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Mathematics concerned with geoscientific problems

is called geomathematics. It deals with qualitative

and quantitative properties of the complicated struc-

tures of the Earth. In fact, geomathematics may be

treated as a crucial discipline enabling scientific

understanding of complex Earth processes. In the

geosciences, the theory of special functions is extre-

mely important, and the subject has a long and

distinguished history. This book is about ‘‘useful’’

functions (terminology of P. Turán, a prominent

Hungarian mathematician), their role, purpose, and

power.

The book consists of three parts. After the Intro-

duction, the first part contains two chapters dedicated

to auxiliary functions. The second part, five chapters

in total, is an exhaustive overview of spherically

oriented functions. The third part of the book, which

comprises three chapters, deals with periodically

oriented functions. Each part contains several exer-

cises to illustrate the mathematical techniques just

explained and to show their relevance to the

geosciences.

Chapter 1, Geomathematical Motivation, briefly

describes four (geo)physical fields which are highly

important in physics and the geosciences, namely,

gravitation, geomagnetism, fluid flow field, and

elasticity. The classical approach to gravity field

determination is briefly discussed and the concepts of

spheriodization and periodization are introduced and

explained. Next, the basic system of equations for the

magnetic field of the Earth is formulated. In another

section the equations of thermodynamics and fluid

dynamics used to describe atmospheric and oceanic

flow are concisely derived. Mathematical treatment

of linear elasticity closes the chapter.

Part I contains basic material concerning auxiliary

functions, for example the gamma function and

selected classes of orthogonal polynomials.

Chapter 2 deals with the classical gamma function.

The basic definitions and properties of the Euler

gamma function are formulated. These are followed

by two sections dealing with Euler’s Beta function

and the Stirling formula. The useful properties of the

Legendre relationship (or duplication formula) are

discussed in the next section. The generalization of

the gamma function to complex values (Pochham-

mer’s factorial), together with Euler’s constant, are

also discussed. The product formulas for the gamma

function and for trigonometric functions are derived.

For didactic and computational purposes, several

problems connected with incomplete gamma and beta

functions are presented in the last section.

In Chapter 3, the classical theory of orthogonal

polynomials, including elements of necessary mate-

rial from Fourier analysis, is developed. The basic

properties of these polynomials (symmetry, zeros,

best approximation, the Christoffel–Darboux for-

mula, etc.), are presented. The n-point quadrature rule

is then defined and two examples are described,

namely, interpolatory and Gauss quadrature rules.

Subsequent sections are concerned with Jacobi

polynomials and their special cases (Gegenbauer,

Chebyshev, and Legendre polynomials) and Hermite

and Laguerre polynomials. For each of these families

the basic properties (Rodrigues relationships, three
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term recurrences, expressions as hypergeometric

series, differential equations, etc.) are derived and

discussed. Some applications in electrostatics, quan-

tum mechanics, and the theory of oscillations are also

presented. Finally, some problems in which classical

orthogonal polynomials emerge, for example, Gauss–

Legendre integration, the Clenshaw algorithm, and

error estimates for numerical algorithms, are con-

sidered as exercises.

Part II concentrates on spherically structured

functions.

Chapter 4 begins by introducing spherical

nomenclature and settings. The notion of orthogonal

invariance is then explained and the properties of

special orthogonal groups are summarized. The the-

ory of scalar spherical harmonics is then formulated.

The closure and completeness of spherical harmonics

in the space of square-integrable functions is proved

by the Abel–Poisson and Bernstein summability

methods. The main result in the theory of spherical

harmonics, i.e., the Funk–Hecke formula, which

establishes the direct connection between the

orthogonal invariance of the sphere and the addition

theorem, is presented. Subsequently, the Green

function with respect to the Beltrami operator is

discussed and several integral theorems involving the

Green function are formulated. The quantum-

mechanical description of the hydrogen atom is dis-

cussed briefly as a ‘‘canonical’’ example of the use of

spherical harmonics in theoretical physics. Finally,

application of the theory of spherical harmonics to

several problems is shown by use of carefully

selected exercises. These include the spherical low-

discrepancy method, locally supported wavelets on a

sphere, the idea of the up function, anharmonic

functions for the ball, the fast multipole method for

the Laplace equation, Wigner matrices, and spherical

harmonics in quaternionic representation.

In Chapter 5, the vector theory of spherical har-

monics is developed in coherence with its scalar

variant. Basic notations and the necessary differential

operators are introduced first. Next, the three opera-

tors mapping scalar functions to vectorial functions,

together with their properties, are defined and dis-

cussed. The Helmholtz decomposition theorem for

spherical vector fields by use of the Green function

with respect to the Beltrami operator, which

motivates the choice of these operators, is formulated

and proved. The closure and completeness of vector

spherical harmonics based on vectorial variants of the

scalar zonal Bernstein kernels are then proved. Sub-

sequently, the interconnections between vector

spherical harmonics and homogeneous harmonic

vector polynomials are examined, and a vectorial

analog of the Beltrami operator is constructed. The

generalization of the addition theorem and the Funk–

Hecke formulas to the vectorial case, and the vecto-

rial counterparts of the Legendre polynomial, are the

themes of subsequent sections. The polynomial

solutions of the Cauchy–Navier equation are ana-

lyzed in some detail. Finally, several exercises

relating to different practical aspects of vector

spherical harmonics are suggested, namely, the

application of the uncertainty principle in the theory

of zonal kernel functions on the sphere and use of

Wigner symbols for operating on coupling terms and

integrals in the nonlinear Galerkin method for solu-

tion of the Navier–Stokes equation.

Chapter 6 deals with the theory of spherical har-

monics in Rq. After an introduction to the

nomenclature, the fundamental solutions for the

Laplace operator in Rq in terms of harmonic and

metaharmonic functions, are discussed. The corre-

sponding integral theorems for the Laplace–Beltrami

operator are then formulated. In another section the

theory of homogeneous harmonic polynomials of

dimension q is presented. Particular focus is on the

Legendre polynomial of degree n and dimension

q. Furthermore, the addition theorem, the Funk–

Hecke formula, the closure and completeness theo-

rems, and the eigensolutions of the Beltrami operator

are presented and discussed. Moreover, the associated

Legendre functions of dimension q are introduced,

the pointwise expansion theorem is proved, and

asymptotic relationships for the spherical harmonic

coefficients are investigated. Finally, the Helmholtz-

Beltrami operator in terms of the Green function and

the corresponding integral theorems are described.

The chapter concludes with fourteen exercises on

different computational aspects of spherical

harmonics.

Chapter 7 contains a brief presentation of the

elements of the theory of classic Bessel functions.

Some general properties of these functions are also
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discussed, including integral and series representa-

tions, recursive formulas, and orthogonality

relationships. Two exercises deal with discontinuous

integrals requiring Bessel functions and the modeling

of electrons in a periodically changing magnetic field.

Chapter 8 is devoted to the study of the Bessel

function of dimension q. A family of solutions deal-

ing with Helmholtz equation [(D ? k)U = 0, in

standard notation], under the assumption that

k [ R\{0}, are considered, namely regular Bessel

functions, modified Bessel functions, Hankel func-

tions, Neumann functions, and Kelvin functions.

Three types of solution of the Helmholtz equation,

depending on the space domain, by use of suitable

expansion theorems, are considered. The entire

solutions of the Helmholtz equation are covered in

the exercises.

Part III presents the basic concepts of lattice

function theory.

In Chapter 9, the foundations of one-dimensional

lattice theory are developed. Background information

on Bernoulli polynomials, Bernoulli numbers, and the

Bernoulli function is then presented. The notion of Z-

periodic polynomials is then introduced. After these

preliminaries, the definition of the Z-lattice function

with respect to the one-dimensional Laplacian is

introduced. The classical one-dimensional Euler

summation formula is presented, with the general-

ization of Stirling’s formula and an extension of the

Euler summation to periodic boundary conditions.

The famous one-dimensional Riemann Zeta function

is also discussed. The equivalence of the Euler and

Poisson summation formulas for finite intervals is

proved, and some remarks concerning the general-

ization of the Poisson summation formula for R are

presented. The construction of the theta function (of

degree 0 and dimension 1) and several computational

exercises closes the chapter.

Chapter 10 concerns the q-dimensional general-

ization of lattice point theory. The lattice, K, in Rq

and the fundamental cell of the lattice, K, are defined

first. Next, K-periodic polynomials are examined.

This enables introduction of the K-lattice function for

the Laplace operator in Rq. The multi-dimensional

Euler summation formulas on arbitrary lattices are

constituted. The zeta function of dimension q C 3

and degree n, together with the suitable functional

equation, are constructed. Finally, asymptotic rela-

tionships for Euler and Poisson summations in Rq, the

multi-dimensional Poisson summation formula, and

the multi-dimensional counterpart of the theta func-

tion are discussed. Very interesting (and difficult)

exercises concentrate on different aspects of spline

interpolation methods and techniques for calculating

lattice sums.

The final chapter, 11, is a terse summary of the key

points developed in the book, and suggestions of

topics for further research.

To conclude, this is an erudite and competent book

of great value, not only to specialists in the field. It

should be very useful for both advanced students and

active researchers in the field of geomathematics,

geophysics, and geoengineering, and also for geo-

oriented applied mathematicians. The style is superb

and clear, and the organization is very well planned. I

believe this excellent book should be required read-

ing for all earth-oriented scientists.
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