Skip to main content
Log in

Importance of the Decompensative Correction of the Gravity Field for Study of the Upper Crust: Application to the Arabian Plate and Surroundings

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The isostatic correction represents one of the most useful “geological” reduction methods of the gravity field. With this correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. However, even this reduction does not show the full gravity effect of unknown anomalies in the upper crust since their impact is substantially reduced by the isostatic compensation. We analyze a so-called decompensative correction of the isostatic anomalies, which provides a possibility to separate these effects. It was demonstrated that this correction is very significant at the mid-range wavelengths and may exceed 100 m/s2 (mGal), therefore ignoring this effect would lead to wrong conclusions about the upper crust structure. At the same time, the decompensative correction is very sensitive to the compensation depth and effective elastic thickness of the lithosphere. Therefore, these parameters should be properly determined based on other studies. Based on this technique, we estimate the decompensative correction for the Arabian plate and surrounding regions. The amplitude of the decompensative anomalies reaches ±250 m/s2 10−5 (mGal), evidencing for both, large density anomalies of the upper crust (including sediments) and strong isostatic disturbances of the lithosphere. These results improve the knowledge about the crustal structure in the Middle East.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blakely, R. J. (1995). Potential Theory in Gravity and Magnetic Applications (p. 464). London: Cambridge University Press. Jan 27.

    Book  Google Scholar 

  • Braitenberg, C., & Ebbing, J. (2009). The GRACE-satellite gravity field in analysing large scale, cratonic or intracratonic basins. Geophysical Prospecting, 57, 559–571. doi:10.1111/j.1365-2478.2009.00793.x.

    Article  Google Scholar 

  • Burov, E. B., & Diament, M. (1995). The effective elastic thickness (T e) of continental lithosphere: what does it really mean? Journal of Geophysical Research: Solid Earth, 100(B3), 3905–3927.

    Article  Google Scholar 

  • Carlson, R. L., & Johnson, H. P. (1994). On modeling the thermal evolution of the oceanic upper mantle: an assessment of the cooling plate model. Journal of Geophysical Research: Solid Earth, 99, 3201–3214.

    Article  Google Scholar 

  • Chen, B., Kaban, M. K., El Khrepy, S., & Al-Arifi, N. (2015). Effective elastic thickness of the Arabian plate: weak shield versus strong platform. Geophysical Research Letters, 42, 3298–3304. doi:10.1002/2015GL063725.

    Article  Google Scholar 

  • Čížková, H., Čadek, O., Yuen, D. A., & Zhou, H. W. (1996). Slope of the geoid spectrum and constraints on mantle viscosity stratification. Geophysical Research Letters, 23(21), 3063–3066.

    Article  Google Scholar 

  • Cordell, L., Zorin, Y. A., & Keller, G. R. (1991). The decompensative gravity anomaly and deep structure of the region of the Rio Grande rift. Journal of Geophysical Research: Solid Earth, 96(B4), 6557–6568. (1978–2012).

    Article  Google Scholar 

  • Dill, R., Klemann, V., Martinec, Z., & Tesauro, M. (2015). Applying local Green’s functions to study the influence of the crustal structure on hydrological loading displacements. Journal of Geodynamics, 88, 14–22.

    Article  Google Scholar 

  • Ebbing, J., Braitenberg, C., & Wienecke, S. (2007). Insights into the lithospheric structure and the tectonic setting of the Barents Sea region from isostatic considerations. Geophysical Journal International, 171, 1390–1403. doi:10.1111/j.1365-246X.2007.03602.x.

    Article  Google Scholar 

  • Forte, A. M., & Peltier, R. (1991). Viscous flow models of global geophysical observables: 1. Forward problems. Journal of Geophysical Research: Solid Earth, 96(B12), 20131–20159.

    Article  Google Scholar 

  • Gettings, M. E., Blank, H. R., Jr., Mooney, W. D., & Healey, J. H. (1986). Crustal structure of southwestern Saudi Arabia. Journal of Geophysical Research: Solid Earth, 91, 6491–6512.

    Article  Google Scholar 

  • Hildenbrand, T. G., Griscom, A., Van Schmus, W. R., & Stuart, W. D. (1996). Quantitative investigations of the Missouri gravity low: a possible expression of a large, Late Precambrian batholith intersecting the New Madrid seismic zone. Journal of Geophysical Research: Solid Earth, 101(B10), 21921–21942. (1978–2012).

    Article  Google Scholar 

  • Jachens R.C. & Moring C. (1990). Maps of the thickness of Cenozoic deposits and the isostatic residual gravity over basement for Nevada (No. 90–404). US Geological Survey Open File Report, p. 15.

  • Kaban, M. K., El Khrepy, S., & Al-Arifi, N. (2016). Isostatic model and isostatic gravity anomalies of the Arabian plate and surroundings. Pure and Applied Geophysics, 173(4), 1211–1221. doi:10.1007/s00024-015-1164-0.

    Article  Google Scholar 

  • Kaban, M. K., Schwintzer, P., & Reigber, Ch. (2004). A new isostatic model of the lithosphere and gravity field. Journal of Geodesy, 78, 368–385.

    Article  Google Scholar 

  • Kaban, M. K., Schwintzer, P., & Tikhotsky, S. A. (1999). Global isostatic residual geoid and isostatic gravity anomalies. Geophysical Journal International, 136, 519–536.

    Article  Google Scholar 

  • Kirby, J. F., & Swain, C. J. (2006). Mapping the mechanical anisotropy of the lithosphere using a 2-D wavelet coherence, and its application to Australia. Physics of the Earth and Planetary Interiors, 158(2), 122–138. doi:10.1016/j.pepi.2006.03.022.

    Article  Google Scholar 

  • Kirby, J. F., & Swain, C. J. (2011). Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform. Computers and Geosciences, 37, 1345–1354. doi:10.1016/j.cageo.2010.10.008.

    Article  Google Scholar 

  • Langenheim V.E., & Jachens R.C. (1996). Gravity data collected along the Los Angeles regional seismic experiment (LARSE) and preliminary model of regional density variations in basement rocks, southern California (No. 96–682). US Geological Survey Open File Report, p. 25.

  • Mogren, S., Al-Amri, A. M., Al-Damegh, K., Fairhead, D., Jassim, S., & Algamdi, A. (2008). Sub-surface geometry of Ar Rika and Ruwah faults from gravity and magnetic surveys. Arabian Journal of Geosciences, 1(1), 33–47.

    Article  Google Scholar 

  • Mogren, S., Al-Ghamdi, A.H., Kacst, R., Mukhopadhyay, M. (2010) Central Arabia salt basin inferred by gravity modeling. GeoCanada 2010—working with the Earth (http://www.geocanada2010.ca/).

  • Simpson, R. W., Jachens, R. C., Blakely, R. J., & Saltus, R. W. (1986). A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies. Jounal of Geophysical Research: Solid Earth, 91, 8348–8372.

    Article  Google Scholar 

  • Snyder, D. B., & Barazangi, M. (1986). Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations. Tectonics, 5, 361–373.

    Article  Google Scholar 

  • Turcotte, D. L., & Schubert, G. (1982) Geodynamics. 2 edn. (456 p). Cambridge, United Kingdom: Cambridge University Press.

  • Wilson, D., Aster, R., West, M., Ni, J., Grand, S., Gao, W., et al. (2005). Lithospheric structure of the Rio Grande rift. Nature, 433(7028), 851–855.

    Article  Google Scholar 

  • Zorin, Y. A., Belichenko, V. G., Turutanov, E. K., Kozhevnikov, V. M., Ruzhentsev, S. V., Dergunov, A. B., et al. (1993). The south Siberia-central Mongolia transect. Tectonophysics, 225(4), 361–378.

    Article  Google Scholar 

  • Zorin, Y. A., Pismenny, B. M., Novoselova, M. R., & Turutanov, E. K. (1985). Decompensative gravity anomalies. Geologia i Geofizika, 8, 104–108.

    Google Scholar 

Download references

Acknowledgments

The results of this study are available in digital form from GFZ Potsdam. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University, Saudi Arabia, for funding the research group project (RG -1435-027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail K. Kaban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaban, M.K., El Khrepy, S. & Al-Arifi, N. Importance of the Decompensative Correction of the Gravity Field for Study of the Upper Crust: Application to the Arabian Plate and Surroundings. Pure Appl. Geophys. 174, 349–358 (2017). https://doi.org/10.1007/s00024-016-1382-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1382-0

Keywords

Navigation