Theorem 1 and

lim
x→0+

m(x) > 0,

then the means Kt and Lt are not monotone if t > 0.

Proof. Consider the mean Lt. One has

lim
x→0+

lt(x) = lim
x→0+

m1−t
t (x) = 1 = lt(1),

which shows that lt is not monotone. Case Kt is similar. �

Note that in case of the logarithmic mean the functions obtained are weighted
geometric means of a projective mean and a Stolarsky mean STO1,t. The
Stolarsky means defined (in general case) by

STOr,s(x, y) =
(

s

r

xr − yr

xs − ys

) 1
r−s

=
(
L(xr, yr)
L(xs, ys)

) 1
r−s

are monotone, and therefore the resulting means (1) are so. But the Stolarsky
means contain a group of means for which the resulting invariant means lack
monotonicity. These are all STOr,s with r, s > 0, in particular the arithmetic
mean A = STO2,1 and the generalization of the Heronian means

STO1+ 1
n , 1

n
(x, y) =

x + x
n−1
n y

1
n + · · · + x

1
n y

n−1
n + y

n + 1
.

All of them have a non-zero limit at zero, thus the resulting means are not
monotone.

The reader will verify that if M ◦ (K,L) = M and M(0+, 1) > 0 and
K(0+, 1) = 0, then L is not monotone.

5. One More Step Towards Invariance

The generalized projective means are a kind of extremities in the world of
means. It is natural to ask whether similar solution can be obtained for arbi-
trary means. Let us formulate the problem as follows.
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Problem 1. Suppose M is a symmetric, homogeneous and increasing mean and
t > 0. Characterize the means C,D for which there exists a bivariate function
N such that both CtN1−tand DtN1−t are means and

M ◦ (CtN1−t,DtN1−t) = M.

One can easily calculate that

N(x, y) = Nt(x, y) =
(

M(x, y)
M(Ct(x, y),Dt(x, y))

) 1
1−t

. (4)

The answer depends very much on the means involved. Here are some exam-
ples.

Example 1. For t < 1
2 and arbitrary means C,D

(
G

G ◦ (Ct,Dt)

) 1
1−t

is a mean.
Indeed, since G2

K is a mean for arbitrary mean K, and G
1
t ◦ (Ct,Dt) is a

mean, we can write
(

G

G ◦ (Ct,Dt)

) 1
1−t

=
(

G2

G1/t ◦ (Ct,Dt)

) t
1−t

G1− t
1−t ,

so the left-hand side is a weighted geometric mean of means.

Example 2. For arbitrary 0 < t < 1 the function
(

A(x, y)
A(At(x, y),Ht(x, y))

) 1
1−t

is not a mean.
Suppose for x > 1 the inequality

(
a(x)

A(at(x), ht(x))

) 1
1−t

≤ x

is valid. This is equivalent to

a(x)
x

≤ at(x) + ht(x)
2xt

.

As x tends to infinity, the left-hand side tends to 1
2 , while the limit of the

right-hand side is 1
21+t , so the assumption was wrong.

This example can be generalized.

Example 3. If M,K,L are homogeneous means satisfying

lim
x→0+

m(x) > 0, lim
x→∞

l(x)
k(x)

= 0, lim
x→∞

k(x)
x

< 1,
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and M is symmetric, then for any 0 < t < 1 the corresponding function is not
a mean, because

lim
x→∞

1
x

(
m(x)

M(kt(x), lt(x))

) 1
1−t

= lim
x→∞

1
x

⎛
⎝ xm

(
1
x

)
kt(x)m

(
lt(x)
kt(x)

)
⎞
⎠

1
1−t

= lim
x→∞

(
x

k(x)

) t
1−t

> 1.

One can easily verify, that for p > 0 the functions STO1,p, A and H satisfy the
conditions in Example 3.
Given the fact, that limp→0+ STO1,p = L pointwise, the next example looks a
little bit surprising.

Example 4. The function

N(x, y) =
(

L(x, y)
L(A1/2(x, y),H1/2(x, y))

)2

is a mean.
To show this we need some quite elementary facts. First note

1 <
a(x)
h(x)

< x for x > 1. (5)

By the convexity of sinh in R+, the divided difference sinhu
u increases. Hence,

taking into account that

L(x, x−1) =
sinh log x

log x
(6)

we conclude that the function (1,∞) � x �→ L(x, x−1) is positive and increases.
To show that N is a mean it is enough to prove that for x > 1 the

inequalities 1 < N(x, 1) = n(x) < x hold. The left one is valid, because√
a(x)h(x) =

√
x, (6) and (5) yield

√
n(x) =

l(x)
L(

√
a(x),

√
h(x))

=

√
x L

(√
x, 1√

x

)
4
√

a(x)h(x) L
(

4

√
a(x)
h(x) ,

4

√
h(x)
a(x)

) > 4
√

x > 1.

To show the other inequality remind that the power mean of order 1/2

A1/2(x, y) =
(√

x +
√

y

2

)2

=

(
L(x, y)

L
(√

x,
√

y
)
)2
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satisfies A1/2 ≤ A. Then we use (5) and the monotonicity of the logarithmic
mean to obtain√

n(x) =
l(x)

L(
√

a(x),
√

h(x))
=

1√
a(x)

l(x)

l
(√

h(x)
a(x)

)

<
1√
a(x)

l(x)

l
(

1√
x

) =

√
a1/2(x)
a(x)

√
x <

√
x.

The above examples show that to decide whether a particular function is a
mean might be quite complicated. But in fact, we do not need that much.
Fortunately we can prove that the functions CtN1−t and DtN1−t are means.

Theorem 3. If M is a symmetric, homogeneous, increasing mean and C and
D are arbitrary means, then for all 0 < t < 1 the functions

Kt(x, y) = Ct(x, y)N1−t
t (x, y) and Lt(x, y) = Dt(x, y)N1−t

t (x, y),

where Nt is given by (4), are means and satisfy the invariance equation

M(Kt(x, y), Lt(x, y)) = M(x, y).

Proof. Take arbitrary x, y > 0, x < y. Our goal is to show that

x ≤ Ct(x, y)N1−t
t (x, y) ≤ y and x ≤ Dt(x, y)N1−t

t (x, y) ≤ y.

We shall prove the left inequalities, the proof of the right ones being similar.
Note firstly that

Ct(x, y)N1−t
t (x, y) =

M(x, y)

M
(

Dt(x,y)
Ct(x,y) , 1

)

and consider two cases:
Case C(x, y) ≤ D(x, y).
In this case

1 ≤ Dt(x, y)
Ct(x, y)

≤ D(x, y)
C(x, y)

≤ y

x

and

M

(
Dt(x, y)
Ct(x, y)

, 1
)

> 1,

so

y ≥ M(x, y) ≥ M(x, y)

M
(

Dt(x,y)
Ct(x,y) , 1

) ≥ M(x, y)
M

(
y
x , 1

) = x.

Case C(x, y) > D(x, y).
Now

1 ≥ Dt(x, y)
Ct(x, y)

≥ D(x, y)
C(x, y)

≥ x

y
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and

M

(
Dt(x, y)
Ct(x, y)

, 1
)

< 1,

so

x ≤ M(x, y) ≤ M(x, y)

M
(

Dt(x,y)
Ct(x,y) , 1

) ≤ M(x, y)

M
(

x
y , 1

) = y.

�
Clearly, the means Kt and Lt inherit the symmetry and/or homogeneity from
C and D. The discussion on monotonicity from the previous section applies
here as well.

The method described above works very well in case of monotone, sym-
metric and homogeneous means M . Clearly, homogeneity is crucial here, but
one can ask whether the monotonicity condition can be relaxed?

Open Question 1. Consider a symmetric and homogeneous mean M. Do there
exist three functions K,L,N and a real number 0 < t < 1 such that the
functions KtN1−t and LtN1−t are means and the equality

M(KtN1−t, LtN1−t) = M

holds?

The examples in Sect. 5 show that the next question may be challenging as
well.

Open Question 2. Suppose M is a symmetric, homogeneous and increasing
mean. Do there exist non-trivial means C,D and a real number 0 < t < 1 such
that the function

N(x, y) =
(

M(x, y)
M(Ct(x, y),Dt(x, y))

) 1
1−t

is a mean?

6. Means of n Variables

It is natural to ask, whether Theorem 3 can be extended to higher dimension.
Assume then n > 2 and let M,C1, . . . , Cn : Rn

+ → R+ be means with M
symmetric, homogeneous and increasing. For arbitrary t ∈ (0, 1) the invariance
equation

M ◦ (Ct
1N

1−t
t , . . . , Ct

nN1−t
t ) = M

can be solved in the same way as in case of means of two variables. So we
obtain

Nt =
(

M

M ◦ (Ct
1, . . . , C

t
n)

) 1
1−t

.
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The example below shows the answer to our question is negative.

Example 5. Take M = C1 = A, C2 = · · · = Cn = G and let t ∈ (0, 1) be
arbitrary. Then the function

Kt = At A

A ◦ (At,Gt, . . . ,Gt)
is not a mean.

Indeed, setting x1 = 1 and x2 = · · · = xn = x we obtain

lim
x→∞

Kt(1, x, . . . , x)
max(1, x, . . . , x)

= lim
x→∞

(
1+(n−1)x

n

)t

x

1 + (n − 1)x(
1+(n−1)x

n

)t

+ (n − 1)
(

n
√

xn−1
)t

= lim
x→∞

1
x + (n − 1)

1 + (n − 1)
(

x
n−1

( 1
n (1+(n−1)x)) n

) t
n

= n − 1 > 1.

We want to emphasize that even if the functions Ct
i (x)N1−t

t (x) may not
be means, they form an n-tuple of invariant functions—a fact that can be
useful in some applications.

7. Remark on Translative Means

A mean N : R2 → R is called translative if N(x + τ, y + τ) = N(x, y) + τ for
all τ, x, y ∈ R.

Recall that a bivariate mean on R
2 is both homogeneous and translative

if, and only if, it is a weighted arithmetic mean [1, Theorem 1, p. 234]. This
fact explains great popularity of the arithmetic means. As an example of a
translative mean one can recall the Toader mean [10] defined as E(x, y) =
xex−yey

ex−ey .
Since a mean M : R2

+ → R+ is homogeneous if, and only if, the mean
N : R2 → R defined by

N(x, y) := log M(exp x, exp y),

is translative, all the notions, results and questions posed above have their
“translative” counterparts. In particular Theorem 1 can be reformulated as
follows.

Theorem 4. If N : R2 → R is a monotone, translative and symmetric mean
and for −1 < t < 1 the functions Nt are given by

Nt(x, y) =
N(x, y) − N(tx, ty)

1 − t
, x, y ∈ R,

then the functions
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Kt(x, y) = tx + (1 − t)Nt(x, y) and Lt(x, y) = ty + (1 − t)Nt(x, y)

are translative means and satisfy

N ◦ (Kt, Lt) = N.

Example 6. Since the arithmetic mean A is monotone, translative and symmet-
ric, applying this result we conclude that A ◦ (Kt, Lt) = A, that A is invariant
with respect to the mean-type mapping (Kt, Lt), where

Kt(x, y) =
1 + t

2
x +

1 − t

2
y and Lt(x, y) =

1 − t

2
x +

1 + t

2
y

for x, y ∈ R.
It is not difficult to check that {(Kt, Lt) : t ∈ (−1, 1)} is a family of all

weighted arithmetic mean-type mapping such that A ◦ (Kt, Lt) = A.

8. Remarks on Subtranslative and Subhomogeneous Means

Let p ∈ R be fixed. It is obvious that every function N : (0,∞)2 → R satisfying
the inequality

N(tx, ty) ≤ tpN(x, y), x, y, t > 0,

is homogeneous of the order p, that is

N(tx, ty) = tpN(x, y), x, y, t > 0.

In this connection the following notion is natural. A mean N : (0,∞)2 →
(0,∞) is called subhomogeneous (see [9]), if

N(tx, ty) ≤ tN(x, y), x, y > 0, t > 1;

and superhomogeneous, if the reversed inequality holds true.
Analogously, a mean N : R2 → R is said to be subtranslative if

N(x + t, y + t) ≤ N(x, y) + t, x, y ∈ R, t > 0;

and supertranslative if the reversed inequality is satisfied (cf. also Sándor [8]
where translativity is called additive homogeneity).

Remark 1. Let M,K,L : (0,∞)2 → (0,∞) be means such that M is homo-
geneous, strictly monotonic and invariant with respect to the mean-type map
(K,L), that is M ◦ (K,L) = M . If K is subhomogeneous (superhomogeneous),
then L is superhomogeneous (subhomogeneous).

Proof. The (K,L)-invariance and homogeneity of M yield

M(K(tx, ty), L(tx, ty)) = tM(x, y), x, y > 0, t > 1.

Assuming that K is subhomogeneous, i.e. that K(tx, ty) ≤ tK(x, y) for all
x, y > 0 and t > 1, from the monotonicity of M , we hence get

M(tK(x, y), L(tx, ty)) ≥ tM(x, y), x, y > 0, t > 1,
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whence, by the homogeneity of M ,

M(K(x, y),
1
t
L(tx, ty)) ≥ M(x, y), x, y > 0, t > 1.

Now this inequality, the invariance equality

M(K(x, y), L(x, y)) = M(x, y), x, y > 0,

and the increasing monotonicity of M imply that
1
t
L(tx, ty) ≥ L(x, y), x, y > 0, t > 1,

which proves that L is superhomogeneous. �
We omit a obvious reformulation of this remark in the case when M is

translative, K and L are sub- or super-translative.

Example 7. Put L := L (the logarithmic mean) and K := 2A − L. Since A is
translative, L is supertranslative (cf. Sándor [8]), and of course,

A ◦ (K, L) = A,

that is A is (K, L)-invariant, it follows that K is subtranslative.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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