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Renormalization in String-Localized Field
Theories: A Microlocal Analysis

Christian Gaß

Abstract. Using methods of microlocal analysis, we prove that the reg-
ularization of divergent amplitudes stays a pure ultraviolet problem in
string-localized field theories, despite the weaker localization. Thus, power
counting does not lose its significance as an indicator for renormalizability.
It also follows that standard techniques can be used to regularize divergent
amplitudes in string-localized field theories.

1. Introduction

The foundations of string-localized field theory (SLFT) have been developed
thoroughly by Mund et al. [24,25] in the mid 2000’s and since then, SLFT has
been under constant investigation and advancement. At the heart of SLFT is a
weaker localization of the potentials of the field strength tensors (for arbitrary
masses and spins respectively helicities) along a semi-infinite line referred to
as string.1 These string-localized potentials replace the usual, point-localized,
gauge potentials in quantum field theory (QFT) and in that sense, SLFT is
not a separate theory. It rather is a different setting within the framework of
QFT that exhibits many desirable properties, which we will briefly sketch in
the following.

String-localization has been known for a long time before the works of
Mund, Schroer and Yngvason, and has been observed and described more or
less explicitly at many occasions in the past: In old works of Jordan [16] and
later also Dirac [8] on gauge invariant formulations of quantum electrodynam-
ics (QED), the string-localized nature of the dressing factor of the electron
field is clearly visible. A derivation of that dressing factor within SLFT as well

1Note that the term string refers to a weaker localization of certain quantum fields and is
not to be confused with the strings of string theory.
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as an investigation of its consequences on QED has been worked out recently
[20] with the emphasis on the infrared problems of QED.

Also Mandelstam [18] studied QED by employing expressions that clearly
resemble the modern string-localized fields. String-locality later reappeared in
considerations of Buchholz and Fredenhagen [5] and also Steinmann [33,34].

The modern formulation of Mund, Schroer and Yngvason has served as
starting point for further investigation of SLFT in the last one-and-a-half
decades. It has become clear that string-localized fields bear manifold con-
ceptual and practical advantages. First, the string-localized potential for the
massless field strength of helicity s ∈ N is a rank-s tensor field that lives on
Hilbert space and not on an indefinite Krein space like its point-localized gauge
field equivalents [22,25]. Also, string-localization allows for the construction of
infinite spin fields [24]. Moreover, the decoupling of helicities in the massless
limit of massive tensor fields is explained by SLFT [22]; stress-energy ten-
sors that yield the correct Poincaré generators can be constructed for massless
fields of arbitrary finite and infinite spin/helicity [22,23,28], circumventing the
Weinberg–Witten theorem [39]; the DVZ discontinuity [35,40] in the massless
limit of massive gravitons is removed [22,23]; the Velo–Zwanziger problem [36]
has been resolved [30]; Gauss’ law has been implemented and investigated
within SLFT [21]; there is no strong CP problem in string-localized QCD [12].

To summarize, extensive research on conceptual aspects of SLFT has
revealed many benefits. On the other hand, the implementation of string-
localized perturbation theory is only in its beginnings. Besides some concep-
tual considerations [6,19], only computations in low orders and at tree level
have been performed. The Lie algebra structure of pure massless Yang–Mills
theory and of the weak interaction as well as the chirality of the latter have be
derived at second order and tree-level of perturbation theory in a bottom-up
approach—the structure of these interactions is constrained by the requirement
that the scattering matrix be string independent [12,14].

Calculations at higher orders of perturbation theory as well as computa-
tions of loop graphs involving internal string-localized potentials have not yet
been attacked. The main reason for this is the most evident disadvantage of
SLFT: The analytic structure of propagators of string-localized potentials is
highly complicated. Consequently, an extension of the causal renormalization
procedure as described by Epstein and Glaser [11] naively seems very involved
and is currently not at hand. In this article, we make a step towards an Epstein-
Glaser renormalization scheme in SLFT by proving that the string-localization
does actually not affect the singularity structure of the propagators—provided
that care is taken of how the string-localized version of the scattering operator
is defined.

The paper is organized as follows. Section 2 is a concise introduction to
the interrelation of microlocal analysis and renormalization. We also list some
basic theorems about wavefront sets, which will be important for our later
proofs. The reader familiar with this may skip Sect. 2 and directly proceed
to Sect. 3. There, we investigate the distributional nature of string-integration
and string-integrated propagators and outline a proper setup of perturbation
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theory in the string-localized setting. Section 4 contains proofs regarding the
existence and extension of products of string-localized propagators. Our results
and their connections to other approaches are discussed in Sect. 5.

Before continuing, we fix the conventions used in this paper. We em-
ploy the mostly negative Minkowski metric η = diag(1,−1,−1,−1). If x, y
are Minkowski vectors, we generically denote their Minkowski product by
(xy) := ημνxμyν and use x2 for the Minkowski square of x. The Fourier trans-
form f̂(p) = Ff(p) of a function f(x) over Euclidean space R

n is defined
with negative sign in the exponent, the back transform has a positive sign.
All factors of 2π are absorbed in the back transform. In order to match the
physics conventions, the signs of the phase factors in the Fourier transform are
inverted over Minkowski space R

1+3 (in addition to the duality pairing being
induced by η). That is,

f̂(p) :=
∫

d4x ei(px)f(x), f(x) :=
∫

d4p

(2π)4
e−i(px)f̂(p) (1.1)

for a generic f living on R
1+3. When it is relevant, we shall always specify

whether statements pertain to R
n or R

1+3.

2. Elements of Microlocal Analysis Needed for Renormalization

In the standard approaches to quantum field theory, perturbation theory is typ-
ically formulated by writing matrix elements of the scattering operator as prod-
ucts of numerical distributions—the propagators of the quantum fields involved
in a certain model—with the help of Wick’s theorem [11]. However, products or
higher powers of distributions make no sense in general and also the products
of propagators in the Wick expansion for the scattering operator are divergent.
At nth order of perturbation theory, they only make sense outside the thin di-
agonal {x1 = · · · = xn } ⊂ (R1+3)n, or after exploiting translation invariance,
outside the origin { z = 0 } ⊂ (R1+3)n−1, where z = (x1 − xn, . . . , xn−1 − xn).
In momentum space, the non-existence of these products manifests itself in
the well-known ultraviolet (UV) divergences of loop integrals contributing to
scattering amplitudes. Renormalization in a mathematically rigorous sense is
the extension of non-existent products of distributions in configuration space
across the origin { z = 0 } [4,11].

Once the existence of some extension across the origin has been estab-
lished, one must address the question of uniqueness. On the one hand, two
extensions can only differ by a distribution supported at the origin, i.e., by
a linear combination of derivatives of the Dirac delta, since both extensions
must be equal to the original distribution outside the origin. On the other
hand, adding an arbitrary linear combination of derivatives of the Dirac delta
to a particular extension gives another extension. These ambiguities are called
renormalization freedom. They can be controlled via constraints on the short-
distance scaling behavior of the extensions, i.e., the scaling behavior with
respect to z = 0 [4] (cf. also [32]), by requiring that the extension does not scale
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worse than the original distribution. This type of constraint is often referred
to as power counting.

Example 2.1. Consider the massless scalar Feynman propagator
D := 1

x2−i0 ∈ S′(R1+3). We will see in Example 2.8 that the square of D

is defined on R
1+3 \ 0 but not on the full space R

1+3. For now, we are only
interested in constructing an extension. First, note that D is homogeneous,
D(λx) = λ−2D(x) for all λ > 0. Correspondingly, the square (D|R1+3\0)2

scales as λ−4. Power counting is the requirement that any admissible exten-
sion does not scale worse than the non-extended distribution, i.e., one requires
that limλ↓0 λ4+ωw(λx) = 0 for any admissible extension w of (D|R1+3\0)2 and
for all ω > 0.

It is a simple task to verify that on R
1+3 \ 0, the square of D coincides

with the divergence of the vector-valued distribution

vμ :=
1
2

xμ ln(x2 − i0)
(x2 − i0)2

. (2.1)

Since vμ is locally integrable with respect to x at x = 0, it is a well-defined
distribution2 on the full space R

1+3 and thus, the divergence D2 := ∂μvμ

defines an extension of (D|R1+3\0)2. It is also admissible by power counting
since limλ↓0 λω ln(λ2) = 0 for all ω > 0.

An arbitrary extension w of (D|R1+3\0)2 can only differ from D2 by a
linear combination of derivatives of the Dirac delta. Power counting intro-
duces an upper bound on the number of derivatives appearing in said linear
combination. In the case at hand,

w − D2 = c0δ(x) (2.2)

for some constant c0 and any admissible extension w since the Dirac delta
already scales like λ−4. The free parameter c0 in Eq. (2.2) introduces a renor-
malization freedom to the model under consideration. It usually needs to be
fixed by physical reasoning.

The method to obtain the special extension D2 is called differential renor-
malization but there are also other well-established methods (see for example
[9] for an introduction or [4,7] for more abstract considerations).

Remark 2.2. The massless Feynman propagator D from Example 2.1 is ho-
mogeneous. Therefore, it is obvious how to define the scaling behavior with
respect to the origin. A more general definition can for example be found in
[4].

A definition of a product of two distributions, which satisfies the known
rules of calculus, as well as a criterion for its existence was found by Hörmander
[15, Theorem 8.2.10.] (as a special case of Lemma 2.4 below). If u and v are
distributions over an open subset X ⊂ R

n, their product uv can be defined as

2The reader may try to verify that the logarithm does not cause any trouble by using the
tools that we present in the remaining part of the section.
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the pullback of the tensor product u⊗v by the diagonal map Δ : X → X ×X,
Δ(x) = (x, x) if

(x; p) ∈ WFu implies (x;−p) /∈ WF v, (2.3)

where the wavefront set WF u of a distribution u is a subset of the cotangent
bundle Ṫ ∗(X) over X deprived of the elements (x; 0) (as indicated by the dot).
WFu gives a refined characterization of the singularities of u:

Definition 2.3. (see Ch. 8 in [15]) Let u ∈ D′(X) for X ⊂ R
n open. Then the

singular support singsuppu of u is the set of points in X that have no open
neighborhood where u is smooth. The frequency set Σx(u) of u over a point
x ∈ X is defined as an intersection

Σx(u) :=
⋂

φ∈C∞
c (X)

φ(x) �=0

Σ(φu), (2.4)

where Σ(φu) is the cone of directions in R
n \ 0 having no conic neighborhood

in which the Fourier transform of the compactly supported distribution φu is
rapidly decaying. Finally, the wavefront set WFu of u is the closed subset of
Ṫ ∗(X) defined by

WFu := { (x; p) ∈ Ṫ ∗(X) | p ∈ Σx(u) } (2.5)

so that the projection of WFu onto the first component yields the singular
support.

Thus, the wavefront set does not only encode the information about the
singularities of a distribution but also about the high frequencies that are
responsible for their appearance. It is easy to verify that the wavefront set is
a closed and conic subset of Ṫ ∗(X), where conic means that the wavefront set
is invariant under scaling the second variable with positive scalars.

The proofs in Sects. 3 and 4 will be based on several standard statements
about properties of the wavefront set. For convenience of the reader, we will
now concisely list the statements on which we will rely later.

The Hörmander product of two distributions u and v is defined as a
pullback of their tensor product, provided that the criterion (2.3) is satisfied.
One can then also give a bound on the wavefront set of the product [15,
Theorem 8.2.10.], namely

WF(uv) ⊂ { (x; p + k) | (x; p) ∈ WFu or p = 0, (x; k) ∈ WF v or k = 0 }.
(2.6)

The Hörmander product of two distributions is an important special case
of the pullback of distributions but we will also need to consider other pullbacks
in order to examine the wavefront set of string-localized propagators.

Lemma 2.4. (Thm. 8.2.4. in [15]) The pullback f∗u of a distribution u ∈ D′(Y )
by a smooth map f : X → Y , where X ⊂ R

m and Y ⊂ R
n are open, can be
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defined such that it coincides with the pullback of smooth maps if u ∈ C∞(Y ),
provided that Nf ∩ WFu = ∅, where

Nf := { (f(x); p) ∈ Y × R
n | tf ′(x)p = 0 }. (2.7)

is the set of normals of the map f . Moreover, we have

WF(f∗u) ⊂ f∗ WFu := { (x; tf ′(x)p) | (f(x); p) ∈ WFu }. (2.8)

The distributions that appear in quantum field theory are often solutions
of partial differential equations. For such distributions, one can give bounds
on their wavefront set:

Lemma 2.5. (Eq. (8.1.11) and Thm. 8.3.1. in [15]) Let u ∈ D′(X) for X ⊂ R
n

open and let P =
∑

|α|≤m aα(x)∂α be a differential operator of order m on X

with smooth coefficients. Then

WF(Pu) ⊂ WFu ⊂ WF(Pu) ∪ char P, (2.9)

where the characteristic set char P is defined in terms of the principal symbol
Pm(x, p) :=

∑
|α|=m aα(x)pα of P via

char P := { (x; p) ∈ Ṫ ∗(X) | Pm(x, p) = 0 }. (2.10)

In particular, if u solves Pu = 0, then WFu ⊂ char P .

We will also deal with several homogeneous distributions. These are au-
tomatically tempered [15, Theorem 7.1.18.] and the wavefront set of a ho-
mogeneous distribution is closely related to the wavefront set of its Fourier
transform:

Lemma 2.6. (Thm. 8.1.8. in [15]) Let u ∈ D′(Rn) be homogeneous in R
n \ 0.

Then

(x; p) ∈ WFu ⇔ (p;−x) ∈ WF û if x 
= 0 and p 
= 0,

x ∈ suppu ⇔ (0;−x) ∈ WF û if x 
= 0,

p ∈ supp û ⇔ (0; p) ∈ WFu if p 
= 0.

Remark 2.7. The statements from [15] displayed in this section are formulated
over Euclidean space with the sign convention of the Fourier transform de-
scribed in the end of the introduction. The mentioned change of the sign con-
vention due to physical reasons when working over Minkowski space implies
that the covector components of wavefront sets over Minkowski space get an
additional sign.

Example 2.8. We show that the wavefront set of the massless Feynman prop-
agator D from Example 2.1 is given by

WFD = { (x;λx) | x2 = 0, x 
= 0, λ > 0 } ∪ Ṫ ∗
0 . (2.11)

First, we have Ṫ ∗
0 ⊂ WFD by Lemma 2.5 since D is a fundamental

solution of the wave equation and since WF δ(x) = Ṫ ∗
0 . The latter wavefront

set can be computed by using that ϕ̂δ(p) = ϕ(0) for ϕ ∈ C∞
c (R1+3). When

x 
= 0, D is the pullback of the homogeneous distribution [t− i0]−1 ∈ S ′(R) by
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the map f : R1+3 \0 → R with f(x) = x2. To verify this, note that the Fourier
transform of [t ± i0]−1 is a multiple of the Heaviside distribution θ(±λ) and
thus, by Lemma 2.6,

WF[t ± i0]−1 = { (0;λ) | λ ≷ 0 } (2.12)

and Nf ∩ WF[t − i0]−1 = ∅. Hence, the pullback is defined by Lemma 2.4.
The wavefront set of the pullback is thus contained in the right-hand side
of Eq. (2.11) by Lemma 2.4, where the inverted sign of λ comes from the
fact that we work over Minkowski space, as explained in Remark 2.7. Since
the wavefront set is conic and the projection onto the first component yields
the singular support, WFD cannot be smaller than the right-hand side of
Eq. (2.11).

Since λ has a fixed sign, the Hörmander square of D exists when x 
= 0
but because the wavefront set over x = 0 contains any direction, the square is
not defined at x = 0.

Examples 2.1 resp. 2.8 are prototypical for an extension problem in point-
localized gauge theories. The situation becomes much more complex in string-
localized field theories. There, the propagators are not only distributions in the
variables x and x′ but also in spacelike string directions e and e′. The string-
localization can induce new singularities to the propagator and moreover, the
structure of these singularities depends on the formulation of a string-localized
perturbation theory, as we shall investigate in Sect. 3.3. We will then prove
in Sect. 4 that in a proper setup of string-localized perturbation theory, the
wavefront sets of string-localized propagators are actually contained in the
wavefront sets of certain point-localized propagators. That is to say, the singu-
larity structure is not worse in SLFT than it is in point-localized QFT despite
the delocalization.

To prove the latter statement, another standard theorem from microlocal
analysis about partially smeared distributions will play a central role:

Lemma 2.9. (Thm. 8.2.12. in [15]) Let X ⊂ R
n and Y ⊂ R

m be open and let
K ∈ D′(X × Y ) with the corresponding linear transformation K from D(Y ) to
D′(X), i.e.,

[Kϕ](φ) = K(φ ⊗ ϕ). (2.13)

Then

WF(Kϕ) ⊂ { (x; p) | (x, y; p, 0) ∈ WF K for some y ∈ suppϕ }. (2.14)

3. String-Localized Potentials for Finite Spin/Helicity

There is a price to pay for the conceptual advantages of string-localized fields
that we have listed in the introduction. String-localized fields do not only de-
pend on the spacetime variable x but also on a spacelike string direction e ∈ H,
where H ⊂ R

1+3 denotes the open subset of spacelike vectors in Minkowski
space. In both the massless and the massive case, the string-localized potential
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Aμ1···μs(x, e) of the field strength tensor F[μ1ν1]···[μsνs](x) for helicity respec-
tively spin s ∈ N can be defined as an s-fold integral in string direction via
[19,22,25]

Aμ1···μs(x, e) := IseF[μ1ν1]···[μsνs](x)eν1 · · · eνs , (3.1)

where we have introduced the string-integration operator
IeX(x) :=

∫ ∞
0

dsX(x + se). It is straightforward to verify that Aμ1···μs(x, e)
is indeed a potential for the field strength by exploiting the Bianchi iden-
tity for the latter and eμ∂μIe = −1. By the causal commutation relations for
F[μ1ν1]···[μsνs](x), two string-localized potentials Aμ1···μs(x, e) and Aκ1···κs(x

′, e′)
as in Eq. (3.1) commute if their strings are causally disjoint, i.e.,

[Aμ1···μs(x, e), Aκ1···κs(x
′, e′)] = 0 if (x + se − x′ − s′e′)2 < 0 ∀s, s′ ≥ 0.

(3.2)

Remark 3.1. The commutation relations (3.2) are in principle also meaningful
for lightlike strings and indeed, lightlike string variables have been considered
by some [14]. We will discuss in Appendix A.1, why they are no reasonable op-
tion in our context. Timelike string directions are excluded if the commutation
relations (3.2) are to remain meaningful.

The integrations in Eq. (3.1) improve the ultraviolet (UV) scaling behav-
ior of the string-localized potentials in both massive and massless case: They
have the same scaling behavior as a scalar field for arbitrary s ∈ N. Mund,
Schroer and Yngvason [25] conjectured that this improved UV behavior also
has positive effects on renormalizability. However, it is not a priori clear what
that means, for string-localized potentials as in Eq. (3.1) depend not only on
the spacetime variable x but also on the string variable e and so do their prop-
agators. Thus, before one can give meaning to the notion of renormalizability,
one must answer a few questions:

1. Of what nature are the products of distributions appearing in a string-
localized perturbation theory?

2. What is the singularity structure of string-localized propagators?
We will give answers to these questions in the following.

3.1. Distributional Properties of String-Integration

In momentum space, string integration as in Eq. (3.1) becomes a multiplication
with factor a factor −i[(pe) − i0]−1 since

Îef(p) =
∫

d4x

∫ ∞

0

ds ei(p[x−se])f(x) = f̂(p)
∫ ∞

0

ds e−is(pe) := lim
ε↓0

−if̂(p)
(pe) − iε

.

(3.3)

Multiplication with such a factor produces additional singularities when
(pe) = 0. Already when setting up their framework for SLFT, Mund, Schroer
and Yngvason conjectured that the difficulties coming from these singularities
can be cured if the string-localized fields are treated as distributions in both x
and e [25]: “This opens up the possibility of a perturbative, covariant, imple-
mentation of interaction, where the weaker localization (in space-like cones)
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requires new techniques but promises better UV behavior.” In Sect. 4, we make
a first step towards proving their conjecture by showing that the regulariza-
tion of divergent loop graph amplitudes in SLFT stays a pure short distance
problem and that hence the UV scaling behavior remains a meaningful notion.

Let us start our investigations by characterizing the new singularities in
detail for general directions e ∈ R

1+3.

Lemma 3.2. The expressions U±(p, e) := [(pe) ± i0]−1 are tempered distribu-
tions on (R1+3)2 with

WFU± = { (p, e;λe, λp) | λ ≶ 0, (pe) = 0, (p, e) 
= (0, 0) } ∪ Ṫ ∗
(0,0), (3.4)

where Ṫ ∗
(0,0) is the cotangent space at (p, e) = (0, 0) deprived of the zero-

covector.

Proof. First note that if U± are well-defined distributions, they are also tem-
pered because they are homogeneous. When (p, e) 
= (0, 0), U± are the pull-
backs of the distributions [t±i0]−1 ∈ S ′(R) by the map f : (R1+3)2\(0, 0) → R,
f(p, e) = (pe) with set of normals

Nf = { ((pe);λ) ∈ R
2 | λe = λp = 0, (p, e) 
= (0, 0) } = { (t; 0) | t ∈ R } (3.5)

so that Nf ∩WF[t± i0]−1 = ∅. Thus, by Lemma 2.4, Remark 2.7 and the form
of WF[t ± i0]−1 given in Eq. (2.12), we have

WF U±|(p,e) �=(0,0) ⊂ f∗ WF[t ± i0]−1 = { (p, e;λe, λp) | (pe) = 0, λ ≶ 0 }.

(3.6)

Equation (3.6) must actually be an equality since the wavefront set is
conic and the projection onto the first component must yield the singular
support. Since U± are locally integrable at (p, e) = (0, 0), we have established
their existence as tempered distributions.

It remains to show that the wavefront set over (p, e) = (0, 0) is the whole
cotangent space (deprived of the zero-covector). To do so, we introduce the
bilinear form

A :=
1
2

(
0 η
η 0

)
(3.7)

on (R1+3)2 such that A(p, e) = (pe) and 4A2 = I. By [15, Theorem 6.2.1.],

(∂p∂e) [(pe) ± i0]−3 = a±δ(p, e), (3.8)

where a± are non-vanishing constants that are unimportant for the following
arguments. Moreover, we have

(∂p∂e)2U± = 4 [(pe) ± i0]−3 ⇒ (∂p∂e)3U± = 4a±δ(p, e). (3.9)

Consequently WF δ(p, e) = Ṫ ∗
(0,0) ⊂ WFU± by Lemma 2.5 and the proof is

completed. �
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The distributions U± in Lemma 3.2 depend on a general string direction
e ∈ R

1+3. In SLFT, however, the string directions are usually restricted to
a set of spacelike (or lightlike) directions. Within our derivations, they are
elements of the open subset H ⊂ R

1+3 of spacelike directions, as explained
in the beginning of the current section. The restriction of a distribution to
an open subset always exists and it follows immediately from Definition 2.3
that the wavefront set of the restricted distribution is the restriction of the
wavefront set. We therefore define:

Definition 3.3. Let u±(p, e) := U±(p, e)|R1+3×H denote the restriction of the
distributions U± over (R1+3)2 from Lemma 3.2 to the open subset R

1+3 × H
of spacelike string directions with

WFu± = { (p, e;x, ξ) | (p, e;x, ξ) ∈ WFU±, e ∈ H } (3.10)

by definition of the wavefront set.

Lemma 3.2 has the following important consequence for the restricted
distributions u±.

Corollary 3.4. Hörmander products (u+)k and (u−)k of the restrictions to
spacelike string variables do exist for arbitrary k ∈ N, but the Hörmander
product u+ · u− with opposite imaginary shift does not exist. Moreover,

WF
[
(u±)k

]
= WFu±. (3.11)

Proof. If e ∈ H, then (p, e) 
= (0, 0) and

WFu± = { (p, e;λe, λp) | e ∈ H, λ ≶ 0, (pe) = 0 }. (3.12)

The Hörmander product of two distributions exists if Eq. (2.3) is satisfied.
Since the sign of λ in Eq. (3.12) is fixed by the sign of the imaginary shift,
(u±)2 are defined but u+ ·u− is not. It also follows immediately from the shape
of WFu± and Eq. (2.6) that

WF
[
(u±)2

] ⊂ WFu± (3.13)

and both sides must be equal since the wavefront set is conic and the projection
onto the first component must yield the singular support. By induction, we
get the statement for arbitrary powers. �

Remark 3.5. In the literature, the string variables are usually considered as
elements of the closed subset H−1 ⊂ R

1+3 of spacelike vectors with Minkowski
square e2 = −1 (as for example in [12,22]). The restriction of a distribution to
a closed subset is much more involved than the restriction to an open subset.
It does not always exist and even if it does, it may affect the form of the
wavefront set [15]. We will briefly sketch in Appendix A.2 why the restriction
to H−1 is indeed unproblematic. For our purposes, however, the simpler case
of the restriction to the open subset H is sufficient.

Lemma 3.2 and Corollary 3.4 are the starting point for the full analysis
of the singularities of string-localized propagators that we will subsequently
perform.
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3.2. String-Localized Propagators for All Spins and Helicities

For two arbitrary point-localized fields X(x) and X ′(x′) of mass m ≥ 0, we
introduce the notation

〈〈X(x)X ′(x′)〉〉 :=
∫

dμm(p) e−i(p(x−x′))
mMX,X′

(p) (3.14)

for the two-point function of X and X ′, with the measure
dμm(p) = d4p

(2π)3 δ(p2 − m2)θ(p0) on the mass shell and where mMX,X′
(p) is

a polynomial in p. Furthermore, we write

〈〈T0X(x)X ′(x′)〉〉 :=
∫

d4p

(2π)4
e−i(p(x−x′))

p2 − m2 + i0 mMX,X′
(p) (3.15)

for the corresponding kinematic propagator. Using translation invariance
x − x′ → x, we sometimes also use the notation

〈〈XX ′〉〉(x) resp. 〈〈T0XX ′〉〉(x). (3.16)

The kinematic propagator from Eq. (3.15) is in general only a specific
choice for a propagator since the transition from Eq. (3.14) to Eq. (3.15) might
be non-unique: Dependent on the scaling behavior of mMX,X′

(p), there can
arise ambiguities in the definition of time-ordering at x = x′ [11,29]. Any other
propagator can only differ from Eq. (3.15) by a linear combination

∑
|α|≤n

bα∂αδ(x − x′), (3.17)

where α is a multi-index, bα are constants and n ∈ N0 is restricted by the
scaling behavior in a similar manner to the restrictions from power counting
displayed in Example 2.1. The ambiguity (3.17) can be understood more easily
by a momentum space consideration. Adding a term

(p2 − m2)M̃(p) (3.18)

to mMX,X′
(p), where M̃(p) is another polynomial, does not contribute to the

two-point function (3.14) but yields a contribution of the form (3.17) to the
propagator (3.15).

Remark 3.6. We will frequently refer to the expression mMX,X′
(p) as kernel

of a propagator or two-point function and hope that this usage does not cause
confusion with distribution kernels that will be used implicitly in Sect. 4.

String-integrating X(x) in Eq. (3.14) gives an additional factor −iu−(p, e)
in momentum space, while string integrating X ′(x′) yields a factor iu+(p, e′) =
−iu−(p,−e′). A natural choice of a propagator involving a string-integrated
field is thus given by inserting the appropriate powers of −iu−(p, e) and
iu+(p, e′) into Eq. (3.15). Again, the propagator might not be unique but two
propagators can at most differ by a linear combination of string-integrated
Dirac deltas. We will investigate these ambiguities in Sect.4.2. For now, we
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prove the well-definedness of the relevant class of momentum space represen-
tations of string-localized kinematic propagators.3

Lemma 3.7. (massless case) Let m = 0 and let M×(p) be a polynomial in
p such that ω ∈ N0 is the smallest power of p appearing in M×, where the
subscript × is a placeholder for possible Lorentz indices. Let further k, k′ ∈ N0

and ω − k − k′ − 2 > −4. Then the expression

[u−(p, e)]k[u+(p, e′)]k
′
M×(p)

p2 + i0
(3.19)

is a well-defined (and possibly tensor-valued) distribution on R
1+3 × H2.

Proof. By Corollary 3.4, the powers[u−(p, e)]k and[u+(p, e′)]k
′
exist on R

1+3×H
and their wavefront set is given by Eq. (3.12). We promote them to distribu-
tions on R

1+3 ×H2 by tensoring with the constant distribution in the missing
string variable, so that

WF
(
[u−(p, e)]k ⊗ 1e′

)
= { (p, e, e′;λe, λp, 0) | λ > 0, (pe) = 0 }, (3.20a)

WF
(
[u+(p, e′)]k

′ ⊗ 1e
)

= { (p, e, e′;κe′, 0, κp) | κ < 0, (pe′) = 0 }. (3.20b)

By Eq. (2.11) and Lemma 2.6,

WF
(
[p2 + i0]−1 ⊗ 1e,e′

)
= { (p, e, e′;λp, 0, 0) | p2 = 0, p 
= 0, λ < 0 }
∪{ (0, e, e′;x, 0, 0) | x ∈ R

1+3 \ 0 }. (3.21)

Hence, the covector components of the three wavefront sets (3.20a), (3.20b)
and (3.21) cannot add up to zero when p 
= 0 and thus the Hörmander product
exists on (R1+3\0)×H2. The requirement that ω−k−k′−2 > −4 ensures that
(3.19) is locally integrable at p = 0. Therefore it is a well-defined distribution
on R

1+3 × H2. �

Lemma 3.7 has an analogue for m > 0, where a weaker constraint on
the smallest power of p appearing in the polynomial M×(p) is sufficient to
guarantee local integrability at p = 0 because the denominator [p2−m2+i0]−1

has a better behaved wavefront set for m > 0 than for m = 0.

Lemma 3.8. (massive case) Let m > 0 and let M×(p) be a polynomial in
p such that ω ∈ N0 is the smallest power of p appearing in M×, where the
subscript × is a placeholder for possible Lorentz indices. Let further k, k′ ∈ N0

and ω − k − k′ > −4. Then the expression

[u−(p, e)]k[u+(p, e′)]k
′
M×(p)

p2 − m2 + i0
(3.22)

is a well-defined (and possibly tensor-valued) distribution on R
1+3 × H2.

3There are similar statements for the two-point functions but in this paper, we are interested
in scattering theory only. Therefore, we only consider propagators. The interested reader
may carry through the existence proof for the two-point functions as an exercise, using our
findings as a guide.
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Proof. The numerator of (3.22) is the same as in Lemma 3.7. Since
1

p2−m2+i0 is smooth at p = 0 for m > 0, it is enough to require ω−k−k′ > −4
for local integrability at p = 0 instead of ω − k − k′ − 2 > −4, which was
necessary in the massless case.

Similar to the procedure in the proof of Lemma 3.2, the distribution
[p2 − m2 + i0]−1 can be seen as the pullback of [t + i0]−1 ∈ S ′(R) by the map
f : R1+3 → R with f(p) = p2 − m2 with set of normals

Nf = { (p2 − m2; ξ) ∈ R
2 | ξp = 0 } (3.23)

because Nf ∩ WF[t + i0]−1 = ∅. Then

WF[p2 − m2 + i0]−1 ⊂ f∗ WF[t + i0]−1 = { (p;λp) | p2 = m2, λ < 0 },
(3.24)

where the inverted sign of λ again comes from the fact that we work over
Minkowski space, as explained in Remark 2.7. Clearly, the covector compo-
nents of WF

(
[p2 − m2 + i0]−1 ⊗ 1e,e′

)
and the wavefront sets (3.20a), (3.20b)

cannot add up to zero when p 
= 0, giving the well-definedness of (3.22) as a
distribution on R

1+3 × H2. �

Remark 3.9. The conditions ω−k−k′−2>−4 in the massless and ω−k−k′ >−4
in the massive case ensure local integrability with respect to p = 0. It does not
automatically follow that the respective distributions are ill-defined if these
integrability conditions are not satisfied. However, when investigating the po-
sition space representation of the doubly string-integrated massless Feynman
propagator IeI−e′ [x2 − i0]−1, the singularity is explicitly observed as an in-
frared effect [13].

Remark 3.10. In configuration space, one might be tempted to circumvent
the integrability conditions in Lemmas 3.7 and 3.8 by shifting the string-
integration operation to the x-part of the test function. Since the latter is
a Schwartz function, application of any finite number of string-integrations
to it remains finite. However, the result is no Schwartz function anymore. In
direction of the string, it converges to a constant that is in general non-zero.
Therefore, the integrability conditions are necessary if one does not wish to
leave the regime of distribution theory.

The string-localized potentials defined in Eq. (3.1) are homogeneous of
degree 0 in the string variable because each string-integration Ie is accom-
panied by a factor eμ. Therefore it proves useful to replace the distributions
u±(p, e) by the vector-valued distributions

qμ
±(p, e) := ±iu±(p, e) eμ. (3.25)

The wavefront set of a vector-valued distribution is defined as the union
of the wavefront sets of the components. But since each component of qμ

± is
nothing but u± times a smooth function, we have

WF qμ
± ⊂ WFu±. (3.26)
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As long as e 
= 0, in particular if e is spacelike, both wavefront sets in Eq. (3.26)
are equal. Thus, if

mMF,F
[μ1ν1]···[μsνs][κ1λ1]···[κsλs]

(p) (3.27)

denotes the kernel of the kinematic spin/helicity-s field strength propagator,
then the kinematic propagator for the string-localized potential is given by
replacing mMF,F by

mMA,A
μ1···μsκ1···κs

(p, e, e′) := mMF,F
[μ1ν1]···[μsνs][κ1λ1]···[κsλs]

s∏
i=1

qνi− (p, e)qλi
+ (p, e′)

(3.28)

in Eq. (3.15), provided that the requirements of Lemmas 3.7 or 3.8, respec-
tively, are satisfied (cf. also [19]).

For both m > 0 and m = 0, the kernel mMF,F
μν,κλ of field strength Fμν of

spin/helicity s = 1 reads

mMF,F
μν,κλ(p) = −ημκpνpλ + ημλpνpκ + ηνκpμpλ − ηνλpμpκ (3.29)

and is homogeneous of degree ω = 2. Since for s = 1, the string-localized
potential is Aμ(x, e) = IeFμν(x)eν , string-integration of both F ’s in the prop-
agator gives a total factor qν

−(p, e) · qλ
+(p, e′) so that ω − k − k′ = 0. Then the

requirements for the respective Lemmas 3.7 and 3.8 are met and

mMA,A
μκ (p, e, e′) = −ημκ +

eκpμ

(pe) − i0
+

e′
μpκ

(pe′) + i0
− (ee′)pμpκ

[(pe) − i0][(pe′) + i0]
=: −Eμκ(p, e, e′). (3.30)

It turns out that the quantity Eμκ(p, e, e′) from Eq. (3.30), which is the
kernel for the kinematic propagator of s = 1 string-localized potentials is
enough to describe the kernel of the kinematic propagator for string-localized
potentials of arbitrary spin/helicity [22]. By symmetry of the field strengths
and therefore also of the potentials in Eq. (3.1), one does not lose any infor-
mation if one contracts all indices of Aμ1···μs(x, e) with the same (arbitrary)
four-vector fμ and defines

A
(s)
f (x, e) := fμ1 · · · fμsAμ1···μs(x, e). (3.31)

The authors of [22] were able to prove—without considering questions of
well-definedness—that the kernel of the two-point function of A(s)(x, f) and
A(s)(x′, f ′) for all m ≥ 0 is given by

mM
A

(s)
f ,A

(s)
f′ (p, e, e′) = (−1)s

∑
2n≤s

βs
n (Eff )n(Ef ′f ′)n(Eff ′)s−2n, (3.32)

with coefficients βs
n that are of no interest here. We have used the notation

Eff := fμEμν(p, e,−e)fν , Ef ′f ′ := f ′μEμν(p,−e′, e′)f ′ν , and

Eff ′ := fμEμν(p, e, e′)f ′ν . (3.33)

The signs in the arguments of Eq. (3.33) ensure that each (pe) is accom-
panied by a shift −i0 and each (pe′) is accompanied by a shift +i0. Moreover,
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it is clear that the kernels from Eq. (3.32) arise from an s-fold e-integration
and an s-fold −e′-integration times a polynomial in p which is homogeneous
of degree ω = 2s. Therefore, Lemmas 3.7 and 3.8 apply to the kinematic prop-
agators with kernels as in Eq. (3.32) for all s and have the following Theorem
as a corollary.

Theorem 3.11. The kinematic propagators of the string-localized potentials for
arbitrary mass m ≥ 0 and spin/helicity s ∈ N defined by

〈〈T0A
(s)
f A

(s)
f ′ 〉〉(x) :=

∫
d4p

(2π)4
e−i(px)

p2 − m2 + i0 mM
A

(s)
f ,A

(s)
f′ (p, e, e′) (3.34)

are well-defined distributions on R
1+3 × H2.

3.3. Perturbation Theory with String-Localized Fields

At the heart of perturbation theory in quantum field theory is the construction
of the scattering operator, or S-matrix S as a formal power series (Dyson series)
of time-ordered products of an interaction Lagrangian Lint describing a certain
model [2].

In the usual point-localized theories, S = S[g] is considered as a functional
of a multiplet of Schwartz functions g, which are interpreted as large distance
cutoffs of coupling constants, and tend to constants in the adiabatic limit. For
a rigorous construction, one usually axiomatizes certain properties of the S-
matrix, such as its unitarity, Lorentz and translation invariance and causality
[2,11]. Additionally, it can be subject to (sometimes model-dependent) internal
and discrete symmetries [38, Sec. 3.3]. In gauge theories, its form is further
constrained by the requirement of perturbative gauge invariance [1,10,29].
There is no concept of gauge in string-localized field theories and the gauge
invariance principle is replaced by the requirement for string independence of
the S-matrix (see for example [12,14]).

The time-ordered products of operator-valued distributions (i.e., of Lint)
that appear in the Dyson series for S[g] are usually reduced to products of
numerical distributions by taking expectation values and employing Wick’s
theorem. These products are ill-defined at a diagonal set and renormalization
is the extension of these products of distributions to the whole space [4,11], as
we have illustrated in Example 2.1. In the following, we sketch a possible tran-
sition of these notions, which are well-established in point-localized theories,
to SLFT.

As a first step for this transition, one must declare the nature of the string-
localization. Is string-localization a feature of the potentials, the Lagrangian or
the S-matrix? That is to say: Does each field come with its own string variable,
do the fields in the interaction Lagrangian depend on the same string variable
or do all appearing fields depend on the same string variable:

Lint = Lint(x, e1, . . . , ek)(each SL field has its own string variable), (3.35a)

Lint = Lint(x, e) (all SL fields in Lint depend on the same e), (3.35b)

S = S[g; e] (there is only a single string variable). (3.35c)
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In a generic model, the three alternatives (3.35a), (3.35b) and (3.35c) result
in completely different analytic properties of the corresponding perturbation
theory. Note, however, that the alternatives (3.35a) and (3.35b) are equivalent
if Lint is at most linear in the string-localized potentials, as is the case in QED.

Alternative (3.35c) is desirable if one wants to keep the delocalization as
small as possible. However, it is in general not realizable. If there is only a single
string variable, the kernels (3.32) of the propagators of the involved string-
localized potentials need to be pulled back to the e-diagonal and consequently
will contain ill-defined products u+·u−. Now, the Hörmander criterion Eq. (2.3)
is only sufficient but not necessary, meaning that it is not fully excluded that
one can make sense of u+ · u− although the Hörmander criterion is not met.4

In the case at hand, however, the divergence can be observed explicitly [13].
This rules out alternative (3.35c) for spacelike strings.

Remark 3.12. There have been approaches that employ alternative (3.35c) for
lightlike string variables and massive string-localized potentials [14]. But such
an approach comes with other drawbacks, which we will describe in Appen-
dix A.1.

The interaction Lagrangian Lint depends only on a single x-variable. One
can therefore argue that alternative (3.35b) is a natural choice to set up per-
turbation theory in SLFT. In this case, loop graph contributions would consist
of products of propagators in x and e and one must expect renormalization to
become very complicated. Recent observations in the string-localized equiva-
lent of massless Yang–Mills theory suggest that alternative (3.35b) does not
reproduce the standard model of particle physics [12].5 This observation rules
out alternative (3.35b) for phenomenological reasons.

We are thus left with the alternative (3.35a), i.e., Lint = Lint(x, e1, . . . , ek)
=: Lint(x,e), which is also employed in the cited work [12]. The analyses
therein additionally require a symmetry under exchange of all string variables
that appear in a fixed order of perturbation theory. This symmetry can be
achieved by smearing all string variables with the same averaging function
c ∈ D(H) with

∫
d4e c(e) = 1.6 With this at hand, we are finally able to write

down a candidate for the string-localized S-matrix,

S[g; c] := 1 +
∞∑

n=1

in

n!

n∏
j=1

k∏
l=1

∫
d4xj

∫
d4ej,l g(xj)c(ej,l)Sn(x1,e1; . . . ;xn,en),

(3.36)

4The result may then have unwanted properties such as that the Leibniz rule is not
applicable.
5The cited work considers our alternative (3.35a) from the beginning without mentioning
other alternatives but one can verify without too much effort that the Lie algebra structure
of gluon self-interactions is not compatible with alternative (3.35b) by adjusting Section 2.3
in [12] according to Lint(x, e1, e2) → Lint(x, e).
6The test function c needs to have integral equal to 1 if the string-localized potential is to
remain a potential for the field strength after smearing out the e-variable.
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where the first-order coupling S1(x,e) = :Lint(x,e): is the Wick-ordered inter-
action Lagrangian. The property that c integrates to unity ensures consistency
if Lint is a sum of terms where different powers of string-localized potentials
appear. The higher-order couplings Sn need to be constructed recursively as
time-ordered products of the first-order coupling.

However, the construction of time-ordered products in a string-localized
field theory is a non-trivial task, for one needs to make sense of how to order
several semi-infinite strings in time. An axiomatic framework comparable to
the one that is available in point-localized QFT has not yet been formulated.

One approach towards a construction of time-ordered products in string-
localized QFT is called string-chopping [6]. It proceeds by time-ordering seg-
ments of string integrals wherever possible and taking account of the singu-
larity structure where time-ordering is ambiguous. String chopping has been
implemented for certain models [6,12] but a proof of its general validity has
not yet been given and it is still unclear how a generalization could work.

The formulation of a fully self-contained and comprehensive axiomatic
framework for the construction of the time-ordered products in Eq. (3.36)
is beyond the scope of this paper. Instead, our aim is to show that there
exist finite solutions (in the sense of operator-valued distributions) for the
string-localized Sn if they exist in the point-localized equivalent. To prove the
assertion, we write down the formal Wick-expansion

Sn = T [ :Lint(x1,e1): . . . :Lint(xn,en): ]

= :Lint(x1,e1) . . . Lint(xn,en):

+
∑
φ,χ

:
∂Lint(x1,e1)

∂φ

∂Lint(x2,e2)
∂χ

. . . Lint(xn,en): 〈〈Tφχ〉〉 + . . .

+
∑

φ1,φ2,
χ1,χ2

:
∂2Lint(x1,e1)

∂φ1φ2

∂2Lint(x2,e2)
∂χ1χ2

. . . Lint(xn,en): 〈〈Tφ1χ1〉〉〈〈Tφ2χ2〉〉

+ . . . (3.37)

as a sum containing a priori ill-defined products of propagators, some of which
may be string-localized. An important property of the Dyson series Eq. (3.36)
is that each string-localized potential comes with its own string variable. This
property has the consequence that the products of propagators in Eq. (3.37)
are products only in the x-variables but tensor products in the string variables.
It is therefore enough to regularize Eq. (3.37) after integrating out the string
dependence of the propagators with the test function c. In Sect. 4, we prove
that, after smearing out the string variables, the wavefront set of a relevant
class of string-localized propagators is contained in the wavefront set of the
ordinary Feynman propagator. As a consequence, the products of propagators
appearing in Eq. (3.37) are well-defined whenever they are well-defined in the
point-localized case and the regularization of divergent amplitudes by exten-
sion of the products of propagators across the remaining points stays a pure
short distance problem in SLFT. This statement is due to the fact that the
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singularities of string-localized propagators, which are the building blocks of
the Wick expansion, are better behaved than one might naively expect.

Our considerations do not yield a full classification of the Epstein-Glaser-
like freedom of renormalization of the Sn. However, because string-localized
fields have an improved scaling behavior compared to their point-localized
counterparts, these ambiguities are not expected to exceed the ones in point-
localized theories.

4. Products of String-Localized Propagators

The heuristic considerations in Sect. 3.3 led us to the conclusion that each
string-localized potential has its own string variable and that all string vari-
ables are smeared with the same test function. Therefore, we can make a
transition from Eq. (3.1) to the smeared potentials

Ac,μ1···μs(x) :=
∫

d4eAμ1···μs(x, e) c(e) (4.1)

for c ∈ D(H) before plugging them into the S-matrix. Similarly, after using
translation invariance of the propagator, we can define a map

K : D(H) → S ′(R1+3), c �→ 〈〈T0Ac,μ1···μsAc,κ1···κs〉〉(x). (4.2)

The right-hand side of Eq. (4.2) is a distribution only in x but its singularities
might depend on the test function c. By Lemma 2.9, we have

WF[K(c)] ⊂ { (x; p) | (x, e, e′; p, 0, 0) ∈ WF〈〈T0Aμ1···μs(e)Aκ1···κs(e
′)〉〉,

e, e′ ∈ supp c }. (4.3)

The estimate (4.3) is the key to proving that string-integration does not
introduce new singularities to the propagators of string-localized fields.

4.1. Products of Kinematic Propagators

We investigate the effect of the transition from distributions over R1+3×H2 to
distributions over R1+3 on the kinematic string-localized propagators described
in Sect. 3.2, starting with the following lemma.

Lemma 4.1. For c ∈ D(H), we define

qμ1···μs
c,± (p) :=

∫
d4e c(e)

(±i)seμ1 · · · eμs

[(pe) ± i0]s
. (4.4)

Then qμ1···μs
c,± (p) ∈ S ′(R1+3) with WF qμ1···μs

c,± (p) = { (0;λe) | λ ≶ 0, e ∈
supp c }.
Proof. The expressions qμ1···μs

c,± (p) are the results of smearing distributions of
the form appearing in Corollary 3.4 times a smooth (tensor-valued) function
in the string variable. Therefore, they are well-defined distributions. By homo-
geneity, they are also tempered.
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Since e ∈ H is spacelike and hence non-zero, the wavefront set of qμ1···μs
c,± (p)

must be contained in { (p;x) | (p, e;x, 0) ∈ WFu± } by Lemma 2.9, with u±
as in Corollary 3.4 and WFu± as in Eq. (3.12). This yields

(p;x) ∈ WF qμ1···μs
c,± (p) ⇒ p = 0 and x = λe for some λ ≶ 0 and e ∈ supp c.

(4.5)

To show that any such element (0;λe) is in the wavefront set, note that
the Fourier transform of qμ1···μs

c,± (p) is∫
d4p ei(px)qμ1···μs

c,± (p) ∼
∫

d4e c(e) eμ1 · · · eμsIs±eδ(x) (4.6)

with support {x = λe | λ ≶ 0, e ∈ supp c }. By homogeneity and Lemma 2.6,
(0;x) is an element of WF qμ1···μs

c,± (p) if and only if x is in the support of the
Fourier transform. This proves the claim. �

With Lemma 4.1 at hand, it is straightforward to adjust the proofs for
the existence of the string-integrated kinematic propagators given in Sect. 3.2
to the expressions which are smeared in the string variables. When p 
= 0, the
expressions qμ1···μs

c,± (p) are smooth and therefore, they can at most contribute
to the wavefront set over p = 0. We hence arrive at the following statement.

Lemma 4.2. The kernels

F
[
〈〈T0A

(s)
c,fA

(s)
c,f ′〉〉(x)

]
(p) =

∫
d4e

∫
d4e′ c(e)c(e′)mM

A
(s)
f ,A

(s)
f′ (p, e, e′)

p2 − m2 + i0
(4.7)

of the smeared kinematic string-localized propagators for all masses m ≥ 0 and
all spins respectively helicities s ∈ N are tempered distributions with

WF
(
F

[
〈〈T0A

(s)
c,fA

(s)
c,f ′〉〉(x)

]
(p)

)
⊂ WF

1
p2 − m2 + i0

∪ Ṫ ∗
0 . (4.8)

In the massless case, the Fourier transform (4.7) is homogeneous. There-
fore, the wavefront set of the massless kinematic propagator in configuration
space can be determined easily from Eq. (4.8) by use of Lemma 2.6. We obtain
our first main result.

Theorem 4.3. (massless case) At m = 0, the wavefront set of the smeared
string-localized kinematic propagator

〈〈T0A
(s)
c,fA

(s)
c,f ′〉〉(x) =

∫
d4p

(2π)4
e−i(px)

∫
d4e

∫
d4e′ c(e)c(e′)mM

A
(s)
f ,A

(s)
f′ (p, e, e′)

p2 + i0
(4.9)

is contained in the wavefront set of the massless point-localized Feynman prop-
agator from Eq. (2.11). In particular, products of massless string-localized kine-
matic propagators and their product with the propagators of point-localized
fields are well-defined on R

1+3 \ 0.

In the massive case, homogeneity is lost and a transition from momentum
to configuration space needs more effort. Before proving a similar statement
to Theorem 4.3 for m > 0, we prove an auxiliary lemma.
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Lemma 4.4. Let u, v ∈ S ′(R1+3). Suppose further that û is polynomially
bounded, that WF û ⊂ Ṫ ∗

0 , that v̂ is smooth on a neighborhood of p = 0 and that
the Hörmander product ûv̂ is an element of S ′(R1+3). Then WF

[F−1(ûv̂)
] ⊂

WF v.

Proof. We have to investigate the decay properties of the Fourier transforms
of φF−1(ûv̂) for φ ∈ C∞

c (R1+3). Since φ is compactly supported and smooth,
we know that its Fourier transform is a Schwartz function, φ̂ ∈ S(R1+3).
Moreover, F−1(ûv̂) is a tempered distribution since by assumption also ûv̂ is
tempered. Then[F (

φF−1(ûv̂)
)]

(p) = φ̂ ∗ ûv̂(p) = ûv̂(φ̂(p − ·)) (4.10)

is smooth and polynomially bounded [27, Thm. IX.4].
To investigate the decay of ûv̂(φ̂(p − ·)), we introduce a second cutoff

function χ ∈ C∞
c (R1+3) with 0 ≤ χ ≤ 1, χ ≡ 1 on Br(0) and suppχ ⊂ BR(0),

where B�(p) is the closed ball of Euclidean radius � and center p ∈ R
1+3, and

where 0 < r < R such that BR(0) ∩ singsupp v̂ = ∅.
Then û is smooth on supp(1 − χ), v̂ is smooth on suppχ and ûv̂ =

χûv̂ + (1 − χ)ûv̂. The first term is unproblematic, for there are constants N ,
C and C ′ such that

|χûv̂(φ̂(p − ·))| ≤ C
∑

|α+β|≤N

sup
k∈BR(0)

∣∣∣kα∂β
k φ̂(p − k)

∣∣∣

≤ C ′(1 + |p|)N
∑

|α+β|≤N

sup
k∈BR(p)

∣∣∣kα∂β
k φ̂(k)

∣∣∣ , (4.11)

where |p| is the Euclidean norm of p. The right-hand side of Eq. (4.11) is
rapidly decaying since φ̂ ∈ S(R1+3) and since the supremum is taken over a
compact set around p.

To estimate the second term (1 − χ)ûv̂, note that the smooth function
(1 − χ)û is polynomially bounded and thus

[(1 − χ)ûv̂]
(
φ̂(p − ·)

)
= v̂

(
(1 − χ)û(·) φ̂(p − ·)

)
(4.12)

falls off rapidly if v̂
(
φ̂(p − ·)

)
= φ̂v falls off rapidly. Thus also the full expres-

sion falls off rapidly if φ̂v does, which proves the lemma. �

The desired statement about the wavefront sets of string-localized prop-
agators for m > 0 then follows as a corollary of Lemma 4.4:

Theorem 4.5. (massive case) At m > 0, the wavefront set of the smeared
string-localized kinematic propagator

〈〈T0A
(s)
c,fA

(s)
c,f ′〉〉(x) =

∫
d4p

(2π)4
e−i(px)

∫
d4e

∫
d4e′ c(e)c(e′)mM

A
(s)
f ,A

(s)
f′ (p, e, e′)

p2 − m2 + i0
(4.13)

is contained in the wavefront set of the massive point-localized Feynman propa-
gator. In particular, products of massive string-localized kinematic propagators,
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their product with massless string-localized kinematic propagators and with the
propagators of point-localized fields are well-defined on R

1+3 \ 0.

Proof. We define the distributions

û(p) =
∫

d4e

∫
d4e′ c(e)c(e′) mM

A
(s)
f ,A

(s)
f′ (p, e, e′) (4.14)

and v̂(p) = [p2 − m2 + i0]−1 with m > 0. û(p) is homogeneous of degree 0 in p
and arises from contraction of the distributions qμ1···μs

c,± from Lemma 4.1 with
a polynomial in p. Local integrability of û(p) at p = 0 ensures its existence
as a tempered distribution and by Lemma 4.1, WF û ⊂ Ṫ ∗

0 . v̂ is smooth at
p = 0 because m > 0 and hence û and v̂ satisfy the assumptions of Lemma
4.4. Therefore, Theorem 4.5 is a special case of Lemma 4.4 and

WF 〈〈T0A
(s)
c,fA

(s)
c,f ′〉〉 ⊂ WF v = WF

[∫
d4p

(2π)4
e−i(px)

p2 − m2 + i0

]
, (4.15)

where v is the massive scalar Feynman propagator, whose wavefront set is
the same as for the massless scalar Feynman propagator given by Eq. (2.11)
[3]. �

Remark 4.6. Note that Lemma 4.4 is only helpful at m > 0 since wavefront set
of the massless kernel [p2 + i0]−1 contains Ṫ ∗

0 , so that the Hörmander product
ûv̂ of the respective û and v̂ does not exist at p = 0. For the same reason,
there is no straightforward generalization of Lemma 4.4 to the massless case.

Theorems 4.3 and 4.5 show that the problem of regularizing divergent
products of string-localized propagators is not posed worse than in point-
localized QFT, provided that kinematic propagators are employed. However,
the transition from the two-point functions to the propagators might not be
unique as we have argued in Sect. 3.2. In the following section, we will show
that Theorems 4.3 and 4.5 are generalizable to a large class of propagators.

4.2. Products of Non-kinematic Propagators

Dependent on the scaling behavior at x = 0 (see e.g. [4,29] for the corre-
sponding power counting arguments), there arise ambiguities in defining the
propagator for the point-localized spin/helicity-s field strength,

〈〈TF
(s)
× F

(s)
× 〉〉 − 〈〈T0F

(s)
× F

(s)
× 〉〉 =

∑
|a|≤2(s−1)

Ca
×∂

|a|
× δ(x), (4.16)

with a generic time-ordering recipe T , the kinematic time-ordering T0, some
constants Ca

× and where × is a placeholder for possible Lorentz indices.
In order to not lose the connection between field strength and string-

localized potential given by Eq. (3.1), it is a natural requirement that the
freedom of choosing a time-ordering recipe for the string-localized potentials
arises from the freedom (4.16) by appropriate string-integration of the right-
hand side. Then

〈〈TA
(s)
c,×A

(s)
c,×〉〉 − 〈〈T0A

(s)
c,×A

(s)
c,×〉〉 =

∑
|a|≤2(s−1)

Ca
×Isc,+×Isc,−×∂

|a|
× δ(x), (4.17)
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where we have introduced the smeared s-fold string-integration

Isc,±μ1···μs
f(x) :=

∫
d4e c(e) eμ1 · · · eμs Is±ef(x). (4.18)

The right-hand side of Eq. (4.17) is a tempered distribution because it is
a linear combination of Fourier transforms of

(−ip)|a|
× qμ1···μs

c,+ (p)qκ1···κs
c,− (p), (4.19)

provided that the latter is locally integrable at p = 0, i.e., if |a| > 2s − 4.
Thus, the scaling behavior of the field strengths gives an upper bound on

|a|, while the requirement for local integrability in momentum space gives a
lower bound. In the massless case, the two-point functions of field strength and
string-localized potential are homogeneous. The requirement that the prop-
agators are homogeneous of the same degree then restricts the freedom to
|a| = 2s − 2 at m = 0. In summary, we demand

〈〈TA
(s)
c,×A

(s)
c,×〉〉(x) − 〈〈T0A

(s)
c,×A

(s)
c,×〉〉(x) =

∑
|a|=2s−2

Ca
×∂

|a|
× Is

c,×Is
−c,×δ(x) at m = 0,

(4.20a)

〈〈TA
(s)
c,×A

(s)
c,×〉〉(x) − 〈〈T0A

(s)
c,×A

(s)
c,×〉〉(x) =

2s−2∑
|a|=2s−3

Ca
×∂

|a|
× Is

c,×Is
−c,×δ(x) at m > 0

(4.20b)

for a general time-ordering recipe T ordering string-localized potentials.

Remark 4.7. We want to stress that the requirements |a| = 2s − 2 for m = 0
and 2s − 3 ≤ |a| ≤ 2s − 2 for m > 0 are stronger than the power counting
constraints. The latter would only imply |a| ≤ 2s − 2 but the integrability
condition—an infrared effect—forbids all |a| ≤ 2s− 4. At m = 0, homogeneity
gives an even stronger constraint and excludes all |a| < 2s − 2.

For time-ordering recipes T that are subject to Eq.s (4.20a) and (4.20b),
the renormalization problem is the same as for T0:

Theorem 4.8. Let T denote a time-ordering recipe that is subject to Eq. (4.20a)
if m = 0 and Eq. (4.20b) if m > 0. Then

WF〈〈TA
(s)
c,×A

(s)
c,×〉〉 ⊂ WF〈〈T0A

(s)
c,×A

(s)
c,×〉〉 (4.21)

and consequently, products of 〈〈TA
(s)
c,×A

(s)
c,×〉〉 as well as their products with prop-

agators of point-localized fields exist on R
1+3 \ 0.

Proof. By the constraints on |a| coming from Eqs. (4.20a) and (4.20b), the
difference between 〈〈TA

(s)
c,×A

(s)
c,×〉〉 and 〈〈T0A

(s)
c,×A

(s)
c,×〉〉 is a well-defined tempered

distribution since it is the Fourier transform of a sum of distributions

(−ip)|a|
× qμ1···μs

c,+ (p)qκ1···κs
c,− (p), (4.22)
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which are locally integrable at p = 0 and homogeneous in p. Note that qc,±
are smooth when p 
= 0 by Lemma 4.1 so that there are no issues with well-
definedness of the expression (4.22). Moreover, the same lemma gives

WF
[
(−ip)|a|

× qμ1···μs
c,+ (p)qκ1···κs

c,− (p)
]

⊂ Ṫ ∗
0 (4.23)

so that homogeneity implies

WF
[
∂

|a|
× Isc,μ1···μs

Is−c,κ1···κs
δ(x)

]
= Ṫ ∗

0 (4.24)

by Lemma 2.6, where the equality comes from the fact that the Fourier trans-
form (4.22) is supported everywhere. Therefore, since the wavefront set of the
sum of two distributions is contained in the union of their wavefront sets,
adding a linear combination of derivatives of smeared string-deltas subject to
Eq.s (4.20a) or (4.20b), respectively, does not affect the wavefront set over
R

1+3 \ 0. Because the kinematic propagators of the field strengths are deriva-
tives of a fundamental solution of the wave equation, Ṫ ∗

0 is already contained in
their wavefront set and hence also in the wavefront set of the kinematic prop-
agators of the string-localized potentials since the wavefront set of a string-
integrated smeared Dirac delta is given by Eq. (4.24). �

To summarize, Theorem 4.8 gives a generalization of Theorems 4.3 and
4.5 to all propagators that

1. arise from one of the field strength propagators displayed in Eq. (4.16)
by appropriate string-integration, and

2. are subject to the constraints of power counting, integrability in mo-
mentum space and, at m = 0, homogeneity of the same degree as the
two-point function.

Note that only the lower bounds on |a| are needed in the proof of Theorem 4.8,
but not the constraints coming from power counting. The latter are only an
additional requirement in order to reduce the (finite) renormalization freedom.

Remark 4.9. In all our considerations in Sects. 4.1 and 4.2, we have only con-
sidered pure string-localized propagators 〈〈TA

(s)
c,×A

(s)
c,×〉〉, whereas also mixed

propagators like 〈〈TF
(s)
× A

(s)
c,×〉〉 are non-vanishing in SLFT. However, it should

be obvious that such propagators are subject to similar statements as Theo-
rems 4.3, 4.5 and 4.8.

5. Discussion

We have established that the regularization of a priori ill-defined products
of propagators remains a pure short distance problem in SLFT, provided that
each string-localized potential comes with its own string variable and provided
that the pertinent propagators differ from the kinematic propagators only by
string-localized Dirac deltas. Let us discuss some consequences of these results.
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5.1. A First Step Towards an Epstein–Glaser Construction in SLFT

Since each potential comes with its own string variable, their propagators can
(and should) be smeared in the string variables before inserting them into
the Dyson series for the scattering operator. As a result, the distributions
appearing in the Dyson series only depend on the spacetime variable (and the
smearing function for the string variables, of course).

We proved in Sects. 4.1 and 4.2 that the wavefront set of smeared string-
localized propagators is contained in the wavefront set of the ordinary point-
localized Feynman propagator. Therefore, the problem of regularizing diver-
gent loop graph amplitudes remains an extension problem across an x-diagonal.
In particular, string integration does not introduce new singularities to the
propagators after smearing out the string variables. In other words, the diver-
gences in SLFT are of the same nature as in point-localized approaches: they
are pure UV divergences.

Due to the improved ultraviolet scaling behavior of the string-localized
potentials, coming from the string integrations as in Eq. (3.1), the freedom
of choosing a regularization of divergent products of propagators is reduced
compared to point-localized theories. It therefore seems a promising task to
investigate whether one can formulate renormalizable string-localized mod-
els involving higher spin fields where the point-localized equivalent is non-
renormalizable. A prime example may be the graviton self-coupling. However,
to carry out such a task, a comprehensive axiomatic framework for the con-
struction of S[g; c] from Eq. (3.36) needs to be set up. Only then can one hope
to give a full classification of the ambiguities of a time-ordering prescription
in SLFT.

The ultraviolet behavior—or correspondingly: power counting—is not the
only way to constrain the renormalization freedom. Typical additional require-
ments in point-localized theories are that the renormalized time-ordered prod-
ucts must not be in conflict with gauge invariance [29] or that a refined charac-
terization of Lorentz covariance is preserved during renormalization [26]. Such
notions can also serve as guiding principles for a full axiomatic construction
of the S-matrix in SLFT, the proper substitute for gauge invariance being the
principle of string independence (see for example [12,37] for applications).

5.2. Renormalization in Practice

No new singularities are introduced to string-localized propagators if one sets
up perturbation theory as described in this paper, meaning that each string-
localized potential in the Dyson series comes with its own string variable.
Thus, there is no need to develop new renormalization techniques that are
specifically adjusted to SLFT. One can rely on well-known methods such as
analytic regularization or differential renormalization (see for example [9] for
an introduction) to construct special extensions of products of propagators in
SLFT. This is a remarkable statement, for analytic structures in SLFT are
quite complicated and this complexity is commonly considered to be one of
the main drawbacks of SLFT.
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5.3. Connections to Axial Gauges

The analytic structure of propagators in axial or light-cone gauges is similar to
the one of string-localized propagators (see for example [17] for an introduction
to axial gauges). Axial gauge propagators, however, are usually not treated as
distributions in the variable n, which represents the preferred direction and
is the analogue of the string variable in SLFT. Hence, the singularities that
arise when the Minkowski product of n with the momentum p vanishes are of
a different nature than the ones discussed in this paper. The singularities at
(pn) = 0 were an important reason for the decreasing interest in axial gauges
over the past decades.

Adjusting the framework of axial gauges by treating the respective propa-
gators as distributions in n and letting each appearing axial gauge field depend
on its own n, our results can be transferred with benefit to axial gauge theories
(with n spacelike). Thus, the singularities at (pn) = 0 in axial gauges do not
cause additional problems for renormalization if they are treated as described
in this paper.

Axial gauges suffer from analytic complexity but also offer advantages, in
particular if each axial gauge field comes with its own n: They prove useful in
the so-called spinor-helicity formalism that drastically reduces the computa-
tional effort to determine gluon scattering matrix elements [31, Chapters 25.4.3
and 27]. Due to the close formal connection between axial gauge and string-
localized potentials, it is worthwhile to investigate whether the spinor-helicity
formalism can be adjusted to the string-localized setup of perturbation theory
presented in this paper.

5.4. Connections to the Method of String-Chopping

It is a non-trivial question how the time-ordered products of string-localized
fields—or interaction Lagrangians—can be defined. In Sect. 3.3, we have men-
tioned the method of string-chopping, first described by Cardoso et al. [6] for
linear fields and later adjusted to certain models containing self-interactions
of string-localized potentials [12]. In a nutshell, string-chopping says that the
strings appearing at each order in perturbation theory can be chopped into a
finite number of compact segments plus an infinite tail for each string, so that
all pieces can be meaningfully ordered in time. Moreover, the result of the
time-ordering arising from string-chopping is unique outside an exceptional
set, which consists of the configurations where two of the appearing strings in-
tersect. A generalization of that method to arbitrary models has not yet been
proven but seems a natural conjecture.

Morally, the formal Wick expansion Eq. (3.37) is a realization of the string
chopping method because the kinematic propagator of the string-localized
potentials from Theorem 3.11, obtained by inserting the string-localized kernel
(3.32) into the kinematic propagator of point-localized fields Eq. (3.15), auto-
matically chops the strings and orders them in time. This can be seen by recall-
ing that it is defined as the string-integral over propagators which are already
time-ordered with respect to their arguments. Therefore, string-integration
promotes the step functions θ(±x0), which are responsible for time-ordering
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in the point-localized propagators, to

θ(±(x0 + te0 − t′e′0)) (5.1)

so that an automatic chopping is implicitly achieved. Similar to the point-
localized case described by Epstein and Glaser [11], causality as in Eq. (3.2)
implies that the propagator is uniquely defined outside the set

{x + te − t′e′ = 0 for some t, t′ ≥ 0 }, (5.2)

which is in accordance with the ambiguities from Eqs. (4.20a) and (4.20b) as
well as with the ambiguities observed in the abstract formulation of string
chopping [6,12].
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A. Other Choices of String Variables

Throughout this paper, we have always worked with spacelike string variables
e living in the open subset H = { e2 < 0 } ⊂ R

1+3. In the literature, one
also finds other choices: lightlike string variables, normalized spacelike string
variables with Minkowski square e2 = −1 or purely spacelike string variables
e = (0, �e), all of which correspond to restrictions of the string variables to
closed subsets (or more precisely, closed submanifolds). Such restrictions are
much more subtle than the restriction to H used in this paper. We briefly
examine the described options.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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A.1. Lighlike Strings

Lightlike string directions have been employed in [14] when dealing with mas-
sive string-localized potentials, where they promise a computational advan-
tage. The authors of [14] were able to set equal all string variables appearing
in the Dyson series for the scattering operator describing the weak interaction
by exploiting that the problematic denominator ([(pe) + i0][(pe) − i0])−1 in
Eμκ(p, e, e′)|e=e′ from Eq. (3.30) drops out when e2 = 0. This simplification
of Eμκ yields an essential reduction of the complexity of tree-graph calcula-
tions. Similarly, one can check that also the problematic terms in the kernel for
s = 2 given by Eq. (3.32) drop out, resulting in an even bigger computational
simplification than for s = 1.7

However, the authors of [14] restricted their considerations to tree graph
contributions, where no products (or convolution products in momentum space)
of several Eμκ(p, e, e′)|e=e′ appear. It is very likely that this changes when
treating loop graph contributions and therefore, the divergent denominators
will pop up again in loop amplitudes, resulting in complex renormalization
schemes and spoiling the computational advantage that was achieved at tree
level.

One can also think of SLFT with lightlike strings where not all string
variables are set equal. However, an analysis similar to the one presented in
this paper cannot be performed in that case. This is due to the fact that
the restriction to the closed set of lightlike string directions causes trouble.
Without loss of generality, we can investigate the restriction to lightlike string
variables with zero-component equal to 1, which is given by the pullback of
the respective inclusion map [15, Corollary 8.2.7.], provided that this pullback
exists. Thus, consider the map

ι : R1+3 × (0, 2π) × (0, π) → (R1+3)2, (p, ϕ, ϑ) �→ (p, e),

where e =

⎛
⎜⎜⎝

1
sin ϑ cos ϕ
sinϑ sin ϕ

cos ϑ

⎞
⎟⎟⎠ , (A.1)

so that the desired restriction is the pullback ι∗U± with U± as in Lemma 3.2.

Remark A.1. The submanifold of elements (p, e), where e is lightlike and has
0-component equal to one is R

1+3 × S
2. To avoid confusion with coordinate-

related singularities, one needs several charts. The map ι corresponds to only
a single chart but is enough to demonstrate the issues that come with lightlike
strings.

7It is a conjecture of the author that the problematic denominators drop out for any helicity
but whether that happens or not is of no interest for our current considerations.
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Having a look at Lemma 3.2 and using

tι′
(

ξ
η

)
=

⎛
⎝ ξ

sin ϑ(η1 sin ϕ − η2 cos ϕ)
η3 sin ϑ − cos ϑ(η1 cos ϕ + η2 sin ϕ)

⎞
⎠ (A.2)

for (ξ, η) ∈ (R1+3)2, one can easily verify that ι∗U± is well-defined but that
the wavefront set of the pullback contains elements (p, ϕ, ϑ;λe, 0, 0) when p
becomes proportional to e, the latter being defined as in Eq. (A.1). Note that
the singular-support-criterion (pe) = 0 is met when p is proportional to e only
if e is lightlike (or p = 0).

Hence, there is no immediate analogue of Lemmas 3.7 and 3.8 for the case
of lightlike strings and in particular, analyses as performed in Sect. 4, which
led to a simple renormalization description, are not feasible for lightlike strings
because lightlike strings produce additional singularities also when 0 
= p = λe.
This problem is worse in the massless case than in the massive case, for p2 + i0
is singular when p = λe, but p2 − m2 + i0 with m > 0 is not.

In conclusion, spacelike strings seem preferable over lightlike strings from
analytic and heuristic viewpoints. Nevertheless, lightlike strings cannot be fully
excluded at the present time.

A.2. Closed Subsets of Spacelike Strings

In Remark 3.5, we claimed that the restriction to the closed submanifold H−1

of normalized spacelike string directions with Minkowski square −1 is harmless.
In principle, this restriction can cause similar issues as the restriction to the
lightlike string directions, but a brief analysis shows that it is indeed much
better behaved than the latter. Similar to the case of lightlike strings, we
consider an inclusion map

ι̃ : R1+3 × R × (0, 2π) × (0, π) → (R1+3)2,

(p, τ, ϕ, ϑ) �→ (p, e), where e =

⎛
⎜⎜⎝

sinh τ
cosh τ sinϑ cos ϕ
cosh τ sin ϑ sinϕ

cosh τ cos ϑ

⎞
⎟⎟⎠ , (A.3)

which is again only a single chart but a generalization to cover the full sub-
manifold is straightforward. For (ξ, η) ∈ (R1+3)2, we have

tι̃ ′
(

ξ
η

)
=

⎛
⎜⎜⎝

ξ
η0 cosh τ − sinh τ [η1 sin ϑ cos ϕ + η2 sinϑ sin ϕ + η3 cos ϑ]

cosh τ sinϑ(η1 sin ϕ − η2 cos ϕ)
cosh τ [η3 sin ϑ − cos ϑ(η1 cos ϕ + η2 sin ϕ)]

⎞
⎟⎟⎠
(A.4)

and thus, the pullback ι̃∗U± is well-defined by Lemmas 2.4 and 3.2. In contrast
to the case of lightlike string variables, the wavefront set of the pullback does
not contain elements (p, τ, ϕ, ϑ;λe, 0, 0, 0), provided that p 
= 0. This can be
seen by inserting η = λp, λ 
= 0, into Eq. (A.4) and noting that the pullback
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is only singular when

(pe) = p0 sinh τ − cosh τ [p1 sinϑ cos ϕ + p2 sin ϑ sin ϕ + p3 cos ϑ] = 0. (A.5)

Consequently, the results in Sects. 3 and 4 remain valid also if one restricts
to H−1. We nevertheless chose to consider the restriction to the open set H
in the main part of the paper because it is much simpler and also exhibits
the practical advantage that one can easily derive with respect to the string
variables.

Remark A.2. A qualitative and simpler argument that the restriction to H−1 is
unproblematic is the homogeneity in the string-variables of all string-localized
propagators of degree ω = 0: When one interprets H as H−1×R≥0, the “radial”
part is constant and can simply be integrated out with the radial part of the
test function.

A.3. Purely Spacelike Strings

Another case appearing in the literature [21] is the case of purely spacelike
string variables e = (0, �e), for example with |�e| = 1. It is motivated by the
fact that the inner product −(ee′) becomes positive definite, which is not the
case in H or H−1. This case can be investigated by adjusting the inclusion
map (A.1) from the lightlike case by setting the zero-component of e to 0
instead of 1. Then the only— but very important—difference in the wavefront
set analysis is the criterion for the singular support, which becomes

�p · �e = 0 instead of �p · �e = p0 in the lightlike case. (A.6)

The wavefront set of the restriction to purely spacelike strings can then
only contain elements (p, ϕ, ϑ;λe, 0, 0) if �p = 0 but not when p = κe for some
κ 
= 0, in contrast to the lightlike case. Nevertheless, the appearance of these
critical elements in the wavefront set can happen for arbitrary p0 and hence,
our results from Sects. 3 and 4 cannot be directly transferred to a restriction
to purely spacelike strings.

However, in the mentioned application [21], a time-ordering of the string-
localized expression is not required because there, the string-localized part is
perturbed with a point-localized Lagrangian.
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