
Ann. Henri Poincaré 19 (2018), 267–281
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Edrei’s Conjecture Revisited

Jan P. Boroński, Jǐŕı Kupka and Piotr Oprocha

Abstract. Motivated by a recent result of Ciesielski and Jasiński we study
periodic point free Cantor systems that are conjugate to systems with van-
ishing derivative everywhere, and more generally locally radially shrink-
ing maps. Our study uncovers a whole spectrum of dynamical behaviors
attainable for such systems, providing new counterexamples to the Con-
jecture of Edrei from 1952, first disproved by Williams in 1954.

1. Introduction

The present paper is concerned with the following question:

Question 1.1. What Cantor set homeomorphisms are conjugate to homeomor-
phisms with vanishing derivative everywhere?

The motivation for this question comes from the fixed point theory of
contractive and locally contractive mappings. The celebrated Banach Fixed
Point Theorem [1] asserts that every contraction on a complete metric space
has a unique fixed point. Recall that for a complete metric space (X, d) we call
a surjective map f : X → X:

• contraction if there exists an L < 1 such that d(f(x), f(y)) ≤ Ld(x, y)
for all x, y ∈ X;

• local contraction if for every x ∈ X there exists an Lx < 1 and qx > 0
such that d(x, y) < qx and d(x, z) < qx implies d(f(y), f(z)) ≤ Lxd(y, z);

• weak local contraction if for every x ∈ X there exists an rx > 0 such that
d(x, y) < rx implies d(f(x), f(y)) ≤ d(x, y);

• local isometry if for every x ∈ X there exists an Rx > 0 such that
d(x, y) < Rx implies d(f(x), f(y)) = d(x, y).

In 1961 Edelstein generalized Banach’s result to the local setting [7,8], proving
that for every local contraction f on a compact space X there exists an integer
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n such that fn has a fixed point (see Theorem 6 in [4]). For weak local con-
tractions Edelstein’s results does not apply and earlier, in 1952, Edrei stated
the following conjecture.

Conjecture (Edrei, [9]). Suppose X is a compact metric space and f : X → X
is a weak local contraction. Then, f is a local isometry.

Edrei’s conjecture was disproved in 1954 by Williams [16] who con-
structed four different examples of maps for which every point is a weak con-
traction point, but for which there exist points that are not isometry points.
His first example was a map on a planar compactum M with a fixed point, at
which the map was noninjective and it was a local isometry at all points but
one. The second example had a single fixed point, a single point that was not
an isometry point, and similar to the first example contained isolated points.
By extending his first example linearly to the cone over M he then obtained a
counterexample on a 1-dimensional continuum, with a homeomorphism that
possessed a nonempty set of fixed points, and a circle of local isometry points.
His last example was an extension of a minimal isometry on a Cantor set C, to
a map defined on the union M ′ of C with a sequence of points converging to
C, and thus again contained isolated points. It is then natural to ask if these
counterexamples must always have either isolated points or fixed points, and if
there exists a weak local contraction that is a local isometry on no subset. This
kind of a map is called locally radially shrinking map; i.e., a map f : X → X
such that

(LRS) for every x ∈ X there exists an εx > 0 such that d(x, y) < εx implies
d(f(x), f(y)) < d(x, y) for all y �= x.

Clearly none of the aforementioned maps constructed by Williams is (LRS).
Any map whose derivative vanishes on a set K ⊆ R is locally radially shrink-
ing on K. Since this class contains all constant maps, for such maps it does
not only seem unlikely to be a homeomorphism, but also given Edelstein’s re-
sult one may expect a fixed, or periodic point. Surprisingly, a minimal locally
radially shrinking Cantor set homeomorphism f has been discovered recently
by Ciesielski and Jasiński, who embedded a 2-adic odometer into the real line
with vanishing derivative everywhere. They also proved that if X is an infinite
compact metric space and f : X → X is onto and has the (LRS) property then
there exists a perfect subset Y such that f |Y is minimal. Note that Bruckner
and Steele [2] proved that most sets cannot be mapped by a Lipschitz function
over a given Cantor set; i.e., given a Cantor set E ⊆ [0, 1] the collection of
all closed subsets F of [0, 1] for which there exists a Lipschitz function f with
E ⊆ f(F ) is of first category in the hyperspace of all compact subsets of [0, 1].
Ciesielski and Jasiński noted in [4] that the homeomorphism f might mark the
spot where the minimal dynamical systems ‘meet’ Banach Fixed Point The-
orem. It is then of interest to determine how fine is the line separating the
two phenomena. Is the homeomorphism f just an isolated example, or is there
a wider class of dynamical systems that fall into the same category? In the
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present paper we address this question in the following way. First we show
that the result of Ciesielski and Jasiński generalizes to all odometers.1

Theorem 3.2. Every odometer is conjugate to a homeomorphism f : C → C
such that f′ ≡ 0 and f extends to a differentiable surjection f̄ : R → R.

We employ, however, a different approach which, in the special case of the
2-adic adding machine, provides a substantially shorter proof of their original
result. We then go on to demonstrate other systems that are conjugate to
systems with zero derivative. The first one shows that such systems do not
need to be equicontinuous (in fact may be not equicontinuous at any point).

Theorem 4.1. There exists a minimal weakly mixing Cantor set homeomor-
phism T : X → X that embeds in R with vanishing derivative everywhere.

Next we show that minimality is not a necessary property for periodic
point free systems in this class.

Theorem 4.2. There exists a transitive, nonminimal and periodic point free
Cantor set homeomorphism that embeds in R with vanishing derivative every-
where.

In fact any Cantor set minimal homeomorphism with (LRS) can be
extended to a transitive nonminimal homeomorphism with (LRS) of a new
space Z, such that Z contains isolated points and the homeomorphism ex-
hibits attractor–repellor dynamics (see Theorem 5.1). Note that in this case
the set of isolated points does not allow one to speak of a derivative, and
this is where the (LRS) property is very natural to investigate instead. This
also comes handy in the following example, where the Cantor set is embedded
in R

2.

Corollary 3.4. There exists a Cantor set C ⊆ R
2 and a homeomorphism F

such that F has the (LRS) property, C =
⋃

i∈I Mi where I is uncountable,
Mi ∩ Mj = ∅ for i �= j and (Mi, F ) is minimal for every i.

Finally we show that in this class there exists a nontransitive homeo-
morphism on the Cantor set W ⊆ R

2 with a single fixed point, and no other
periodic points. It shows that homeomorphisms on Cantor set can have (LRS)
and a fixed point, while it is not obvious from the definition that such a system
can exist.

Theorem 5.3. There exists a Cantor set W ⊆ R
2 and a nontransitive homeo-

morphism G with the (LRS) property such that the set of periodic points of G
consists of a single fixed point.

Note that by piecing together several disjoint copies of the above dynam-
ical system, it is easy to give examples with periodic orbits of other periods.
However, the following conjecture remains open.

1 Theorem 3.2 answers a question of Emma d’Aniello raised at the Thirty-Ninth Summer
Symposium in Real Analysis held at St. Olaf College in Northfield, MN, June 8–15, 2015,
who asked if every odometer is conjugate to a homeomorphism with vanishing derivative
everywhere. We are grateful to K.C. Ciesielski for bringing this fact to our attention.
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Conjecture. For every minimal dynamical systems (C, T ) on a Cantor set C
there exists an equivalent metric (C, ρ) such that T has (LRS) property with
respect to ρ.

2. Preliminaries

A compact metric space C is Cantor set if it is totally disconnected and does
not have isolated points. It is known that all Cantor sets are homeomorphic.
Furthermore, if X ⊂ R is a perfect set, then standard definition of derivative
makes sense for any map f : X → X. One of the nicest applications of such
generalization of the concept of derivative is the following Jarńık theorem (see
[11], cf. [3,12,13])

Theorem 2.1 (Jarńık). Let X ⊂ R be a perfect set and let f : X → R be
differentiable. Then, there exists a differentiable extension F : R → R of f ,
that is F |X = f .

Remark 2.2. It is clear that if f ′ ≡ 0, then f has (LRS).

2.1. A Remark on Global Shrinking

As a matter of introduction, and to highlight a contrast to the main results on
locally radially shrinking maps, we recall the following two facts that pertain
to globally shrinking maps on compact spaces.

Definition 2.3. Let (X, d) be a compact metric space. A map f : X → X is
called shrinking if d(f(x), f(y)) < d(x, y) for any x �= y.

Proposition 2.4. If f : X → X is a surjective shrinking map, then X is a
single point.

Proposition 2.5. If f : X → X is a shrinking map then:
1. there exists a unique fixed point z = f(z) (see [8]),
2. for every x �= z there exists n such that f−n({x}) = ∅.

The proofs are easy exercises.

2.2. Topological Dynamics

Let (X, d) be a compact metric space and f : X → X be continuous. Then, a
pair (X, f) is called a discrete dynamical system.

A subset A ⊆ X is f-invariant if f(A) = A. A dynamical system (X, f)
is

(i) minimal if it does not contain any nonempty proper f -invariant closed
subset;

(ii) transitive if for any two nonempty open subsets U, V ⊆ X there exists
an n ∈ N for which fn(U) ∩ V �= ∅;

(iii) topologically weak mixing if the product system (X × X, f × f) is tran-
sitive;

(iv) equicontinuous if for every ε > 0 there is a δ > 0 such that if d(x, y) < δ,
then d(fn(x), fn(y)) < ε for every n ≥ 0;
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(v) sensitive if there exists a δ > 0 such that for any x ∈ X and ε > 0 there
exist a y ∈ X, d(x, y) < ε, and n ∈ N such that d(fn(x), fn(y)) > δ.

For fixed ε > 0 and n ∈ N, a set A ⊆ X is (n, ε)-separated if for x, y ∈ A,
x �= y, we have d(f j(x), f j(y)) > ε for some j ∈ {0, 1, . . . , n−1}. Let s(n, ε) be
the maximal cardinality of (n, ε)-separated set in X. Then, topological entropy
h(f) of the map f is defined by

h(f) = lim
ε→0

lim sup
n→∞

log s(n, ε)
n

.

2.3. Graph Covers

By a graph we mean a pair G = (V,E) of finite sets, where elements of V
represent vertices and elements of E ⊆ V × V represent edges of the graph G.
The graph G is edge surjective if every vertex has incoming and outgoing edges,
i.e., for every v ∈ V there are u,w ∈ V for which (u, v), (v, w) ∈ E. For graphs
(V1, E1), (V2, E2), a map φ : V1 → V2 is a homomorphism if φ preserves edges,
i.e., for every (u, v) ∈ E1 we have (φ(u), φ(v)) ∈ E2. To emphasize that φ is a
graph homomorphism we write φ : (V1, E1) → (V2, E2). And to simplify some
steps below we use notation φ(e) = (φ(u), φ(v)) for an edge e = (u, v) ∈ E1.
This can be extended onto paths e1 . . . en on (V1, E1) by the standard rule
φ(e1 . . . en) = φ(e1) . . . φ(en).

Now we follow notation introduced in [15]. A graph homomorphism φ is
bidirectional if (u, v), (u, v′) ∈ E1 implies φ(v) = φ(v′) and (w, u), (w′, u) ∈ E1

implies φ(w) = φ(w′). A bd-cover is a bidirectional homomorphism between
edge-surjective graphs.

Now fix a sequence G = 〈φi〉∞
i=0 of bd-covers φi : (Vi+1, Ei+1) → (Vi, Ei),

and consider

VG = lim←−(Vi, φi) = {x ∈ Π∞
i=0Vi : φi(xi+1) = xi for all i ≥ 0}

the inverse limit defined by G. As usual, let φm,n = φn ◦ φn+1 ◦ . . . ◦ φm−1 and
denote the projection from VG onto Vn by φ∞,n. Denote

EG = {e ∈ VG × VG : ei ∈ Ei for each i = 1, 2, . . . }.

Any Vi is endowed with discrete topology and the space X =
∏∞

i=0 Vi is en-
dowed with product topology. It is known that this topology is compatible
with the metric given by d(x, y) = 0 when x = y and d(x, y) = 2−k when
x �= y and k = min{i : xi �= yi}. In this topology, VG is a closed subset of X
and we consider it with topology (and metric) induced from the space X.

By a cycle on a graph G we mean any finite sequence of edges starting
and ending in the same vertex. For cycles c1, . . . , cn starting in the same vertex
v we denote by a1c1 + · · · + ancn the cycle at v obtained by passing a1 times
cycle c1, then a2 times cycle c2, and so on. The length of any path η (i.e., the
number of edges on it) is denoted |η|.

Finally, V (η) denotes the set of vertexes on the path η. The following
important fact is given in [14, Lemma 3.5].
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Lemma 2.6. Let G = 〈φi〉 be a sequence of bd-covers φi : (Vi+1, Ei+1) →
(Vi, Ei). Then, VG is a zero-dimensional compact metric space and the relation
EG defines a homeomorphism.

3. Odometers with Vanishing Derivative Everywhere

In this section we shall show that every odometer can serve as an example of a
system with (LRS) property, by showing that each of them can be embedded
in R with vanishing derivative everywhere. It is worth emphasizing that all
systems considered in this section are equicontinuous.

Let (X,T ) be a dynamical system. A point x ∈ X is regularly recurrent
if for every open set U � x there is an n such that T in(x) ∈ U for every i =
0, 1, . . .. If there exists a regularly recurrent point x ∈ X such that Orb(x, T ) =
X and additionally (X,T ) is equicontinuous, then we say that (X,T ) is an
odometer. A particular example satisfying this definition is any periodic orbit.
There are several equivalent definitions of odometers (see [10]).

Let s = (sn)n∈N be a nondecreasing sequence of positive integers such
that sn divides sn+1. For each n ≥ 1 define πn : Zsn+1 → Zsn

by the natural
formula πn(m) = m (mod sn) and let Gs denote the following inverse limit

Gs = lim←−
n

(Zsn
, πn) =

{

x ∈
∞∏

i=1

Zsn
: xn = πn(xn+1)

}

,

where each Zsn
is given the discrete topology, and on

∏∞
i=1 Zsn

we have the
Tychonoff product topology. On Gs we define a natural map Ts : Gs → Gs by
Ts(x)n = xn + 1 (mod sn). Then, Gs is a compact metrizable space and Ts

is a homeomorphism; therefore, (Gs, Ts) is a dynamical system. It is not hard
too see that each point in (Gs, Ts) is regularly recurrent and that (Gs, Ts) is
equicontinuous, so it is an odometer. On the other hand, it is known that every
odometer is conjugate to some (Gs, Ts), e.g., see [10]. It is not hard to see that
Gs is infinite when the sequence s is unbounded, and (Gs, Ts) is a periodic
orbit otherwise.

It is clear that every periodic orbit has (LRS) property. It is also clear that
(Gs, Ts), with the standard metric induced by the discrete metric on each Zsn

,
is an isometry. We will show that on each (Gs, Ts) there exists an equivalent
metric under which Ts has (LRS). Clearly this statement is nontrivial only
when Gs is infinite.

Theorem 3.1. Fix any strictly increasing sequence s = (sn)n∈N of positive
integers such that sn divides sn+1. Then, there exists a continuous injective
map π : Gs → R such that the map f on the Cantor set π(Gs) defined by
f = π ◦ Ts ◦ π−1 has derivative 0 everywhere.

Proof. We may assume that s1 > 1 and for each n ≥ 1 denote kn+1 = sn+1/sn.
Put a1 = 1/2 and b1 = 2−k2(s1−1)a1.

For i = 0, . . . , s1 − 1 let A
(1)
i = [i, i + a1]. For technical reasons we put

s0 = 1. Define the function l1(i) = 2−k2[(i−2)( mod s1)]a1/3 for i = 0, . . . , s1 −1.
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Note that max l1 = l1(2) = a1/3 and min l1 = l1(1) = b1/3. Let D
(1)
i ⊂ A

(1)
i

be an interval of length l1(i) placed in the middle of A
(1)
i ; that is A

(1)
i \D

(1)
i

has two connected components which are intervals of equal length.
Suppose sets D

(k)
i , A

(k)
i are defined for k = 1, . . . , n and i = 0, . . . , sk −1,

as well as numbers ai, bi. Assume that the diameter of each interval satisfies
an ≥ 3 diam D

(n)
i ≥ bn. Divide each D

(n)
i into kn+1 intervals of equal length

and disjoint interiors, and enumerate them in such a way that A
(n+1)
j ⊂ A

(n)
i

provided that i = j(mod sn). Note that bn/kn+1 ≤ 3 diam A
(n+1)
j ≤ an/kn+1

for every j. Denote an+1 = 2−nbn/kn+1 and bn+1 = 2−(n+1)kn+2(sn+1−1)an+1.
Let

ln+1(i) = 2−(n+1)kn+2[(i−sn−1)(mod sn+1)]an+1/3

and notice that

ln+1(sn + 1) > · · · > ln+1(sn+1 − 1) > ln+1(sn+1) > · · · > ln+1(sn).

Let D
(n+1)
i ⊂ A

(n+1)
i be an interval of length ln+1(i), placed in the middle of

A
(n+1)
i . By the construction we have an+1 ≥ 3 diam D

(n+1)
i ≥ bn+1.

For any z ∈ Gs the intersection
⋂

n∈N
D

(n)
zn is a single point xz, because

diam D(n)
zn

≤ an ≤ 2−n+1bn−1 ≤ 2−n+1a1 ≤ 2−n.

Furthermore, if z, w ∈ Gs and zn �= wn, then xz ∈ D
(n)
zn ⊂ int A

(n)
zn and

xw ∈ D
(n)
wn ⊂ int A

(n)
wn . This shows that the map π : Gs � z �→ xz ∈ R is well

defined, continuous and injective. Denote X = π(Gs). Then, π : Gs → X is a
homeomorphism and X is a Cantor set. Define f = π ◦ Ts ◦ π−1. We are going
to show that f ′(x) = 0 for every x ∈ X.

Fix any sequence xn → x and let z = π−1(x) and z(n) = π−1(xn). We
may assume that x �= xn for every n; hence, there exists a sequence jn such
that z

(n)
jn

= zjn and z
(n)
jn+1 �= zjn+1.

Observe that there exists at most one n such that diam D
(n)
zn = bn/3.

Namely, by the definition of function ln, such a case happens exactly when zn =
sn−1, and if it is the case then zi = 0 < si−1 for all i < n. Furthermore, z ∈
D

(n)
zn , which implies that f(z) ∈ D

(n)
zn+1(mod sn)

. Therefore, if n is sufficiently
large, then zn �= sn−1 and so there is in such that

diam D(n)
zn

= 2−nkn+1inan/3 and diam D
(n)
f(z)n

= 2−nkn+1(in+1)an/3,

which gives

diam D
(n)
f(z)n

diam D
(n)
zn

= 2−nkn+1 .

Observe that

3 diam A
(n)
i ≥ bn−1

kn
≥ 2n−1an ≥ 2n−13 diam D

(n)
i
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hence for n > 3 we have diam A
(n)
i /3 ≥ diam D

(n)
i . Therefore, if p ∈ D

(n+1)
i

and q ∈ D
(n+1)
j for some i �= j, then (for large n):

|p − q| ≥ diam A
(n+1)
i − diam D

(n+1)
i

2
≥ diam A

(n+1)
i

3
=

diam D
(n)
i(modsn)

3kn+1
.

By the above estimates we obtain that

|f(z) − f(z(n))|
|z − z(n)| ≤

diam D
(jn)
f(z)jn

diam A
(jn+1)
zjn+1 /3

≤ 3kjn+1 diam D
(jn)
zjn+1

diam D
(jn)
zjn

≤ 3kjn+1

2jnkjn+1
−→ 0.

Indeed f ′(z) = 0 completing the proof. �
We obtain the following immediate corollaries.

Theorem 3.2. Every odometer is conjugate to a homeomorphism f : C → C,
C ⊆ R, such that f′ ≡ 0 and f extends to a differentiable surjection f̄ : R → R.

Proof. By Theorem 3.1 (X,T ) is conjugate to (K, f) with K ⊂ R and f ′ ≡ 0.
By Theorem 2.1 f extends to a differentiable map f : R → R with
f ′|K ≡ 0. �
Corollary 3.3. For every odometer (X,T ) there exists an equivalent metric ρ
such that T has (LRS) property with respect to ρ.

Corollary 3.4. There exists a Cantor set C ⊆ R
2 and a homeomorphism F such

that F has (LRS) property, C =
⋃

i∈I Mi where I is uncountable, Mi ∩Mj = ∅
for i �= j and (Mi, F ) is minimal for every i.

Proof. Let (C, f) be any odometer provided by Theorem 3.1. Let F = f × f ,
where C × C is endowed with metric ρ((x, y), (p, q)) = d(x, p) + d(y, q). Take
any (p, q) ∈ B((x, y), ε) where ε = min{εx, εy} and assume that (p, q) �= (x, y).
We may assume, without loss of generality, that x �= p Note that

ρ(F (x, y), F (p, q)) = ρ((f(x), f(y), (f(p), f(q)))

= d(f(x), f(p)) + d(f(y), f(q)) ≤ d(f(x), f(p)) + d(y, q)

< d(x, p) + d(y, q) = ρ((x, y), (p, q)).

This shows that F has (LRS) and clearly C × C is homeomorphic to C.
But if we fix any x ∈ C, then for p �= q the pair (x, p) defines a minimal

set different than (x, q). �

4. (LRS) Without Equicontinuity

As we could see in Sect. 3, in every odometer we can replace a given metric to
an equivalent one in such a way that (LRS) property is satisfied. Intuitively
it seems that this property is connected with equicontinuity, i.e., distance be-
tween orbits cannot increase because of shrinking. But this is somehow mis-
leading, because we have only local shrinking and we cannot completely control
it during the evolution of orbits. To show this phenomenon precisely, we will
construct two examples which are not odometers. The first one will be minimal
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weakly mixing system (hence sensitive) which has (LRS) property. The second
one will be transitive but not minimal.

Theorem 4.1. There exists a minimal weakly mixing Cantor set homeomor-
phism T : X → X that embeds in R with vanishing derivative everywhere.

Proof. For every integer n > 0 we define a special vertex vn,0 ∈ Vn and
V0 = {v0,0, v0,1,1, v0,2,1, v0,2,2}. We use V0 to define two cycles

c0,1 : v0,0 → v0,1,1 → v0,0 and c0,2 : v0,0 → v0,2,1 → v0,2,2 → v0,0

we put G0 = (V0, E0) where E0 is the set of edges defined by cycles c0,1,
c0,2. Next we will specify other vertexes in Vn and accompanying edges, so
that a graph Gn is defined. Our aim is to construct a special sequence of bd-
covers. In particular, we put φn(vn+1,0) = vn,0. We embed in each Vn exactly
2 additional cycles cn,1, cn,2 (of appropriate length, which will be clear from
the context), such that each cycle starts and ends in vn,0 and all the other
vertexes are pairwise distinct. We inductively arrange lengths of cycles cn,1

and cn,2 in such a way that for i = 1, 2 the following is well defined

φn−1(cn,i) = cn−1,1 + cn−1,i + cn−1,1 + cn−1,2.

It is clear that both φn−1(cn,1), φn−1(cn,2) start and terminate in the same
vertex of Vn, so the property from the definition of bd-covers is preserved. By
the definition we also have that |cn,2| = |cn,1| + 1 for every n. Then, for every
n ≥ 1 putting kn = |cn,1| − 1 we can present Vn in an analogous way as it was
done for V0, that is

Vn = {vn,0, vn,1,1, . . . , vn,1,kn
, vn,2,1, . . . , vn,2,kn+1}.

As before En is the set of edges defined by cycles cn,1 and cn,2.
Let G = 〈φi〉∞

i=0 be the sequence defined above and we denote by TG : VG →
VG the homeomorphism induced by EG in view of Lemma 2.6. It is clear that
the image of φn on each cycle in Gn covers whole of Vn, which shows that
(VG , TG) is minimal (e.g., see [15]). By the definition of the bonding map φn

on cycles cn+1,1 and cn+1,2 we see, that for every n there are admissible paths
on Gn (i.e., obtained as a trace of EG) joining the cycle cn,1 with itself of
length m and m + 1 for some m. This immediately implies that (VG , TG) is
weakly mixing.

It remains to define the metric on VG that will give the vanishing deriv-
ative. We will proceed in a way similar to the proof of Theorem 3.2.

For technical reasons we put s−1 = 1 and sn = |Vn| for n = 0, 1, . . .. Put
b−1 = a0 = 1/2 and b0 = 2−3s2

0a0/3.
For each n > 0 and w ∈ Vn we define the function ψn : Vn → (0, 1) by

putting

ψn(w) =

⎧
⎪⎨

⎪⎩

2−2s2
nbn−1/3, if w = vn,0,

2−2s2
n−isnbn−1/3, if w = vn,e,i, 0 < i ≤ |cn−1,1|, e ∈ {1, 2},

2−s2
n−isnbn−1/3, if w = vn,e,i, i > |cn−1,1|, e ∈ {1, 2}.
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For i = −s0 + 1, . . . , s0 − 1 let A
(0)
i = [i, i + a0]. For i ∈ Z define

ln(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψn(vn,0), if i = 0,

ψn(vn,1,i), if 0 < i ≤ kn,

ψn(vn,2,−i), if 0 > i ≥ −kn − 1,

2−3s2
nbn−1/3, otherwise.

For n ≥ 0 let D
(n)
i ⊂ A

(n)
i be an interval of length ln(i) placed in the

middle of A
(n)
i , that is A

(n)
i \D

(n)
i has two connected components which are

intervals of equal length.
Suppose sets D

(k)
i , A

(k)
i are defined for k = 1, . . . , n and i = −sk +

1, . . . , sk − 1. We put an = maxi diam A
(n)
i and

bn = 2−3s2
nbn−1 = min

i∈Z

ln(i).

Note that

bn ≤ diam D
(n)
i ≤ an.

Divide each D
(n)
i into 12 intervals of equal length and disjoint interiors.

For each vertex w = vn+1,j,i we assign one interval in D
(n)
r if φn(w) = vn,1,r

and in D
(n)
−r if φn(w) = vn,2,r. Since for every v ∈ Vn we have |φ−1

n (v)| ≤ 12,
we can assign pairwise disjoint intervals to different vertexes. Finally, name
the intervals assigned to vn+1,1,i as A

(n+1)
i and intervals assigned to vn+1,2,i

as A
(n+1)
−i . By A

(n+1)
0 we denote the interval corresponding to vn+1,0.

Observe that by the construction, we obtain that for each i, j there is r
such that

diam A
(n+1)
i =

diam D
(n)
r

12
≥ bn

12
≥ bn

2s2
n+1

≥ 3an+1 ≥ 3 diam D
(n+1)
j . (1)

For any z ∈ VG let η(z)n = r if zn = vn,1,r; η(z)n = −r if zn = vn,2,r and
η(z)n = 0 if zn = vn,0. Then, the intersection

⋂∞
n=0 D

(n)
η(z)n

is a single point xz,
because according to (1) we have

diam D
(n)
η(z)n

≤ bn−1 −→ 0.

Furthermore, if z, w ∈ VG and zn �= wn then xz ∈ D
(n)
η(z)n

⊂ intA
(n)
η(z)n

and xw ∈ D
(n)
η(w)n

⊂ int A
(n)
η(w)n

which are disjoint sets. This shows that the
map π : VG � z �→ xz ∈ R is well defined, continuous and injective.

Denote X = π(VG). Then, π : VG → X is a homeomorphism and X is a
Cantor set. Define f = π ◦ TG ◦ π−1. We are going to show that f ′(x) = 0 for
every x ∈ X.

Fix any sequence xn → x and let z = π−1(x) and z(n) = π−1(xn). We
may assume that x �= xn for every n; hence, without loss of generality we may
assume that there exists an increasing sequence jn such that z

(n)
jn

= zjn and

z
(n)
jn+1 �= zjn+1.
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Observe that by the definition of the function φn there exists at most
one n such that zn = vn,j,|cn−1,1|, because φk(vk,0) = vk−1,0 for every k and
φn−1(vn,j,|cn−1,1|) = vn−1,0. Therefore, if n is sufficiently large, then there are
rn and tn ≥ rn + 1 such that

diam D
(n)
η(z)n

= 2−rnsnbn−1/3

diam D
(n)
η(TG(z))n

= 2−tnsnbn−1/3 ≤ 2−snrn−snbn−1/3,

and if p ∈ D
(n)
r and q ∈ D

(n)
s with r �= s, then by (1) we have

|p − q| ≥ diam A
(n+1)
r − diam D

(n+1)
r

2
≥ diam D(n+1)

r ,

By the above estimates we obtain that

|f(z) − f(zn)|
|z − zn| ≤

diam D
(jn)
η(TG(z))jn

diam D
(jn)
η(z)jn

≤ 2−sjn −→ 0.

Indeed f ′(z) = 0 completing the proof. �

Theorem 4.2. There exists a transitive, nonminimal and periodic point free
Cantor set homeomorphism that embeds in R with vanishing derivative every-
where.

Proof. The calculations and main features of the construction are exactly the
same as in the proof of Theorem 4.1. In each step we use two cycles, but now
covering relation is different. We define

φn(cn+1,1) = 3cn,1, φn(cn+1,2) = 2cn,1 + 2cn,2 + cn,1.

This system is not minimal, since the inverse limit of cycles cn,1 defines an
odometer. But it is transitive, because cycle φn(cn+1,2) = Vn and φn(cn+1,2)
covers two copies of cn,2. �

5. Attractor–Repellor pair

In the following example we consider (LRS) property instead of vanishing
derivative, since the system described by us contains isolated points where the
derivative is undefined.

Theorem 5.1. Every minimal dynamical system (X,T ) with (LRS) property
can be extended to a nontransitive dynamical system (Z,F ) with (LRS) prop-
erty.

Proof. Let (X,T ) be a minimal dynamical system with (LRS) property. Fix
any z ∈ X. There exists a nested sequence of closed-open neighborhoods Un of
z, such that d(T (z), T (x)) < d(z, x) for every x ∈ U1. Going to a subsequence
(removing some of the sets Un) if necessary we can find an increasing sequence
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kn such that T−kn(z) ∈ Un and T−i(z) �∈ Un for 0 < i < kn. Observe that the
set Un\Un+1 is closed for every n, and so the following number

0 < an < min
y∈Un\Un+1

d(z, y) − d(T (z), T (y))

exists. We may assume that an+1 < an/2 and a1 < 1/2. For l ≥ −k1 put
yl = (T l(z)), 1 − 2−l+k1). For each n ≥ 1 we set y−kn

= (T−kn(z),−1 +
an+1/2), and for y−kn+1 = (T−kn+1(z),−1 + an+1/2 + an). Finally, for j =
−kn +2, . . . ,−kn−1 we put yj = (T j(z),−1+ (−j−kn−1)

2(kn−kn−1−1) (an +an+1)+an/2).
Finally, we put Z = X × {−1, 1} ∪ ⋃

j∈Z
{yj}. We endow Z with the metric

ρ((p, q), (a, b)) = d(p, a) + d(q, b).
Note that limj→∞ π2(yj) = 1 and limj→−∞ yj = −1. Furthermore, the

map F : Z→Z defined by F (yj)= yj+1 and F (p,±1)= (T (p),±1) is continuous.
Note that every point yj is isolated in Z, so F has (LRS) at all of these

points. It also has (LRS) at points of X × {1} because T has (LRS) on X and
points yj are attracted by the set X × {1}. We have limn→∞ y−kn

= (z,−1)
so for every y ∈ X\{z} there exists an open set Vy ⊂ Z, with diam(Vy) <
diam(U1), such that (y,−1) ∈ Vy and y−kn

�∈ Vy for every n. But for every
j �∈ {−kn : n}, j < −k1 we have

dist(yj ,X × {−1}) > dist(F (yj),X × {−1}) = dist(yj+1,X × {−1}).

This shows (LRS) property of F at any point in Z other than (z,−1). Consider
an open set V ⊂ U1 × [−1,−1 + a1/2) with z ∈ V and diam V < εz. Fix
any y ∈ V . If y ∈ X × {−1}, then by (LRS) of T we have ρ((z,−1), y) >
ρ((T (z),−1), F (y)) provided that y �= (z,−1). If y = yj for some j, then
the only possibility for ρ((z,−1), y) ≤ ρ((T (z),−1), F (y)) to occur is when
y = y−kn

. But then

ρ(F (z,−1), F (y−kn
))

= ρ((T (z),−1), (T kn+1(z),−1 + an+1/2 + an))

= d(T (z), T kn+1(z)) + an+1/2 + an

< d(z, T kn(z)) + an+1/2 = ρ((z,−1), (T kn(z),−1 + an+1/2))

= ρ((z,−1), ykn
).

The proof of (LRS) of F is completed. �

Remark 5.2. By the construction in Theorem 5.1, Z ⊆ X × [−1, 1] but we can
assume Z ⊆ X × J , where J is an arbitrary interval. Moreover, X × {1} is
an attractor and we can assume monotonicity in the second coordinate near
this attractor, i.e., there exists a nondegenerate interval L = [c, 1] such that,
for any point (x, y) ∈ X × L we have y < π2(F (x, y)). Clearly, we can also
perform the construction in such a way that there exists L′ = [c′, 1] such that

|1 − y| > 3|1 − π2(F (x, y))| (2)

for each (x, y) ∈ X × L′.
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Apart from the attractor and repellor, the system constructed in Theo-
rem 5.1 consists only of isolated points. The following result shows that we can
construct a system with (LRS) having a fixed point, and no isolated points.

Theorem 5.3. There exists a Cantor set W ⊆ R
2 and a nontransitive home-

omorphism G with (LRS) property, such that the set of periodic points of G
consists of a single fixed point.

Proof. Let (X1, T1) be a Cantor system having (LRS). Then, by Theorem 5.1,
this system can be extended to the attractor–repellor system (Z,F ) with
(LRS), and we can assume that Z ⊆ X1×[−2, 0]. Note that we can also assume
X1 ⊆ [0, 1], X1 × {−2} is the repellor of (Z,F ), X1 × {0} is the attractor of
(Z,F ) and |y| < |π2(F (y))| for y ∈ [−1, 0). We take one more system (X2, T2),
X2 ⊆ [0, 1] having (LRS). Then, the product system (W̄ , Ḡ) := (Z×X2, F×T2)
has (LRS) with respect to the metric d̄(w1, w2) = |x1−x2|+ |y1−y2|+ |z1−z2|
where w1, w2 ∈ X1 × [−2,−1] × X2, wi = (xi, yi, zi).

We construct a new system (W,G) with the help of (W̄ , Ḡ). The new
system (W,G) coincides with (W̄ , Ḡ) on X1 × [−2,−1]×X2. Thus, the system
(W,G) has (LRS) on a subset of X1 × [−2,−1] × X2.

We define a new metric d on X1 × [−1, 0] × X2 such that the attractor
X1 × {0} × X2 shrinks to a singleton (in fact, to a fixed point), and (W,G)
defined with the help of (W̄ , Ḡ) has (LRS) on X1 × [−1, 0] × X2. For w1, w2 ∈
X1 × [−1, 0] × X2, wi = (xi, yi, zi), let d(w1, w2) = |x1y1 − x2y2| + |y1 − y2| +
|z1y1 − z2y2|. Clearly, d = d̄ on X1 × {1} × X2 and X1 × {0} × X2 becomes
a singleton. It remains to show that G has (LRS) on X1 × [−1, 0], i.e., in
a sufficiently small neighborhood U of every point w1 ∈ X1 × [−1, 0] × X2,
w1 = (x1, y1, z1) we have

|x1y1 − x2y2| + |y1 − y2| + |z1y1 − z2y2|
> |T1(x1)π2(F (y1)) − T1(x2)π2(F (y2))| + |π2(F (y1)) − π2(F (y2))|

+ |T2(z1)π2(F (y1)) − T2(z2)π2(F (y2))| (3)

whenever w2 ∈ U (We write π2(F (y)) instead of π2(F (x, y)).).
Recall that we can assume |y| > |π2(F (y))| for all y ∈ [−1, 0). Thus,

because T1, T2 have (LRS) sufficiently close to (x1, z1)

|y1|(|x1 − x2| + |z1 − z2|)
≥ |y1| · (|T1(x1) − T1(x2)| + |T2(z1) − T2(z2)|)
> |π2(F (y1))| · (|T1(x1) − T1(x2)| + |T2(z1) − T2(z2)|).

This proves (3) since F has (LRS), i.e.,

|y1| · (|x1 − x2| + ||y1 − y2)
> |π2(F (y1))| · (|T1(x1) − T1(x2)| + |π2(F (1)) − π2(F (y2))|)

and (x1, y1) is an isolated point in Z.
It remains to prove (LRS) at w1 = (x1, 0, z1). Since in this case we have

y1 = π2(F (x1)) = 0, it remains to prove

|x2y2| + |y2| + |z2y2| > |T1(x2)π2(F (y2))| + |π2(F (y2))| + |T2(z2)π2(F (y2))|,
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which is true because we can assume that |y1| > 3|π2(F (y1))| (see (2)) close
to X1 × {0} × X2. This finishes the proof. �

Question 5.4. Is every minimal Cantor set homeomorphism conjugate to a
homeomorphism with vanishing derivative everywhere?
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