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Abstract. We address the spectral problem of the formally normal quan-
tum mechanical operator associated with the quantised mirror curve of
the toric (almost) del Pezzo Calabi–Yau threefold called local P

2 in the
case of complex values of Planck’s constant. We show that the problem
can be approached in terms of the Bethe ansatz-type highly transcenden-
tal equations.
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1. Introduction

The recent progress in topological string theory reveals connections between
spectral theory, integrable systems and local mirror symmetry. The results
on linkings of some quantum mechanical spectral problems with integrable
systems and conformal field theory [4,6], together with the relation of topo-
logical strings in toric Calabi–Yau manifolds to integrable systems [1,2,10–
13,17,19,20], have lead to the conjecture on the topological string/spectral
theory (TS/ST) correspondence [5,8]. In many cases, quantisation of mirror
curves produces trace class quantum mechanical operators, and according to
the TS/ST correspondence, their spectra seem to contain a great deal of infor-
mation of the enumerative geometry of the underlying Calabi–Yau manifold;
see [16] for a review and references therein.

In the case of toric (almost) del Pezzo Calabi–Yau threefold known as
local P

2, the corresponding operator is of the form
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OP2 = u + v + ei�/2v−1u−1 (1)

with invertible positive self-adjoint operators u and v such that

uv = ei�vu, (2)

where � is a real strictly positive parameter. With various levels of generality,
the spectral problem for similar operators has been addressed in [15] from the
perspective of exact WKB approximation, in [9,18] using a matrix integral
representation of the eigenfunctions and in [3,14,22] from the standpoint of
quantum integrable systems.

In this paper, following the approach of [14,22], we consider the so-called
strongly coupled regime for the operator (1) with invertible normal operators
u and v satisfying the Heisenberg–Weyl relation (2) where

� = 2πei2θ, θ ∈]0, π/2[. (3)

In this case, we show that a realisation of the operator (1) in the Hilbert
space L2(R) is formally normal so that its spectral problem is still well defined
provided the operator admits a normal extension. Our main result is Theorem 2
which describes a set of solutions of our spectral problem in terms of generalised
the Bethe ansatz-type transcendental equations.

Outline

In Sect. 2, we introduce the setup, fix notation and conventions and introduce
some objects and constructions that will be used subsequently in the rest of
the paper. In Sect. 3, we specify our Hamiltonian as an unbounded operator
in L2(R), show that it is formally normal, rewrite the corresponding spectral
problem as a pair of functional difference equations and discuss a symmetry
of the system called F-duality which corresponds to Faddeev’s modularity in
integrable systems. In Sect. 4, we describe the possible F-dual asymptotics
of solutions of the problem. In Sect. 5, we describe formal power series solu-
tions for each asymptotic behaviour at infinity and establish their convergence
properties. In Sect. 6, we develop an analytic tool for the realisation of the
formal power series solutions with zero radius of convergence as asymptotic
expansions of analytic solutions. This tool is based on the important technical
Theorem 1. Section 7 is devoted to explicit constructions of analytic solutions.
The specific vector spaces of analytic functions on the punctured complex
plane C�=0 specified by linear difference equations play the central role here.
In Sect. 8, we formulate and prove Theorem 2, the main result of the paper.

2. Definitions and Notation

2.1. Heisenberg Operators

Let x and p be normalised self-adjoint quantum mechanical Heisenberg oper-
ators defined by their realisation in the “position representation”

〈x|x = x〈x|, 〈x|p =
1

2πi

∂

∂x
〈x| (4)
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in the complex Hilbert space L2(R) of square integrable functions with respect
to the standard Lebesgue measure. Here, we use Dirac’s bra–ket notation so
that for any ψ ∈ L2(R) we write ψ(x) = 〈x|ψ〉,

〈x|x|ψ〉 = x〈x|ψ〉 (5)

if ψ is in the domain of x, and

〈x|p|ψ〉 =
1

2πi

∂

∂x
〈x|ψ〉 (6)

if ψ is in the domain of p. One can easily verify the Heisenberg commutation
relation

[p,x]: = px − xp =
1

2πi
, (7)

where in the right-hand side the scalar is assumed to be the multiple of the
identity operator.

2.2. Heisenberg–Weyl Operators

We fix θ ∈]0, π/2[, denote

b: = eiθ, b̄: =
1
b
, q: = eπib2 , q̄: = e−πib̄2 , cb: =

i

2
(b + b̄) = i cos θ (8)

and define the normal Heisenberg–Weyl operators

u: = e2πbx , v: = e2πbp (9)

together with their Hermitian conjugates

u† = e2πb̄x , v† = e2πb̄p . (10)

These operators satisfy (formally) the commutation relations

uv = q2vu, uv† = v†u (11)

so that if a and b are arbitrary elements of the algebra generated by u and v,
then formally one has ab† = b†a.

2.3. A Sequence of Polynomials

To any n ∈ Z≥0, we associate a polynomial Pn = Pn(q, E) ∈ Z[q, q−1][E] of
degree n in E defined by the following recurrence equation

Pn+1 = EPn + (qn − q−n)(qn−1 − q1−n)Pn−2, P0 = 1. (12)

Notice the symmetry Pn(q, E) = Pn(1/q,E). Denoting qn: = qn −q−n, the few
first polynomials read as follows:

P0 = 1, P1 = E, P2 = E2, P3 = E3 + q1q2, P4 = E4 +
q32
q1

E,

P5 = E5 +
(q21 + q23)q2

q1
E2, P6 = E6 +

(q22 + 5)q32
q1

E3 + q1q2q4q5, . . .(13)

Among the properties of these polynomials, one can show that Pn(q, 0) = 0
unless n ≡ 0 (mod 3) and

P3m(q, 0) = q−3m2
(q2; q6)m(q4; q6)m, ∀m ∈ Z≥0, (14)
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where we use the standard q-Pochhammer symbol

(x; q)n: =
n−1∏

k=0

(1 − xqk), (x, y, . . . ; q)n: = (x; q)n(y; q)n · · · (15)

One can also show that

Pn =
∑

0≤m≤n/3

En−3mpn,m, pn,m =
∑

|k|≤m

q2nkαk,m(n), (16)

where αk,m(x) are polynomials in x of degree m−|k| satisfying the recurrence
relations

q6kαk,m+1(x + 3) − q4kαk,m+1(x + 2)

= q3αk−1,m(x) + q−3αk+1,m(x) − (q + q−1)αk,m(x). (17)

Furthermore, the leading asymptotics of Pn at large n is given by the formula

Pn(q, E)|n→∞ ∼ q−n2/3. (18)

It will be of particular interest for us the following two generating series
for these polynomials:

φq,E(z): =
∞∑

n=0

Pn(q, E)
(q−2; q−2)n

zn (19)

and

ψq,E(z): =
∞∑

n=0

Pn(q, E)q(1−n)n/2

(q−2; q−2)n
zn = ψ1/q,E(−z). (20)

The asymptotics (18) implies that for any E ∈ C, the radius of convergence is
infinite for the series (20), while for the series (19) it is infinite if |q| < 1 and
zero if |q| > 1.

2.4. Vector Spaces Fp,c , Gp,c and T m
p,r

We let H(C�=0) denote the complex vector space of holomorphic functions
f : C�=0 → C and

U(f): = C�=0 \ f−1(0), f ∈ H(C�=0). (21)

Let c ∈ C, p, r ∈ C�=0 and m ∈ Z. We define the following vector subspaces of
H(C�=0):

Fp,c: =
{
f ∈ H(C�=0) | f(z/p2) + (zp)3f(zp2) = (1 − cz)f(z)

}
, (22)

Gp,c: =
{
f ∈ H(C�=0) | f(zp) − f(z/p) = z(z2 + c)f(z)

}
(23)

and

Tm
p,r: = {f ∈ H(C�=0) | rzmf(zp) = f(z)} . (24)

Elements of Tm
p,r will be called theta functions of order m. For any p ∈ C�=0

such that |p| < 1, one specific theta function is defined by the series

ϑ(z; p): =
∑

n∈Z

p(n−1)n/2(−z)n = (z, p/z, p; p)∞ (25)
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with the defining properties

ϑ(1; p) = 0, ϑ(pz; p) = ϑ(z−1; p) = −1
z
ϑ(z; p) (26)

which imply that ϑ(·; p) ∈ T 1
p,−1. Note also the modularity property

ϑ(e2πbx; q2) = ϑ(e2πb̄x; q̄2)eπi(x+sin θ)2−iθ+πi/4, (27)

where we use notation (8).

Remark 1. Let f ∈ Tm
p,r and z ∈ U(f) (respectively, z 	∈ U(f)). Then, one has

zpZ ⊂ U(f) (respectively, zpZ ∩ U(f) = {}).

Remark 2. By expanding into Laurent series, one easily checks that the di-
mensions of Fp,c and Gp,c are at most 3. On the other hand, the recurrence
relation (12) implies that ψp,c ∈ Gp,c if |p| 	= 1 and φp,c ∈ Fp,c if |p| < 1 so
that

|p| 	= 1 ⇒ dim Gp,c ≥ 1 (28)

and

|p| < 1 ⇒ dim Fp,c ≥ 1. (29)

The elements φp,c and ψp,c will be called regular elements of the corresponding
vector spaces.

Remark 3. By expanding into Laurent series, it is easily verified that

dim Tm
p,r ≤ |m| if m 	= 0 (30)

with the equality if |p|m < 1. In particular, for |p| < 1, dim T 1
p,r = 1 with the

theta function ϑ(−rz; p) being a basis element.

Remark 4. One has the identifications

T 0
1,1 = H(C�=0), (31)

T 0
p,1 = C if 1 	∈ pZ �=0 , (32)

and the inclusions

Tm
p,r ⊂ Tmn

pn,rnpmn(n−1)/2 , ∀m,n ∈ Z, ∀p, r ∈ C�=0, (33)

which for n = −1 become equalities

Tm
p,r = T−m

p−1,r−1pm , ∀m ∈ Z, ∀p, r ∈ C�=0. (34)

Remark 5. The multiplication of functions induces a linear map

Tm
p,r ⊗ Tn

p,s → Tm+n
p,rs , ∀m,n ∈ Z, ∀p, r, s ∈ C�=0. (35)

For example, assuming |p| < 1, the product identity

ϑ(z; p)ϑ(−z; p) = ϑ(p; p2)ϑ(z2; p2) (36)

illustrates the special case T 1
p,−1 ⊗ T 1

p,1 → T 2
p,−1.
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Remark 6. Assuming 1 	∈ pZ �=0 , let g ∈ Gp,c. Then, the even part of the product
g(z)g(−zp) is an element of the vector space T 0

p,1 = C. Thus, there exists a
quadratic form ω : Gp,c → C such that

g(z)g(−zp) + g(−z)g(zp) = ω(g), ∀z ∈ C�=0. (37)

In particular, if |p| 	= 1, we have

ω(ψp,c) = 2ψp,c(0) = 2. (38)

3. Formulation of the Spectral Problem

Let u and v be the normal Heisenberg–Weyl operators defined in (9). Then,
the Hamiltonian

H: = u + v + q−1u−1v−1 = u + v + qv−1u−1

= e2πbx + e2πbp + e−2πb(x+p) (39)

with the standard domain for sums of operators

D(
H

)
= D(

e2πbx
) ∩ D(

e2πbp
) ∩ D(

e−2πb(x+p)
)

(40)

is expected to extend to a normal operator so that the spectral problem con-
sisting in solving the system of Schrödinger equations

H|Ψ〉 = E|Ψ〉, H†|Ψ〉 = Ē|Ψ〉 (41)

in the Hilbert space L2(R) is well posed. Below we justify this expectation by
showing that H is at least formally normal.

3.1. The formal Normality of H

Recall that a densely defined linear operator T with the domain D(T ) is called
formally normal if D(T ) ⊂ D(T †) and

‖Tx‖ = ‖T †x‖ ∀x ∈ D(T ). (42)

A formally normal operator T is called normal if D(T ) = D(T †); see, for
example, [21]. The notion of a formally normal operator naturally generalises
the notion of a symmetric operator when one extends the class of self-adjoint
operators to the class of normal operators.

Lemma 1. Let {aj}j∈J be a finite set of densely defined operators such that
A: =

∑
j∈J aj is densely defined, and for any j, k ∈ J , the operator aj + ak

is formally normal. Then A is formally normal as well.

Proof. The case with j = k implies that the operator aj is formally normal
for any j ∈ J . This immediately implies the inclusion of domains

D(A) =
⋂

j∈J

D(aj) ⊂
⋂

j∈J

D(a†
j) = D

( ∑

j∈J

a†
j

)
⊂ D(A†), (43)

where the last inclusion is due to the inclusion of operators1
∑

j∈J a†
j ⊂ A†.

1By inclusion of operators S ⊂ T , we mean that D(S) ⊂ D(T ) and S = T |D(S).
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For any j, k ∈ J , by taking into account the inclusion of operators a†
j +

a†
k ⊂ (aj + ak)† as well as the formal normality of aj and ak, we have the

following equivalent characterisation of the formal normality of aj + ak:

Mj,k(x) = −Mk,j(x) ∀x ∈ D(aj + ak), (44)

where

Mj,k(x): = 〈ajx|akx〉 − 〈a†
jx|a†

kx〉. (45)

Indeed, this is verified as follows:

0 = ‖(aj + ak)x‖2 − ‖(aj + ak)†x‖2 = ‖(aj + ak)x‖2 − ‖(a†
j + a†

k)x‖2
= Mj,k(x) + Mk,j(x). (46)

Thus, for any x ∈ D(A), we obtain

‖Ax‖2 − ‖A†x‖2 =
∑

j,k∈J

Mj,k(x) = −
∑

j,k∈J

Mk,j(x) = ‖A†x‖2 − ‖Ax‖2

⇔ ‖Ax‖ = ‖A†x‖. (47)

�

Lemma 2. Let b = eiθ with θ ∈]0, π
2 [. Then, the set of three operators

{a1: = e2πbx , a2: = e2πbp , a3: = e−2πb(x+p)} (48)

satisfies the assumptions of Lemma 1.

Proof. For any j ∈ {1, 2, 3}, the operator aj is obviously normal. Let us check
that a1 + a2 is formally normal.

By using notation (8), recall that Faddeev’s quantum dilogarithm

Φb(z) =
(−qe2πbz; q2)∞
(−q̄e2πb̄z; q̄2)∞

(49)

is a meromorphic function of z ∈ C which satisfies the functional equation

Φb(z − ib/2)
Φb(z + ib/2)

= 1 + e2πbz (50)

and the unitarity condition

Φb(z)Φb(z̄) = 1, (51)

and it has neither zeros nor poles in the strip |�(z)| < cos(θ). By using these
properties, we write

a1 + a2 = e2πbx + e2πbp = eπbx(1 + e2πb(p−x))eπbx

= eπbx Φb(p − x − ib/2)
Φb(p − x + ib/2)

eπbx = Ue2πbxU†, (52)

where U : = Φb(p − x) is a unitary operator and we used the following equali-
ties:

eπsxΦb(p − x − is/2) = Φb(p − x)eπsx = Ueπsx , s ∈ {b, b̄}, (53)
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which hold true due to the fact that the complex shifts in the argument of
Φb(z) are within the strip free of zeros and poles:

|�(ib/2)| = |�(ib̄/2)| =
1
2

cos(θ) < cos(θ). (54)

Thus, a1 + a2 admits a normal extension, and in particular, it is formally
normal. The formal normality of a1 +a3 and a2 +a3 is verified similarly. �

We conclude that Lemma 1 in conjuction with Lemma 2 implies that the
Hamiltonian (39) is a formally normal operator.

3.2. The Difference Equations and F-Duality

In the position representation (4), the spectral problem (41) is equivalent to
the following system of functional difference equations

Ψ(x − ib) + q−1e−2πbxΨ(x + ib) = (E − e2πbx)Ψ(x), (55)

Ψ(x − ib̄) + q̄e−2πb̄xΨ(x + ib̄) = (Ē − e2πb̄x)Ψ(x), (56)

where Ψ(x): = 〈x|Ψ〉. We are looking for a holomorphic function Ψ: C → C

that solves the functional Eqs. (55), (56) and whose restriction to the real axis
is square integrable.

Equations (55) and (56) are related to each other by the simultaneous
substitutions

b ↔ b̄, q ↔ 1/q̄, E ↔ Ē (57)

which correspond to the Faddeev (modular) duality [7] and which we abbre-
viate as F-duality. For this reason, in what follows, we will write only one
equation (containing the variables E and q), but implicitly there will always
be a second accompanying equation. In constructing solutions, we will follow
the principle of F-duality corresponding to the invariance of solutions under
above substitutions. In this case, it will suffice to check only one equation as
the other one will be satisfied automatically.

4. F-dual Asymptotics at x → ±∞
We start our analysis by addressing the problem of asymptotical behaviour of
solutions of our spectral problem at large values of x. Following the principle
of F-duality, we are looking for possible F-dual asymptotics.

Proposition 1. Let Ψ(x) be a solution of Eqs. (55) and (56) such that there
exists a finite nonzero limit of eλxΨ(x − ib)/Ψ(x) when x tends either to +∞
or to −∞ for some λ ∈ C. Then, one has the following possibilities for the
F-dual asymptotic behaviour of Ψ(x) at large x:

Ψ(x)|x→−∞ ∼ ψ0(x): = e−πix2/2−πicbx, (58)

Ψ(x)|x→+∞ ∼ ψ1(x): = eπix2+2πicbx, (59)

and

Ψ(x)|x→+∞ ∼ ψ2(x): = e−2πix2+2πicbx. (60)
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Proof. Dividing (55) by Ψ(x), and denoting ρλ(x): = eλxΨ(x − ib)/Ψ(x), we
obtain a first-order nonlinear finite difference functional equation with expo-
nentially growing or decaying coefficients

ρλ(x) + e(2x+ib)(λ−πb)/ρλ(x + ib) = (E − e2πbx)exλ. (61)

Let λ ∈ C be such that there exists a finite nonzero limit value

μ(λ): = lim
x→∞ ρλ(x) = lim

x→∞ ρλ(x + ib), (62)

where ∞ means one of ±∞, and assume that there exists an F-dual solution
of the finite difference functional equation

eλxfλ(x − ib)/fλ(x) = μ(λ). (63)

Then, the corresponding asymptotic behaviour of Ψ(x) is given by fλ(x).
The case x → −∞. Choosing λ = πb, we obtain

lim
x→−∞

(
ρπb(x) +

1
ρπb(x + ib)

)
= 0. (64)

Thus, one has two possibilities for the limit value

μ(πb) = εi, ε ∈ {±1}. (65)

The finite difference functional equation (63) admits an F-dual solution of the
form fπb(x) = ψ0(x) provided ε = −1.

The case x → +∞. We can choose either λ = −2πb or λ = 4πb with the
limit values

μ(−2πb) = −1, μ(4πb) = −q3. (66)

The corresponding F-dual solutions of (63) are given by f−2πb(x) = ψ1(x) and
f4πb(x) = ψ2(x). �

Our further goal is to try to solve the eigenvalue Eqs. (55) and (56)
in three asymptotic regimes (58)–(60) by using the substitutions Ψ(x) =
ψi(x)ϕi(x), i ∈ {0, 1, 2} and looking for functions ϕi(x) having finite nonzero
limiting values in the corresponding asymptotic limits.

5. Solutions in Terms of Power Series

5.1. The Case ψ2(x)

Assume that the asymptotic behaviour (60) takes place. If we write Ψ(x) =
ψ2(x)ϕ2(x), then the eigenvalue equation (55) is converted into the equation

ϕ2(x + ib) + e−6πbxq3ϕ2(x − ib) = (1 − Ee−2πbx)ϕ2(x) (67)

which we complement with the limit value condition

lim
x→+∞ ϕ2(x) = 1. (68)

Under the F-dual substitution

ϕ2(x) = χ2(e2πbx)χ̄2(e2πb̄x), (69)
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(67) is reduced to the equation

χ2(zq2) + (q/z)3χ2(z/q2) = (1 − E/z)χ2(z) (70)

which we complement with the limit value condition

lim
z→∞ χ2(z) = 1. (71)

It admits a power series solution

χ2(z) = φq,E(1/z). (72)

The dual function χ̄2(z) is obtained by the substitutions q �→ 1/q̄ and E �→ Ē
with the result

χ̄2(z) = φ1/q̄,Ē(1/z). (73)

Taking into account the remarks in the end of Sect. 2.3, we conclude that χ2(z)
is holomorphic in C�=0, while χ̄2(z) does not converge to any complex analytic
function.

5.2. The Case ψ1(x)
Assume that the behaviour (59) takes place. If we write Ψ(x) = ψ1(x)ϕ1(x),
then the eigenvalue equation (55) is converted into the equation

ϕ1(x − ib) + e−6πbxq−3ϕ1(x + ib) = (1 − Ee−2πbx)ϕ1(x) (74)

which we complement with the limit value condition

lim
x→+∞ ϕ1(x) = 1. (75)

As in the previous case, we obtain a power series F-dual solution

ϕ1(x) = φ1/q,E(e−2πbx)φq̄,Ē(e−2πb̄x), (76)

where the radii of convergence of the series φ1/q,E(z) and φq̄,Ē(z) are zero and
infinity, respectively.

5.3. The Case ψ0(x)
The substitution Ψ(x) = ψ0(x)ϕ0(x) converts the eigenvalue equation (55)
into the equation

ϕ0(x − ib) − ϕ0(x + ib) = i(E − e2πbx)eπbxϕ0(x) (77)

which we complement with the limit value condition

lim
x→−∞ ϕ0(x) = 1. (78)

Under the F-dual substitution

ϕ0(x) =
1
2

∑

σ,τ∈{0,1}
(−1)στχ0((−1)σeπbx)χ̄0((−1)τeπb̄x), (79)

(77) is equivalent to the following functional equation on the function χ0(z):

χ0(z/q) − χ0(zq) = i(E − z2)zχ0(z) (80)

complemented with the initial value condition

χ0(0) = 1. (81)
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It admits a power series solution χ0(z) = ψq,E(−iz) and its dual χ̄0(z) =
ψq̄,Ē(iz) with infinite radii of convergence. Thus, in this case, we obtain an
entire function Ψ(x).

6. Analytic Realisations of the Series φ1/q,E (z)

6.1. First-Order Matrix Difference Equation

For any f ∈ Fq,E , we have a matrix equality

f̂(z) = L(z)f̂(zq2), f̂(z): =
(

f( z
q2 )

f(z)

)
, L(z): =

(
1 − Ez −z3q3

1 0

)
. (82)

Defining

Ln(z): = L(z)L(zq2) · · · L(zq2n−2) =:

(
an(z) bn(z)

cn(z) dn(z)

)
, n ∈ Z>0, (83)

we have

Lm+n(z) = Lm(z)Ln(zq2m), ∀(m,n) ∈ (Z>0)2, (84)

which, in particular, implies that

Ln+1(z) = L(z)Ln(zq2) = Ln(z)L(zq2n), ∀n ∈ Z>0. (85)

Taking the limit n → ∞ in (83), relations (85) imply that

L∞(z): = lim
n→∞ Ln(z) =

(
φq,E(z/q2) 0

φq,E(z) 0

)
, (86)

where φq,E is the regular element of Fq,E . As we have seen in Sect. 2.3, it can
be presented as the everywhere absolutely convergent series (19).

6.2. The Wronskian Pairing

We define a skew-symmetric bilinear Wronskian pairing

[·, ·] : Fq,E × Fq,E → T 3
q2,q3 , [f, g](z) = f(

z

q2
)g(z) − g(

z

q2
)f(z). (87)

Remark 7. One can show that dimFq,E = 3. As the kernel of the Wronskian
pairing [φq,E , ·] contains φq,E , we conclude that dim[φq,E , Fq,E ] ≤ 2.

6.3. Adjoint Functions

For any f ∈ Fq,E , we associate the adjoint function

f̃ : U([φq,E , f ]) → C (88)

(see (21) for the definition of the domain) defined by the formula

f̃(z):=
f(z)

[φq,E , f ](z)
. (89)

By construction, f̃(z) solves the functional equation

f̃(zq2) + (z/q)3f̃(z/q2) = (1 − Ez)f̃(z) (90)
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obtained from the equation underlying the vector space Fq,E by the replace-
ment of q by 1/q. This equation admits a formal power series solution φ1/q,E(z)
which has zero radius of convergence. The adjoint functions appear to be an-
alytic substitutes for φ1/q,E due to the following theorem.

Theorem 1. Let f ∈ Fq,E be such that the adjoint function f̃(z) is a non-trivial
meromorphic function. Then

lim
n→∞ f̃(zq2n) = 1, ∀z ∈ U([φq,E , f ]), (91)

so that f̃(z) admits an asymptotic expansion at small z in the form of the
series φ1/q,E(z).

Proof. The proof is based on the matrix recurrence (82). Indeed, the formula

det(Ln(z)) = z3nq3n2
(92)

implies that Ln(z) is invertible for any z 	= 0, and we can write

f̂(z) = Ln(z)f̂(zq2n) ⇔ f̂(zq2n) = (Ln(z))−1f̂(z) (93)

so that

f(zq2n) =
an(z)f(z) − cn(z)f(z/q2)

z3nq3n2 , (94)

and taking into account the equality

[φq,E , f ](zq2n) =
[φq,E , f ](z)

z3nq3n2 , (95)

we obtain

f̃(zq2n) =
an(z)f(z) − cn(z)f(z/q2)

[φq,E , f ](z)
(96)

which implies (91) due to the formulae

lim
n→∞ an(z) = φq,E(z/q2), lim

n→∞ cn(z) = φq,E(z), (97)

see (86), and the definition of the Wronskian pairing in (87). �

Our next task is to construct elements of Fq,E with non-trivial adjoint
functions.

7. Construction of Elements in Fq,E

7.1. The Vector Space Vq,α,E

Let α ∈ C�=0. We define a vector space

Vq,α,E :=
{

f ∈ H(C�=0) | αzf
( z

q2

)
+

z2q

α
f(zq2) = (1 − Ez)f(z)

}
. (98)
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Proposition 2. Let g ∈ Gq,E. Consider the linear map

Ag : H(C�=0) → H(C�=0), Ag(f)(z) = P+(fg)(1/
√−z), (99)

where P+ is the projection to the even part of a function:

P+(f)(z):=(f(z) + f(−z))/2. (100)

Then Ag(T 1
q,−α) ⊂ Vq,α,E and the restriction Ag|T 1

q,−α
is a linear isomorphism

between T 1
q,−α and Vq,α,E provided ω(g) 	= 0 (see Remark 6).

Proof. Let h ∈ T 1
q,−α and f :=Ag(h). Denoting u:= − 1/z2, we have

2uαf(u/q2) = −z−2αh(zq)g(zq) + (z �→ −z)
= h(z)z−3(g(z/q) + z(z2 + E)g(z)) + (z �→ −z)
= (−h(z/q)(αz/q)−1z−3g(z/q)

+(z �→ −z)) + (h(z)(1 + E/z2)g(z) + (z �→ −z))
= −u2qα−12f(uq2) + (1 − Eu)2f(u). (101)

Thus, f ∈ Vq,α,E .
Assuming ω(g) 	= 0, we solve the equality f = Ag(h) for h as follows:

2f(u)g(zq) + zαg(z)2f(u/q2)
= (h(z) + zαh(zq))g(z)g(zq) + h(−z)g(−z)g(zq) + zαg(z)h(−zq)g(−zq)
= h(−z)(g(−z)g(zq) + g(z)g(−zq)) = h(−z)ω(g). (102)

Thus, h is determined through f :

h(z) = (f(−1/z2)g(−zq) − zαg(−z)f(−1/(zq)2))2/ω(g). (103)

�

Corollary 1. For any α ∈ C�=0 and E ∈ C, one has

dim(Vq,α,E) = dim(T 1
q,−α) = 1. (104)

In particular, the function

χq,α,E(z):=ϑ(αz; q)ψq,E(z) + (z �→ −z) (105)

determines a basis element in Vq,α,E.

Proof. Indeed, ψq,E is an element of Gq,E with ω(ψq,E) = 2 	= 0, while ϑ(αz; q)
determines a basis element in T 1

q,−α. �

Remark 8. In the proof of the second part of Proposition 2, we implicitly used
an extension of the Wronskian pairing

[·, ·] : Gq,E × Vq,α,E → T 1
q,α,

[g, f ](z) = g(zq)f
(−1

z2

)
+ zαf

( −1
z2q2

)
g(z) (106)

and the identity

[g,Ag(h)](z) = h(−z)ω(g)/2, ∀(g, h, z) ∈ Gq,E × T 1
q,−α × C�=0. (107)
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Proposition 3. The multiplication of functions induces a linear map

Vq,α,E ⊗ T 1
q2,q2α → Fq,E . (108)

Proof. Let f ∈ Vq,α,E , g ∈ T 1
q2,q2α and h:=fg. We have

h(z/q2) = (1 − Ez)f(z)g(z) − z2qα−1f(zq2)g(z)
= (1 − Ez)h(z) − (zq)3h(zq2). (109)

Thus, h ∈ Fq,E . �

7.2. Adjoint Functions Revisited

Let f ∈ Vq,α,E , g ∈ T 1
q2,q2α. Then, the adjoint function of the product fg takes

the form

f̃g(z) =
f(z)g(z)

[φq,E , fg](z)
=

f(z)
[φq,E , f ](z)

, (110)

where, in the last expression, by abuse of notation, we extend the Wronskian
pairing to include the space Vq,α,E

[·, ·] : Fq,E × Vq,α,E → T 2
q2,q/α, [e, f ](z) = e(

z

q2
)f(z) − αzf(

z

q2
)e(z).(111)

The inclusions of vector spaces in (33) specified to T 2
q2,q/α become

T 2
q2,q/α ⊂ T 2n

q2n,qn2/αn , ∀n ∈ Z, (112)

which imply that

[φq,E , f ](z) = 0 ⇒ [φq,E , f ](zq2n) = 0, ∀n ∈ Z, (113)

and one has the equalities

f̌(zq2n) = qn2
(αqz)nf̌(z), ∀(n, z) ∈ Z × [φq,E , f ]−1(0) ∩ U(φq,E), (114)

where

f̌ :=f/φq,E . (115)

By adjusting the normalisation of f , we can write an equality

[φq,E , f ](z) = ϑ(z/s; q2)ϑ(zsq/α; q2), ∀z ∈ C�=0, (116)

where s = s(α, q, E) is a fixed zero of [φq,E , f ]. We conclude that

[φq,E , f ](z) = 0 ⇔ [φq,E , f ](
α

qz
) = 0. (117)

8. Solution of the Schrödinger Equations

Define the notation

px:=e−2πbx, p̄x:=e−2πb̄x. (118)
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Theorem 2. Let (ζ, σ,E, Ē) ∈ C
4 be such that

f̌(pσ) = qpζ+σ f̌
(pσ

q2

)
, ˇ̄f(p̄σ) = q̄p̄ζ+σ

ˇ̄f
( p̄σ

q̄2

)
, Ξ(σ) = Ξ(ζ − σ), (119)

where

f ∈ Vq,qpζ ,E \ {0}, f̄ ∈ Vq̄,q̄p̄ζ ,Ē \ {0}, f̌ :=
f

φq,E
, ˇ̄f :=

f̄

φq̄,Ē

(120)

and

Ξ(t):= − eπit(t+2ζ) f̌(pt)p̄t

ˇ̄f(p̄t)pt

. (121)

Then, the function

Ψ(x) = e2πicbx
eπix2

f(px)φq̄,Ē(p̄x) + px

p̄x
Ξ(σ)e−2πiζxf̄(p̄x)φq,E(px)

ϑ(px−σ; q2)ϑ(px+σ−ζ ; q2)
(122)

is a holomorphic solution of the system of difference Eqs. (55), (56).

Proof. Based on two possible asymptotics at x → +∞, the most general ansatz
for the common eigenfunction of our spectral problem is of the form

Ψ(x) = Ψ1(x) + Ξ′Ψ2(x), (123)

where

Ψ1(x):=ψ1(x)h̃(px)φq̄,Ē(p̄x), h ∈ Fq,E \ Cφq,E , (124)

Ψ2(x):=ψ2(x)φq,E(px)˜̄h(p̄x), h̄ ∈ Fq̄,Ē \ Cφq̄,Ē , (125)

and Ξ′ ∈ C. �
Remark 9. If the bar operation is the complex conjugation, the two functions
are related as follows

Ψ1(x) = eπix2
Ψ2(x), ∀x ∈ R. (126)

That implies that if |Ξ′| = 1, then

Ξ′Ψ(x) = eπix2
Ψ(x), ∀x ∈ R. (127)

An important additional condition for this ansatz, to be called Require-
ment(I), is that the functions Ψ1(x) and Ψ2(x) should share one and the same
set of poles.

If one chooses nonzero h = fg and h̄ = f̄ ḡ, where

(f, g) ∈ Vq,α,E × T 1
q2,q2α and (f̄ , ḡ) ∈ Vq̄,ᾱ,Ē × T 1

q̄2,q̄2ᾱ (128)

for some α, ᾱ ∈ C�=0, then the denominators simplify to [φq,E , f ] and [φq̄,Ē , f̄ ]
[(see eq. (110)] to become elements of 2-dimensional vector spaces T 2

q2,q/α and
T 2
q̄2,q̄/ᾱ, respectively. By adjusting the normalisations of f and f̄ , we can as-

sume that

[φq,E , f ](z) = ϑ
(z

s
; q2

)
ϑ
(zsq

α
; q2

)
,

[φq̄,Ē , f̄ ](z) = ϑ
(z

s̄
; q̄2

)
ϑ
(zs̄q̄

ᾱ
; q̄2

)
, (129)
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where

s = s(E), s̄ = s̄(Ē) (130)

are some chosen zeros of [φq,E , f ] and [φq̄,Ē , f̄ ], respectively.

Remark 10. By solving Eq. (130) for E = E(s) and Ē = Ē(s̄), one can think
of s and s̄ as independent variables.

In order to fulfil Requirement(I), to rewrite [φq,E , f ](z) by using the sub-
stitutions

z �→ px, α �→ qpζ , s �→ pσ (131)

and the modularity property (27)

[φq,E , f ](z) �→ ϑ(px−σ; q2)ϑ(px+σ−ζ ; q2)

= ϑ(p̄x−σ; q̄2)ϑ(p̄x+σ−ζ ; q̄2)e2πi((x−sin θ− 1
2 ζ)2+(σ− 1

2 ζ)2) i

b2
. (132)

Thus, Requirement(I) is fulfilled if we substitute in [φq̄,Ē , f̄ ]

ᾱ �→ q̄p̄ζ , s̄ �→ p̄σ. (133)

In this way, the first two relations in (119) become equivalent to (130).
Putting everything together, we obtain

Ψ(x) = e2πicbx
eπix2

f(z)φq̄,Ē(z̄) + Ξe−2πi(ζ+2 sin θ)xf̄(z̄)φq,E(z)
ϑ( z

s ; q2)ϑ( zsq
α ; q2)

(134)

with substitutions (131), (133) and z̄ �→ p̄x, and the parameter

Ξ:=Ξ′ie2πi((sin θ+ζ/2)2+(σ−ζ/2)2)−2iθ (135)

that we choose by the condition of cancellation of the pole of Ψ(x) at x = σ
with the result

Ξ = Ξ(σ):= − eπiσ(σ+2ζ) f̌(s)s̄
ˇ̄f(s̄)s

(136)

equivalent to (121) under the substitutions s �→ pσ and s̄ �→ p̄σ.

Remark 11. Equality (136) implies that all the poles of Ψ(x) at σ+ ibm+ ibn,
m,n ∈ Z, are cancelled as well. The proof is based on the relations (114) and
their complex conjugate counterparts.

Now, the last step in the proof is to fulfil Requirement(II) which consists
of cancelling the remaining poles of Ψ(x). Due to the equivalence (117) and
Remark 11, Requirement(II) boils down to a single equation

Ξ(σ) = Ξ(ζ − σ). (137)

which determines a discrete set of solutions for the variable σ, while the corre-
sponding eigenvalues of the Hamiltonian are given through the implicit func-
tion E = E(σ).

In conclusion, we would like to remark that the variable ζ in Theorem 2
is an auxiliary parameter whose role is unclear to us. We conjecture that the
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eigenvalues of the Hamiltonian as well as the eigenvectors are independent of
ζ. This is confirmed by numerical calculations.
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2-4 rue du Lièvre, Case Postale 64
1211 Genève 4
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