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of the Degree to the Quadratic Case
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Abstract. The Jacobian Conjecture states that any locally invertible poly-
nomial system in C

n is globally invertible with polynomial inverse. Bass
et al. (Bull Am Math Soc 7(2):287–330, 1982) proved a reduction theo-
rem stating that the conjecture is true for any degree of the polynomial
system if it is true in degree three. This degree reduction is obtained with
the price of increasing the dimension n. We prove here a theorem con-
cerning partial elimination of variables, which implies a reduction of the
generic case to the quadratic one. The price to pay is the introduction of
a supplementary parameter 0 ≤ n′ ≤ n, parameter which represents the
dimension of a linear subspace where some particular conditions on the
system must hold. We first give a purely algebraic proof of this reduction
result and we then expose a distinct proof, in a Quantum Field Theoret-
ical formulation, using the intermediate field method.

1. Introduction

The Jacobian conjecture has been formulated in [11], as a strikingly simple
and natural conjecture concerning the global invertibility of polynomial sys-
tems. Later on, it also appeared connected to questions in non-commutative
algebra, in particular the conjecture has been shown to be stably equivalent
to the Dixmier Conjecture (see [4]), which concerns endomorphisms of the
Weyl algebra. Despite several efforts, and various promising partial results, it
remains unsolved. An introduction to the problem, the context, and the state
of the art up to 1982, can be found in the paper [3], which provides both a
clear review, and among the most relevant advances on the problem.

The function F : C
n → C

n is said to be a polynomial system if all
the coordinate functions Fj ’s are polynomials. Let us call Pn the set of such
functions that are locally invertible at the origin. For a function F , define

JF (z) =
(

d
dzi

Fj(z)
)

1≤i,j≤n

,
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the corresponding Jacobian matrix. Then, detJF (z) is itself a polynomial, and
it is nowhere zero iff it is a non-zero constant. Local invertibility in y = F (z)
is related to the invertibility of JF (z) as a matrix, and thus to the vanishing
of its determinant. Depending on the space of functions under analysis, local
invertibility may or may not be sufficient to imply global invertibility. The
question here is what is the case, for the space Pn of (locally invertible in
0) polynomial systems over an algebraically closed field of characteristic zero
(such as C). For this reason, we define the two subspaces of Pn

Definition 1.1.

J lin
n := {F ∈ Pn | det JF (z) = c ∈ C

×},

Jn := {F ∈ Pn |F is invertible}.

For the questions at hand, it will often be sufficient to analyze the subset
of J lin such that det JF (z) = 1.

More precisely w.r.t. what anticipated above, one can see, e.g., from [3,
Theorem 2.1, p. 294], that F ∈ J lin

n is a necessary condition for the invert-
ibility of F , and, if F is invertible, the (set theoretic) inverse is automatically
polynomial and unique. The question is whether the condition on the Jacobian
is also sufficient, i.e.,

Conjecture 1.2 (Jacobian Conjecture [11]).

J lin
n = Jn ∀n .

Define the total degree of F , deg(F ), as maxj deg(Fj(z)), and introduce
the subspaces

Pn,d = {F ∈ Pn | deg(F ) ≤ d} ;

and similarly for J and J lin. We mention two positive results on the conjec-
ture. First, a theorem for the quadratic case (d = 2) established first in [17],
and then through a much simpler proof, in [12] (see also [18, Lemma 3.5] and
[3, Thm. 2.4, pag. 298]).

Theorem 1.3 ([17]).

J lin
n,2 = Jn,2 ∀n .

Then, a reduction theorem, from the general case to the cubic case, estab-
lished by Bass, Connell and Wright [3, Sect. II]).

Theorem 1.4 ([3]).

J lin
n,3 = Jn,3 ∀n =⇒ J lin

n = Jn ∀n .

The proof of the above theorem involves manipulations under which the
dimension n of the system is increased, thus this proof does not imply the
corresponding statement without the “∀n” quantifier, i.e., that J lin

n,3 = Jn,3 ⇒
J lin

n = Jn.
Our result is a reduction theorem, in the line of the one above, that tries

to ‘fill the gap’ between the cases of degree two and three. However, for this, we
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have to introduce an adaptation of the statement of the Jacobian conjecture
with one more parameter.

For n′ ≤ n and F ∈ Pn,d, we write z = (z1, z2) and F = (F1, F2)
to distinguish components in the two subspaces C

n′ × C
n−n′ ≡ C

n. We set
R(z2; z1) to be equal to F2(z1, z2), emphasizing that, in R, we consider z2 as
the variables in a polynomial system, and z1 as parameters. The invertibility
of R, denoted by R(·; z1) ∈ Jn−n′,d, for a fixed z1, means that there exists a
polynomial R−1 with variables y2 ∈ C

n−n′
, and depending on z1, such that

∀z2 ∈ C
n−n′

, R−1(R(z2; z1); z1) = z2.

We are now ready to define the main objects involved in the reduction theorem
of this paper.

Definition 1.5. We define the subspaces of Pn,d

Jn,d;n′ := {F ∈ Pn,d |R(·; z1) ∈ Jn−n′,d ∀z1 ∈ C
n′

and F−1 restricted to C
n′ × {0} is in Pn′}

J lin
n,d;n′ := {F ∈ Pn,d |R(·; z1) ∈ Jn−n′,d ∀z1 ∈ C

n′

and (det JF )(z1, R−1(0, z1)) = c ∈ C
×, ∀z1 ∈ C

n′}
The first definition is a clear and natural generalization of Jn,d, which

corresponds to n′ = n. Note that the local invertibility of F in 0 (see the
Definition of Pn) was needed to consider the formal inverse F−1 of F . The
second definition evaluates the Jacobian on a suitable algebraic variety, can-
didate image of Cn′ × {0} under F−1 (the reason for this choice will become
clear only in the following, see in particular Sect. 4). As a consequence, we
have that J lin

n,d;n′ ⊆ Jn,d;n′ , similarly to the original n′ = n case.
Apparently, the most natural and intrinsic generalization would have been

to consider an arbitrary linear subspace of dimension n − n′, on which z shall
vanish, instead of the last n − n′ variables. However, it will be notationally
simpler to restrict to our choice, and cause no loss of generality for the problem
at hand, which is clearly GL(n,C)-invariant.

Let us now state our reduction theorem:

Theorem 1.6. For n ∈ N and d ≥ 3, there exists an injective map Φ : Pn,d →
Pn(n+1),d−1 satisfying

Φ(J lin
n,d) ≡ J lin

n(n+1),d−1;n ∩ Im(Φ) ; Φ(Jn,d) ≡ Jn(n+1),d−1;n ∩ Im(Φ) ,

where Im(Φ) = Φ(Pn,d).

Combining Theorem 1.4 and the theorem above, the full Jacobian Con-
jecture reduces to the question whether

J lin
n(n+1),2;n ∩ Im(Φ) = Jn(n+1),2;n ∩ Im(Φ).

This question seems at a first stage as difficult as the original Jacobian con-
jecture. However, it involves only a quadratic degree, and this might simplify
the resolution, in the light of Wang Theorem (Theorem 1.3).



3240 A. de Goursac et al. Ann. Henri Poincaré

It is also natural, at this point, to formulate a stronger version of the
Jacobian Conjecture

Conjecture 1.7. For all n ≥ n′ ≥ 0, and all d ≥ 1,

J lin
n,d;n′ = Jn,d;n′ .

As we have seen, the original Conjecture 1.2 follows from the cases.
(n, d;n′) ∈ {(m(m+1), 2,m)}m≥0 of the above conjecture, restricted to Im(Φ).

As already mentioned above, this paper proves Theorem 1.6. We found
this restriction of degree originally in the Quantum Field Theory formulation
of the Jacobian conjecture, by applying the intermediate field method. So,
in this paper, we first prove the theorem algebraically in Sect. 2, and then
we expose the equivalent proof using combinatorial Quantum Field Theory
(QFT) in Sect. 3.3. For general references on QFT for combinatorists, we refer
the interested reader to [2] or [16], while a rederivation of the QFT analogs of
quantities pertinent here is done in Sect. 3.1, at a heuristic level, and in Sect.
3.2, more formally.

For the sake of completeness, let us recall for the interested reader that
various purely combinatorial approaches to the Jacobian Conjecture were
given. Thus, the first paper of this series was the one of Zeilbelger [21], which
proposes the Joyal method of combinatorial species as an appropriate tool to
tackle the conjecture. His work has been followed by the one of Wright’s [19],
which used trees to reformulate the conjecture and then by the one of Singer
[14], which used rooted trees (see also [15,20]).

2. Algebraic Proof of the Reduction Theorem

In this section, we use algebraic methods to prove Theorem 1.6. Let K be a
field of characteristic �= 2. Let us first prove the following lemmas.

Lemma 2.1 (Partial elimination, linearized version). Let N = n1+n2, and S ∈
PN . Write z = (z1, z2) for z ∈ K

N = K
n1 × K

n2 and so on. Call R(z2; z1) =
S2(z1, z2) the system in Pn2 , where z1 coordinates are intended as parameters.
Assume by hypothesis that R(·; z1) ∈ Jn2 for all z1 ∈ K

n1 . Define H(z1; y2) =
S1(z1, R−1(y2; z1)) ∈ Pn1 . We have

S ∈ J lin
N ;n1

iff H(·; 0) ∈ J lin
n1

.

Proof. We actually prove that

det JS(z1, R−1(y2; z1)) = (det JR(·;z1)) det JH(·;y2)(z1),

while det JR(·;z1) ∈ K
× is fixed by hypothesis and independent of z1. Indeed,

if det JR(·;z1) were depending on z1, this dependence would be polynomial and
there would be a zero z1 for this function. The result then follows from the
previous equation with y2 = 0.
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To prove this equation, let us start by calculating explicitly detJS(z).
Expressing S(z) in terms of S1,2 and z1,2 gives the block decomposition

d
dz

S(z) =

⎛
⎝

d
dz1

S1(z1, z2) d
dz1

S2(z1, z2)

d
dz2

S1(z1, z2) d
dz2

S2(z1, z2)

⎞
⎠ .

We express the determinant of the matrix above by mean of the Schur comple-
ment formula.1 Recognize that d

dz2
S2(z1, z2) = d

dz2
R(z2; z1) = JR(·;z1). Thus

det
(

dS(z)
dz

)

= (det JR(·;z1)) det
(

dS1(z1, z2)
dz1

− dS2(z1, z2)
dz1

(JR(·;z1))
−1 dS1(z1, z2)

dz2

)
.

Recall that z2 = R−1(y2; z1), however, if one wants to substitute one for the
other in the expression above, some care is required in how to interpret deriv-
atives w.r.t. z1 and z2. We pass instead to the second evaluation

det JH(·;y2)(z1) = det
(

dH(z1; y2)
dz1

)
= det

(
dS1(z1;R−1(y2; z1))

dz1

)
. (1)

We have to evaluate the total derivative w.r.t. the components of z1. In the
rightmost matrix, we have two contributions, coming from derivations acting
on the first and second arguments, namely

dS1(z1;R−1(y2; z1))
dz1

=
(

dS1(z1;R−1(y2;u1))
dz1

+
dS1(u1;R−1(y2; z1))

dz1

)∣∣∣∣
u1=z1

=
(

dS1(z1; z2)
dz1

+
dR−1(y2; z1)

dz1

dS1(z1; z2)
dz2

)
(2)

and finally recognize that (here In is the n-dimensional identity matrix)

0 =
d In2

dz1
=

dR(R−1(y2; z1); z1)
dz1

=
dR(z2; z1)

dz1
+

dR−1(y2; z1)
dz1

dR(z2; z1)
dz2

from which

dR−1(y2; z1)
dz1

= −dR(z2; z1)
dz1

(
dR(z2; z1)

dz2

)−1

= −dS2(z1, z2)
dz1

(JR(·;z1))
−1 .

(3)

Substituting (3) into (2), and comparing to (1), leads to the conclusion. �

1 For a block matrix M =

(
AB
CD

)
, the Schur complement formula states detM =

(detD) det(A − BD−1C).
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Lemma 2.2 (Partial elimination, invertible version). Let S, R and H as in
Lemma 2.1. In particular, assume by hypothesis that R(·; z1) ∈ Jn2 for all
z1 ∈ K

n1 . We have

S ∈ JN ;n1 iff H(·; 0) ∈ Jn1 .

Proof. We shall prove that S−1(·; 0) ∈ Pn1 if and only if H−1(·; 0) ∈ Pn1 .
For the direct implication, we start by assuming to have

z1 = (S−1)1(y1, y2) ; z2 = (S−1)2(y1, y2) ;

but we already know that z2 = R−1(y2; z1). Thus, from the unicity of the
inverse, we obtain that

(S−1)2(y1, y2) = R−1(y2; (S−1)1(y1, y2)) . (4)

From the definition of H in terms of S, we get

H(z1; y2) = S1(z1, R−1(y2; z1)) .

Calculate

H
(
(S−1)1(y1, y2); y2

)
= S1

(
(S−1)1(y1, y2), R−1(y2; (S−1)1(y1, y2))

)
= S1

(
(S−1)1(y1, y2), (S−1)2(y1, y2)

)
= S1(S−1(y1, y2)) = y1;

where we used Eq. (4). From the unicity of the inverse (when it exists), and
its characterizing equation H

(
H−1(y1; y2); y2

)
= y1, we can identify

H−1(y1; y2) = (S−1)1(y1, y2).

Setting y2 = 0, the expression H−1(y1; 0) = (S−1
1 (y1, 0) is polynomial by

hypothesis: S ∈ JN ;n1 .
For the opposite implication, we set S−1 as:

(S−1)1(y1, y2) = H−1(y1; y2) ; (S−1)2(y1, y2) = R−1(y2;H−1(y1; y2)) .

Then, we can see directly that S1

(
(S−1)1(y1, y2), (S−1)2(y1, y2)

)
= y1 and

S2

(
(S−1)1(y1, y2), (S−1)2(y1, y2)

)
= y2, so that S−1 is the formal inverse of S.

Since H−1(y1; 0) is polynomial by hypothesis, (S−1)1(y1, 0) is also polynomial.
Let us eventually show that

(S−1)2(y1, 0) = R−1(0;H−1(y1; 0))

is polynomial. Indeed, R−1(z2; z1) is the formal inverse of R(z2; z1) with respect
to z2 and with coefficients in K[z1]. So, due to the expression of the formal
inverse [3], each term in z2 has also a coefficient in K[z1]. Since R(z2; z1)
is invertible for any z1 ∈ K

n1 , the degree of R−1(z2; z1) in z2 is finite and
bounded by dn2−1 [3, Cor. 1.4]. So, all coefficients of R−1(z2; z1) in z2 for
a degree greater than this bound dn2−1 uniformly vanish in z1, hence these
coefficients are 0 in K[z1]. This implies that R−1(z2; z1) is also polynomial in
z1. �
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As mentioned above, we now prove Theorem 1.6.

Proof. Let us outline the proof. From F ∈ Pn,d+1, we will construct a function
F̃ = Φ(F ) ∈ Pn(n+1),d with F (z(1)) = H(z(1); 0). Using Lemma 2.1, F ∈
J lin

n,d+1 if and only if F̃ ∈ J lin
n(n+1),d,n, so

Φ(J lin
n,d+1) = J lin

n(n+1),d;n ∩ Im(Φ).

Using Lemma 2.2 in a similar way, we also have Φ(Jn,d+1) = Jn(n+1),d;n ∩
Im(Φ).

We start from F (z(1)) ∈ Pn,d+1. Trivial arguments allow to establish that
F ∈ Jn iff F − F (0) ∈ Jn, i.e., we can drop the part of degree zero in F (see
e.g., [3, Proposition 1.1, p. 303]). Thus, a generic F ∈ Pn,d+1 has the form

F (z(1)) =
d+1∑
c=1

Fc(z(1)) ;

where Fc is homogeneous of degree c.
From F ∈ Pn,d+1, we will construct a F̃ = Φ(F ) ∈ Pn(n+1),d such that

we can identify F (z(1)) = H(z(1); 0), where H(z(1); y(2)) is associated with
F̃ in the way this is done in Lemma 2.1. We indeed use here notations sim-
ilar to those of Lemma 2.1, with S = F̃ and N = n(n + 1), except that,
as we use explicit component indices, we use upper-scripts for blocks (e.g.,
F̃ (1)(z(1), z(2)), instead of F1(z1, z2), and z(1) = {z

(1)
i }1≤i≤n). Clearly, we

have n1 = n and n2 = n2. As our construction is structured, we use double
indices for components in the second block, i.e., z(2) = {z

(2)
ij }1≤i,j≤n, instead

of z(2) = {z
(2)
� }1≤�≤n2 .

Set now F̃ of degree at most d and block dimensions n and n2, with
explicit expression

F̃
(1)
i (z(1), z(2)) = (Fc=1)i(z(1)) +

∑
j

z
(2)
ij z

(1)
j ;

F̃
(2)
ij (z(1), z(2)) = z

(2)
ij −

∑
c≥2

1
c

d

dz
(1)
j

(
Fc

)
i
(z(1)) .

First, we can easily check that F̃ is locally invertible in 0, so F̃ ∈ Pn(n+1),d.
The complicated rightmost summand in F̃

(2)
ij only depends on z(1), so that in

fact R(z(2); z(1)) is linear, and its invertibility is trivially established, namely

R−1(y(2); z(1)) = y
(2)
ij +

∑
c≥2

1
c

d

dz
(1)
j

(
Fc

)
i
(z(1)) .

We only have to check that H, specialized to y(2) = 0, is equal to F , i.e., that

F (z(1)) = H(z(1); 0) := F̃ (1)(z(1), R−1(0; z(1))) .
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Dropping the now useless superscripts, this reads

(
F̃ (1)

)
i
(z,R−1(0; z)) = (Fc=1)i(z) +

∑
j

zj

⎛
⎝0 +

∑
c≥2

1
c

d
dzj

(
Fc

)
i
(z)

⎞
⎠

= (Fc=1)i(z) +
∑
c≥2

1
c

∑
j

zj
d

dzj

(
Fc

)
i
(z) = Fi(z) ,

as was to be proven.2 �

3. QFT Proof of the Reduction Theorem

3.1. Heuristic QFT Proof

We consider in this section QFT arguments which are heuristic, as they involve
rewritings of the involved algebraic quantities, in terms of formal integrals,
deformations of Gaussian integrals, that do not generally converge. The rea-
sonings implying (some of) the facts that can be derived by these methods are
illustrated in [2]. Although, in our case, it would just be easier to translate our
procedure, step by step, into a purely algebraic one. We did not perform this
here, as we find that the QFT formalism provides a notational shortcut and a
useful visualization of the algebraic derivation.

Let us start by briefly recalling what we shall call the Abdesselam–
Rivasseau model (see [1] for details). This model is a ‘zero-dimensional QFT
model’. Here, the ‘dimension’ D refers to the fact that QFT models are stated
in terms of functional integrals, for field φi(x) depending on a discrete index
i and a continuous coordinate x ∈ R

D. Here, we are in the much simpler case
D = 0, i.e., we have only discrete indices, this fact being in part responsible
for the possibility of producing rigorous proofs within this formalism (in such
a situation, some authors refer to a combinatorial QFT). Note that D shall
not be confused with the dimension n of the linear system F (z). We antici-
pate that our fields will be complex variables, in holomorphic basis, and the
associated integrals will be on C

n (i.e., with measure dφ dφ†).
Now, let n, d ≥ 1, and let F ∈ Pn,d. Invertibility of F1(z) is equivalent to

the invertibility of F2(z) := F1(Rz+u), for R ∈ GL(n,C) and u ∈ C
n, and F1,

F2 have the same degree, thus w.l.o.g. we can assume that F (z) = z + O(z2).
In such a case, the coordinate functions of F can be written as:

Fi(z) = zi −
d∑

k=2

n∑
j1,...,jk=1

w
(k)
i,j1...jk

zj1 ...zjk
=: zi −

d∑
k=2

W
(k)
i (z) ,

2 We used the obvious fact that if A(x1, . . . , xn) is a homogeneous polynomial of degree d,
one has

1

d

n∑
i=1

xi
d

dxi
A(x) = A(x) .
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for i ≤ n and w
(k)
i,j1...jk

some coefficients.3 We introduce the inhomogeneous
extension of the QFT model of [1].

Z(J,K) =
∫
Cn

dϕdϕ†e−ϕ†ϕ+ϕ† ∑d
k=2 W (k)(ϕ)+J†ϕ+ϕ†K ,

where J , K are vectors in C
n. The full expression is called partition func-

tion, the expression in the exponential is called action, the coefficients w are
called coupling constants, while J and K are called external sources. When
the coupling constants are set to zero, the integral is calculated by Gaussian
integration: ∫

Cn

dϕdϕ†e−ϕ†ϕ+J†ϕ+ϕ†K = eJ†K . (5)

We can then express the unique formal inverse G of F . Indeed, for Hi an
analytic function and u ∈ C

n,∫
dϕdϕ†Hi(ϕ)e−ϕ†F (ϕ)+ϕ†u

=
∫

dϕ̃dϕ†Hi(G(ϕ̃ + u))e−ϕ†ϕ̃ det(∂G(ϕ̃ + u))

=
∫

dϕ̃Hi(G(ϕ̃ + u))δ(ϕ̃) det(∂G(ϕ̃ + u)) = Hi(G(u)) det(∂G(u)),

with the change of variables: ϕ̃ = F (ϕ)−u. Taking the ratio of such expressions,
for Hi(z) = zi at numerator, and Hi(z) = 1 at denominator, we obtain that the
formal inverse corresponds to the one-point (outgoing) correlation function:

Gi(u) =

∫
Cn dϕdϕ†ϕie

−ϕ†ϕ+ϕ† ∑d
k=2 W (k)(z)+ϕ†u∫

Cn dϕdϕ†e−ϕ†ϕ+ϕ† ∑d
k=2 W (k)(z)+ϕ†u

(6)

Moreover, the partition function coincides with the inverse of the Jacobian:

Z(0, u) = det(∂G(u)) = JG(u) =
1

JF (G(u))
.

The sets of polynomial functions involved in the Jacobian Conjecture can be
rephrased in this framework:

J lin
n,d = {F ∈ Pn,d |Z(0, u) = 1∀u ∈ C

n},

Jn,d = {F ∈ Pn,d |Gi(u) given by (6) is in Pn}.

Let us now introduce the intermediate field method to reduce the degree
d of F . We will thus add n2 “intermediate fields” σ to the model. Indeed, we
have, from the general formula (5) of Gaussian integration,

3 Although only the symmetrized quantities
∑

σ∈Sk
w

(k)
i,jσ(1)...jσ(k)

contribute, it is conve-

nient to keep this redundant notation.
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e
(ϕ†

i ϕj)
(∑n

j2,...,jd=1 w
(d)
i,j,j2...jd

ϕj2 ...ϕjd

)

=
∫
Cn2

dσi,jdσ†
i,je

−σ†
i,jσi,j+σ†

i,j

(∑n
j2,...,jd=1 w

(d)
i,j,j2...jd

ϕj2 ...ϕjd

)
+(ϕ†

i ϕj)σi,j (7)

We now use the identity (7), for each pair (i, j), in the partition function of the
model with n dimensions and degree d, in order to re-express the monomials
of degree d in the fields ϕ. This leads to

Z(J,K) =
∫
Cn

dϕdϕ†
∫
Cn2

dσdσ†e−ϕ†ϕ+ϕ† ∑d−1
k=2 W (k)(ϕ)+J†ϕ+ϕ†K

× e

∑n
i,j=1

(
−σ†

i,jσi,j+σ†
i,j

∑n
j2,...,jd=1 w

(d)
i,j,j2...jd

ϕj2 ...ϕjd
+ϕ†

i ϕjσi,j

)
.

We define the new vector φ of Cn+n2
by φ = (ϕ1, . . . , ϕn, σ1,1, . . . , σ1,n,

. . . , σn,1, . . . , σn,n). We further define the interaction coupling constants w̃ as:

• for k = d − 1, we set w̃
(d−1)
i,j,j2...jd

:= w
(d−1)
i,j,j2...jd

and w̃
(d−1)
i·n+j,j2...jd

= w
(d)
i,j,j2...jd

with i, j, j2, . . . jn ≤ n.
• for k ∈ {3, . . . , d − 2}, we set w̃

(k)
i,j,j2...jk

:= w
(k)
i,j,j2...jk

with i, j, j2, . . . jn ≤
n.

• for k = 2, we set w̃
(2)
i,j,j2

:= w
(2)
i,j,j2

and w̃
(2)
i,j,i·n+j = 1 with i, j, j2 ≤ n.

The remaining coefficients of w̃ are set to 0.
In the same way, the external sources are defined to be J̃ = (J, 0) and

K̃ = (K, 0), where, of course, the number of extra vanishing coordinates is
n2. It is important to note that these external sources have fewer degrees of
freedom than coordinates (n vs. n(n + 1)). We also remark that, for generic
d, in order to have a relation adapted to induction, it is crucial to consider an
inhomogeneous model, since the intermediate field method originates terms of
degrees d − 1 and 3.

One now has

Z(J,K) =
∫
Cn+n2

dφdφ†e−φ†φ+φ† ∑d−1
k=2 W̃ (k)(φ)+J̃†φ+φ†K̃

and

Gi(u) =

∫
Cn+n2 dφdφ†φie

−φ†φ+φ† ∑d−1
k=2 W̃ (k)(φ)+φ†ũ∫

Cn+n2 dφdφ†e−φ†φ+φ† ∑d−1
k=2 W̃ (k)(φ)+φ†ũ

,

for i ∈ {1, . . . , n}.
We have thus showed in a heuristic way that the partition function (resp.

the one-point correlation function) of the model with dimension n ∈ N and
degree d ∈ N\{1, 2} is equal to the partition function (resp. the n first coor-
dinates of the one-point correlation function) of the model with dimension
n(n+1) and degree d−1, up to a redefinition of the coupling constant w �→ w̃
and a trivial redefinition of the external sources. Since the partition function
corresponds to the inverse of the Jacobian (resp. the one-point correlation
function corresponds to the formal inverse), this gives, as mentioned above, a
heuristic proof of Theorem 1.6.
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3.2. Formal Inverse in QFT

In this section, we adopt notations as above, but we proceed at a more formal
level. In particular, the coefficients w are considered as formal indeterminates
in (multi-dimensional) power series. To project more easily to the simpler
context of univariate power series, we introduce a further, redundant, indeter-
minate θ, by replacing each coefficient w

(k)
i,j1...jk

by θk−1w
(k)
i,j1...jk

. We denote
by C[[θ]] the ring of formal power series in θ. The exponent of θ in the w’s
measures the “spin” of the associated monomial, i.e., the action is invariant
under the transformation φj → φje

iω, φ†
j → φ†

je
−iω, θ → θe−iω.

The polynomial function F now is extended naturally to a function from
C[[θ]]n to itself, although we are ultimately interested on invertibility on C

n.
The integrals of the previous subsection are now well defined as a formal
expansion in θ

Z(J,K) :=
∫
Cn

dϕdϕ†e−ϕ†ϕ+J†ϕ+ϕ†K
∞∑

r=0

1
r!

(
ϕ†

d∑
k=2

(θk−1W (k)(ϕ)
)r

, (8)

where, as in the previous section, J and K can be considered as vectors in C
n

(as they enter the quadratic part of the action, there is no need of promoting
them to formal indeterminates).

Any term of this power series, i.e., [θr]Z(J,K) for p ∈ N, can be calculated
as a finite linear combination of terms of the following form, with r = q − p∫

Cn

dϕdϕ†e−ϕ†ϕ+J†ϕ+ϕ†Kϕ†
i1

. . . ϕ†
ip

ϕj1 . . . ϕjq
(9)

which, of course, is also given by
∂p

∂Ki1 . . . ∂Kip

∂q

∂J†
j1

. . . ∂J†
jq

∫
Cn

dϕdϕ†e−ϕ†ϕ+J†ϕ+ϕ†K (10)

An analysis of such an expression, in light of (5), leads to the Wick Theorem
(see, for example, textbooks such as [5]): the integral in (9) is equal to the
sum over all possible substitutions, in the monomial ϕ†

i1
. . . ϕ†

ip
ϕj1 . . . ϕjq

of

the patterns ϕ†
i → J†

i , ϕj → Kj , and ϕ†
iϕj → δij , up to have no ϕ’s and ϕ†’s

left.
One can then associate graphical representations Γ to these expressions,

going under the name of Feynman graphs. For the model analyzed here, the set
of graphs and their associated weights are obtained through the following rules:
vertices in the graph have indices i ∈ {1, . . . , n} attached to the incident edges;
a term δij is represented as a directed edge, with index i at its endpoints; a term
J†

i is represented as a vertex of in-degree one and out-degree zero, incident to
an edge of index i; similarly, a term Kj is represented as a vertex of in-degree
zero and out-degree one, incident to an edge of index i; a weight θk−1w

(k)
i,j1...jk

is associated with a vertex with out-degree one (and index i), and in-degree k
(and indices {j1, . . . , jk}) (The incident edges have a cyclic ordering). Finally,
a symmetry factor 1/|Aut(Γ)| appears overall, as a combination of the 1/r!
factor and of multiple counting for the same diagram in the expansion of (8).
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Note that, in general, several but finitely many graphs contribute to a
given expression associated with a monomial ϕ†

i1
. . . ϕ†

ip
ϕj1 . . . ϕjq

.
For the problem at hand here, both when evaluating the Jacobian and

the formal inverse of a component, we can restrict to the case J = 0. In
order to conform to notations in the literature, we shall also rename Kj ’s into
uj ’s (indeed, when J = 0, the source K induces a formal translation of the
components φ’s, without translating the φ†’s). It is easy to see that, in a theory
with such a constrained set of vertex out-degrees, all contributing Feynman
graphs with no J-leaves contain exactly one cycle4 per connected component
while connected graphs with a unique J-leaf correspond to directed trees rooted
at this leaf.

We can now state the expression for the formal inverse which in fact
coincides with the heuristically derived (6), as well as the expression of the
partition function (8). Since they both have been already derived in [1], we do
not give the proofs here.

Theorem 3.1. Define Ai(T )(u) the amplitude of a tree T with exactly one
outgoing edge, of index i. The formal inverse of the function F is the function
G with coordinates

Gi(u) =
∞∑

r=0

1
r!

∑
T :|T |=r

Ai(T )(u),

where T denotes a tree with one outgoing edge, and |T | is the number of vertices
in T .

Note an abuse of notation here, as i is not an index pertinent to the
function A, but to the variable T . We can equivalently think that T has its
root unlabeled (and the vertex adjacent to the root comes with no weight),
and the function Ai completes the weight of T by including the appropriate
factor w

(k)
i,j1...jk

.

Remark 3.2. From the aforementioned homogeneity of θ, we also have
Gi(u, θ) = λGi(λu, λ−1θ) for λ ∈ C[[θ]]×. This essentially allows to elimi-
nate θ, and, adapting an argument of [1], show that Gi is actually analytic on
a certain domain of convergence in the variables uj .

One has:

Proposition 3.3. The partition function (8) of the above theory is given by

Z(0, u) =
1

det[J(F )(G(u))]
.

3.3. Proof of the Theorem

We give in this section the combinatorial QFT proof of our main result, The-
orem 1.6.

4 Cycles are commonly called “loops” in QFT.
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Proof. Consider a directed tree T , constructed from the Feynman rules defined
in Sect. 3.2, in dimension n (i.e., with edge indices in {1, . . . , n}), and degree
d (i.e., with vertices of in-degree at most d). From Theorem 3.1, we know that
Ai(T )(u) is used to compute the formal inverses Gi(u).

Let us now define the Feynman rules for the model in dimension n(n+1),
obtained using the intermediate field method described in Sect. 3.1. For i, j ∈
{1, . . . , n(n + 1)}, one has:

• propagators, i.e., directed edges with index i correspond to the term δij

(obtained by the φ†
iφj substitution in Wick Theorem);

• leaves with in-degree 1 correspond to the term ũj , and in particular, as
ũj = 0 for j > n, contributing diagrams have all leaf-indices in the range
{1, . . . , n};

• vertices of coordination k + 1, for k ∈ {1, . . . , d − 1}, with one outgoing
edge of index i, and k incoming edges of indices j1, . . . , jk, correspond to
the term θk−1w̃

(k)
i,j1...jk

. Indices of the vertices are summed on.

For a graphical representation of the intermediate field method leading to
the model in dimension n(n + 1), see Fig. 1. As stated in Sect. 3.1, ũ =
(u1, . . . , un, 0, . . . , 0), and the coefficients w̃ are

• for k = d − 1, set w̃
(d−1)
i,j,j2...jd

:= w
(d−1)
i,j,j2...jd

; and w̃
(d−1)
i·n+j,j2...jd

= w
(d)
i,j,j2...jd

with i, j, j2, . . . jn ≤ n.
• for k ∈ {3, . . . , d − 2}, set w̃

(k)
i,j,j2...jk

:= w
(k)
i,j,j2...jk

with i, j, j2, . . . jn ≤ n.

• for k = 2, set w̃
(2)
i,j,j2

:= w
(2)
i,j,j2

= 0; and w̃
(2)
i,j,i·n+j = 1 with i, j, j2 ≤ n.

The other components of w̃ are set to 0 by definition. Note that this corre-
sponds to consider the new polynomial map F̃ : C

n(n+1) → C
n(n+1) given

by

F̃i(z) = zi −
d−1∑
k=3

n∑
j1,...,jk=1

w
(k)
i,j1...jk

zj1 . . . zjk
−

n∑
j=1

zjzi·n+j for 1 ≤ i ≤ n,

F̃i·n+j(z) = zi·n+j −
n∑

j2,...,jd=1

w
(d)
i,j,j2,...jk

zj2 . . . zjk
for 1 ≤ i, j ≤ n.

φ†
i

φj1

φj2

φjd

φ†
i

φj1

φj2

φjd

σ
σ†

Figure 1. Diagrammatic representation of the intermediate
field method
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To each tree T in the theory of dimension n, and a choice of incoming edge per
each vertex of degree d+1, we can associate canonically a tree T̃ , constructed
from these new Feynman rules. Propagators, leaves and vertices of coordination
less than or equal to d in the tree T are identically transposed in the tree T̃ ,
while a vertex in T of coordination d + 1 with one outgoing edge i and d
incoming edges of indices j1, . . . , jd is split into two vertices in T̃ , connected
by an edge of index n < i ≤ n(n+1). Edges of such indices are never adjacent
on the tree. The precise construction is depicted in Fig. 1.

Consider now the Feynman integral Ãi(T̃ )(ũ), in the model of dimension
n(n+1). For propagators, leaves and vertices of coordination less than or equal
to d in the tree T , the contribution to Ãi(T̃ )(ũ) is the same as in Ai(T )(u),
because the summation in i, j1, . . . , jk of the vertices reduces to {1, . . . , n},
except for k = d − 1 where i could a priori take value in {n + 1, . . . , n(n + 1)}.
However, the outgoing edge of this vertex is either the external edge (with
i ∈ {1, . . . , n}) or is adjacent to another vertex (of coordination greater than
or equal to four by hypothesis), so we also have i ∈ {1, . . . , n}.

For any vertex of coordination d + 1 in T , the above coefficients
w̃

(d−1)
i·n+j,j2...jd

and w̃
(2)
i,j,i·n+j have been chosen so that the contribution in

Ai(T )(u) coincides with the one in Ãi(T̃ )(ũ). The only thing to check is
that the index 	 relating the two new vertices in T̃ is summed over only
	 ∈ {n + 1, . . . , n(n + 1)}. This is the case because w̃

(2)
i,j,� = 0 for 	 ≤ n.

Note also that the formal factor θd−1 for the vertex in T corresponds to θ for
the new vertex of coordination 3 and θd−2 for the one of coordination d in T̃ .
Due to Feynman rules, only trees T̃ obtained from a tree T can contribute to
the formal inverse G̃i(ũ) of Theorem 3.1.

One then concludes that

Ãi(T̃ )(ũ) = Ai(T )(u).

Due to Theorem 3.1, we have G̃i(ũ) = Gi(u) for i ≤ n. Moreover, for the one
point correlation function with one external leg in the auxiliary field, one has:

G̃i·n+j(ũ) = θd−2
∑

j2,...,jd

w
(d)
i,j,j2...jd

Gj2(u) . . . Gjd
(u) = R−1

i·n+j(0, θG(u)),

(11)

since Ri·n+j(v, u) = vi·n+j − ∑
j2,...,jd

w
(d)
i,j,j2...jd

uj2 . . . ujd
(see Definition 1.5).

In particular, G̃i·n+j(ũ) is polynomial in u iff the functions Gj(u) are also
polynomial. To conclude the first part of the proof, we can associate injectively
to a polynomial function F ∈ Pn,d another function F̃ = Φ(F ) ∈ Pn(n+1),d−1

and we proved that F ∈ Jn,d ⇔ F̃ ∈ Jn(n+1),d−1;n.
The same process can be performed for graphs without external edges,

which leads to the equality of partition functions in both QFT models, the one
of dimension n(n + 1) and the one of dimension n:

Z̃(0, ũ) = Z(0, u).
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Using Eq. (11) and Proposition 3.3, we then obtain

det(JF̃ )(θG(u), R−1(0, θG(u))) = det(JF̃ )(θG̃(ũ))

= Z̃(0, ũ)−1 = Z(0, u)−1 = det(JF )(θG(u)).

This proves the second part of the Theorem, namely F ∈ J lin
n,d ⇔ F̃ ∈

J lin
n(n+1),d−1;n. �

4. Example

Let us illustrate the conjecture in low dimension n = 2, n′ = 1 and arbitrary
degree d in this section. This will not be useful for the Jacobian conjecture of
course, because it shows the case n = 1, d+1, which is trivial. But it will give
explicit computations involving the definitions introduced above.

We consider the polynomial given by

F1(z) = z1 −
d∑

k=0

a1,kzk
1zd−k

2

F2(z) = z2 −
d∑

k=0

a2,kzk
1zd−k

2 ,

where the complex coefficients ai,k are fixed. Then, the Jacobian takes the
form

det(JF )(z) = 1 −
d−1∑
k=0

(a1,k+1(k + 1) + a2,k(d − k))zk
1zd−1−k

2

+
d∑

k,l=0

a1,ka2,l(d − k)lzk+l−1
1 z2d−k−l−1

2 (12)

In the standard case n′ = n = 2, using (12), the equation det(JF ) = 1
leads to the conditions.

• For any k ∈ {0, . . . , d − 1}, a1,k+1(k + 1) = a2,k(d − k).
• For any m ≥ 1,

∑min(d,m)
k=0 a1,ka2,m−kd(2k − m) = 0.

If F satisfies these conditions, F lies in J lin
2,d.

Let us describe the polynomials F that belong to J lin
2,d;1 and compare

with the above conditions. We will see that they are very different. Moreover,
we will see that J lin

2,d;1 = J2,d;1.
For n′ = 1, we have to set

R(z2; z1) = z2 −
d∑

k=0

a2,kzk
1zd−k

2 .

This expression has to be invertible as a polynomial in z2 and for any parameter
z1 ∈ C. In particular, the Jacobian of R with respect to z2 has to be constant,
which implies a2,k = 0 for any k < d − 1. So R(z2; z1) = z2 − a2,d−1z

d−1
1 z2 −

a2,dz
d
1 . But the invertibility of R for any z1 also implies that a2,d−1 = 0.
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Eventually, we get R(z2; z1) = z2 −a2,dz
d
1 , and R−1(y2; z1) = y2 +a2,dz

d
1 .

Let us look at the condition det(JF )(z1, R−1(0; z1)) = 1. Replacing z2 by
R−1(0; z1) = a2,dz

d
1 in (12), we find the following expression:

det(JF )(z1, R−1(0; z1))

= 1 +
d∑

k=1

a1,kad−k
2,d (k(d − 1) − d2)z(d−1)(d−1−k)

1 + a1,0a
d
2,dz

(d−1)(d+1)
1 .

Then, the polynomial F belongs to J lin
2,d;1 if and only if a1,d = 0 and

∀k ∈ {0, . . . , d − 1}, a1,k = 0 or a2,d = 0.

We see indeed that these conditions are very different from the one of J lin
2,d.

Now, let us show that these polynomials F ∈ J lin
2,d;1 are also in J2,d;1, so

(F−1)1(z1, 0) is polynomial in z1.
The first case of J lin

2,d;1 corresponds to

F1(z) = z1, F2(z) = z2 − a2,dz
d
1 .

Here, the global inverse is

F−1
1 (y) = y1, F2(y) = y2 + a2,dy

d
1 ,

so the condition of J2,d;1 is trivially satisfied. The second case coincides with
polynomials

F1(z) = z1 −
d−1∑
k=0

a1,kzk
1zd−k

2 , F2(z) = z2.

The global inverse is not polynomial in y1, y2. However, by setting u =
(F−1)1(y1, 0), we have the following equation y1 = F1(u, 0) = u, so

(F−1)1(y1, 0) = y1

is polynomial in y1, and F ∈ J2,d;1.

5. Concluding Remarks and Perspectives

We thus proved in this paper a reduction theorem to the quadratic case for
the Jacobian conjecture, up to the addition of a new parameter n′. Moreover,
we did this first using formal algebraic methods and then using QFT methods.
This idea of using intermediate field method represents an illustration of how
QFT methods can be successfully used to prove “purely” mathematical results.

Recall here that the Jacobian Conjecture is proved in the quadratic case
by Wang [17]. The immediate perspective thus appears to be the adaptation of
Wang’s proof to our particular case, where the parameter n′ plays a non-trivial
role. An interesting approach for this may be the reformulation of Wang’s proof
in a QFT language, since we saw here that reduction results can be established
in a natural way when using QFT techniques.

Let us end this paper by recalling that the Jacobian Conjecture is stably
equivalent to the Dixmier Conjecture for endomorphisms of the Weyl algebra.
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It should be interesting to revisit the Dixmier Conjecture from the perspective
of Noncommutative QFT (see [6,7,9,10] and references within) on the defor-
mation quantization of the complex plane, which is an extension of the Weyl
algebra (see [8,13]).
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[7] de Goursac, A., Tanasa, A., Wallet, J.C.: Vacuum configurations for renormal-
izable non-commutative scalar models. Eur. Phys. J. C 53, 459–466 (2008)

[8] Garay, A., de Goursac, A., Straten, D.van : Resurgent deformation quantisa-
tion. Ann. Phys. 342, 83–102 (2014)

[9] Gurau, R., Magnen, J., Rivasseau, V., Tanasa, A.: A translation-invariant renor-
malizable non-commutative scalar model. Commun. Math. Phys. 287, 275–
290 (2009)

[10] Grosse, H., Wulkenhaar, R.: Renormalisation of phi**4 theory on noncommuta-
tive R**4 in the matrix base. Commun. Math. Phys. 256, 305–374 (2005)

[11] Keller, O. H.: Ganze cremona transformations. Monats. Math. Phys. 47, 299–
306 (1939)



3254 A. de Goursac et al. Ann. Henri Poincaré
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