
Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models

MEHDI ESHAGH
1 and ROBERT TENZER

2

Abstract—In this study we investigate the lithospheric stresses

computed from the gravity and lithospheric structure models. The

functional relation between the lithospheric stress tensor and the

gravity field parameters is formulated based on solving the

boundary-value problem of elasticity in order to determine the

propagation of stresses inside the lithosphere, while assuming the

horizontal shear stress components (computed at the base of the

lithosphere) as lower boundary values for solving this problem. We

further suppress the signature of global mantle flow in the stress

spectrum by subtracting the long-wavelength harmonics (below the

degree of 13). This numerical scheme is applied to compute the

normal and shear stress tensor components globally at the Moho

interface. The results reveal that most of the lithospheric stresses

are accumulated along active convergent tectonic margins of

oceanic subductions and along continent-to-continent tectonic plate

collisions. These results indicate that, aside from a frictional drag

caused by mantle convection, the largest stresses within the litho-

sphere are induced by subduction slab pull forces on the side of

subducted lithosphere, which are coupled by slightly less pro-

nounced stresses (on the side of overriding lithospheric plate)

possibly attributed to trench suction. Our results also show the

presence of (intra-plate) lithospheric loading stresses along Hawaii

islands. The signature of ridge push (along divergent tectonic

margins) and basal shear traction resistive forces is not clearly

manifested at the investigated stress spectrum (between the degrees

from 13 to 180).
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1. Introduction

Several different theories have been proposed to

explain driving forces of plate tectonics. In a pioneer-

ing study, Runcorn (1962) was reasoning that the

continental drift is a consequence of convection flow in

the mantle (see also Runcorn 1980). After a better

understanding of tectonic processes as well as the

Earth’s inner structure based on the analysis of various

geophysical and geodetic data, different hypotheses

have been proposed to explain mechanisms of litho-

spheric plate motions. Some authors suggested that,

rather than global mantle flow (e.g., Ricard et al. 1984;

Bai et al. 1992), the lithospheric plate boundary and

body forces are responsible for the plate motion. They

include ridge push (e.g., McKenzie 1968, 1969;

Richardson 1992; Ziegler 1992, 1993; Bott

1991a, b, 1993), slab pull (e.g., Forsyth and Uyeda

1975; Chapple and Tullis 1977), trench suction (e.g.,

Wilson 1993), collisional resistance (e.g., Forsyth and

Uyeda 1975), and basal drag (e.g., Wortel and Vlaar

1976; Jacoby 1980; Fleitout 1991; Richardson 1992).

These tectonic forces as well as the lithospheric load,

volcanism, elasticity of the lithosphere, viscosity of the

asthenosphere, and other rheological parameters and

geodynamic/geological processes contribute to the

overall stress state of the lithosphere. Some authors

suggested that the origin of large-scale lithospheric

stresses is mainly aligned to a frictional drag due to

global mantle flow (e.g., Hager and O’Connell 1981;

Steinberger et al. 2001), while others argue that the

lithospheric stresses are attributed mainly to the

lithospheric plate boundary and body forces (Ricard

et al. 1984; Bai et al. 1992; Jurdy and Stefanick 1991).

The first low-degree global gravity models in the

1960s determined from the orbital parameters of early

satellite missions, were used in studies of the Earth’s

inner structure and processes. In context of stress

studies, Kaula (1963) developed a method based on

minimizing the strain energy and using the low-degree

gravitational and topographic harmonics to estimate

the minimum stresses in an elastic Earth. Runcorn

(1964, 1967) formulated a functional relation between

the stress and the gravity based on solving the Navier–

Stokes’ equations for modelling the horizontal shear
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stresses below the crust, while considering a two-lay-

ered model for the Earth so that the upper layer (crust)

is floating on the viscous layer (mantle) below. He

then used the low-degree spherical harmonics of the

Earth’s gravity field to deduce the global horizontal

stress pattern, and found a correlation between the

convergent and divergent sites established by the plate

theory. Liu (1977, 1978, 1979) applied Runcorn’s

theory to construct maps of the convection-generated

stresses driving the movements of tectonic plates. Liu

(1980) also studied the relation between the mantle-

convection generated stresses and the intra-plate vol-

canism. Huang and Fu (1982) and Fu and Huang

(1983) extended Runcorn’s definition for the full stress

tensor represented by six independent components,

while assuming a constant depth of the lithosphere.

They solved the boundary-value problem of elasticity

according to Love (1944) to model the stress field

inside the lithosphere, and used Runcorn’s formulae to

define the boundary conditions to solve this problem.

Major theoretical deficiencies of these definitions

are related to disregarding mantle viscosity variations

and crustal deformations, because lithospheric stresses

reflect the rheology and thermal state of the lithosphere

as well as driving forces of plate motions. After a rapid

expansion of global seismic networks and a develop-

ment of space techniques for a precise determination

of plate motions (such as VLBI, GPS), seismic

tomography data and global tectonic plate motion

models become preferably used to model tectonic

stresses. Among existing studies we could mention

earlier works by Richardson et al. (1979), Richardson

(1992), and Bai et al. (1992), or more recent studies by

Steinberger et al. (2001), Lithgow-Bertelloni and

Guynn (2004), and Naliboff et al. (2009, 2012). Fur-

thermore, bore-hole breakouts, hydraulic fracturing,

volcanic alignment, seismic focal mechanisms, heat

flow on faults, transform fault azimuths, and other

in situ stress measurements were also used to investi-

gate and predict the global stress pattern (Zoback and

Zoback 1991; Sperner et al. 2003; Heidbach et al.

2007, 2010) and to compile the World Stress Map

Database (Zoback 1992; Heidbach et al. 2016).

Even though global seismic networks and locations

covered by in situ stress measurements increased stea-

dily over the last few decades, most of them are

concentrated in seismically active regions, while large

parts of the world are still not yet sufficiently covered by

these data. Global gravity models (which have almost

global and homogenous coverage) could therefore be

used as an alternative source of information to detect the

lithospheric stresses. Following this concept, the litho-

spheric stress determination from gravity data has

recently been addressed by Eshagh (2014a, b), Eshagh

and Tenzer (2015), Tenzer and Eshagh (2015), Tenzer

et al. (2017), and Eshagh (2017).Moreover, gravimetric

methods could also be used to investigate the litho-

spheric stresses of planetary bodies (cf. Tenzer et al.

(2015). In aforementioned studies, the horizontal shear

stresses computed according to Runcorn’s (1967) the-

ory.Moreover, the two-layeredmodel (used byRuncorn

for the crust and the mantle) should correctly be

assumed for the solid lithosphere and the viscous

asthenosphere, because information about the litho-

spheric thickness is now available (e.g., Conrad and

Lithgow-Bertelloni 2006). In this study, we apply the

method developed by Huang and Fu (1982) and Fu and

Huang (1983) to evaluate the lithospheric stress tensor

globally from the gravity and lithospheric structure

models, while assuming a variable lithospheric thick-

ness.We further subtract the long-wavelength signature

of global mantle flow in order to enhance the medium-

to-higher frequency spectrum of the lithospheric stres-

ses.We then interpret resultswith respect to tectonic and

loading forces. The comparison of the gravimetrically-

determined lithospheric stresses with results from seis-

mic tomography and in situ stress measurements is out

of the scope of this study.

2. Method

In this section we give a brief summary of the

boundary-value problem of elasticity and its solution

for finding the functional relation between the litho-

spheric stress tensor and the gravity field.

2.1. Lithospheric Stress Tensor

To begin with, let us define the stress tensor in its

generic form (e.g., Turcotte and Schubert 1982;

Stuewe 2007)

2678 M. Eshagh and R. Tenzer Pure Appl. Geophys.



S ¼
rxx rxy rxz
rxy ryy ryz
rxz ryz rzz

2
4

3
5; ð1Þ

where {rij: i, j = x, y, z} are the elements of stress

tensor. For an infinitesimal element of the spherical

shell, the diagonal elements represent the normal

stress and the off-diagonal elements define the shear

stress.

To obtain the lithospheric stress tensor, we solve

the partial differential equation of elasticity in the

spherical domain for a thin spherical shell (cf. Fu and

Huang 1983)

vþ lð Þ r r � Sð Þ þ lr2 S ¼ 0; ð2Þ

where S denotes the displacement field, r2 is the

Laplace operator, r is the gradient operator, r � S is

the divergence of tensor S, v ¼ 0:71� 1012 and l ¼
0:56� 1012 are the elasticity parameters of the

Earth’s lithosphere (cf. Fu and Huang 1990).

To solve the differential equation in Eq. (2), we

define the following boundary conditions (cf. Run-

corn 1967)

Fr ¼ 0; Fh ¼ 0; Fk ¼ 0; for r ¼ R; ð3Þ

Fr ¼ 0; Fh ¼ rxz; Fk ¼ ryz; for r ¼ R�D; ð4Þ

where F denotes the force, D is the lithospheric

depth, and R is the Earth’s mean radius. The 3-D

position is defined by the geocentric spherical coor-

dinates, with the radius r, co-latitude h, and longitude

k. The boundary conditions, given in Eqs. (3) and (4),
specify that forces in the radial, northward, and

eastward directions equal zero at the upper boundary

of the lithosphere. At the base of the lithosphere (i.e.,

the lithosphere-asthenosphere boundary), the radial

force is zero, while global mantle flow induces the

shear stresses defined by the components rxz and ryz.
According to this formulation, viscosity variations of

the asthenosphere are completely disregarded and

boundary conditions are defined for an undeformed

surface. The gravitational field is then directly related

to the horizontal shear stress component, under a

number of assumptions which might not realistically

represent the actual rheology and crustal deforma-

tions (cf. Runcorn 1967; Phillips and Ivins 1979).

This over-simplistic model thus assumes that the

lithospheric stresses could be detected solely from the

gravity data without using any constraining infor-

mation such as the global lithospheric plate velocity

model and the rheological model of lithosphere/as-

thenosphere (detected from seismic tomography).

Nevertheless, this model might be applicable to study

the terrestrial stress pattern over regions with an

insufficient coverage of seismic data and in situ stress

measurements, and stresses of planetary bodies (due

to a limited knowledge about the rheology of plane-

tary interiors).

2.2. Shear Stress Components

Runcorn (1967) formulated the expression for

computing the shear stress components rxz and ryz as
follows

rxz
ryz

� �
¼ Mg

4pðR� DÞ2
X1
n¼2

snþ1 2nþ 1

nþ 1

oTn
oh
oTn

sin h ok

 !
;

ð5Þ

where s = R/(R - D), M is the Earth’s total mass

(including the atmosphere), and g is the Earth’s

(surface) mean gravity. The surface spherical har-

monics Tn of the disturbing potential T (i.e., the

difference between the actual and normal gravity

potentials) in Eq. (5) are given by

Tn ¼
Xn
m¼�n

Tnm Ynmðh; kÞ; ð6Þ

where Ynm h; kð Þ are the (fully-normalized) spherical

harmonic functions of degree n and order m, and the

(fully-normalised) coefficients Tnm of the disturbing

potential are obtained from the coefficients of a glo-

bal gravitational model after subtracting the spherical

harmonic coefficients of the normal gravity field.

2.3. Stress Tensor in Terms of Gravity

By analogy with Runcorn’s (1967) solution for

the shear stress components in terms of gravity (in

Eq. 5), we could find an equivalent solution for all

elements of the stress tensor in Eq. (1).

The solution of the differential formula in Eq. (2)

with the boundary conditions from Eqs. (3) and (4)

yields the displacement field for a spherical shell (cf.

Beuthe 2008). Using this displacement field and the
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elastic theory, the final stress equations are found in

terms of the spherical harmonics Tn and their partial

derivatives. From Fu and Huang (1983), the normal

stress components are defined by

rxx¼
X1
n¼2

v
r0

� �
K1
n þ

2l
r0

� �
K3
n

� �
Tnþ

2l
r0

� �
K5
n

o2Tn

oh2

� 	
;

ð7Þ

ryy ¼
X1
n¼2

v
r0

� �
K1
n þ

2l
r0

� �
K3
n

� �
Tn

�

þ 2l
r0

� �
K5
n

1

sin2 h

o2Tn

ok2
þ cot h

oTn

oh

� �	
;

ð8Þ

rzz ¼
X1
n¼2

v
r0

� �
K1
n þ

2l
r0

� �
K2
n

� �
Tn; ð9Þ

and the shear stress components read

rxy ¼
X1
n¼2

l
r0 sin h

� �
K5
n

o2Tn

ohok
� cot h

oTn

ok

� �� 	
; ð10Þ

rxz ¼
X1
n¼2

l
r0

� �
ðK4

n � K5
n þ K3

n Þ
oTn

oh

� 	
; ð11Þ

ryz ¼
X1
n¼2

l
r0 sin h

� �
ðK4

n � K5
n þ K3

n Þ
oTn

ok

� 	
; ð12Þ

where r0 is the geocentric radius of an arbitrary point

inside the lithosphere. The stress tensor coefficients

{Ki
n: i = 1, 2,…, 5} in Eqs. (7)–(12) are given by

K1
n ¼ An 2nþ anð3þ nÞ½ �tn

þ Bn �2ðnþ 1Þ þ �anð2� nÞ½ �tn; ð13Þ

K2
n ¼ Anðnþ anÞðnþ 1Þt�n�1 � Bnn½�an � ðnþ 1Þ�tn

þ Cn

R2
ðn� 1Þnt1�n þ Dn

R2
ðnþ 1Þðnþ 2Þtnþ2;

ð14Þ

K3
n ¼ Anðnþ anÞðnþ 1Þt�n�1 � Bnn½�an � ðnþ 1Þ�tn

þ Cn

R2
nt1�n � Dn

R2
ðnþ 1Þtnþ2;

ð15Þ

K4
n ¼ Anðnþ 1Þt�n�1 � Bnnt

n þ Cn

R2
ðn� 1Þt1�n

� Dn

R2
ðnþ 2Þtnþ2; ð16Þ

K5
n ¼ Anðnþ 1Þt�n�1 � Bnnt

n þ Cn

R2
t1�n � Dn

R2
tnþ2;

ð17Þ

where the parameters an, �an, and t read

an ¼ �2
nvþ ð3nþ 1Þl

ðnþ 3Þvþ ðnþ 5Þl ; ð18Þ

�an ¼ 2
ðnþ 1Þvþ ð3nþ 2Þl
ð2� nÞvþ ð4� nÞl ; ð19Þ

t ¼ R

r0

� �
: ð20Þ

It is worth mentioning that Liu (1983) presented

similar formulae for the stress tensor coefficients by

assuming that v ¼ l .

2.4. Estimation Model

The stress tensor coefficients {Ki
n: i = 1, 2,…, 5}

in Eqs. (13)–(17) depend on the parameters An, Bn,

Cn, and Dn, which define mechanical properties of the

lithosphere. Since these parameters are not defined

mathematically, their estimation is carried out by

solving the system of observation equations

Ax ¼ l; ð21Þ

where the design matrix A, the vector of observations

l, and the vector of unknown parameters x are defined

by

A ¼ R�1

snH1 s�ðnþ1ÞH2 sn�2 H3

R2 s�ðnþ3Þ H4

R2

H1 H2
H3

R2
H4

R2

snG1 s�ðnþ1ÞG2 sn�2 G3

R2 s�ðnþ3Þ G4

R2

G1 G2
G3

R2
G4

R2

0
BBB@

1
CCCA;

ð22Þ

l ¼

0

0

F

0

0
BB@

1
CCA; ð23Þ

x ¼

An

Bn

Cn

Dn

0
BB@

1
CCA: ð24Þ
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The force-generating function F in the observa-

tion vector l (Eq. 23) was defined by Runcorn (1967)

in the following form

F ¼ Mg

4pðR� DÞ2
2nþ 1

nþ 1
s�ðnþ1Þ: ð25Þ

Moreover, the design matrix in Eq. (22) is formed

by the parameters:

H1 ¼ lð2nþ anÞ þ 2nðvþ lÞ þ an½ðnþ 3Þv
þ ðnþ 2Þl�;

ð26Þ

H2 ¼ �l½�2ðnþ 1Þ þ �an�ðnþ 1Þ � 2ðnþ 1Þðvþ lÞ
þ �an ðn� 2Þvþ ð1� nÞl½ �;

ð27Þ

H3 ¼ 2lðn� 1Þn; ð28Þ

H4 ¼ 2lðnþ 2Þðnþ 1Þ; ð29Þ

G1 ¼ lð2nþ anÞ; ð30Þ

G2 ¼ lð�2ðnþ 1Þ þ �anÞ; ð31Þ

G3 ¼ 2lðn� 1Þ; ð32Þ

G4 ¼ �2lðnþ 2Þ: ð33Þ

3. Numerical Studies

Theoretical definitions from Sect. 2 were applied

here to compute globally the lithospheric stress at the

Moho interface. In order to better understand the

propagation of stresses through the lithosphere, we

first investigated the depth-dependence of stress ten-

sor coefficients.

3.1. Kernel Behaviour

To illustrate the sensitivity of the stress tensor

coefficients {Ki
n: i = 1, 2,…, 5} with changing depth,

we adopted a uniform lithospheric model of a

constant thickness 100 km. A signal degree of the

stress tensor coefficients (at the spectral window

between the degrees from 13 to 180) at depths 10, 30,

and 70 km (below sea level) are shown in Fig. 1. It is

worth mentioning here that this choice of depths

closely corresponds with some principal characteris-

tics of global Moho undulations, with a typical

thickness of the oceanic crust of about 10 km, an

average thickness of the continental crust of about

30–35 km, and the maximum Moho deepening of

about 70 km under the Himalayan–Tibetan orogen.

Moreover, the long-wavelength contribution below

the spherical harmonic degree of 13 was subtracted in

order to reduce the stress signature of sub-litho-

spheric convection pattern (cf. also Liu 1977).

For certain degrees of the stress tensor coefficients

{Ki
n: i = 1, 2,…, 5} defined in Eqs. (13)–(17), the

system of observation equations in Eq. (21) becomes

singular, because of their spectral behaviour. One

example can be given for s = 1. In this case, the

design matrix (in Eq. 22) is singular, because the first

two rows are identical as well as the last two rows. In

fact, the non-singularity of the design matrix holds

only for s[ 1 (cf. Eq. 22). A detailed inspection also

revealed that the degree signal increases unboundedly

for n or n - 2, while rapidly decreases for -(n ? 1)

and -(n ? 3). Such spectral behaviour causes that

some elements of the design matrix become very

large at higher degrees, while others very small. In

addition, the diagonal elements, comprising terms sn

and sn�2, grow unlimitedly with n, thus causing that

the design matrix becomes ill-conditioned. For this

reason, we used Moore–Penrose’s pseudo-inverse

technique (cf. Moore 1920; Bjerhammar 1951; Pen-

rose 1955), instead of applying a regular matrix

inversion.

In absolute sense, the stress tensor coefficient K1
n

increases up to the degree of about 15–20 (depending

on the depth), and then monotonously decreases (cf.

Fig. 1). Moreover, the magnitude of K1
n increases

(again in absolute sense) when computed at larger

depths. For K2
n , the situation is opposite. In this case,

the signal of K2
n decreases with depth. The coeffi-

cients K1
n and K

2
n are used to compute the stress tensor

component rzz according to Eq. (9). For the elasticity

parameters: v ¼ 0:71� 1012 and l ¼ 0:56� 1012,

the contribution of the K2
n—term on the right-hand

side of Eq. (9) is larger than the corresponding

contribution of the K1
n—term. Hence, the stress tensor

component rzz magnifies (in absolute sense) with an

increasing depth, as it is clear from the depth-

dependent behaviour of K2
n (see Fig. 1).

As also seen in Fig. 1, among the stress tensor

coefficients K1
n , K

3
n , and K5

n , used in Eqs. (7) and (8),

Vol. 174, (2017) Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models 2681



Figure 1
Signal degree of the stress tensor coefficients {Ki

n: i = 1, 2,…, 5} at the spectral window between the spherical harmonic degrees from 13 to

180
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the contribution of K5
n is the smallest. Moreover, the

coefficients K1
n and K3

n are negative, and K3
n does not

show any significant dependence on depth, but when

added to K1
n , their combined contribution becomes

more depth-sensitive. As seen in Eq. (10), the

component rxy is functionally related only with the

coefficient K5
n . Since the contribution of K5

n is the

smallest, the component rxy is also the smallest

among the stress tensor components. In Eqs. (11) and

(12) we observe that the stress tensor components rxz
and ryz involve the combination K4

n � K5
n þ K3

n .

Among these coefficients, K3
n has the strongest signal

which dominates the total signal of the combination.

3.2. Data Acquisition

The computation of the lithospheric stresses at the

Moho interface from the gravity data requires infor-

mation about the lithospheric thickness and the Moho

geometry. In our study, we used the lithospheric-

thickness model presented by Conrad and Lithgow-

Bertelloni (2006).

They adopted a half-space cooling model (Tur-

cotte and Schubert 1982) according to which the

oceanic lithospheric thickness increases proportion-

ally with the square-root of its age. Since they used

data of the ocean-floor age from Müller et al. (1997)

to compute the oceanic lithospheric thickness; we

updated their result based on using more recent data

from Müller et al. (2008). Despite some substantial

deviations have been documented, especially under

oceanic subduction zones (cf. Conrad and Lithgow-

Bertelloni 2006), a half-space cooling model provides

a reasonable lithospheric-thickness estimate for most

of oceanic regions. For the continental lithosphere,

they computed the characteristic thickness by fol-

lowing the method of Gung et al. (2003), who

employed the maximum depth for which the seismic

velocity anomaly, as determined using Ritsema et al.

(2004) seismic tomography model S20RTSb, is

consistently greater than 2%, while imposing

100 km as the minimum continental and maximum

oceanic characteristic thickness.

The global map of the lithospheric thickness is

shown in Fig. 2. The lithospheric thickness varies

from 5 to 270 km. A thin lithosphere along mid-

oceanic ridges increases with the ocean-floor age. A

much more complex continental lithosphere is char-

acterized by the largest lithospheric deepening under

cratons. A significant lithospheric deepening due to

the lithospheric subduction is also detected under

some orogens (such as Himalaya, Tibet, Central

Asian Orogenic Belt, and Andes). It is worth

mentioning here that the continental lithosphere

may feature even larger variations in thickness,

including continental roots that may penetrate to

depths as much as 400 km beneath cratonic shields

(e.g., Jordan 1975; Ritsema et al. 2004), and are

likely cold and highly viscous (e.g., Rudnick et al.

1998).

The Moho depth, taken from the CRUST1.0

seismic crustal model (Laske et al. 2013), is shown in

Fig. 3. A maximum Moho deepening to about 70 km

is detected under orogens of Himalaya, Tibet, and

central Andes. The most pronounced feature in the

global Moho pattern is a contrast along continental

margins between a thick continental crust and a much

thinner oceanic crust.

Figure 2
Lithospheric thickness (km). Black lines show shorelines

Figure 3
Moho depth (km)
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3.3. Stress Tensor Components

The stress tensor components at the Moho inter-

face were computed according to Eqs. (7)–(12) on a

1 9 1 arc-deg global grid from spherical harmonics

of the disturbing potential Tn, with a spectral

resolution up to the degree of 180. As mentioned

above, the long-wavelength harmonics below the

degree of 13 were subtracted from the investigated

stress spectrum. The spherical harmonics Tn were

generated from the GOCO-05S coefficients (Mayer-

Gürr et al. 2015). The computation was realized by

applying the semi-vectorisation algorithm (Eshagh

and Abdollahzadeh 2011) in order to take into

consideration spatial variations in lithospheric and

crustal thickness. The normal and shear stress com-

ponents are shown in Figs. 4 and 5, respectively, and

their statistical summary is given in Table 1.

The most pronounced features in maps of the

horizontal normal stress components rxx and ryy
(Fig. 4a, b) are active convergent tectonic margins of

oceanic subductions as well as continent-to-continent

tectonic plate collisions. Positive values (of the stress

intensity) on the side of subducted lithosphere (oceanic

trenches and continental basins) are coupled by negative

values on the side of back-arc rifting and orogens. As

seen in Fig. 4c, oceanic subductions and continental

collisions are again clearly manifested in map of the

vertical normal stress component rzz. In overall, the

vertical component has a spatial pattern similar to that

seen in horizontal components, but of opposite sign. The

maximum shear stresses (see Fig. 5) are again detected

along oceanic subductions and continental collisions.

3.4. Total Stress Intensity

We further used the stress tensor components to

compute the total stress intensity, individually for the

horizontal Shh, vertical Svv, and (mixed) horizontal–

vertical Shv components according to the following

expressions

Shh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2xx þ r2yyÞ

2 � 4r2xy

q
; ð34Þ

Svv ¼ rzzj j; ð35Þ

Shv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xz þ r2yz

q
: ð36Þ

The results are plotted in Fig. 6, and their

statistical summary is given in Table 2.

The maximum total stress intensity is detected

along oceanic subductions in western Pacific (Ker-

madec-Tonga, Ryukyu, Mariana, Japan, Kuril, and

Aleutian trenches). A slightly less pronounced stress

intensity is also seen along oceanic subductions in

Atlantic (Puerto Rico and Pacific–Antarctic trenches)

and eastern Pacific (Peru–Chile trench). Along con-

tinental collisions, large stress intensity is seen

between the African and Eurasian plates (Hellenic

trench) and between the Indian plate and Tibetan

Figure 4
Normal stress components: a rxx, b ryy, and c rzz (MPa)
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block. The intra-plate stresses are clearly manifested

along Hawaii volcanic islands, and along some active

thrust fault systems in central Eurasia. We could also

see a similar spatial pattern in horizontal and vertical

stress intensity, but the vertical stress intensity is

about two times larger than the horizontal one (cf.

Table 2). It is worth mentioning that the intensity of

vertical normal stress is modified by a Moho

deepening to about 30% under Himalaya, Tibet, and

Andes, because of its dependence on depth (cf.

Figure 1), while along oceanic subductions such

modification is minor due to a relatively small Moho

variations.

4. Discussion and Concluding Remarks

Our results (Fig. 6) agree with findings of

Tenzer and Eshagh (2015) and Eshagh and Tenzer

(2015) that the lithospheric stresses are mainly

manifested along active tectonic margins of ocea-

nic subductions and along continent-to-continent

tectonic plate collisions. The maximum stresses are

induced by subduction slab pull forces on the side

of subducted lithosphere. These stresses are cou-

pled by slightly less pronounced stresses on the

side of overriding lithospheric plate of which origin

could be explained by trench suction. Our results

also showed the presence of (intra-plate) litho-

spheric loading stresses along Hawaii islands. On

the other hand, the stresses due to ridge push force

along divergent tectonic plate boundaries are not

clearly manifested.
Figure 5

Shear stress components: a rxz, b ryz, and c rxy (MPa)

Table 1

Statistics of the lithospheric stress intensity

Stress tensor component Max (MPa) Mean (MPa) Min (MPa) STD (MPa)

rxx 39.1 0.0 -23.4 2.2

ryy 57.3 0.0 -36.1 3.0

rzz 34.9 0.0 -53.7 3.0

rxz 12.2 0.0 -13.6 0.8

ryz 12.7 0.0 -11.4 0.8

rxy 4.7 0.0 -2.8 0.3

The STD denotes a standard deviation
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A more detailed inspection of the horizontal

normal stresses (Fig. 4a, b) revealed the presence of

extensional tectonism of continental basins (Gangetic

and Tarim basins). Positive values of the horizontal

normal stresses over continental basins are coupled

by negative values along Himalaya and the northern

Tibet, indicating the compressional tectonism of

these orogenic formations. Our results thus confirmed

findings from the study conducted in central Eurasia

by Tenzer et al. (2017) based on applying Runcorn’s

theory. They demonstrated that the convergent pat-

tern of horizontal shear stress vectors agrees with the

compressional tectonism of orogens, while their

divergent orientation indicates the existence of

extensional tectonism of continental basins. Here we

also shown that a similar pattern of the normal hor-

izontal stresses is detected along oceanic subductions

with positive values on the side of subducted oceanic

lithosphere, coupled by negative values on the side of

overriding lithospheric plate (i.e., back-arc rifts or

orogens).

The horizontal compressional tectonism of oro-

gens (characterised by negative values of the normal

horizontal stresses) is responsible for a lithospheric

thickening, which should be manifested by an

apparent tensional vertical stresses. Our results con-

firmed this, showing negative values of the normal

vertical stresses. In case of continental basins, we

Figure 6
Total lithospheric stress intensity: a horizontal Shh, b vertical Svv, c horizontal–vertical Svh, and d stress vectors on the background on the

horizontal–vertical stress from spectral degrees 2 to 180. Note that for a better illustration of locations with a maximum stress intensity (for Shh
and Svv) we limited the colour scale in such a way that all values exceeding 20 MPa have the same colour

Table 2

Statistics of the total horizontal Shh, vertical Svv, and horizontal–vertical Shv lithospheric stress intensity

Total stress component Max (MPa) Mean (MPa) Min (MPa) STD (MPa)

Shh 28.9 0.8 0.0 1.3

Svv 53.7 1.8 0.0 2.4

Shv 15.1 0.7 0.0 0.8
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detected again the same coupling effect in the hori-

zontal and vertical normal stress components, given

by their opposite signs. The same pattern was also

found for oceanic subductions and back-arc rifts.
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