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Abstract—Examining the deformation of rocks during triaxial

compression may provide insights into the precursory phase that

leads to large earthquakes by revealing the components of the

deformation field that evolve with predictable, systematic behavior

preceding catastrophic failure. Here, we build three-dimensional

discrete element method simulations of the triaxial compression of

rock cores that include a variety of fault geometries in order to

identify the components of the deformation field, including the

velocity and strain components, that enable machine learning

models to predict the timing of macroscopic failure. The results

suggest that the velocity field provides more valuable information

about the timing of macroscopic failure than the strain field, and in

particular, the velocity component parallel to the maximum com-

pression direction. The models also strongly depend on the second

invariant of the strain deviator tensor, J2, indicative of the shear

strain. The importance of J2 on the model predictions increases

with confining stress, consistent with laboratory observations that

show a transition from tensile- to shear-dominated deformation

with increasing confining stress. In contrast to expectations from

previous machine learning analyses, none of the models strongly

depend on components of the strain tensor indicative of dilation,

such as the first invariant of the strain tensor. This difference may

arise because the simulations host less dilative strain than the

experimental rocks.

Keywords: Triaxial compression, macroscopic failure, frac-

ture development, machine learning, discrete element method.

1. Introduction

Identifying the factors that control macroscopic

failure and how they evolve toward failure are critical

goals in geoscience and engineering. Determining

which strain components, for example, develop with

a systematic evolution towards macroscopic failure

may enable analysts to recognize the precursory

signals that indicate approaching macroscopic failure

in the crust and engineered structures. Precursory

activity has been detected preceding some large

earthquakes (e.g., Whitcomb et al., 1973). However,

for many large earthquakes, including earthquakes

that occurred on faults that were heavily instru-

mented, analyses detected scant evidence of

precursors (e.g., Bakun et al., 2005). Variations in

seismic wave properties, including the velocity and

attenuation, are one of the identified precursory

changes in geophysical properties documented in

laboratory experiments and some natural earthquakes

(e.g., Main et al., 2012). Previous work attributes this

variation to the dilation of the crust via fracture

propagation and/or opening, preslip on existing fault

surfaces, increasing normal stress in the wall rock

surrounding the fault, and the movement of fluids in

the crust (Main et al., 2012; Scholz et al., 1973).

Using the evolution of seismic wave properties, pre-

vious machine learning analyses have successfully

predicted the timing of slip within precut blocks in

the laboratory (Shreedharan et al., 2021a).

The observed reduction in the P-wave velocity

suggests that dilation occurs preceding fault slip in

the laboratory and the crust, and thus that the dilation

of the crust may indicate the proximity of macro-

scopic failure. However, the evolutions of these

seismic properties cannot reveal whether the shear

strain accumulates with a recognizable evolution that

indicates approaching macroscopic failure. Thus,

tracking the seismic properties cannot provide insight

into which strain component provides more system-

atic information, and thus potentially more predictive

ability.
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To directly compare the predictive ability of the

dilation and shear strain, in a previous analysis we

used the local incremental strain fields calculated

from in situ X-ray tomograms acquired during triaxial

compression to predict the timing of macroscopic

failure, when the rock experiences a sudden, catas-

trophic stress drop after achieving its maximum

differential stress (McBeck et al., 2020a). This work

found that the machine learning models depend pri-

marily on the local dilation of the rock to predict the

timing of failure, rather than a quantity that measures

the local shear strain components, the curl of the

displacement field. This result is consistent with

observations from the laboratory and the crust of

temporary variations in the P-wave properties prior to

fault slip and large earthquakes (e.g., Aggarwal et al.,

1973; Chiarabba et al., 2020; Niu et al., 2008; Pio

Lucente et al., 2010; Scuderi et al., 2016; Whitcomb

et al., 1973). However, we performed this machine

learning analysis on experiments with intact rocks

that lack a preexisting fault, unlike the laboratory and

crustal observations. Because faults can heal and thus

strengthen in the interseismic period (e.g., Tenthorey

& Cox, 2006), the nucleation process leading to large

earthquakes may include fracture propagation and

opening within relatively intact rocks, similar to the

triaxial compression experiments of intact rocks.

However, recent analyses highlight that the variation

in seismic properties observed in the crust arises from

a combination of processes within the host rock and

on the preexisting fault surface that are integrated

into the overall signal (Shreedharan et al., 2021b). In

laboratory experiments with two sliding blocks, fault

preslip tends to reduce the P-wave velocity, while

increasing normal stress in the wall rock can increase

the P-wave velocity, thereby reducing the strength of

any observed reduction of the P-wave velocity

(Shreedharan et al., 2021b). Thus, systems that

include a preexisting healed fault surface may more

closely represent the systems in which earthquakes

nucleate in the crust than intact rocks. Moreover, the

relative importance of the strain components in pre-

dicting the timing of macroscopic failure may differ

in systems that include and exclude a preexisting

fault. The inclusion of a preexisting healed fault with

an orientation that maximizes the Coulomb shear

stress will likely promote shear deformation rather

than dilation.

To constrain the characteristics of the deformation

field that evolve in a systematic evolution toward

failure, and thus may be used to recognize the pre-

cursory phase of approaching catastrophic failure, we

build discrete element method simulations of the

triaxial compression of nominally intact rocks, and

rock cores that include a preexisting, healed fault. We

develop machine learning models to predict the tim-

ing of macroscopic failure using characteristics of the

deformation field, including the components of the

three-dimensional velocity and strain fields. This

analysis thus enables comparing the predictive power

of each velocity and strain component to each other

in systems that more closely resemble natural crustal

fault systems than the previous machine learning

analysis that used intact rocks (McBeck et al., 2020a).

Performing this analysis on simulations, rather than

rocks deformed in the laboratory, enables testing a

wider range of confining stresses and fault geometries

than feasible in the laboratory. We systematically

vary the confining stress from uniaxial compression

conditions to 50 MPa, vary the orientation of the

preexisting fault from 15� to 60� from the maximum

compression direction, and vary the fault length from

system-spanning to shorter lengths. We test the

influence of confining stress on the predictive power

of the deformation components because laboratory

observations document how confining stress controls

the fracture geometry, and proportion of shear

deformation relative to dilative or contractive defor-

mation (e.g., Paterson & Wong, 2005). Similarly,

laboratory experiments show that the orientation of

precut faults can control how the rock fails, and in

particular, whether the deformation is concentrated

along the preexisting fault surface, or spread more

diffusely in the surrounding rock volume (e.g.,

Giorgetti et al., 2019). We vary the fault length in the

simulations because whether the fault spans the rock

core, or only crosses a portion of the system, likely

controls the precise geometry of the fracture network

(e.g., Bobet & Einstein, 1998).

The results suggest that the components of the

velocity fields are more valuable for predicting the

timing of macroscopic failure than the components of

the strain fields, contrary to expectations. In
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particular, the deformation parallel to the maximum

compression direction provides the most useful

information to the machine learning models. Some of

the machine learning models also depend on the

second invariant of the strain tensor, J2. Increasing

the confining stress increases the dependence of the

models on J2. None of the models strongly depends

on the components of the strain tensor indicative of

dilation, the first invariant of the strain tensor, I1,

even when the models only have access to the normal

strain tensor components and I1, in contrast to results

from previous machine learning analyses. This work

thus examines the influence of fault geometry and

confining stress on the predictive power of each

component of the deformation field, including both

the velocity and strain components.

2. Methods

2.1. ESyS-Particle Discrete Element Method

Simulations

We use the discrete element method tool ESyS-

Particle to build the simulations (Abe et al., 2004).

ESyS-Particle approximates the behavior of materials

with indestructible spherical particles that may be

unbonded or connected to other particles with one or

several bonds. The bonds have both shear and normal

stiffness. During a simulation, a bond may break if

the forces acting on it exceed the Coulomb criterion

determined from its prescribed microparameters of

cohesion and friction. Unbonded particles experience

frictional and elastic forces. Thorough calibration of

the microparameters of the bonds and particles is

required for the simulations to approximate the

mechanical response of natural rock. ESyS-Particle

requires a damping parameter that decreases the

kinetic energy in order to maintain the stability of the

simulations. Thus, deformation and fault growth are

quasistatic, similar to the laboratory experiments to

which we compare the results of the present analysis

(McBeck et al., 2020a).

We simulate the uniaxial and triaxial compression

of blocks that include one rough fault embedded in a

three-dimensional system. The blocks are 40 mm 9

80 mm 9 10 mm along the x, y, and z-axes

respectively (Figs. 1, 2). We chose to restrict the

dimension of the block along the z-axis in order to

improve processing time. Because the preexisting

faults extend from the front to the back of the system,

along the z-axis, varying the length of this dimension

would not significantly change the local stress field

that develops within the system, and thus the

resulting fracture network.

We apply a constant normal stress to the four

sides of the simulations on the front, back, left and

right sides, and then apply constant axial velocity

loading. To ensure stability, we apply a linear ramp

from zero to the desired normal stress and axial

velocity over 40,000 timesteps. We identify the

timestep size using the maximum bond stiffness and

minimum particle radius, following the Courant

condition (e.g., Karimabadi et al., 2005) (e.g.,

Table S1). The normal stress increases in the first

40,000 timesteps, and then the axial velocity loading

increases from 50,000 to 90,000 timesteps. Thus, the

simulation achieves the desired confining stress

before the onset of the axial velocity loading. To

apply the axial velocity loading, we move the top and

bottom boundaries of the simulations toward each

other at 0.125 mm/s. We apply 0, 10, and 50 MPa of

confining stress.

To build the preexisting fault, the simulations

have three groups of bonds with different micropa-

rameters (cohesion and stiffness) that represent the

principal slip zone, the damaged rock surrounding

this zone, and the more intact host rock (Fig. 1). We

refer to these bonds, and the types of fractures that

develop within these materials via bond breakage, as

on-fault, damage zone, and off-fault, respectively.

The simulations include one fault that may be three

different lengths, L: 15 mm long, 20 mm long, or

system-spanning, in which the fault extends across

the x-axis of the simulation (Fig. 2). These faults

have roughness parameters of natural faults, with

Hurst exponents parallel and perpendicular to the

down-dip direction of 0.6, and an amplitude of one

millimeter (Candela et al., 2012). Following the

approach of McBeck et al. (2021b), we build the

faults by labelling particles with surfaces that lie

within one millimeter of a mesh surface that repre-

sents the fault as on-fault, and then labelling all the

other particles as off-fault. Because the maximum
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particle radius is one millimeter, using this distances

ensures that the resulting fault surface does not

contain gaps. The particle labels then determine the

bond labels, which indicate whether the bond repre-

sents on-fault, damage zone, or off-fault material.

Fault zones consist of a principal slip zone and

surrounding damage zone embedded within a more

intact host rock (e.g., Faulkner et al., 2010). Based on

the relationship between fracture density and

mechanical properties (e.g., Paterson & Wong,

2005), these materials are expected to increase in

strength and stiffness with increasing distance from

the fault core. This range in material parameters is

also consistent with seismic imaging that reveals low

velocity zones around faults, and increasing veloci-

ties in the surrounding host rocks (e.g., Allam et al.,

2014). We therefore prescribe three different sets of

cohesion, c, and normal stiffness, kn, to the on-fault,

damage zone, and off-fault bonds. We vary the values

of these microparameters to achieve the desired

mechanical properties, including the uniaxial com-

pressive strength, UCS, and Young’s modulus, E.

We first find the set of microparameters that

produces the UCS and E of intact granite, and then

prescribe these microparameters to the off-fault

bonds. To find these parameters, we build

Figure 1
Geometries with 15 mm long faults and the four tested fault orientations: a particles, b bonds. The simulations are 40 mm 9 80 mm 9

10 mm along the x, y, and z-axes, respectively. a The simulations consist of two types of particles that represent the relatively intact host rock

(gray), and the weaker preexisting fault material (black). b Three types of bonds connect the particles. The bonds represent the on-fault

(yellow), damage zone (blue–green), and off-fault material (dark blue). The on-fault bonds connect the weak on-fault particles. The off-fault

bonds connect the strong off-fault particles. The damage zone bonds connect pairs of on-fault and off-fault particles. The faults extend from

the front to the back of the system along the z-axis. The faults have the roughness parameters (Hurst exponents) of natural faults. To build the

faults, we label particles within 1 mm of a surface with the prescribed roughness parameters (Hurst exponents and amplitude) as the weak on-

fault particles. The remaining particles in the system are the off-fault particles. We vary the orientation of the fault, h, between 15 to 60� from
the maximum compression direction, r1
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homogeneous simulations in which all the bonds have

the same set of microparameters, and then load them

in uniaxial compression (Figure S1). Following this

step of the calibration, we identify the set of

microparameters that produces UCS and E of

270 MPa and 40 GPa, respectively, within the ranges

Figure 2
Fault geometries with the four tested orientations and a 15 mm long faults, b 20 mm long faults, and c system-spanning faults
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of intact granite (e.g. Griffiths et al., 2017). Table S1

lists the full suite of microparameters found through

calibration.

The strength and stiffness of the principal slip

zone of a fault depend on the rate of healing, rate of

crustal loading and damage accumulation, and time

elapsed since the previous earthquake (e.g., Lya-

khovsky et al., 2001). We model systems with a

relatively weak fault, so we find the set of micropa-

rameters for the on-fault bonds that produce UCS and

E of 10 MPa and 4.5 GPa, respectively. Then, we

prescribe microparameters to the damage zone bonds

between the endmembers of the on-fault and off-fault

zones. This process produces increasing UCS and

E from the on-fault to the damage zone, and then to

the off-fault volume. These simulations thus assume

that the crustal loading that reactivates the preexisting

healed fault occurs quickly compared to the healing

of the surrounding host rock.

2.2. Machine Learning Models

Throughout this analysis, we refer to the machine

learning models as ‘‘models’’, and the discrete

element method simulations as ‘‘simulations’’ in

order to differentiate between these tools. We build

the models to predict the timing of macroscopic

failure, and thus the peak axial stress, using the

particle velocities and corresponding strain fields. We

do not include information about the local stress

fields because the stress tensor is difficult to measure

in the field with high spatial resolution. We provide

the three-dimensional velocity and strain fields from

timesteps of the simulations to the models, and build

the models to predict the normalized distance to

macroscopic failure. We define the normalized time

to failure as ðtf � tÞ=tf , where tf is the timestep when

macroscopic failure occurs and t is the present

timestep of the simulation. Because the applied axial

velocity loading of the simulations is constant, the

timestep is proportional to the cumulative axial strain.

Thus, the time to failure calculated from the

timesteps is equal to the time to failure calculated

from the cumulative axial strain. Following previous

laboratory work (McBeck et al., 2020a), we consider

the time when the system achieves the maximum

axial stress as the time of macroscopic failure.

We use XGBoost regression models to perform

these predictions (Chen & Guestrin, 2016). We chose

XGBoost because of its efficiency and accuracy (e.g.,

Bühlmann & Yu, 2003; Friedman, 2001). We

develop different sets of models to predict each

target for each numerical simulation. The combina-

tion of four fault orientations, three fault lengths, and

three levels of applied confining stress, leads to 36

unique simulations, with one simulation for each

combination of parameters.

From the velocity and strain fields, we extract a

series of features as for the machine learning models.

We only use the timesteps of the simulations that

occur preceding macroscopic failure. We calculate

the mean of the three velocity components of all the

particles within cubes with 1 mm long sides at

increments of 1000 timesteps throughout the simula-

tion. Using this grid of velocity vectors, we calculate

the nine components of the three-dimensional strain

tensor. We then calculate quantities that measure the

volumetric strain: the divergence or first invariant of

the strain tensor, I1, and quantities that measure the

shear strain: the second invariant of the strain

deviator tensor, J2, and the curl. Table S2 lists all

the features.

This method of feature extraction produces sev-

eral hundred measurements of each feature at each

simulation timestep, and thus at various times

preceding macroscopic failure. Each sample of the

dataset provided to the machine learning models is

unique in its combination of time and position. We

split the training and testing dataset so that none of

the data in the training dataset occurs in the testing

data. In particular, we split the data so that data from

the same timestep of the simulation does not occur in

both the training and testing datasets, and the testing

dataset includes about 20% of the data. Consequently,

we split the training and testing data sets so that the

models are trained on different portions of time in the

simulation than they are tested. To capture the

influence of random variations in how the data are

split, for each of the 36 unique simulations we build

ten different models with different splits of training

and testing data.

We estimate the influence of each feature on the

predictions using a widely used metric: Shapely

Additive Explanations (SHAP) (Lundberg & Lee,
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2017). We compare the mean absolute value of the

SHAP value (mean |SHAP|) of each feature, and thus

focus on the overall influence of that feature on the

model prediction. We perform a grid search over the

hyperparameter-space to find the best set of hyper-

parameters for each model (Lundberg & Lee, 2017).

3. Results

Here, we first describe the fracture networks that

develop in all of the simulations, and how the con-

fining stress and fault geometry control the fracture

networks that develop. Then, we follow the evolution

of the fracture networks throughout the simulations

up to macroscopic failure, when the simulation

achieves the maximum axial stress. We then compare

the ability of the models to predict the timing of

failure using the strain and velocity fields of the

simulations. We finally identify the characteristics of

the strain and velocity fields that control the model

predictions, and examine how they evolve toward

failure.

3.1. Fracture Network Development

The confining stress, fault orientation and fault

length play key roles in the final fracture geometry

that develops by the end of the simulation, following

the peak axial stress and subsequent stress drop

(Fig. 3). Systems with longer faults tend to concen-

trate deformation within the preexisting healed fault

(i.e., on-fault), whereas systems with shorter faults

develop more fractures outside of the preexisting

fault (i.e., off-fault). For example, when the fault

orientation, h, is 30�, the volume of off-fault fractures

is larger when the fault length, L, is 15 mm, than

when L = 20 mm or is system-spanning, at each level

of applied confining stress. This relationship also

holds for the simulations with h = 45� at each level of

confining stress, r2. However, when the faults are

less well-oriented for shear failure, with h = 60� and h
= 15�, this relationship breaks down. Instead, frac-

tures develop throughout the off-fault region with

similar densities in simulations with varying fault

length at the same r2. The similarity of the relation-

ship between fault orientation and the magnitude of

off-fault deformation in these simulations and labo-

ratory experiments (Giorgetti et al., 2019) provides

evidence that the simulations closely approximate the

behavior of natural rocks.

The fault length appears to exert a stronger

control on the resulting fracture geometry when the

preexisting faults are less well-oriented for shear

failure, with h = 60� and h = 15� (Fig. 3). In

simulations with h = 30�–45�, the off-fault fractures

propagate approximately coplanar to the preexisting

faults when L is not system spanning, thereby

producing systems similar to those with system-

spanning preexisting faults. However, in simulations

with h = 60� and h = 15�, similar behavior only

occurs when r2 = 0. Higher confining stress sup-

presses coplanar propagation from the tips of the

preexisting fractures in these simulations.

Confining stress also controls the prevalence of

fault-oblique fractures (Fig. 3). In simulations with

no confining stress, the off-fault fractures tend to

develop at oblique angles to the preexisting fault. In

simulations with higher confining stress, the preva-

lence of these fractures tends to decrease. Simulations

with system-spanning faults, for example, host either

one or no fault-oblique fractures when r2 [ 0.

Simulations that do not include a preexisting fault

develop diffuse fracture networks prior to failure,

similar to some laboratory observations (e.g., Renard

et al., 2019).

Next, we examine the evolving fracture networks

in four characteristic simulations leading to macro-

scopic failure. These simulations include fault

geometries with the longest and shortest tested faults,

and orientations that are less and more well-oriented

for shear failure, h = 15� and h = 30�. The simulations

include three phases of macroscopic stress accumu-

lation due to the applied axial strain (Figs. 4, 5,

Figure S2). First, the axial stress increases quasi-

linearly with the axial strain, then the rate of axial

stress accumulation slows, and finally the axial stress

decreases. Macroscopic failure thus occurs when the

simulations achieve the maximum axial stress.

Fracture development includes several key phases

preceding macroscopic failure in simulations with

shorter faults, L = 15 mm, (Fig. 4), that do not occur

when the faults are system-spanning (Fig. 5). In

simulations with L = 15 mm, fractures first develop
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along the weaker preexisting fault, and then they

propagate from the tips of the preexisting fault

(Fig. 4). Throughout this process, fractures also

develop off-fault with a diffuse distribution. The

confining stress and orientation of the preexisting

fault control how the fractures propagate from the

tips of the preexisting fault. When the preexisting

fault is well-oriented for shear failure, with h = 30�,
increasing confining stress promotes coplanar prop-

agation from the tips of the fault. In particular, when

the system experiences no confining stress, the

fractures propagate approximately parallel to the r1
direction (Fig. 4c). When the system experiences

higher confining stress, the off-fault fractures prop-

agate coplanar to the preexisting fault (Fig. 4d). The

observed influence of confining stress on the fracture

geometry is consistent with laboratory observations

and numerical simulations that observed that increas-

ing confining stress promoted coplanar propagation

from the tips of preexisting faults rather than out-of-

plane propagation (Madden et al., 2017).

When the preexisting fault is less well-oriented

for shear failure, with h = 15� (Fig. 4a, b), confining
stress has a similar influence on the resulting fracture

geometry as when h = 30�. Increasing the confining

stress reduces the density of fault-oblique off-fault

fractures. Varying h also influences the spatial

localization of the off-fault fractures that develop at

the tips of the preexisting faults. These fractures are

more localized when h = 30� than when h = 15�.
When the faults are system spanning (Fig. 5),

fracture development concentrates primarily within

the preexisting fault (i.e., on-fault), as expected.

Similar to the systems with shorter faults, fracture

development first initiates along the preexisting fault,

and later fractures propagate throughout the off-fault

region. Increasing the confining stress and rotating

the fault away from the optimal orientation for shear

failure increases the density of off-fault fractures.

The varying spatial distribution of off-fault frac-

tures and propagation from the tips of the preexisting

faults due to confining stress, fault orientation and

fault length suggest that the characteristics of the

velocity and strain fields that the machine learning

models use to identify the timing of macroscopic

failure may differ between the simulations. For

example, the orientations relative to the maximum

compression directions of the off-fault fractures that

Figure 3
Final fracture geometry for simulations with a 15 mm long faults, b 20 mm long faults and c system-spanning faults at the end of the

simulation, following macroscopic failure. The images show the full three-dimensional system along the z-axis. The columns show the

simulations with different fault orientations. The rows show the simulations with different confining stresses. The colors correspond to the

different types of broken bonds: on-fault (yellow), damage zone (blue-green), and off-fault (dark blue)
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propagate from the tips of the preexisting faults

suggest that they accommodate dilation in simula-

tions with L = 15 mm, h = 30�, and r2 = 0, and

accommodate shear strain in simulations with higher

confining stress, r2 = 10 MPa (Fig. 3).

Because we develop the models to predict the

timing of macroscopic failure, we now compare the

peak axial stress achieved in each simulation (Fig. 6).

Increasing the fault length decreases the peak axial

stress for simulations with faults well-oriented for

shear failure, with h=30� and 45�, at all the tested

confining stresses, as expected. Under no confining

stress, increasing fault length also promotes lower

peak axial stress when the faults are less well-

oriented for shear failure, h=15� and 60�. However, at
higher confining stress r2 = 10 MPa and 50 MPa, the

peak axial stress is similar for faults of varying

lengths when h = 15� and 60�. Thus, when the fault is

less well-oriented for shear failure, increasing the

fault length does not lead to a significant reduction in

the macroscopic strength.

The systems fail at the lowest axial stress when h
= 30� and 45� (Fig. 6), as expected from theoretical

expectations (e.g., Jaeger & Cook, 1979) and labo-

ratory experiments (e.g., Donath, 1961; Giorgetti

et al., 2019). Because these orientations maximize

Coulomb shear stress, the lower axial stresses at these

orientations and the corresponding approximately

Figure 4
Fracture development in simulations with L = 15 mm, h = 15�, and r2 = 0 (a), r2 = 10 MPa (b), and simulations with L = 15 mm, h = 30�,
and r2 = 0 (c), r2 = 10 MPa (d). Plots on the left show the macroscopic axial stress (black), change in axial stress (blue), and axial strain

throughout each simulation, measured from the forces acting on and the movement of the top and bottom boundaries of the simulations. The

red lines in the plots indicate the macroscopic conditions of the fracture networks shown on the right. The dashed lines highlight when

macroscopic failure occurs. The images show the full three-dimensional system along the z-axis. The colors in the fracture networks show the

fractures that develop (e.g., the broken bonds) in the on-fault material (red), damage zone (yellow), and off-fault material (blue). The second

to last column of each row shows the fracture geometry at macroscopic failure
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parabolic distribution of the peak axial stresses

relative to h provides additional evidence that the

simulations closely approximate the behavior of

natural rocks. When the faults are system-spanning,

the peak axial stress with h = 30� is significantly

lower than with h = 45�, producing a more asym-

metric distribution of the peak axial stress relative to

h than when the faults are shorter. Similar to the

varying fracture geometries, these varying failure

stresses suggest that the machine learning models

may use different characteristics of the strain and

velocity fields to predict the timing of failure.

3.2. Predicting the Proximity to Macroscopic

Failure

To assess the ability of the models to predict the

proximity to macroscopic failure, we examine the R2

score of the models. High positive R2 scores ([ 0.7)

indicate strong correlations between the predictions

and observations. Scores of one indicate a perfect

correlation between the predictions of the models and

the observations. The models perform exceptionally

well, with mean R2 scores between 0.93 and 0.98

across all the simulations (Fig. 7). The performance

of the models developed for simulations with the

Figure 5
Fracture development in simulations with system-spanning faults, h = 15�, and r2 = 0 (a), r2 = 10 MPa (b), and simulations with system-

spanning faults, h = 30�, and r2 = 0 (c), r2 = 10 MPa (d). Plots on the left show the macroscopic axial stress (black), change in axial stress

(blue), and axial strain throughout each simulation, measured from the forces acting on and the movement of the top and bottom boundaries of

the simulations. The red lines in the plots indicate the macroscopic conditions of the fracture networks shown on the right. The dashed lines

highlight when macroscopic failure occurs. The images show the full three-dimensional system along the z-axis. The colors in the fracture

networks show the fractures that develop (e.g., the broken bonds) in the on-fault material (red), damage zone (yellow), and off-fault material

(blue). The second to last column of each row shows the fracture geometry at macroscopic failure
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highest tested confining stresses is slightly lower than

the performance of the other models.

To identify the features that control the model

predictions, we calculate a cumulative representation

of the SHAP values of each feature. Because we

develop ten models for each simulation that only

differ in how the training and testing datasets are

split, we calculate a normalized importance s=maxðsÞ
from the mean |SHAP| value of each feature, s. We

then find the mean of the normalized values weighted

by the R2 score of the model across all the models for

a given simulation, ss ¼
P

R2ðs=maxðsÞÞ=n, where n

is the number of models. We weight the normalized

importance by the R2 score of the model so that more

successful models (with higher R2) have a greater

influence on the results compared to less successful

models. The value ss thus reflects the distribution of

the |SHAP| values across all the features of all the

machine learning models for a particular simulation

(Fig. 8a). We also report the sum of ss across all the

simulations (Fig. 8b). To further constrain the fea-

tures that most strongly control the model results, we

Figure 6
The influence of confining stress, orientation, and fault length on the peak axial stress. a–c Peak axial stress relative to orientation at each

confining stress: a 0 MPa, b 10 MPa, and c 50 MPa. The colors of the curves indicate the fault length: L = 15 mm (dark blue), L = 20 mm

(light blue), and system-spanning faults (yellow). d–f Peak axial stress relative to fault length at each confining stress: d 0 MPa, e 10 MPa,

and f 50 MPa. The colors of the curves indicate the fault orientation: h=15� (black), 30� (dark red), 45� (orange), and 60� (yellow)

Figure 7
Performance of the models for all of the tested simulations: the

mean � one standard deviation of the R2 scores of the groups of ten

models developed for each simulation. The ten models only differ

in the split of the training and testing datasets. The horizontal axis

indicates the geometry of the preexisting fault in the simulations.

The color indicates the amount of confining stress: r2 = 0 (light

blue), r2 = 10 MPa (blue), r2 = 50 MPa (pink)
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Figure 8
Influence of the velocity and strain characteristics on all the simulations: a distribution of the |SHAP| values, ss, for each simulation, b

cumulative distribution across all of the simulations, c the characteristics with ss greater than 25% of the maximum value for each simulation.

The color of the bars indicates the feature: dark blue (y-position), light blue (J2), green (vy), and yellow (vx). Each group of three bars includes

the results for the simulations with r2 = 0 MPa (left bar), 10 MPa (middle bar), and 50 MPa (right bar). The labels below the horizontal axis

indicate the preexisting fault configuration. For example, the second group of three bars shows the results for the fault geometry with

L = 15 mm and h = 15�
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identify the features with ss greater than 25% of the

maximum ss of each simulation (Fig. 8c).

The cumulative distribution of ss across all the

simulations indicates that four features most strongly

control the model results: the y-position in the

simulation, the velocity components parallel, vy, and

perpendicular, vx, to the maximum compression

direction, and the second invariant of the strain

deviator tensor, J2 (Fig. 8b). The distribution of ss for

the individual simulations, however, indicates some

variations between the simulations (Fig. 8a). Exam-

ining the characteristics that have ss greater than 25%

of the maximum ss for each simulation (Fig. 8c)

indicates that all of the models depend strongly on vy,

and nearly all of them depend on y. The models that

depend strongly on J2 tend to be those developed for

simulations with higher confining stress. In particular,

all of the models developed for the simulations with

no applied confining stress do not depend on J2,

except when h = 30� and when the fault is system-

spanning or L = 20 mm. The models that depend on

vx tend to be those developed for simulations with h\
60�. When h = 60� and when the simulations do not

include a preexisting fault, vx does not strongly

control the model predictions. The only exception to

this trend is when L = 15 mm and r2 = 50 MPa.

To better understand why the models depend on

the characteristics identified from the SHAP values

(Fig. 8), we now examine the evolution of three

characteristics identified as highly important, J2, vy,

and vx, and one that is not identified as important, I1
(Fig. 9). We track these characteristics at two posi-

tions throughout three simulations, in the middle of

the simulations and along the preexisting fault

(x = 20 mm, y = 40 mm), and at a position in the

lower portion of the system that does not cross the

preexisting fault (x = 20 mm, y = 20 mm). At each

of these positions, we report the mean value of the

characteristic across all of the z-positions.

The evolution of vy of the simulations that do not

include a fault highlights that these simulations do

not experience an extended macroscopic yielding

phase (Fig. 9a). Instead, the local deformation is

relatively homogeneous until about 10% to failure,

when the vy at the middle and lower positions begin

to change, increasing at the middle position, and

decreasing at the lower position.

These evolutions help indicate why the models

depend on the various characteristics. Each of the

example simulations experience a relatively system-

atic evolution of vy toward macroscopic failure, while

I1 fluctuates more rapidly, sometimes switching

between negative and positive values, and thus

contractive and dilative strain (Fig. 9). The more

systematic evolution of vy compared to I1 allows the

models to build reliable relationships between this

characteristic and the timing of macroscopic failure

that produce strong correlations between the model

predictions and the observed timing of failure.

The varying systematic evolution of vx and J2 also

indicates why some models depend on these charac-

teristics while others do not. The velocity component

vx fluctuates rapidly from positive to negative values,

indicative of movement to the right and left in the

simulation under no confining stress with no preex-

isting fault (Fig. 9a), and in the simulation with a

system-spanning fault, h = 60� and r2=50 MPa.

(Fig. 9c). In both of these simulations, the models do

not depend strongly on vx.

Similarly, the model developed with the simula-

tion under no confining stress with no preexisting

fault does not depend strongly on J2, whereas the

models developed with the other two example

simulations depend on this characteristic (Fig. 8c).

Although the simulation without a preexisting fault

experiences a relatively systematic evolution of J2,

similar in its overall evolution to the other two

simulations, the maximum value that J2 achieves in

this simulation at the selected sampling points is two

orders of magnitude less than the maximum values in

the other simulations. Thus, both the value of the

characteristic and the consistency of its evolution

toward failure appear to control whether the models

use a particular characteristic to predict the distance

to macroscopic failure.

3.3. Predicting Failure with Subsets

of the Deformation Components

To further identify the characteristics that control

the model predictions, we now examine the model

performance when the models only use subsets of the

data. The distribution of the SHAP values indicates

that models that use the shear strain component J2,
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and/or the velocity components vy and vx, may

produce the most accurate models, while models that

use the volumetric strain components, such as I1, may

be the most inaccurate (Fig. 8). To test this idea, we

develop models with three different subsets of the

data: the components that describe the shear strain,

the components that describe the volumetric and

normal strain, and the velocity components (Table 1).

Consistent with expectations, the models devel-

oped with the velocity components perform better

than the models developed with only the sjhear strain

components and the models developed with the

normal strain components (Fig. 10). In particular,

the mean R2 scores of the models developed with the

velocity components are 0.12–0.25 higher than the

mean R2 scores of the models developed with the

volumetric strain components (Fig. 10e). Models

developed from simulations with lower confining

stress have the largest difference in the mean R2

scores. This result occurs because the models devel-

oped for simulations with lower confining stress

perform better than models developed for simulations

with higher confining stress when they only have

Figure 9
Evolution of three features that strongly control the model predictions relative to the normalized time to peak axial stress, ðtf � tÞ=tf : vx, vy

and J2, and one that does not, I1, in three example simulations: a when the system has no fault and r2 = 0, b when the fault is system-

spanning, h = 30�, and r2 = 0, and c when the fault is system-spanning, h = 60�, and r2 = 50 MPa, at two example locations: in the middle of

the simulation at x = 20 mm, y = 20 mm (dark blue), and in the lower portion of the simulation at x = 20 mm and y = 20 mm (light blue).

The curves show the mean values of each of the four characteristics at the selected locations throughout the full thickness of the model, i.e.,

along the z-axis. The sketches in red in b and c show the preexisting faults, the boundaries of the simulations, and the sampling locations

Table 1

Velocity and strain characteristics used in the three types of models

that use subsets of the data

Subset Characteristics

Velocity components x; y; z; vx, vy,vz

Volumetric and normal strain

components

x; y; z; exx, eyy, ezz,I1

Shear strain components x; y; z; exy, eyz, ezx, J2,

curl
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access to the velocity components. When the models

only use the volumetric and normal strain compo-

nents, the models developed for simulations with

higher confining stress perform better than models

developed for simulations with lower confining

stress.

However, contrary to expectations, the models

developed with only the shear strain components do

not perform better than the models developed with

only the volumetric and normal strain components.

Instead, the mean R2 scores of the models developed

from the volumetric and normal strain components

are 0.01–0.11 higher than the scores of the models

developed from the shear strain components

(Fig. 10d). The difference in the mean R2 scores is

the lowest when r2 = 50 MPa. Thus, when the

confining stress is higher, the difference in the

performance of the models is minor, and sometimes

the models developed with the shear strain compo-

nents perform better than the models developed with

the volumetric strain components.

To better understand the key characteristics that

control the three subsets of models, we now examine

the cumulative distribution of ss across all the

simulations (Fig. 11). Similar to the models devel-

oped with all of the strain and velocity components,

the models developed with only the velocity compo-

nents primarily depend on vx, vy and the y position

(Fig. 11c). This result is consistent with the high ss of

these characteristics for the models developed with

all of the data (Fig. 8). Similarly, the models

developed with the shear strain components primarily

depend on the curl of the velocity field, and on J2

(Fig. 11a), consistent with the distribution of the ss

values of the models developed with all of the data.

In contrast, the models that only use the normal and

volumetric strain components primarily depend on

characteristics that were not identified as highly

important in the models that use all of the data. These

models primarily depend on the normal strain com-

ponents: exx, eyy, and ezz. The higher cumulative ss for

eyy compared to the other normal strain components

suggest why these models perform better or compa-

rably to the models developed with the shear strain

components. In particular, the models developed with

all of the data and the models developed with the

Figure 10
Comparing the performance of models developed with subsets of the strain and velocity components: the mean � one standard deviation of

the R2 scores of amodels developed with the shear strain components, b models developed with the volumetric and normal strain components,

and c models developed with the velocity components, and the difference between the mean R2 score of each simulation for d models

developed with the shear strain components and volumetric strain components, and e models developed with the velocity components and the

volumetric strain components. Negative values in d indicate that the models developed with the volumetric strain components perform better

than the models developed with the shear strain components. Positive values in e indicate that the models developed with the velocity

components perform better than the models developed with the volumetric components
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velocity components primarily depend on vy. Because

eyy is a function of vy, it is not surprising that when we

deprive the models of vy, they are able to use eyy to

perform the predictions with similar success.

4. Discussion

4.1. The Importance of the Displacement Field

We develop machine learning models to predict

the proximity to macroscopic failure using the

components of the strain and velocity tensors. The

models perform exceptionally well, with mean R2

scores ranging from 0.93 to 0.98 across the simula-

tions (Fig. 7). When the models have access to all of

the velocity and strain components, the models

primarily depend on the y-position, J2, vy, and vx

(Fig. 8). The varying fracture networks produced in

the different simulations (e.g., Figs. 3, 4, 5) suggest

that different strain and velocity characteristics may

help the models predict the timing of macroscopic

failure. Indeed, models developed from simulations

with lower confining stress do not depend strongly on

J2, but only on the velocity components. Higher

confining stress produces larger magnitudes of J2

(Fig. 9), which allows the machine learning models

to successfully predict the proximity of macroscopic

failure using this measure of the shear strain field.

The observed increasing dependence of J2 with

increasing confining stress is consistent with exper-

imental observations that show a transition from

tensile-dominated deformation to shear-dominated

deformation with increasing confining stress (e.g.,

Paterson & Wong, 2005). In laboratory experiments,

for example, during uniaxial compression, the brittle

failure of rocks occurs through the propagation and

opening of fractures aligned approximately parallel to

the direction of r1 (Tapponnier & Brace, 1976).

During triaxial compression, as the applied confining

stress increases, the overall orientation of the dom-

inant fracture network can trend more obliquely to

the direction of r1, closer to the orientation expected

for shear failure (e.g., Renard et al., 2019). The

orientation of individual fractures, however, within

such system-spanning fault networks may remain

oriented parallel to the direction of r1, rather than

along the apparent macroscopic orientation (McBeck

et al., 2021a). Despite this difference between the true

orientation of individual fractures and the overall

fracture network, such fracture networks can accom-

modate shear strain (McBeck et al., 2019, 2020b;

Renard et al., 2019).

The varying importance of J2, and consistency of

the importance of vy and vx (Fig. 8) highlight that the

components of the velocity field, and thus the

displacement field, provide more reliable information

about the proximity of macroscopic failure than the

strain field. Moreover, when we develop models from

subsets of the strain and velocity fields, the most

Figure 11
Distribution of the cumulative ss for the models developed with the

shear strain components (a), models developed with the volumetric

and normal strain components (b), and models developed with the

velocity components (c). The features labelled within each plot are

those with cumulative ss greater than 25% of the maximum

cumulative ss
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successful models are those developed with the

velocity components, rather than the shear strain

components or volumetric and normal strain compo-

nents (Fig. 10). One may expect that the strain field

may provide more valuable information about the

timing of macroscopic failure than the displacement

field. For example, fault slip and opening can produce

sites of higher shear and dilative strain localized on

the fault, producing systematic relationships between

applied loading and cumulative strain. Because the

displacement field within the host rock surrounding a

preexisting fault can evolve in unexpected ways due

to slip and opening on rough faults, one may expect

that the relationship between the displacements

produced by fault movement and loading, and the

timing of macroscopic failure may be more difficult

for machine learning models to recognize than the

systematic relationships of cumulative strain and

macroscopic failure. Contrary to expectations, the

present analysis suggests that the displacement field

also provides critical information about the proximity

of macroscopic failure, as well as the components of

the strain field (i.e., Fig. 12).

4.2. The Importance of the Deformation Field

Parallel to the Loading Direction

The ss distribution of the characteristics of the

models developed with all of the strain and velocity

components (Fig. 8), and this distribution for the

models developed with subsets of the components

(Fig. 11) highlight that the components of the defor-

mation field that describe the displacement or strain

parallel to the r1 direction are critical for successfully
predicting the timing of macroscopic failure (i.e.,

Fig. 12). In particular, all of the models developed

with all of the characteristics depend on vy, the

velocity component parallel to the axial loading,

while only some of the models depend on vx (Fig. 8).

When the models are developed with only the normal

and volumetric strain components, they primarily

depend on the strain component parallel to the r1
direction, eyy (Fig. 11). Thus, despite the variety of

fracture networks that develop with varying confining

stresses and preexisting fault geometries, the defor-

mation field parallel to the dominant loading

direction provides the most systematic information

of the tested velocity and strain components (e.g.,

Fig. 9). This systematic information enables the

machine learning models to make accurate predic-

tions about the timing of macroscopic failure.

Previous machine learning analyses that predicted

the proximity of macroscopic failure in triaxial

compression experiments did not examine the indi-

vidual nine components of the strain tensor, and

instead only used the curl of the displacement field

and the first invariant of the strain tensor, I1, to

predict the timing of failure (McBeck et al., 2020a).

Figure 12
Sketch of the key conclusions. The models are the most successful,

with the highest R2 score, when they use the velocity components

to predict the timing of macroscopic failure, and are more

successful when they use the volumetric and normal strain

components than when they use the shear strain components.

Thus, tracking the velocity field may provide useful information

about the timing of macroscopic failure, as well as tracking the

strain field. The models that rely only on the velocity components

primarily depend on vy, and secondarily on vx. Thus, the velocity

component parallel to the maximum compression direction may

provide the most useful information about impending failure. The

models that rely only on the volumetric and normal strain

components depend on the components in the following order:

(1) eyy, (2) exx, (3) ezz. Thus, the normal strain component that is

dominated by axial-parallel contraction, eyy, may be more useful

for predicting the timing of failure than the other normal strain

components, which host both dilation and contraction in these

systems. The models that rely only on the shear strain components

depend primarily on J2, and secondary on the curl. Thus, efforts to

recognize the onset of the precursory stage leading to large

earthquakes may benefit from tracking J2 rather than the curl of the

displacement field
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This analysis found that the models depended

primarily on the dilation, the positive I1, rather than

the curl or the negative I1 to predict the timing of

failure. In contrast, in the present simulations, the

models primarily depend on the velocity and strain

components that characterize the deformation parallel

to the r1 direction, vy and eyy, and J2 in models under

higher confining stress. Due to the triaxial compres-

sion loading conditions in these simulations,

preceding macroscopic failure eyy is generally nega-

tive throughout loading, indicative of contraction.

Thus, when the models have access to all of the strain

and velocity components, they do not use any of the

volumetric or normal strain components indicative of

dilation, and instead rely on y, vx, vy, and J2. When

the models have access to only the volumetric strain

components, they primarily depend on the normal

strain component that is dominated by contraction,

eyy. In contrast, the models developed from the

triaxial compression experiments primarily depend

on the dilation, rather than the curl.

In the simulations that include a preexisting fault

well-oriented for shear failure, at 30�–45�, we expect
that shear deformation may dominate the system, and

thus that the models should depend on components of

the shear strain. However, even for simulations that

lack a preexisting fault, the models do not depend on

measurements of the dilation, but primarily on J2 and

vy. These models may not rely on the volumetric or

dilative strain, I1, because the components of the

velocity field and J2 evolve with a more systematic

evolution toward failure than I1 (e.g., Fig. 9). In

addition, the numerical simulations accumulate less

dilative strain than the intact rocks deformed in the

experiments. Indeed, comparing the proportion of the

volume of the experiments and simulations that host

dilation, where I1[0, out of the total volume

throughout each experiment and simulation indicate

that the laboratory rocks host 40–60% dilation

(McBeck et al., 2020b), whereas the simulations host

about 30% (Fig. 13). Comparing this proportion in

the final stages of the experiments and simulations,

from 50 to 100% of the failure strain reveals an even

larger difference in the volume proportion between

the experiments and simulations. Thus, in the triaxial

compression experiments, more and more of the rock

volume experiences dilation as the rocks approach

macroscopic failure. In contrast, as the simulations

approach macroscopic failure, the proportion of the

simulation that hosts dilation does not significantly

increase. Whereas the magnitude of dilation provides

systematic information that the machine learning

models can use to predict the timing of macroscopic

failure in the laboratory experiments, the dilative

Figure 13
Proportion of the rocks deformed in triaxial compression experiments (a) and the simulations (b) that hosts dilation throughout the full

experiment (black), and within 50–100% of the failure strain (red). The laboratory rocks host more dilation than the simulations throughout

the full loading history, up to macroscopic failure, and in the time period between 50 and 100% of the axial strain at failure
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strain does not follow such systematic relationships in

the numerical simulations, causing the machine

learning models to use other components of the

velocity and strain tensor to successfully predict

failure.

The simulations may experience less dilation than

the experiments due to the initial porosity caused by

the packing of the spherical particles. Whereas these

experimental rocks generally have\ 10% porosity

(McBeck et al., 2020b), the initial porosity of these

simulations is about 20%, although we use the

maximum feasible range of particle radii to achieve

the lowest initial porosity under the computational

constraints. The higher initial porosity of the simu-

lations promotes more contraction, and enables shear

deformation to occur without significant dilation. The

lower porosity of the laboratory rocks requires that

the dilation of rough fracture surfaces occurs before

these surfaces can slide. Indeed, dilative strain is

often paired with shear strain in these experiments

(McBeck et al., 2020b), highlighting the necessity of

dilating before or concurrent with shearing.

5. Conclusions

We develop machine learning models to predict

the timing of macroscopic failure in three-dimen-

sional discrete element method simulations of triaxial

compression. Comparing the predictive power of

components of the velocity and strain fields in these

models identify four characteristics that primarily

control the model predictions: the y-position in the

simulation, J2, vy, and vx. With increasing confining

stress, the predictive power of J2 increases, consistent

with laboratory observations that show a transition

from tensile-dominated to shear-dominated defor-

mation with increasing confining stress (e.g., Paterson

& Wong, 2005). In contrast to expectations from

previous machine learning analyses (McBeck et al.,

2020a; Shreedharan et al., 2021a), observations of

varying seismic wave properties prior to some large

earthquakes (e.g., Whitcomb et al., 1973), and labo-

ratory observations of decreasing P-wave velocity

prior to stick slip events (e.g., Shreedharan et al.,

2021b), the volumetric strain component indicative of

dilation, I1, does not strongly control the model

predictions. The models only depend on the normal

strain components that quantify both dilation and

contraction in these simulations, exx and ezz, when we

force the models to only use the normal and volu-

metric strain components. However, even these

models primarily depend on the normal strain com-

ponent that is dominated by contraction, eyy. The

difference between the present analysis and previous

machine learning analysis on the triaxial compression

of rocks (McBeck et al., 2020a) may occur because

the rocks deformed in the experiments are dominated

by dilation, with increasing volume proportions

toward failure (McBeck et al., 2020a, 2020b),

whereas the numerical simulations do not experience

similar strain accumulation (Fig. 13). The models

developed with only the velocity components per-

form better than the models developed with only the

volumetric and normal strain components, and better

than the models developed with only the shear strain

components. This result highlights that the velocity

field, as well as the strain field, may provide valuable

information about the onset of the precursory phase

leading to catastrophic failure, such as earthquakes.

In particular, the velocity field parallel to the maxi-

mum compression direction may provide the most

valuable information about the timing of failure,

regardless of the orientation of the preexisting fault.
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