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1. Introduction

Centro-affine real hypersurfaces with a J-tangent transversal vector field were
first studied by Cruceanu in [1]. He proved that such hypersurfaces
f : M2n+1 → C

n+1 can be locally expressed in the form

f(x1, . . . , x2n, z) = Jg(x1, . . . , x2n) cos z + g(x1, . . . , x2n) sin z,

where g is some smooth function defined on an open subset of R
2n. He also

showed that if the induced almost contact structure is Sasakian then a hy-
persurface must be a hyperquadric. The latter result was generalized in [3] to
arbitrary hypersurfaces with J-tangent transversal vector field.

Since the class of centro-affine hypersurfaces with a J-tangent transversal
vector field is quite large, the question arises whether there are affine hyper-
spheres with a J-tangent Blaschke normal field. A nontrivial 3-dimensional
example was provided in [4]. The main purpose of this paper is to give a local
characterization of 3-dimensional J-tangent affine hyperspheres with involu-
tive contact distribution D.

In Sect. 2 we briefly recall basic formulas of affine diferential geometry
and recall the notion of an affine hypersphere.
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In Sect. 3 we recall the notion of a J-tangent transversal vector field,
a definition of the induced almost contact structure as well as some results
obtained in [3].

Section 4 contains the main results of this paper. We prove that there are
no improper J-tangent affine hyperspheres and we give a local representation
of 3-dimensional J-tangent affine hyperspheres under additional condition that
the contact distribution is involutive.

2. Preliminaries

We briefly recall the basic formulas of affine differential geometry. For more
details, we refer to [2]. Let f : M → R

n+1 be an orientable connected differen-
tiable n-dimensional hypersurface immersed in the affine space R

n+1 equipped
with its usual flat connection D. Then for any transversal vector field C we
have

DX f∗Y = f∗(∇XY ) + h(X,Y )C (2.1)

and

DX C = −f∗(SX) + τ(X)C, (2.2)

where X,Y are vector fields tangent to M . It is known that ∇ is a torsion-free
connection, h is a symmetric bilinear form on M , called the second fundamental
form, S is a tensor of type (1, 1), called the shape operator, and τ is a 1-form,
called the transversal connection form.

We assume that h is nondegenerate so that h defines a semi-Riemannian
metric on M . If h is nondegenerate, then we say that the hypersurface or the
hypersurface immersion is nondegenerate. In this paper we assume that f is
always nondegenerate. We have the following

Theorem 2.1 ([2], Fundamental equations). For an arbitrary transversal vector
field C the induced connection ∇, the second fundamental form h, the shape
operator S, and the 1-form τ satisfy the following equations:

R(X,Y )Z = h(Y,Z)SX − h(X,Z)SY, (2.3)

(∇Xh)(Y,Z) + τ(X)h(Y,Z) = (∇Y h)(X,Z) + τ(Y )h(X,Z), (2.4)

(∇XS)(Y ) − τ(X)SY = (∇Y S)(X) − τ(Y )SX, (2.5)

h(X,SY ) − h(SX, Y ) = 2dτ(X,Y ). (2.6)

The Eqs. (2.3), (2.4), (2.5), and (2.6) are called the equations of Gauss,
Codazzi for h, Codazzi for S and Ricci, respectively.

For a hypersurface immersion f : M → R
n+1 a transversal vector field C

is said to be equiaffine (resp. locally equiaffine) if τ = 0 (resp. dτ = 0).
When f is nondegenerate, there exists a canonical transversal vector field

C, called the affine normal (or the Blaschke normal field). The affine normal is
uniquely determined up to sign by the following conditions: the metric volume
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form ωh of h is ∇-parallel and coincides with the induced volume form Θ, where
ωh is defined by |ωh(X1, . . . , Xn)| = |det[h(Xi,Xj)]|1/2 and Θ is defined by
Θ(X1, . . . , Xn) = det[f∗X1, . . . , f∗Xn, C] for tangent vectors Xi (i=1,. . . ,n).
The affine immersion f with the Blaschke normal field C is called a Blaschke
hypersurface. In this case fundamental equations can be rewritten as follows

Theorem 2.2 ([2], Fundamental equations). For a Blaschke hypersurface f , we
have the following fundamental equations:

R(X,Y )Z = h(Y,Z)SX − h(X,Z)SY, (2.7)

(∇Xh)(Y,Z) = (∇Y h)(X,Z), (2.8)

(∇XS)(Y ) = (∇Y S)(X), (2.9)

h(X,SY ) = h(SX, Y ). (2.10)

A Blaschke hypersurface is called an affine hypersphere if S = λI, where
λ = const.

If λ = 0 f is called an improper affine hypersphere, if λ �= 0 f is called
a proper affine hypersphere.

For simplicity we shall omit f∗ in front of vector fields in most cases.

3. Induced Almost Contact Structures

Let dim M = 2n + 1 and f : M → R
2n+2 be a nondegenerate affine hypersur-

face. We always assume that R
2m � C

m is endowed with the standard complex
structure J . In particular, if m = n + 1 we have

J(x1, . . . , xn+1, y1, . . . , yn+1) = (−y1, . . . ,−yn+1, x1, . . . , xn+1).

Let C be a transversal vector field on M . We say that C is J-tangent if
JCx ∈ f∗(TxM) for every x ∈ M . We also define a distribution D on M as
the biggest J invariant distribution on M , that is,

Dx = f−1
∗ (f∗(TxM) ∩ J(f∗(TxM)))

for every x ∈ M . It is clear that dim D = 2n. A vector field X is called a
D-field if Xx ∈ Dx for every x ∈ M . We use the notation X ∈ D for vectors
as well as for D-fields. We say that the distribution D is nondegenerate if h is
nondegenerate on D.

Recall that a (2n + 1)-dimensional manifold M is said to have an almost
contact structure if there exist on M a tensor field ϕ of type (1,1), a vector
field ξ and a 1-form η which satisfy

ϕ2(X) = −X + η(X)ξ, (3.1)

η(ξ) = 1 (3.2)

for every X ∈ TM .
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Let f : M → R
2n+2 be a nondegenerate hypersurface with a J-tangent

transversal vector field C. Then we can define a vector field ξ, a 1-form η and
a tensor field ϕ of type (1,1) as follows:

ξ := JC, (3.3)

η|D = 0 and η(ξ) = 1, (3.4)

ϕ|D = J |D and ϕ(ξ) = 0. (3.5)

It is easy to see that (ϕ, ξ, η) is an almost contact structure on M . This struc-
ture is called the almost contact structure on M induced by C (or simply
induced almost contact structure).

For an induced almost contact structure we have the following theorem

Theorem 3.1 ([3]). If (ϕ, ξ, η) is the induced almost contact structure on M
then the following equations hold:

η(∇XY ) = −h(X,ϕY ) + X(η(Y )) + η(Y )τ(X), (3.6)

ϕ(∇XY ) = ∇XϕY + η(Y )SX − h(X,Y )ξ, (3.7)

η([X,Y ]) = −h(X,ϕY ) + h(Y, ϕX) + X(η(Y )) − Y (η(X)) (3.8)

+ η(Y )τ(X) − η(X)τ(Y ),

ϕ([X,Y ]) = ∇XϕY − ∇Y ϕX − η(X)SY + η(Y )SX, (3.9)

η(∇Xξ) = τ(X), (3.10)

η(SX) = h(X, ξ) (3.11)

for every X,Y ∈ X (M).

4. J -Tangent Affine Hyperspheres

An affine hypersphere with a transversal J-tangent Blaschke normal field we
call a J-tangent affine hypersphere.

It is obvious that the standard hypersphere S2n+1(r) in R
2n+2

x1
2 + x2

2 + . . . + x2n+2
2 = r2

is a J-tangent affine hypersphere, since it is an affine hypersphere and the
affine normal field is orthogonal to it. The next example shows that there are
also other J-tangent affine hyperspheres:

Example 4.1 ([4]). Let us consider the affine immersion f defined as follows:

f : R
3 � (x, y, z) 	→

⎡
⎢⎢⎣

sinx sinh y
− cos x sinh y
cos x cosh y
sinx cosh y

⎤
⎥⎥⎦ cos z +

⎡
⎢⎢⎣

cos x cosh y
sin x cosh y

− sin x sinh y
cos x sinh y

⎤
⎥⎥⎦ sin z ∈ R

4

with the transversal vector field

C : R
3 � (x, y, z) 	→ −f(x, y, z) ∈ R

4.
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f is a J-tangent affine hypersphere, since C is the affine normal field (what can
be shown by straightforward computations) and JC = fz ∈ f∗TM. Moreover,
in the canonical coordinates on R

3 we have

h =

⎡
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎦ .

Thus, h is not positive definite.

As an immediate consequence of Theorem 3.1 we have the following:

Theorem 4.1. There are no improper J-tangent affine hyperspheres.

Proof. From Theorem 3.1 (formula (3.11)) we have η(SX) = h(X, ξ) for all
X ∈ X (M). Thus, if S = 0 then, h(X, ξ) = 0 for every X ∈ X (M), which
contradicts nondegeneracy of h (since ξ �= 0.) �

Now we can state the main result of this paper:

Theorem 4.2. Let f : M 	→ R
4 be a J-tangent affine hypersphere with involutive

distribution D. Then f can be locally expressed in the form:

f(x, y, z) = λ− 5
8

⎡
⎢⎢⎣

sin
√

λx sinh
√

λy

− cos
√

λx sinh
√

λy

cos
√

λx cosh
√

λy

sin
√

λx cosh
√

λy

⎤
⎥⎥⎦ cos λz

+λ− 5
8

⎡
⎢⎢⎣

cos
√

λx cosh
√

λy

sin
√

λx cosh
√

λy

− sin
√

λx sinh
√

λy

cos
√

λx sinh
√

λy

⎤
⎥⎥⎦ sinλz ∈ R

4 (4.1)

for some λ > 0.

We split the proof of Theorem 4.2 into several lemmas.

Lemma 4.1. For every X,Y ∈ D we have

h(ϕX,ϕY ) = −h(X,Y ).

Proof. Since D is involutive and ker η = D we have η([X,Y ]) = 0 for all
X,Y ∈ D. Now using the formula (3.8) we obtain

h(X,ϕY ) = h(Y, ϕX) (4.2)

for every D-fields X and Y . Setting Y := ϕY in (4.2) and using the fact that
ϕ2 = −I on D we immediately get

−h(X,Y ) = h(ϕX,ϕY ).

�
Lemma 4.2. For every x ∈ M there exists a neighbourhood U of x and a D-field
X ∈ X (U), X �= 0 such that h(X,X) = 1, h(ϕX,ϕX) = −1, h(X,ϕX) = 0.
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Proof. First observe that h is nondegenerate on D, it means that for every
x ∈ M hx is nondegenerate on Dx. We will prove it by contradiction, namely,
suppose there exists x ∈ M such that hx is degenerate on Dx. Now, we can find
w ∈ Dx, w �= 0 such that hx(v, w) = 0 for every v ∈ Dx. From formula (3.11)
we also have hx(ξx, w) = 0. Since every vector t ∈ TxM can be expressed in
the form

t = αv + βξx,

where α, β ∈ R, v ∈ Dx, we obtain

hx(w, t) = αhx(w, v) + βhx(w, ξx) = 0

for all t ∈ TxM . We have that hx is nondegenerate on TxM so it follows that
w = 0, which contradicts the assumption.

Now we show that for every x ∈ M we can find a D-field Z such that

hx(Zx, ϕZx) �= 0.

Assume that there exists x ∈ M such that for all Zx ∈ Dx we have

hx(Zx, ϕZx) = 0.

Then, for any v, w ∈ Dx we have:

0 = hx(v + w,ϕv + ϕw) = hx(v, ϕv) + hx(w,ϕv) + hx(v, ϕw)
+hx(w,ϕw) = hx(w,ϕv) + hx(v, ϕw).

Applying Lemma 4.1 we obtain

hx(v, w) = 0

for all v, w ∈ Dx, which contradicts nondegeneracy of h on D. Let x be an
arbitrary point of M and let Z ∈ D be such that hx(Zx, ϕZx) �= 0. Then there
exists a neighbourhood U of x such that h(Z,ϕZ) �= 0 on U . Without loss of
generality we can assume that h(Z,ϕZ) > 0 on U (if h(Z,ϕZ) < 0 we can
replace Z by ϕZ). Now, we can define another vector field Y by the formula

Y := αZ + βϕZ,

where

α =
√√

h(Z,Z)2 + h(Z,ϕZ)2 + h(Z,Z)

and

β =
√√

h(Z,Z)2 + h(Z,ϕZ)2 − h(Z,Z).

It is obvious that α and β are smooth and positive functions on U . Moreover

h(Y, ϕY ) = (α2 − β2)h(Z,ϕZ) − 2αβh(Z,Z)
= 2h(Z,Z)h(Z,ϕZ) − 2h(Z,ϕZ)h(Z,Z) = 0
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and

h(Y, Y ) = α2h(Z,Z) + β2h(ϕZ,ϕZ) + 2αβh(Z,ϕZ)
= 2(h(Z,Z))2 + 2αβh(Z,ϕZ) > 0

since α, β and h(Z,ϕZ) are positive functions on U . It is easy to verify that
X := Y√

h(Y,Y )
has the required properties. �

Lemma 4.3. For X from Lemma 4.2 the following equalities hold:

∇ξX = −λϕX, ∇ξϕX = λX, ∇ξξ = 0, ∇Xξ = −λϕX,

∇ϕXξ = λX, ∇XX = 0, ∇XϕX = ξ, ∇ϕXϕX = 0, ∇ϕXX = ξ,

where λ is some positive constant.

Proof. From Theorem 3.1 we easily get

∇ξX, ∇ξξ, ∇Xξ, ∇ϕXξ, ∇XX, ∇ϕXϕX ∈ D.

Since dim D = 2, there are two smooth functions α, β defined on U such that

∇ξX = αX + βϕX. (4.3)

Now (3.7) implies

∇ξϕX = αϕX − βX. (4.4)

Moreover (3.7) and (3.11) imply

∇ξξ = 0.

Since f is an affine hypersphere, we have S = λI, where λ is a constant. We
can assume that λ > 0 (otherwise we can change the sign of the Blaschke
normal field). Let ωh be the volume form for h. Then (since f is a Blaschke
hypersurface) we have in particular

0 = (∇ξωh)(X,ϕX, ξ) = ξ(ωh(X,ϕX, ξ)) − ωh(∇ξX,ϕX, ξ) − ωh(X,∇ξϕX, ξ)
−ωh(X,ϕX,∇ξξ) = −ωh(∇ξX,ϕX, ξ) − ωh(X,∇ξϕX, ξ)

because ∇ξξ = 0 and ωh(X,ϕX, ξ) =
√

λ = const . Now, using (4.3) and (4.4),
we obtain

(∇ξωh)(X,ϕX, ξ) = −ωh(αX,ϕX, ξ) − ωh(βϕX,ϕX, ξ)

−ωh(X,αϕX, ξ) + ωh(X,βX, ξ) = −2α
√

λ.

Thus α = 0.
We also have

∇Xξ = −ϕSX = −λϕX

and

∇ϕXξ = λX.
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From the Coddazi equation for h (2.8) we have

(∇ξh)(X,ϕX) = −h(∇ξX,ϕX) − h(X,∇ξϕX)
= −h(∇ξX,ϕX) − h(ξ,∇XϕX) = (∇Xh)(ξ, ϕX),

so h(ξ,∇XϕX) = −λ − 2β. Again from (3.7) we get

∇XϕX = ϕ(∇XX) + ξ.

Thus −λ − 2β = h(ξ,∇XϕX) = h(ξ, ϕ(∇XX) + ξ) = λ, that is, β = −λ.
Summarizing the above consideration, we obtain

∇ξX = −λϕX, ∇ξϕX = λX, ∇ξξ = 0, ∇Xξ = −λϕX, ∇ϕXξ = λX.

Since ∇XX ∈ D and ∇ϕXϕX ∈ D, we have

∇XX = pX + qϕX, ∇ϕXϕX = aX + bϕX,

where p, q, a, b are smooth functions on U . Hence

∇XϕX = ϕ(∇XX) + ξ = pϕX − qX + ξ,

∇ϕXX = ξ − ϕ(∇ϕXϕX) = ξ − aϕX + bX.

Now, using the fact that

(∇Xωh)(X,ϕX, ξ) = 0,

we get p = 0. Similary from

(∇ϕXωh)(X,ϕX, ξ) = 0

we get b = 0. Again using the Coddazi equation for h (2.8) we have

(∇Xh)(X,ϕX) = (∇ϕXh)(X,X).

Thus q = 0. In a similar way, using the equality

(∇ϕXh)(ϕX,X) = (∇Xh)(ϕX,ϕX),

we can show that a = 0. Thus we have

∇XX = 0, ∇ϕXϕX = 0, ∇XϕX = ξ, ∇ϕXX = ξ.

The proof of lemma is completed. �

Now we can return to the proof of the main theorem

Proof of Theorem 4.2. From Lemma 4.3, since ∇ is a torsion free connection,
we immediately get

[ξ,X] = [ξ, ϕX] = [X,ϕX] = 0.
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Now, Frobenius’ theorem implies that there exists a local coordinates system
(x, y, z) on U such that ∂

∂x = X, ∂
∂y = ϕX, ∂

∂z = ξ. In these coordinates f

satisfies the following differential equations:

fxx = C = −λf = −Jξ = −Jfz, (4.5)
fxy = fz, (4.6)
fxz = −λfy, (4.7)
fyy = −C = λf = Jfz, (4.8)
fyz = λfx, (4.9)

fzz = −λJfz = −λ2f. (4.10)

The Eq. (4.9) can be easily obtained from (4.7) and (4.10). Moreover the
equation (4.6) can be determined from the remaining, as well.

From (4.10) we get

f(x, y, z) = c1(x, y) cos λz + c2(x, y) sin λz,

where c1, c2 are smooth functions with values in R
4. Now, from (4.5), (4.7)

and (4.8) we obtain
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

c1xx = −λc1

c1yy = λc1

Jc1x = c1y

Jc2 = c1

Solving this system of equations we get

c1(x, y) = (ae
√

λy + be−√
λy) cos

√
λx + (−Jae

√
λy + Jbe−√

λy) sin
√

λx

and c2(x, y) = −Jc1(x, y), where a = (a1, a2, a3, a4)T , b = (b1, b2, b3, b4)T ∈
R

4. Since f must be an affine hypersphere with S = λI, the affine normal field
C must have a form C = −λf . It is obvious that τ = 0. By straightforward
computations we obtain:

θ
( ∂

∂x
,

∂

∂y
,

∂

∂z

)
= 4λ3 det[a b Ja Jb] and ωh

( ∂

∂x
,

∂

∂y
,

∂

∂z

)
=

√
λ,

so f is an affine hypersphere if and only if

det[a b Ja Jb] =
1
4
λ− 5

2 .

Now, it is sufficient to find an affine J-invariant transformation A such that
det A = 1. Let

A = λ
5
8

⎡
⎢⎢⎣

a3 + b3 −a1 + b1 a1 + b1 a3 − b3

a4 + b4 −a2 + b2 a2 + b2 a4 − b4

−a1 − b1 −a3 + b3 a3 + b3 −a1 + b1

−a2 − b2 −a4 + b4 a4 + b4 −a2 + b2

⎤
⎥⎥⎦ .
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A is J-invariant and detA = 4λ
5
2 det[a b Ja Jb] = 1. It is not difficult to verify

that A−1 ◦ f has the form (4.1), what completes the proof of the theorem. �
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