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Abstract—For the first time, we introduced the probabilistic

principal component analysis (pPCA) regarding the spatio-tempo-

ral filtering of Global Navigation Satellite System (GNSS) position

time series to estimate and remove Common Mode Error (CME)

without the interpolation of missing values. We used data from the

International GNSS Service (IGS) stations which contributed to the

latest International Terrestrial Reference Frame (ITRF2014). The

efficiency of the proposed algorithm was tested on the simulated

incomplete time series, then CME was estimated for a set of 25

stations located in Central Europe. The newly applied pPCA was

compared with previously used algorithms, which showed that this

method is capable of resolving the problem of proper spatio-tem-

poral filtering of GNSS time series characterized by different

observation time span. We showed, that filtering can be carried out

with pPCA method when there exist two time series in the dataset

having less than 100 common epoch of observations. The 1st

Principal Component (PC) explained more than 36% of the total

variance represented by time series residuals’ (series with deter-

ministic model removed), what compared to the other PCs

variances (less than 8%) means that common signals are significant

in GNSS residuals. A clear improvement in the spectral indices of

the power-law noise was noticed for the Up component, which is

reflected by an average shift towards white noise from - 0.98 to

- 0.67 (30%). We observed a significant average reduction in the

accuracy of stations’ velocity estimated for filtered residuals by 35,

28 and 69% for the North, East, and Up components, respectively.

CME series were also subjected to analysis in the context of

environmental mass loading influences of the filtering results.

Subtraction of the environmental loading models from GNSS

residuals provides to reduction of the estimated CME variance by

20 and 65% for horizontal and vertical components, respectively.

Key words: Probabilistic principal component analysis,

common mode error, GNSS, time series analysis, missing data.

1. Motivation and introduction

The advantages of reliable coordinates provided

by the globally distributed Global Navigation Satel-

lite System (GNSS) stations have been appreciated by

scientists since the early 90s. The position changes of

antennae are expressed by coordinates that for dec-

ades have been continuously and regularly

determined in global reference frame. The GNSS

position time series provided by permanent observa-

tions have been used primarily to realize and

maintain modern kinematic reference frames (Gross

et al. 2009) as well as for geophysical studies as a

measure of surface displacement or strain (Kreemer

et al. 2014; Métivier et al. 2014). The linear trend due

to plate tectonics and seasonal signals caused by i.e.

environmental mass loading or thermoelastic defor-

mation are very consistent for GNSS position time

series recorded by nearby stations. Even the sophis-

ticated time series modelling has not resulted in a

total loss of spatial and temporal correlations

(Wdowinski et al. 1997, Shen et al. 2013; Bogusz

et al. 2015). The so-called Common Mode Error

(CME) is the superposition of errors and geophysical

phenomena, that similarly affect the coordinates of

stations included in the regional networks. It is a

spatially correlated type of error, which may be also

temporally correlated depending on the temporal

structure of the phenomena it absorbs. It is essential

to remove, reduce or eliminate the impact of CME in

the GNSS networks to improve the accuracy of the

estimated velocities (He et al. 2017). The main the-

oretical contributors to the potential CME sources are

(Wdowinski et al. 1997; King et al. 2010):
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1. errors in the alignment to the reference frame;

2. errors related to satellites, which are usually

observed in small networks as the mismodeling

of the satellite: orbits, clocks, or antenna phase

center variations;

3. signal emission media effects commonly influenc-

ing stations in regional network (troposphere and

ionosphere modelling);

4. physical sources of station movements as the

mismodeled (or unmodeled) large-scale atmo-

spheric and hydrological effects, as well as small

scale crust deformations;

5. errors caused by algorithms, software, and data

processing strategies, including ambiguity resolu-

tion problem.

To reduce the effect of CME, a number of studies

have been preceded by the filtering of the GNSS time

series using different methods (Fig. 1). The Common

Mode Error term was first introduced by Wdowinski

et al. (1997), who described correlated errors in the

regional networks of the GNSS stations. The authors

used stacking approach assuming that CME is equal

to an arithmetic mean of all available residuals at a

specified epoch. Nikolaidis (2002) proposed to

improve this method and called it a ‘‘weighted

stacking’’, indicating that the GPS-derived coordi-

nates with unequal formal errors cannot contribute

equally to the final CME estimates. A group of

methods known as ‘‘stacking’’ assumes the spatial

uniformity of CME that has to be met over a regional

network. This in turn imposes the condition that the

estimates of CME at a single epoch are equal for the

entire set of stations. In addition, a limit in the

maximum size of the GNSS network which can be

used to derive the CME estimates is set up. The

stacking method can be used for networks with sta-

tions as far as 600 km from each other (Wdowinski

et al. 1997; Márquez-Azúa and DeMets 2003). For

larger networks and stations located up to 2 000 km

from each other, various spatial filters can be intro-

duced to differentiate the spatial response of any

individual station. The stacking and spatial filtering

methods should not be considered as similar

approaches either in the sense of the character of the

input and output data or mathematical formulas.

Spatial filtering means that the CME is extracted with

varying spatial responses and is individually and

locally fitted to each individual station position time

series. Spatial filters take into consideration the

length of time series and the distance between sta-

tions (Márquez-Azúa and DeMets 2003) or the inter-

station distances with correlations between residuals

collected for any individual station (Tian and Shen

2011, 2016). It has been shown that CME can be also

reduced using a 7-parameter (or 14-parameter) simi-

larity transformation (Ji and Herring 2011; Blewitt

et al. 2013). The limitations of aforementioned

methods are related to: (1) a limitation of maximal

area of network which can be subjected to filtering

(mainly in case of stacking), (2) a partial inability to

detect stations with strong local effects which will

affect the CME estimates or (3) dependence on the

conventional weighting procedure. Spatial filters and

stacking methods significantly reduce the scattering

of the position time series and, as a result, as soon as

CME is removed, they improve the precision of

velocity estimates. As an example, Wdowinski et al.

(1997) reduced the time series root-mean-square

(RMS) values for individual stations by more than

50%. Tian and Shen (2016) minimized the RMS

values by 20.7, 13.2, and 14.4% on average for the

North, East, and Up components, respectively.

Despite the fact that the reduction in the scatter of the

position time series is important and desirable, it

should not be the only main indicator. The preferred

filtering method should be able to accurately divide

the GNSS residuals into two modes: the spatially
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Figure 1
A diagram of various mathematical methods used so far to reduce

or remove CME, including weighted and non-weighted stacking,

spatial filtering, reference frame transformation and multivariate

data dimensionality reduction methods such as Principal Compo-

nent Analysis (PCA), Karhunen–Loeve Expansion (KLE) and

Independent Component Analysis (ICA)
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correlated part (CME) and spatially uncorrelated

mode (noise). The unwanted effect of smoothing of

the GNSS position time series appears when signals

that do not correspond to real common effects are

removed. It leads to undesired change in the long-

term trend (station velocity) and also in the accuracy

of this trend being misestimated.

Bearing in mind all of the aforementioned issues,

many techniques which reduce the dimensionality of

multivariate data have already been implemented to

improve the CME filtering. Dong et al. 2006 and

Serpelloni et al. 2013 proved, that the Empirical

Orthogonal Function (EOF) decomposition provides a

more solid numerical framework for the separation of

modes than the stacking approach. In addition, this

does not assume spatial uniformity of CME as stacking

does, but instead employs a uniform temporal function

which affects stations across regional network. Dong

et al. (2006) were the first to apply the Principal

Component Analysis (PCA) and Karhunen–Loeve

Expansion (KLE) methods for CME extraction. They

are based on different assumptions concerning the

construction of the orthonormal vector basis. The

former uses the covariance matrix of observations,

while the latter applies the correlation matrix of

observations. With regards to the fact that the tradi-

tional PCA can be applied only for complete data,

Shen et al. (2013) proposed the use of a modified PCA

(mPCA) to filter the position time series with missing

data, which are reproduced from Principal Compo-

nents (PCs). The PCA approach was further extended

by Li et al. (2015), who introduced weighted spatio-

temporal filtering. Similarly to weighted stacking,

weighted PCA (wPCA) was proposed taking into

consideration the individual errors of coordinates. This

weighting procedure may cause an unwanted situation

when time series with a weak CME response may

significantly affect CME value. This may occur, when

coordinates from stations affected by strong local

effects e.g. local hydrology-induced or station-specific

movements are determined by small standard errors.

According to earlier publications, the weighting based

on errors of observations does not refer to the nature of

CME’s. The advantages of EOF’s for CME filtration

have recently been confirmed by Gruszczynski et al.

(2016), who showed significant improvement in the

accuracy of stations velocities.

The main purpose of this research is to introduce

for the first time a probabilistic PCA (pPCA) method

for spatio-temporal filtering of GNSS position time

series, and to employ it to filter the position time

series whilst leaving the missing values without

interpolation (Fig. 2a). Although pPCA has previ-

ously been employed in various areas of research, e.g.

estimation of the EOF’s for satellite-derived sea

surface temperature (SST) data (Houseago-Stokes

and Challenor 2004), a study on the precipitation and

absorption squeeze (Andrei and Malandrino 2003),

generation of the video textures (Fan and Bouguila

2009), detection of a small target (Cao et al. 2008),

investigation of traffic flow volume (Qu et al. 2009),

managing self-organizing maps (Lopez-Rubio et al.

2009), detection of outliers (Chen et al. 2009),

tracking of the objects (Xiang et al. 2012), speaker

recognition (Madikeri 2014), investigation of the

nonlinear distributed parameter processes (Qi et al.

2012), nonlinear sensor fault diagnosis (Sharifi and

Langari 2017), studying trends of mean temperatures

and warm extremes (Moron et al. 2016), denoising of

images (Mredhula and Dorairangaswamy 2016) or

detection of the rolling element bearing fault (Xiang

et al. 2015), according to the best of our knowledge,

the pPCA filtering that is readily adapted to the

position time series with missing data, has been

presented for GNSS residuals (either position or

ZTD) for the first time.

We present the pPCA as an alternative approach

to spatio-temporal filtering PCA methods proposed

by Dong et al. (2006) and by Shen et al. (2013),

which will later be referred to as an iterative PCA

(iPCA) and modified PCA (mPCA), respectively.

Both methods are based on PCA algorithm and

characterized by conventional approximates which

modify standard PCA to deal with discontinuous time

series. In mPCA approach it is assumed that the

covariance matrix is initially constructed using all

available time series. Gaps are then interpolated by

minimizing the weighted quadratic norm of PC

unknowns. In iPCA approach it is assumed that

residuals can initially be spatially averaged, which

means that any missing epoch may be completed

using values from other stations that do not have gaps

in this specified epoch. However, a problem occurs

when there is a gap in the dataset which starts and
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ends at the same time almost for all stations in the

network (Fig. 2b). In such a case, there are two

options. First, the missing epochs from all series can

be deleted, however, some amount of data containing

important information for further analysis is

removed. Second, during the first stage of interpola-

tion real dependencies in GNSS residuals may be

neglected due to the fact, that initial values adopted

without a reliable probabilistic model can signifi-

cantly influence further estimates. The mPCA method

fails when any two time series of a network do not

have any, or have only a few common epochs of

observations (Fig. 2c). In this case, the covariance

matrix cannot be set.

Figure 2d shows a theoretical time span of

residuals subjected to filtering, where neither iPCA

nor mPCA is able to perform orthogonal transfor-

mation since a certain gap is present in all data or two

series do not have a single common observation.

Unlike iPCA and mPCA, the pPCA method which we

have introduced in this research, takes into account

the probabilistic framework to determine the optimal

model for the missing data. Since in pPCA the

missing values are considered as latent variables, it is

possible to filter even the series shown in Fig. 2d.

In this research, we applied the pPCA method to

resolve the problem of a proper spatio-temporal fil-

tering of GNSS position time series when gaps occur

at the same time in the regional network and the

series do not necessarily have the same observation

time span. This method is presented as an alternative

to the classic PCA approach and its modifications:

mPCA and iPCA. The paper is organized as follows.

We start with a set of complete data with a changing

amount of simulated gaps to prove the effectiveness

of the approach that we employed. Then, we continue

with a set of 25 permanent GNSS stations which were

included in the latest realization of the International

Terrestrial Reference System (ITRS). At the end, we

present hard numbers demonstrating the importance

of spatio-temporal filtering before uncertainty of

linear velocity being determined. It is worth men-

tioning, that the methodology presented in this

research, although applied to the GNSS position time

series, is universal and can be successfully adapted to

data having spatial relationships gathered by GNSS,

as e.g. ZTD (Zenith Total Delay), or any other

geodetic instruments such as GRACE (Gravity

Recovery and Climate Experiment) or altimetric

satellites.
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Figure 2
a Availability of observations for six selected stations distributed by the International GNSS Service (IGS); b–d graphs show simulated but

frequently observed data gaps which may cause the iPCA method (b) or mPCA method (c) or both of them (d) unfunctional
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2. Probabilistic Principal Component Analysis

For the network formed by n GNSS stations with

a time series spanning m days, before we attempt the

spatio-temporal filtering, we are obliged to construct

the observation matrix R ti; rj

� �
(i = 1, 2,…,m and

j = 1, 2,…,n) for each topocentric component (North,

East or Up) separately. Residual time series r tð Þ
constitute the matrix in such a way that each row

corresponds to the epoch of observation ti, while

columns represent each subsequent GNSS coordinate

time series rj from the GNSS stations. To introduce

the pPCA procedure, we firstly present the most

common derivation of PCA of the matrix R through

eigenvalue decomposition. At this stage, the time

series are assumed to be complete. The 4-step basics

are given as (Jolliffe 2002):

Step 1: computation of the mean-centered matrix

Rc by subtracting the vector of means of all columns

and from each row of R,

Step 2: computation of the covariance matrix C �
v ¼ R0

c � Rc which is of n per n-dimension matrix,

Step 3: computation of the eigenvalue decompo-

sition of C � v given by C � v ¼ V � K � V�1, where K
is a matrix with k non-zero diagonal eigenvalues of

the covariance matrix and V is the n per n-dimension

matrix with the corresponding eigenvectors in indi-

vidual columns. The number of eigenvalues may be

less than or equal to the number of time series (n

C k), but in most cases with real data, the matrix C � v

is usually of full rank and the number of eigenvectors

is equal to the number of the time series (n = k),

Step 4: sorting of the eigenvectors and corre-

sponding eigenvalues in a decreasing order. The

eigenvalues represent the contribution of each Prin-

cipal Component mode in the total variance of data.

Those principal components are estimated as:

ak tið Þ ¼
Xn

j¼1

R ti; rj

� �
� vk rj

� �
ð1Þ

where ak tið Þ is the k-th PC of matrix R and vk rj

� �
is

its corresponding eigenvector (a matching column

adapted from V).

A standard PCA approach is applicable only to

the complete datasets and any attempt to use this

method for data with missing values must be

preceded by deleting the rows with missing data,

interpolating or modifying PCA algorithm (Ilin and

Raiko 2010; Zuccolotto 2012). Real geodetic data are

susceptible to incompletion. Since coordinate time

series are arranged in the observation matrix by time,

any time series that starts later or ends earlier than

other stations are also considered as missing. Fur-

thermore, the hardware or software failure or

replacement, physical disturbance, data loss or

removal of outliers at the pre-analysis contributes to

gaps in the data.

We employed a more complex procedure for

eigenvalue decomposition in case the data matrix

being incomplete. Probabilistic PCA presented here

is based on the Expectation–Maximization (EM)

algorithm (Roweis 1997; Tipping and Bishop 1999).

The regularized EM algorithm has been recently used

to interpolate missing values before traditional PCA

and ICA were performed for the Chinese regional

GNSS network (Ming et al. 2017). In contrast to an

interpolation of incomplete time series, the EM

algorithm employed in pPCA handles missing values

by considering them as additional latent variables.

Products of pPCA-based filtering can be interpreted

in the same way as results from the traditional PCA,

however, the pPCA method stands out by application

of a flexible statistical model.

The probabilistic PCA is based on the following

latent variable model:

t ¼ W � xþ lþ e ð2Þ

where: t is a n-dimensional observation vector, x is a

q-dimensional vector of latent variables, W is a n per

q-dimensional transformation matrix, l is the vector

mean of t, e is a noise model which compensates for

the errors.

In case of filtering of GNSS-derived position

residuals, t can be identified with time series of all

available residuals at given epochs, while x are

residuals that are not directly estimated in dataset,

e.g. due to the lack of coordinates or as an effect of

outliers removal. According to pPCA theorem miss-

ing values are rather inferred from other residuals that

really exist in time series via the assumption of a

spatially correlated CME. W is the matrix whose

columns are composed of the scaled eigenvectors of

Vol. 175, (2018) pPCA-based Filtering of Incomplete GNSS Data 1845



sample covariance matrix of residuals, which are

necessary to estimate CME.

There is no closed-form analytical solution for W,

which is the reason for the need to apply an iterative

EM algorithm. In this research, we adopted the pPCA

theorem proved by Tipping and Bishop (1999), who

gave the analytic solution for the model showed in

Eq. (2), EM algorithm description and a full charac-

terization of its properties. The Maximum Likelihood

(ML) solution for pPCA latent variable model is

given by:

WML ¼ Vq Kq � r2 � I
� �1=2

B ð3Þ

where: B is an arbitrary q per q-dimension orthogonal

rotation matrix, I is an identity matrix, r2 is an iso-

tropic variance.

Each of the columns of matrix Vq (n per q-di-

mension) is the principal eigenvector of sample

covariance matrix of the GNSS residuals, with cor-

responding eigenvalue in the q per q-dimension

diagonal matrix Kq. Since one of the most important

steps of each PCA-based procedure is the decompo-

sition of the covariance matrix into the matrix with

eigenvalues and matrix with corresponding eigen-

vectors, this in case of pPCA the maximization of the

likelihood function (Eq. 3) by using EM algorithm is

a key issue to obtain the most probable elements of

Vq and Kq matrixes. It results in the calculation of

principal eigenvectors and eigenvalues necessarily

for reliable CME estimation (Eq. 4).

The EM algorithm consists of two main steps: the

E-expectation and M-maximization. The parameters

of the model given in the Eq. (3) are resolved with

the Maximum Likelihood Estimation (MLE) in an

iterative manner (Tipping and Bishop 1999) by 3-step

procedure:

Step 1 (E-step): calculation of the expected value

of the log-likelihood function, given the considered

data and the current estimates of the model

parameters,

Step 2 (M-step): finding the new parameters by

maximizing the log likelihood function using the

expected parameters derived in the E-step,

Step 3: repeating Steps 1 and 2 until convergence.

For our purposes the convergence criteria was set up

as a relative change in the transformation matrix

elements less than 10-4.

Using the EM algorithm for finding the principal

axes by iteratively maximizing the likelihood func-

tion (Eq. 3), the latent variable model defined by

Eq. (2) affects mapping from the latent space into

principal subspace of the observed data.

One of the most important features related to

pPCA method is the fact that the q-number of EOFs

to retain, can be specified at the very outset. The

reason for limitation of this parameter is the fact that,

in case of small value of q in relation to high value of

n (number of dimensions—in our case number of

GNSS stations) the dimension of W transformation

matrix is much smaller than the covariance matrix for

traditional EOF analysis. This makes pPCA method

to be computationally much more efficient and less

burdensome for computers. Many papers have

focused on the issue of determining the optimum

q number of retained EOFs prior to using EM algo-

rithm (e.g. Jolliffe 1972; Houseago-Stokes and

Challenor 2004). However, there is no satisfactory

and versatile rule. In this research, at the pre-pro-

cessing stage based on our dataset, we computed the

maximum number of principal components which

can be retained from pPCA. We found that only the

first PC is significant when deterministic model was

subtracted prior the pPCA analysis (please see data

and methods described in section ‘‘GNSS time ser-

ies’’), which is consistent with the considerations of

other authors (Dong et al. 2006; Shen et al. 2013). We

adopted q = 3 value to allow for more variance to be

retained. Furthermore, some aspects of computational

as well as communication complexity of PCA-based

methods were the subject of many analyses (e.g.

Roweis 1997; Houseago-Stokes and Challenor 2004;

Ilin and Raiko 2010) with leading conclusion that the

probabilistic PCA is the most promising PCA

approach, especially for large datasets.

Another important advantage of the pPCA method

is the ability to interpret its products in the same

manner as results of traditional PCA. This allows to

adopt the definition and applications of CME esti-

mates (Dong et al. 2006):

CMEj tið Þ ¼
Xp

k¼1

ak tið Þ � vk rj

� �
ð4Þ
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where p is a number of first significant PCs. Fol-

lowing Shen et al. (2013) and Tiampo et al. (2004),

we used the Fisher-Snedecor test (Fisher, 1932) for

the equality of two variances to decide on the number

of significant PCs. CME is removed from the unfil-

tered residuals r tð Þ using arithmetic subtraction, thus

obtaining so-called ‘‘filtered’’ residuals. The first few

PCs (or just the first PC in some cases) reflect a

common source function which affects the regional

GNSS network, i.e. CME, and represents the highest

contribution to the variance of the GNSS-derived

position residuals (Dong et al. 2006).

3. GNSS Time Series

In this research, we employed the daily-sampled

GNSS position time series that were produced by the

International GNSS Service (Dow et al. 2009) by a

network solution referred to as ‘‘repro2’’ to estimate

coordinates (Rebischung et al. 2016). Each of the

selected stations contributed to the newest realization

of the International Terrestrial Reference System

(namely ITRF2014, Altamimi et al. 2016). Since it is

imperative to investigate the response of the newly

adopted pPCA method to the number of missing data,

we were obliged to find stations with almost complete

time series for reference purposes. Since the distance

between stations from the selected network is quite

important for this research, a set of 25 stations located

in Central Europe were chosen (Fig. 3). The distance

between any two stations taken for analysis is shorter

than 1870 km which is consistent with the overall

assumptions related to applicability of PCA-based

filtering methods. Márquez-Azúa and DeMets (2003)

found that the spatial correlations of the residual time

series are high within 1000 km distance and they

gradually decrease to zero for c.a. 6000 km. Similar

studies were performed for stations distant at the 103

km level, located in China (Li et al. 2015; Shen et al.

2013) or in Australia (Jiang and Zhou 2015).

For the purpose of this study, we used a time span

of 2003.2–2015.0 (Fig. 4), when all selected stations

were operating. The length of the GNSS coordinate

time series is very important whilst the station

velocity is expected to be determined with high

reliability. The data time span commonly assumed by

other authors (e.g. Blewitt and Lavallée 2002) as a

minimum for reliable velocity estimation is 3 years.

However, lately, Klos et al. (2018) argued that this

span should be extended to 9 years. Time-dependent

improvements in the consistency of GNSS-derived

position residuals are explained by avoiding errors

caused by mismodeling of seasonal signals and

noises. Every incorrectly estimated seasonal signal

for regional network of GNSS stations may increase

spatially-correlated errors. As a result of studies

performed both on GNSS time series and models of

surface mass loading deformation, Santamarı́a-

Gómez and Mémin (2015), found that at least 4 years

of continuous data is necessary to meet requirements

of the accurate modelling of the inter-annual defor-

mations as a step towards reliable estimation of

secular velocities. In case of time series included in

this analysis, 12.2 years long data time span exceeds

assumed minimal levels.

We used epochs of offsets compiled by IERS

(International Earth Rotation and Reference System

Service) ITRS Product Centre and available at http://

itrf.ensg.ign.fr/ITRF_solutions/2014/doc/ITRF2014-

soln-gnss.snx to eliminate the influence of disconti-

nuities on final estimates. Any value was considered

Figure 3
Geographical distribution of 25 stations employed in the analysis
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as an outlier, when it fell outside 3 times the

interquartile range (IQR) below or above the median

(Langbein and Bock 2004).

The time series were characterized by 3.8% of

gaps on average. Time series form station ONSA

(Onsala, Sweden) were the most complete with only

0.5% of missing data, while station BRST (Brest,

France) had the greatest amount of missing data:

13.2%.

We modelled each of the topocentric (North, East

or Up) position time series (Fig. 4a) x(t) with a

mathematical function that takes the form of:

xðtÞ ¼ x0 þ vx � t þ
Xj

i¼1

Ai � sinðxi � t þ /iÞ þ rðtÞ½ �

ð5Þ

where: x0 represents the initial coordinate at the ref-

erence epoch, vx refers to the linear velocity,P j
i¼1 Ai � sinðxi � t þ /iÞ½ � accounts for periodic sig-

nals with angular velocities xi, rðtÞ ¼ CMEðtÞ þ eðtÞ
are the residuals being a sum of spatially- and tem-

porally-correlated CME and temporally-correlated

noise.

In the following research, the parameters of the

deterministic part were estimated with the Maximum

Likelihood Estimation (MLE) method according to

approach to the deterministic part given by Bogusz

and Klos (2016). Unlike the vast majority of descri-

bed modelling approaches found in literature (Dong

et al. 2006; Shen et al. 2013), where only annual and

semiannual signals were used, our deterministic

model assumes different periodicities: fortnightly,
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Exemplary GNSS coordinate time series for station BRST (Brest, France). a ‘‘raw’’ GNSS coordinate time series. Trend, offsets and seasonal

signals can be noticed. b ‘‘unfiltered’’ time series subjected to filtering analysis, obtained when model from Eq. (5) was removed. c CME

estimates based on the pPCA method performed for incomplete time series. d Residuals of BRST with gaps being filled. The different scale of
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Chandlerian, tropical and draconitic (see Bogusz and

Klos 2016).

CME contains some part of a flicker noise (Klos

et al. 2016) with spectral index of -1, which was

found to be mostly present in the GNSS position time

series (Williams et al. 2004; Bos et al. 2008). The

residual time series r tð Þ obtained after a deterministic

model was subtracted (Fig. 4b), are subjected to

further analysis and will be referred to later in this

paper as the ‘‘unfiltered’’ time series.

Despite the fact that the time series were de-

trended and seasonal signal were removed, we still

notice the non-zero correlations between residuals

r tð Þ. For the purpose of proving correlation level, we

performed two types of tests. Initially, to quantify the

level of correlations, we used Lin’s concordance

correlation coefficient (Lin 1989), as it was recom-

mended for GNSS residuals by Tian and Shen (2016).

Lin’s concordance coefficient, was introduced to

provide a measure of reliability that is based on

covariation and correspondence in contrast to com-

monly used Pearson correlation coefficient, which in

turn is a measure of linear covariation between two

sets of scores. Differences can be comprehended by

geometric interpretation, where two time series are

plotted in one scatterplot and best fitted line is

imposed. Pearson correlation coefficient specifies

how far from the line are data points, whilst Lin’s

concordance coefficient additionally taking into

account the distance to the 45-degree line, which

represents perfect agreement. Concordance correla-

tion coefficient ranges from 0 to ± 1 and its

interpretation is close to other correlation coeffi-

cients, which means, that values near 1 mean perfect

concordance and 0 means no correlation. For unfil-

tered residuals used in this analysis we found that the

average Lin’s concordance correlation coefficient is

equal to median values of 0.39 for horizontal and

0.54 for vertical components, respectively, when the

distance between individual stations is less than

500 km (see the red dots in Fig. 11). Correlations are

smaller for more distant stations, which is mostly

evident for the Up component. Then, we employed

the Kaiser–Meyer–Olkin (KMO) index to assess

whether we are able to use multivariate analysis to

efficiently extract the common signals from a set of

stations we employed (Cerny and Kaiser 1977):

KMO ¼
P

j

P
k 6¼j q

2
jkP

j

P
k 6¼j q

2
jk þ

P
j

P
k 6¼j q̂

2
jk

ð6Þ

where: q̂jk represents a partial correlation, and qjk is a

correlation coefficient between variables j and

k which mean time series from jth and kth stations.

Partial correlation is the measure of association

between two time series, while controlling or

adjusting the effect of one or more additional time

series.

The KMO index is a value that describes dataset

applied to dimensionality reduction techniques (e.g.

pPCA). This index measures the proportion of com-

mon variance among the all variables. By definition,

the KMO index ranges between 0 and 1. Values close

to 1 mean that common signals have a significant

variance. For the observation matrix from the real

unfiltered residuals of 25 GNSS stations we obtained

KMO indices equal to 0.961, 0.966 and 0.988 for the

North, East and Up components, respectively.

4. pPCA Filtering of Artificially Incomplete Time

Series

In this part of the research, we analyzed and

compared iPCA, mPCA and pPCA methods with

traditional pre-interpolated PCA approach for the

spatio-temporal filtering of the GNSS-derived posi-

tion time series. Missing values were introduced to

real GNSS position time series to simulate the num-

ber of gaps we might expect in the observations. In

this way, we assessed the ability of each method to

deal with incomplete time series and its sensitivity on

the number of missing values.

The artificially incomplete residuals were pro-

duced in the following manner. First, we used the

GNSS position residuals from a set of 25 stations

presented in Fig. 3. We fully interpolated them,

assuming adequate values of mean and standard

deviation of inputted points in such a way that

interpolation procedure did not change the variance

of the time series. With these assumptions, we

obtained time series that imitated 25 unfiltered, fully

complete GNSS residuals. An example is shown in

Fig. 4d. Then, we randomly chose epochs and

removed observations to simulate incomplete data.
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We introduced gaps with length from 5 to 40% of the

total length of the series with 5% increment. We

assumed that the gaps were missing at random

(MAR, Little and Rubin 2002) and that the number of

stations subjected to introduced gaps is approxi-

mately equal to the number of time series which

remain complete. Therefore, data gaps were intro-

duced to 13 randomly chosen stations from a set of

25. For the remaining 12 stations, no data were

deleted simulating time series as being complete. We

were tempted to accept this procedure by two issues.

First, to investigate what is the impact of missing data

on CME estimates. Second, how much the CME

computed for complete time series is affected by

values which are missing on other stations.

In case of traditional PCA with interpolated gaps

we assumed a white noise model to simulate scatter

of residuals to show, how the simple assumption of

linear interpolation may bias the CME estimates. The

response of each method was then analyzed accord-

ing to the increased number of missing values. The

relative errors of CME were computed based on the

unfiltered residuals subjected to introduced gaps and

compared to CME estimated for the complete unfil-

tered residuals. Complete time series were treated as

a reference dataset for spatio-temporal filtering. It is

worth noting that CME is identical for all methods

where time series are complete. The relative error of

CME determination was computed as (Shen et al.

2013):

rCME ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCMEi � CME0ÞTðCMEi � CME0Þ

CMET
i � CME0Þ

s

� 100

ð7Þ

where CME0 and CMEi are the vectors of Common

Mode Errors computed before data were deleted and

after data gaps were interpolated, respectively. When

gaps were introduced, we randomly chose stations

and epochs to be deleted 100 times and we averaged

results of simulations. Figure 5 presents the relative

errors for stations where data were deleted, while

Fig. 6 includes relative errors of CME for stations

where no data were removed. When the interpolation

of GNSS-based position residuals has been applied

before PCA-based filtering, the CME values were

biased reaching values of relative error equal to 10

and 35%, when 5 and 40% of data were deleted,

respectively. The relative errors of CME estimates

are similar both for mPCA, iPCA and for pPCA

which allows us to conclude that our method can

constitute an alternative approach to both methods

already mentioned. Only in a few cases the pPCA

performance in CME estimation is slightly better than

mPCA, but the difference between both of them is not

significant and reaches the maximum of 0.1%.

The relative errors of CMEs estimated with pPCA

ranged between 5 and 14% for the entire set of sta-

tions. The reconstruction of CME computed on the

basis of incomplete data is slightly better for the

vertical component for which the relative errors of

CME are less by 1–3%. This fact may be explained

by the higher correlation, which allows to determine
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more reliable parameters of latent variable model in

pPCA. Another important feature, which can be seen

in Figs. 5 and 6 is the fact, that compared to mPCA

and pPCA, the iPCA method performs worse in the

North component than in the East and Up compo-

nents. Taking into consideration only North

component, the differences in relative error of CME

estimated with the use of iPCA and pPCA methods

are about 4%. It may be due to inhomogeneous spa-

tial response of individual stations to the CME

source, which is presented in Fig. 7 and described in

the next section.

Similarly to iPCA and mPCA, the relative error of

CME reconstructed with the use of pPCA is always

less than 14%, even in cases when 40% of residuals

were deleted from the 13 stations selected out of 25

(Fig. 5). In the standard PCA approach with

interpolation, the larger the number of missing val-

ues, the higher the relative error of CME, rising to

33%. In addition, the CME values were biased for 12

stations, where no data were removed. All relative

errors of CME presented in Fig. 6 are non-zero.

Despite the fact that each time series derived from 12

stations was not subjected to a deleting procedure,

CME estimates were also incorrectly calculated due

to the missing values in the remaining time series.

Then, we ran imitation of missing values to sim-

ulate a specific case when GNSS coordinate time

series have just few common epochs [see stations

VENE (Venezia, Italy) and WAB2 (Bern, Switzer-

land) in Fig. 2a]. As it was mentioned before, every

inconsistency in the first and last observed epoch for

GNSS time series has to be treated during spatio-

temporal filtering as an incompleteness. We simu-

lated a few time series which have relatively small

number of common observations. First, we randomly

selected 6 stations from a set of 25 complete residuals

that we employed and made the time series to end at

2009.12, which means that we purposely deleted data

after 2009.12. Later, other 6 stations were randomly

selected and we artificially made them to start after

2009.12. Having those two datasets of 6 stations, we

gradually added the previously deleted data to pro-

long the time of common observations in every stage.

In each iteration, the remaining set of 13 stations was

untouched. For this kind of dataset, spatio-temporal

filtering of 25 GNSS residuals was carried out using 4

PCA-based methods. Relative errors of CME were

estimated for all stations and the results were aver-

aged. The selection of 12 stations was repeated 20

times independently at every stage to average results

for various combinations of stations subjected to data

deletion. We also estimated the time which is

required to estimate CME for all methods. Table 1

presents relative errors of CME (rCME, Eq. 7) esti-

mated with the procedure described above.

Based on the data presented in Table 1, we can

conclude that pPCA method gives quite consistent

results compared to other algorithms. The relative

errors of CME averaged for 20 simulations do not

exceed 19% in each direction. For analyzed set of

stations, the mPCA method requires that the time

series have a minimum of 400 common epochs of

observations for horizontal components and a
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minimum of 1500 epochs for a vertical one. Other-

wise, algorithm is unable to calculate Principal

Components, because the covariance matrix esti-

mated at the beginning of the algorithm is not

positive semidefinite and some of its eigenvalues are

negative. The differences between iPCA and pPCA

methods can be seen for horizontal components,

where time span of common epochs is shorter than

800 observations. In such a case, the differences in

relative error of CME reach 14%. The iPCA, mPCA

and pPCA algorithms performed similarly for Up

component except in cases in which mPCA was

unfunctional.

Standard PCA method is the fastest and also the

least complex of those being considered, because

residuals are fully interpolated a priori and eigen-

decomposition is made only once, but results shown

in Table 1 do not give grounds for including this

method for further analysis. Time needed to estimate

CME depends on the computing power of the

resources. In our case, we conducted each PCA-based

filtering method simultaneously using the same HPC-

class (High-Performance Computing) resource,

therefore, we show relative values of calculation time

referred to in pPCA method. This method calculates

CME relatively faster than mPCA up to a maximum

of 300%, when residuals are loaded with the largest

number of missing values. Differences in processing

time have decreased almost to zero for these two

methods, where residuals have more than 2000

epochs of common observations. Computational time

for iPCA method is very similar to pPCA method, i.e.

iPCA is up to 20% slower. However, for more

complete time series the iPCA seems to be faster than

pPCA (up to 50%). Since in our case the number of

stations and epochs for daily time series are relatively

small, processing time does not seem to be a key

factor for defining the superiority of filtering methods

to be used for GNSS position time series. However,

when long-term hourly (or even more frequent)

GNSS time series from network formed by hundreds

of stations would have to be employed for filtering

procedure, the computational complexity can influ-

ence the choice of method.

Table 1

Relative errors of CME averaged for a set of 25 GNSS residuals, in which 12 randomly selected residuals have limited common time span of

observations

Number of common

epochs

North [%] East [%] Up [%]

Standard

PCA

iPCA mPCA pPCA Standard

PCA

iPCA mPCA pPCA Standard

PCA

iPCA mPCA pPCA

50 99.4 32.6 – 18.6 85.9 22.5 – 18.5 99.9 13.9 – 13.6

100 98.2 27.2 – 18.6 81.6 22.0 – 18.1 91.4 12.9 – 13.2

200 96.1 24.6 – 18.3 77.1 21.6 – 17.3 90.6 12.5 – 12.7

400 69.8 20.0 20.1 18.1 75.5 21.7 30.7 16.7 89.6 12.2 – 13.0

600 56.4 19.7 20.0 17.4 75.2 19.1 20.5 16.5 76.9 12.0 – 12.2

800 55.5 17.9 16.1 17.2 68.8 18.8 17.0 16.5 71.7 11.4 – 12.4

1000 54.6 16.6 15.8 15.6 50.5 17.6 16.7 16.3 61.5 10.9 – 12.0

1500 47.5 15.0 15.6 15.0 45.2 16.6 16.6 16.2 50.3 10.7 10.8 10.9

2000 39.0 15.4 14.2 14.1 37.0 15.1 15.2 14.5 47.7 9.2 9.2 10.4

2500 35.1 14.7 12.5 12.1 26.7 14.4 13.4 13.4 46.7 9.5 9.9 10.2

3000 28.1 13.4 10.3 9.4 22.2 11.3 11.6 10.8 15.8 7.6 7.3 7.8

3500 15.3 12.9 9.1 8.6 15.1 7.9 7.3 6.9 12.5 5.6 5.5 5.5

Number of common epochs for those 12 stations is contained in the first column. It shows how much these 12 stations are overlapped. Number

of epochs in the whole dataset is 4314. Symbol ‘-’ means that a certain algorithm was unable to calculate Principal Components

bFigure 7

Maps of spatial distribution of GNSS residuals responses (normal-

ized eigenvector elements) to the 1st (a, c, e) and 2nd (b, d, f) PC,

for North, East and Up components, respectively, and correspond-

ing scaled Principal Components (solid line at the top of each map).

Normalized eigenvector elements can be identified with station

contribution (positive-blue or negative-red) into the amount of

variance in particular PC. Note different scales in horizontal and

vertical directions
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On the basis of the results presented in this sec-

tion, we may conclude that the pPCA method is able

to be directly applied to the GNSS position time

series with no need to interpolate the data before

spatio-temporal filtering. In turn, GNSS time series

do not have to start and end at the same epochs, they

are not affected by the interpolation procedure. What

is more, a gap present in all time series at one (or

several) epoch, will facilitate the calculation of CME.

5. pPCA Filtering of Real Time Series

In the following section, we present the results of

spatio-temporal filtering performed with pPCA for

real dataset consisting of position time series from 25

IGS stations. Residuals are the result of standard pre-

processing described previously and they are not

subjected to intentional data deleting or interpolating

procedure. We employed a set of 25 stations pre-

sented in Fig. 3 and used the ‘‘unfiltered’’ residuals

r tð Þ of their position time series presented in Fig. 4b.

First, we analyzed the eigenvalues and eigenvec-

tors related to each consecutive PCs. Table 2 presents

the proportion of variance of all residuals, which is

represented by first seven PCs. The eigenvalues can

be interpreted as a fraction of the total variance of the

residual time series corresponding to each eigenvec-

tor. Additionally, the analysis of eigenvalues allowed

us to define significant PC (or PCs) which may be

interpreted as CME.

The 1st PC explains 36 and 49% of the total

variance for horizontal and vertical components,

respectively. Higher order PCs do not contribute to

the total variance of residuals higher than 8%. These

percentages support the hypothesis that regional

phenomena affect the vertical component more than

the horizontal components. The first PC is the only

one which satisfies the criteria of CME consideration.

As indicated by the Fisher-Snedecor test at the 95%

confidence level, the variance of residuals which is

explained by this mode significantly differs from the

variances of the remaining PCs. Therefore, in the

following part of the paper, the CME will be calcu-

lated using only the 1st PC.

Figure 7 shows scaled PCs obtained through

pPCA procedure and their corresponding eigenvec-

tors. Scaled Principal Components are obtained by

multiplication of each PC by the normalization factor,

which is equal to the maximum response of the net-

work stations to this mode. A procedure to compute

the normalized eigenvectors was adopted from Dong

et al. (2006). The normalized eigenvector elements

refer to the spatial response of individual stations to

the CME source if the considered PC can be identi-

fied as CME. Those elements may be positive or

negative with values between - 100 and ? 100%

(Fig. 7). The theoretical assumption of CME

changeability within the considered GNSS network is

supported by the results presented in the Fig. 7. The

entire set of stations show a positive response to the

1st PC with values higher than 33% for all topocentric

components. A minimum response was found for the

AJAC (Ajaccio, France) station for Up component

(Fig. 7e). The elements of the eigenvector related to

2nd PC are both positive and negative (Fig. 7b, d, f).

Such result can be explained by the fact that signals

extracted by the 2nd and also by subsequent PCs are

due to an uncommon source for that network. They

may result from local or regional effects and are

unnoticeable for the entire set of stations. The con-

secutive PCs are characterized by the statistically

negligible amount of variance explained by them.

Both eigenvalues presented in Table 2 and spatial

distribution of station responses shown in Fig. 7

analyzed together allow us to conclude, that 1st PC is

the only one that fulfills the CME definition. This has

been also confirmed previously by Fisher-Snedecor

tests.

Table 2

Eigenvalues shown as a percentage of variance of residuals r tð Þ
represented by first seven PCs

Topocentric component principal

Component

North

[%]

East

[%]

Up

[%]

1st 36 36 49

2nd 7 8 7

3rd 6 7 5

4th 5 6 5

5th 4 4 4

6th 4 4 3

7th 4 3 3

1854 M. Gruszczynski et al. Pure Appl. Geophys.



Results presented in Fig. 7 show a spatial pattern

for the East and Up components found for network

station responses to the 1st PC which is identified as

CME. For these two components of position, the

GNSS residuals responses to the CME are higher for

stations situated in Northeastern Europe than for

other selected stations. For North component, station

responses are more homogeneous. The median value

of normalized eigenvector corresponding to 1st PC is

equal to 81, 73 and 74% for North, East and Up

components, respectively. For the analyzed network,

only 5 from 25 stations have relative responses less

than 70% to 1st PC in North component. This result is

different for Up and East components, where as many

as 10 stations have relative responses less than 70%

to 1st PC. From 10 stations characterized by the

lowest response for CME in Up and East components,

8 of them are located in Southeastern Europe. These

are: AJAC (Ajaccio, France), BRST (Brest, France),

GRAS (Grasse, France), HERS (Herstmonceux, UK),

HERT (Herstmonceux, UK), LROC (La Rochelle,

France), MARS (Marseille, France), TLSE (Tou-

louse, France), see Fig. 3. Spatial pattern, which was

found for 1st PC (Fig. 7) is similar to the distribution

of power-law noise which was observed earlier by

Klos and Bogusz (2017). They showed that vertical

components from Central and Northern European

stations may be characterized by smaller spectral

indices of power-law noise than any other stations in

Europe.

The small scale crustal deformations due to sur-

face mass loading are considered to be a very

important contributor to the spatially correlated errors

in GNSS (Dong et al., 2006; Yuan et al., 2008). To

support the explanations of spatial pattern shown in

Fig. 7, we analyzed another dataset employing envi-

ronmental loading models, which are freely available

at the École et Observatoire des Sciences de la Terre

(EOST) Loading Service (http://loading.u-strasbg.fr/

displ_itrf.php). We used the environmental loadings

calculated from three different models: ERA

(ECMWF Reanalysis) Interim atmospheric model,

Modern Era-Retrospective Analysis (MERRA) land

hydrological loading and non-tidal ocean loading

ECCO2 (Estimation of the Circulation and Climate of

the Ocean version 2) model. We averaged the models

to be sampled every 24 h to be consistent with GNSS

position sampling rate. Then, we summed these

models at corresponding epochs to obtain their

superposition, which means a joint effect of envi-

ronmental mass loading on the displacements of the

selected ITRF2014 stations. We also limited their

time span to be equal to the GNSS residuals

(2003.2–2015.0). These time series will be referred to

later in this paper as the ‘‘environmental loading time

series’’. Subsequently, we submitted them to pPCA

procedure to obtain their spatial responses to the 1st

and 2nd PCs (Fig. 8) and corresponding scaled PCs.

Comparing spatial distribution of normalized

eigenvectors computed for ‘‘environmental loading

time series’’ (Fig. 8), to the eigenvectors computed

for unfiltered GNSS residuals, a significant similarity

can be noticed especially for 1st PC. The level of

variance corresponding to the 1st PC reaches 66, 84

and 90% for North, East and Up components,

respectively, and differs from each consecutive PC

variance. As well as for GNSS residuals, environ-

mental loading time series respond more to the 1st PC

in Northeastern Europe with regards to East and Up

components. It is worth emphasizing, that we may

draw a North–South oriented line separating areas

with different responses relating to 2nd PC. More

extended investigations of this phenomena does not

coincide with the scope of this paper, but we pre-

sume, that this effect is related to differences between

the influence of the continental and oceanic climate.

As stated previously, environmental loadings, in

particular, atmospheric, hydrological and non-tidal

oceanic effects, are one of the potential sources of

CME in the GNSS coordinate time series. According

to the spatial pattern which was presented in Figs. 7

and 8, we estimated how large-scale environmental

effects influence the character of CME. For this

purpose, we first derived the CME of the ‘‘unfiltered’’

GNSS residual time series using pPCA for a real

dataset as described above. Then, to assess the con-

tribution of loading effects to this CME, we derived

the CME of the ‘‘unfiltered’’ GNSS residuals adjusted

for loading effects. Finally, to make a comparison we

calculated CME variances and discussed the results

of CME noise analysis together for two dataset.

GNSS-derived position residuals, as well as, other

time series of measurements of wide variety of

dynamic processes are usually characterized by
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spectral indices equal to fractional numbers lower

than zero (e.g. Langbein and Johnson 1997). In this

research, noise analysis was performed with Maxi-

mum Likelihood Estimation, which was previously

applied in numerous studies describing noise char-

acter of GNSS position time series [i.e. Williams

et al. (2004), Teferle et al. (2008), Bos et al. (2010) or

Klos et al. (2016)]. These researches showed that the

noise of GNSS residuals has a character of power-law

process with spectral indices varying between -2

(random walk) and 0 (white noise), which are mainly

near to -1 (flicker noise). We assumed two different

noise models to describe the CME estimates from

GNSS ‘‘unfiltered’’ and ‘‘filtered’’ residuals, meaning

a combination of power-law and white noise model

and autoregressive process. The details of this anal-

ysis are described in next paragraphs.

Figure 9 presents the variance of CME, which is

identified with 1st PC. CME estimated for ‘‘unfil-

tered’’ GNSS residuals is characterized by the

variances between 0.26 and 1.04 mm2 for horizontal

components and between 0.94 and 17.06 mm2 for

vertical component. The variances of CME were

reduced to 0.19–0.87 mm2 (20% of average reduc-

tion) in the horizontal directions and to

0.64–6.87 mm2 (65%) for vertical direction. A

change in CME variances arises from the fact that the

environmental loading models remove much of CME

variance (Fig. 10), especially with a frequency band

between 9 and 12 cpy (cycles per year) mainly

affected, which was also noticed before by

Gruszczynska et al. (2018). The above described

results are consistent with the assertion that GNSS

residuals are highly affected by environmental mass

loading influences, mostly in the vertical direction.

Within this noise analysis we found that the char-

acter of CME is very close to a pure flicker noise for

horizontal components, however, it has a character of

autoregressive process of first order for vertical com-

ponent (Fig. 10). Spectral indices we delivered using

MLE analysis computed for CMEs of unfiltered GNSS

residuals were equal to - 1.21 and - 1.16 for North

andEast components, respectively. The contribution of

power-law noise was equal to 100.00%, meaning that

there is no white noise stored in CME series for hori-

zontal components. Having removed the

environmental loadings, spectral indices were equal to

- 0.99 and - 0.93 for North and East components,

respectively. CME series estimated for Up component

are clearly affected by pure autoregressive process of

first order (AR(1)), which is flat for low frequencies

and stepped when moving to shorter periods. This may

indicate that CME is affected by large-scale atmo-

spheric phenomena which also have a character of

autoregressive processes (Matyasovszky 2012).

Moreover, due to the fact that following stations:

BOR1 (Borowa Gora, Poland), GOPE (Pecny, Czech

Republic), GRAZ (Graz, Austria), JOZE (Jozefoslaw,

Poland), LAMA (Lamkowko, Poland), ONSA (On-

sala, Sweden), POTS (Potsdam, Germany), PTBB

(Brunswick, Germany), WROC (Wroclaw, Poland),

WSRT (Westerbock, Netherlands), WTZA, WTZR,

WTZZ (all three in Bad Koetizng, Germany), situated

in Central Europe, contributed the most to CME esti-

mates, which was described as the percentage response

to 1st PC, the CME we estimated reflects mainly the

character of residuals of these stations. A large cut off

between 3 and 14 cpy in a power of CME was noticed

for CME in Up direction when loading models were

removed from series, which causes the CME to

resemble a power-law noise. This may indicate that

CME in the vertical direction contains environmental

effects which affect stations located close to each

other.

6. Analysis of GNSS Position Residuals

The GNSS residuals with CME subtracted, which

we refer to as ‘‘filtered’’ residuals, were analyzed in

terms of the Lin’s concordance coefficients between

individual pairs of stations in the network under

analysis. In addition, the parameters of noise derived

from MLE and the uncertainties of velocities esti-

mated for the North, East and Up components using

Hector software (Bos et al. 2013) were considered.

The values presented in Fig. 11 confirm the benefits

bFigure 8

Maps of spatial distribution of environmental loading time series

responses (normalized eigenvector elements) to the 1st (a, c, e) and

2nd (b, d, f) PC, for North, East and Up component, respectively

and corresponding scaled Principal Components (solid line at the

top of each map). Loading correction time series are calculated for

the same locations as GNSS stations shown in Fig. 3
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of spatio-temporal filtering. We showed that pPCA

filtering reduces the absolute values of the concor-

dance coefficient on average by 66, 67 and 67% for

the North, East and Up components, respectively.

The relative reduction is similar for stations in close

proximity to each other as well as for stations situated

far away, which means that the CME was efficiently

reconstructed from 1st PC estimated by the pPCA

method.

In the next stage we estimated the variance of

residuals, the character of noise and the Bayesian

Information Criterion (BIC, Schwarz 1978) which

helped to assess the appropriateness of the employed

noise model for all stations in the network (Fig. 12).

The changes in noise characteristics for ‘‘filtered’’

and ‘‘unfiltered’’ residuals allowed us to recognize the

effect of spatio-temporal filtering on GNSS-derived

position residuals.

First, we decided on the preferred noise model to

be employed for any individual station. We examined

the PSDs of ‘‘unfiltered’’ and ‘‘filtered’’ residuals and

found that ‘‘unfiltered’’ residuals in Up direction for

stations, BOR1 (Borowa Gora, Poland), GOPE

(Pecny, Czech Republic), GRAZ (Graz, Austria),

JOZE (Jozefoslaw, Poland), LAMA (Lamkowko,

Poland), ONSA (Onsala, Sweden), POTS (Potsdam,

Germany), PTBB (Brunswick, Germany), WROC

(Wroclaw, Poland), WSRT (Westerbock, Nether-

lands), WTZA, WTZR, WTZZ (all three in Bad

Koetizng, Germany) situated in Central Europe, are

affected by pure autoregressive noise model (please

see Figures in Supplementary Materials S1). How-

ever, when CME is removed from these vertical time

series, ‘‘filtered’’ residuals are characterized by pure

power-law noise, meaning that we remove the effect

that, probably, the atmosphere has on vertical com-

ponent. On the other hand, we need to be aware of the

fact, that we also slightly change the character of

other series, which were not affected by atmosphere

as much as Central European stations. This makes

that, what is noticed from PSDs, these ‘‘filtered’’
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residuals are much more affected by white noise than

‘‘unfiltered’’ residuals were, meaning that white noise

contributes now more into white plus power-law

noise combination.

The variance of ‘‘unfiltered’’ residuals ranged

between 1 and 4 mm2 for the North and East com-

ponents, whilst it was significantly higher for the Up

component and ranged between 10 and 38 mm2.

Spectral indices of power-law noise vary between

- 0.6 and - 1.0 for the North and East components

and between - 0.6 and - 1.4 for Up component,

keeping in mind that for Central European stations,

the spectral indices are slightly underestimated

because of the portion of AR(1) noise model in

residuals. Having filtered the residuals by pPCA, we

observed a significant reduction in the variances of

between 10 and 74% for all stations with a median

decrease estimated at 36, 37 and 46% for the North,

Variance [mm ] Spectral indices Bayesian information2

criterion (×1000)
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The GNSS residual variances and parameters of noise: spectral indices and BICs estimated for residuals computed before (red) and after (blue)

pPCA filtering
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East, and Up components, respectively. A clear

improvement in the spectral indices (going towards 0)

of the power-law noise was only noticeable for the

Up component, but just for stations affected by AR(1)

for ‘‘unfiltered’’ residuals, which is reflected by an

average shift in the spectral indices towards white

noise from - 0.98 to - 0.68 (improvement of almost

30%). This is mainly because a shift between pre-

ferred noise models from AR(1) to pure power-law

noise was observed. We also estimated the changes in

BIC values which confirm the appropriateness of a

model to be fitted into certain residuals. We found an

improvement in BIC values for all stations and all

components after filtration.

Having filtered the CME values, we estimated the

uncertainties of the station velocity of the GNSS

position time series using the preferred noise model

(PL ? WN or AR(1) ? WN) for each of them.

Figure 13 presents the uncertainties of velocity

computed for the ‘‘unfiltered’’ incomplete time series

from 25 stations and the uncertainties estimated for

the ‘‘filtered’’ ones using the pPCA method. The fil-

tering of the CME leads to a more reliable

determination of the GNSS station velocity, espe-

cially in the case of the Up component. Prior to

filtering, the velocity uncertainties were higher than

1 mm/yr for a few stations, while from Fig. 13 we

noticed that after CME was removed by pPCA, the

velocity is more precise than 0.2 mm/year.

The largest change of velocity uncertainty equal

to 95 and 94% was estimated for the Up component

of two Polish stations: BOR1 (Borowa Gora) and

WROC (Wroclaw), which is caused by a change of

noise model from AR(1) to pure power-law noise.

The smallest changes in velocity uncertainty were

estimated for the Up component for the AJAC

(Ajaccio, France), BRST (Brest, France), GRAS

(Grasse, France), LROC (La Rochelle, France),

MARS (Marseille, France) and MEDI (Medicina,

Italy) stations (Fig. 13).

The changes of velocity uncertainties are signifi-

cantly different for each topocentric component. The

contributions of individual stations to CME estimated

for the North vary between 54% for station ONSA

(Onsala, Sweden) to 100% for station WROC

(Wroclaw, Poland). These contributions have led to a

reduction in velocity uncertainty of 21 and 38%,

respectively. However, stations with a reduction lar-

ger than 38% were also observed. Station WSRT

(Westerbork, Netherlands) is one of them, with a

maximum reduction of 65%. Both the parameters of

noise and velocity accuracy computed before and

after filtering, as well as, the reduction of variance in

residuals show the importance of GNSS time series

filtering.

We noticed a correlation between the contribution

of individual stations to CME for the Up component

and the reduction in velocity uncertainty. The higher

the contribution, the greater the reduction in velocity

uncertainty. Pearson correlation coefficients com-

puted for these two variables amount to 46, 32 and

86% for North, East and Up components, respectively

(Fig. 14).

bFigure 13

Uncertainties in GNSS station velocity determined before spatio-

temporal filtering (red bars) and after CME filtering using pPCA

(blue bars). Note the different scale on the Up component graph
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7. Discussion and Conclusions

The future of GNSS positioning augmented by

continuous measurements provided by permanent

stations, will lead to the installation of stations in

many new places. Each inequality of operation time

span in relation to spatio-temporal analysis should be

considered as missing value. This results in the

necessity of finding an appropriate method to perform

spatio-temporal filtering with no need to limit the

series for the same length or to interpolate the gaps.

In this study, we proposed probabilistic PCA-based

filtering method for the GNSS time series highly

affected by missing values or for a situation where

stations started and ended operation at different

times. We compared the newly applied method with

those widely used hitherto: iPCA and mPCA. More-

over, we proved that pPCA gives comparable results

but due to its flexible probabilistic model it exceeds

in performance both methods, especially in those

cases where time series are not characterized by

common observational epochs. We compared the

traditional PCA filtering approach with the newly

employed pPCA and found a few benefits. First, the

observations do not have to be interpolated, since

pPCA is able to retrieve CME from data with gaps

treated in this approach as latent values. Second, the

time series may start and end in any epoch, and what

is more, they do not have to overlap. This benefit may

introduce a fresh perspective of the CME values and

may work in any type of network, where the stations

do not operate at the same time.

Our analysis of the data from the selected

ITRF2014 stations lead us to conclude that CME

should not be considered as a uniform signal,

homogeneous for all stations. We showed instead that

the station spatial responses to the CME may deviate

from each other in networks that span up to 1800 km.

In case of the considered network, the GNSS stations

located in central part of Europe (in Poland, Czech

Republic and Germany), contributed the most to the

common variability of CME with normalized

responses of 87%. The remaining stations contributed

74% on average to CME. The explanation for this

phenomenon may simply include the response of

stations to environmental loading models, as similar

patterns in both GNSS residuals and loading models

were observed across the Europe.

It is well known that the vertical component of the

GNSS position time series is not determined with the

same precision as the horizontal (Wang et al. 2012;

Ming et al. 2017). This is due to the principles of

satellite navigation systems. The loading processes

and spatially-correlated errors have a different effect

on vertical component. With this in mind, we noticed

a larger reduction in velocity uncertainties in the

vertical direction, which is also strictly related to the

improvement in the noise characteristics of height

component. In addition, the correlation coefficient

estimated for pairs of stations decreased much more

in the vertical than in horizontal direction. This effect

was also confirmed by eigenvalues obtained via the

pPCA procedure. These can be interpreted as a per-

centage of residuals variance represented by each

consecutive Principal Components. Since only the 1st

PC is identified with CME and eigenvalues corre-

sponding to this PC were equal to 36% of the total

variance for horizontal and 49% for vertical direction,

we may therefore conclude that CME variance is

more significant in Up component. As a result of this,

pPCA filtering performs very well especially in Up

component. This is very important in the context of

increasing expectations regarding to high accuracy of

station velocities estimated from the GNSS position

time series.

Our results considering environmental loading

models are similar to those provided by Zhu et al.

(2017) who showed that the RMS for CME estimated

for the vertical component is reduced by up to

1.5 mm when loading models are removed. We

showed that having removed the environmental

loading models, the CME variances are reduced from

10.4 to 3.2 mm2 on average for vertical components.

The spatial pattern that we noticed in the contri-

bution of individual stations to CME estimations is

similar to the spatial dependencies in the amplitudes

of power-law noise shown by Klos and Bogusz

(2017). The lower the spectral index, the higher the

contribution of individual stations to CME. It agrees

with the common effect of loadings, which was also

investigated using the pPCA method on the basis of

the superposition of the environmental models. The

stations mostly affected by spatially homogeneous
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environmental effects also contributed the most to

CME estimates. Following Jiang et al. (2013), sta-

tions situated in Central Europe are much more

affected by loadings comparing to other parts of

Europe. This causes that the vertical displacement we

might expect from loading effects are few times

higher for stations situated in Central Europe we

employed. This dependence was noticed in a form of

CME estimated for vertical component, as it resem-

bled the autoregressive noise. When being compared

with CMEs for horizontal components, which are of

pure power-law character, we may conclude that this

CME strictly reflects the atmospheric effect which

Central European stations are affected the most. This

behavior was also seen for individual PSDs estimated

in this research. The autoregressive noise model is

preferred over widely employed power-law character

for all Central European stations, meaning, that if

they contribute the most into CME estimates, this

character will also transfer to CME itself. Having

removed the CME from ‘‘unfiltered’’ residuals, a

power-law noise model became a preferred one for

stations affected by autoregressive noise model up till

now. So, in other words, we removed the atmospheric

effect, which appears in Central European stations

and was enough powerful to be transferred to CME

estimates. In its turn this brings us a question if the

spatial extent of stations should not be limited to the

joint environmental impact which loading effects

have on position time series. So far, it was stated, that

the networks can be as extent as 2 000 km, but then

various spatial filters should be employed to differ-

entiate the spatial response of individual stations. Our

finding brings here a new light if the environmental

loadings impact should not also be taken into

consideration.

Hitherto, improvements in the GNSS position

time series have resulted in reduction in the scatter of

individual time series. Tian and Shen (2016) found an

improvement in the scatter of residual time series of

20.7, 13.2, and 14.4% for the North, East and Up

components, respectively. Ming et al. (2017) proved

that the reduction in scatter when CME was removed

was equal to 6.3% for all directions. We estimated the

properties of CME using MLE analysis and demon-

strated an improvement in colored noise parameters

at almost all stations.

In conclusion, according to our analysis we can

confidently state, that the newly applied probabilistic

Principal Component Analysis is a powerful and

efficient tool for the spatio-temporal filtering of any

type of geodetic gapped data and not only for the

GNSS observations investigated in this paper, being a

good alternative for such algorithms as mPCA, iPCA

and classical PCA.
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