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Nodal Sets of Schrödinger Eigenfunctions
in Forbidden Regions

Yaiza Canzani and John A. Toth

Abstract. This note concerns the nodal sets of eigenfunctions of semi-
classical Schrödinger operators acting on compact, smooth, Riemannian
manifolds, with no boundary. In the case of real analytic surfaces, we
obtain sharp upper bounds for the number of intersections of the zero
sets of Schrödinger eigenfunctions with a fixed curve that lies inside the
classically forbidden region.

Let (M, g) be a smooth, compact, Riemannian manifold with no bound-
ary. Write Δg for the Laplace operator, and given any smooth potential
V ∈ C∞(M ; R), consider the Schrödinger operator acting on L2(M) defined
as

P (h) = −h2Δg + V,

where h ∈ (0, 1]. Let E ∈ R be a regular value for the total energy func-
tion p(x, ξ) = |ξ|2gx

+ V (x) defined on T ∗M , and write ΩE for the classically
forbidden region

ΩE := {x ∈ M : V (x) > E}.

In this paper, we study the nodal sets of Schrödinger eigenfunctions (with
energy close to E) inside the classically forbidden region, in the semiclassical
limit h → 0+. Consider L2-normalized Schrödinger eigenfunctions {φh} with

P (h)φh = E(h)φh and E(h) = E + o(1) as h → 0+. (1)

There is a large literature devoted to the study of the zero sets of Laplace
eigenfunctions,

Zφh
= {x ∈ M : φh(x) = 0},

on compact manifolds. We refer the reader to [15] for a detailed list of refer-
ences. The Hausdorff measure of the zero sets, their distribution properties, the
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number of nodal domains and their inner radius, have been extensively studied
(although many open problems remain, even for surfaces). More generally, it
is natural to study the properties of zero sets of Schrödinger eigenfunctions
inside the classically allowed region where V < E. Many of the known results
in the homogeneous case where V = 0 extend to Schrödinger eigenfunctions
in the allowable region (see [6]). In contrast, very little is known about the
zero sets of Schrödinger eigenfunctions inside the classically forbidden region
where V > E. In dimension one, it is known that the eigenfunctions of the
Harmonic Oscillator have no zeros in the forbidden region and in recent work,
Hanin et al. [5] have proved that in any higher dimension the expected value
of the measure of the zero set of random eigenfunctions of the harmonic oscil-
lator inside any ball is of order h−1/2. We are not aware of any other results
addressing the behavior of zero sets of Schrödinger eigenfunctions inside the
classically forbidden region.

Our first result addresses the issue of nodal persistence: can a fixed hyper-
surface H be contained in the nodal set of an infinite subsequence of eigen-
functions? This question was answered on the flat torus T

n by Bourgain and
Rudnick in [1]. They proved that if V = 0 and H ⊂ T

n is a hypersurface
with non-zero principal curvatures, then H cannot lie within the zero set of
infinitely many eigenfunctions. Since P (h) = −h2Δg +V (x)−E is coercive in
the forbidden region, it follows from the maximum principle and unique con-
tinuation that no embedded separating hypersurface contained entirely within
the forbidden region ΩE can persist as part of the zero set for infinitely many
eigenfunctions. More precisely, for every subsequence {hj}j with hj → 0 as
j → ∞, there is an integer j0 ≥ 1 with the property that for all j ≥ j0,
the hypersurface H � Zφhj

. Our first result can be viewed as a quantitative
analogue of this result at the level of eigenfunction restriction bounds and is
crucial for the proof of our nodal intersection result in Theorem 2.

Theorem 1. Let (M, g) be a smooth, compact, Riemannian manifold with no
boundary and let V ∈ C∞(M ; R). Consider a sequence {φh} as in (1). Suppose
that H ⊂ ΩE is an embedded separating hypersurface that encloses a bounded
domain contained in ΩE. Then, there exist constants CH > 0 and h0 > 0 such
that

‖φh‖L2(H) ≥ e−CH/h and ‖∂νφh‖L2(H) ≥ e−CH/h,

for all h ∈ (0, h0].

Remark 1. Theorem 1 extends to the case where M = R
2, provided that

V ∈ Cω(R2; R) extends holomorphically to a complex wedge domain MC =
{z ∈ C

2 : |Im z| ≤ 1
C 〈z〉} and that it satisfies V (x) ≥ C ′〈x〉k for some k ∈ Z

+

as |x| → ∞. Here, C and C ′ are positive constants.

Assume from now on that (M, g) is a compact, real analytic surface and
let H ⊂ ΩE be a real analytic closed curve that bounds a region inside ΩE .
Unique continuation results like the one in Theorem 1 have important impli-
cations for the study of asymptotic oscillation properties of eigenfunctions,
including estimates for the intersection number #{Zφh

∩ H} (see for example
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Figure 1. Level sets of eigenfunctions of −h2Δg + V on a
square torus, where E = 1 and V is a periodized sum of two
bumps 4e−10((x+0.3)2+(y+0.3)2) + 3e−15((x−0.6)2+(y−0.7)2). The
pictures correspond to h = 0.01 and h = 0.005, respectively.
Tones of blue describe negative values, tones of red describe
positive values. In the plot the value zero (and very small
values as well) are depicted as white

[2,4,11]). Our second result is a deterministic upper bound for the nodal inter-
section with a fixed real-analytic curve H on a Riemannian surface contained
in the classically forbidden region Fig. 1.

Theorem 2. Let (M, g) be a compact, real analytic surface with no boundary.
Let {φh} be real valued eigenfunctions satisfying (1), where we also assume
that the potential V is real-analytic. Suppose that H ⊂ ΩE is a simple, closed,
real analytic curve that bounds a domain inside ΩE. Then, there exists CH > 0
and h0 > 0 such that

#{Zφh
∩ H} ≤ CH

h
,

for all h ∈ (0, h0].

To prove Theorem 2 we use the restriction lower bound in Theorem 1
together with a potential layer formula for the eigenfunctions inside the for-
bidden region. Bounding the number of zeros on the fixed curve is then reduced
to estimating the complexification of a particular Green’s operator in the for-
bidden region. We control the complexification of the Green’s operator using
off-diagonal decay estimates for the real kernel (see Proposition 5) together
with h-analytic Cauchy estimates recently proved by L. Jin in [6].

For individual eigenfunctions, one can see that the CHh−1 bound in The-
orem 2 is sharp on surfaces of revolution (see Sect. 2.3) and agrees with the
upper bound in Yau’s conjecture [Y1,Y2] for nodal volume in the homoge-
neous case. Nevertheless, it is reasonable to expect that in many cases one
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should be able to improve on this bound. As mentioned, for random eigen-
functions of isotropic harmonic oscillators, the computations in [5] show that
the expected value of the nodal lengths in the classically forbidden region are
of order h−1/2. Consequently, at least for random waves, it is reasonable to
expect generic intersection bounds of the form #{Zφh

∩ H} = OH(h−1/2) in
the case for which the forbidden region is unbounded. We hope to return to
this question elsewhere.

0.1. Organization of the Paper

In Sect. 1, we prove Theorem 1 using an elementary argument with Green’s
formula and quantitative unique continuation for the eigenfunctions. In Sect. 2,
we study nodal intersection bounds by reproducing the eigenfunctions in the
forbidden region using a suitable Green’s operator whose complexification we
need to control. Assuming that we have suitable bounds on the complexifica-
tion of the Green’s operator, we then prove Theorem 2 using the restriction
lower bound in Theorem 1. In Sect. 2.3, we show that the upper bound in
Theorem 2 is sharp. In Sect. 3, we give a detailed analysis of the kernel of the
Green’s operator on a compact manifold. In particular, we show that the ker-
nel can be locally complexified away from the real diagonal {(x, x) ∈ M × M}
and obtain exponential decay estimates in h for the complexified kernel.

1. L2-Lower Restriction Bounds

We note that because of the quantum tunnelling effect, the wave functions are
known to have positive mass inside the classically forbidden region. Indeed, by
Carleman type estimates [16, Theorem 7.7], for every open set U ⊂ ΩE there
exists a positive constant C = C(U) > 0 for which

‖φh‖L2(U) ≥ e−C/h, as h → 0+. (2)

The result in Theorem 1 is an analogue of the lower bound in (2) for the
eigenfunction restricted to a hypersurface H ⊂ ΩE and is a crucial step in the
proof of Theorem 2. The only condition that we impose on H is that it must
bound a domain that is contained entirely inside ΩE .

We note that the exponential lower bound in Theorem 1 is quite del-
icate since despite the fact that inside the forbidden region the eigenfunc-
tions have positive mass, they are exponentially small in h. Indeed, con-
sider the Agmon metric gE = (V − E)+g and associated distance function
dE(x) := distgE

(x,M\ΩE). By the standard Agmon estimates [3, Proposi-
tion 3.3.4], it follows that for any ε > 0,

|∂α
x φh(x)| = Oε,α

(
e

−dE(x)+ε

h

)
(3)

locally uniformly in x ∈ ΩE . In particular, given a smooth hypersurface H ⊂
ΩE , it follows from (3) that for dE(H) := min{dE(x) : x ∈ H}, one has

‖φh‖L2(H) = O
(
e

−dE(H)+ε

h

)
. (4)
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We may then view Theorem 1 as a partial converse to (4) under the
assumption that H ⊂ ΩE is a separating hypersurface.

1.1. Proof of Theorem 1

Let H ⊂ ΩE be a separating hypersurface that bounds a smooth domain
MH ⊂ ΩE . Since MH ⊂ ΩE and E(h) = E + o(1) as h → 0, it follows that if
hE > 0 is sufficiently small, then there exists CE > 0 such that

V (x) − E(h) ≥ CE for all x ∈ MH (5)

and all h ∈ (0, hE ].
By Green’s Theorem,

∫

MH

|h∇gφh|2dvg +
∫

MH

(h2Δg)φh φhdvg = h2

∫

∂MH

∂νφh φhdσg,

where ν is the outward normal vector and σg is the induced volume measure
on ∂MH . Thus, since −h2Δgφh + V φh = E(h)φh, it follows that

‖h∇gφh‖2
L2(MH) + 〈(V − E(h))φh, φh〉L2(MH) = h2〈∂νφh, φh〉L2(∂MH).

Using the non-negativity of ‖h∇gφh‖2
L2(MH) and (5) we obtain that for

all h ∈ (0, hE ]

CE‖φh‖2
L2(MH) ≤ h2〈∂νφh, φh〉L2(∂MH). (6)

An application of the Cauchy–Schwarz inequality in (6) gives

CEh−2‖φh‖2
L2(MH) ≤ ‖φh‖L2(H) ‖∂νφh‖L2(H). (7)

By the unique continuation lower bound (2) there exists C > 0 satisfying
‖φh‖2

L2(MH) ≥ e−C/h for h small enough and therefore there exists hE > 0
such that

CEh−2e− C
h ≤ ‖φh‖L2(H)‖∂νφh‖L2(H),

for all h ∈ (0, hE ]. Theorem 1 then follows from the Agmon estimates in (3).
�

2. Nodal Intersection Bounds

Here we present the proof of Theorem 2 (Sect. 2.1), and show that the upper
bound on the number of nodal intersections is saturated for surfaces of revo-
lution (Sect. 2.3).
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2.1. Proof of Theorem 2

We continue to assume that H ⊂ ΩE , but here we make the additional assump-
tion that the Riemannian manifold (M, g), the potential V and the hypersur-
face H are all real-analytic. Also, in the following, we are only interested in
the case in which M is a surface. Let q : [0, 2π] → H be a Cω, 2π-periodic,
parametrization of H. To bound the number of zeros of φh ◦q : [0, 2π] → R, we
consider its holomorphic extension (φh ◦ q)C : HC

τ → C to the complex strip

HC

τ = {t ∈ C : Re t ∈ [0, 2π], |Im t| < τ}

for some τ > 0, and use that #{Zφh
∩ H} ≤ #{Z(φh◦q)C ∩ HC

τ }. Then, the
zeros of (φh ◦ q)C are studied using the Poincaré–Lelong formula:

∂∂ log |(φh ◦ q)C(z)|2 =
∑

zk∈Z(φh◦q)C

δzk
(z).

According to [11, Proposition 10], there exists C > 0 so that

#{Zφh
∩ H} ≤ #{Z(φh◦q)C ∩ HC

τ } ≤ C max
t∈HC

τ

log |FC

h (t)|, (8)

where FC

h (t) with t ∈ HC
τ is the holomorphic continuation of the normalized

eigenfunction traces

Fh(t) :=
φh(q(t))

‖φh‖L2(H)
. (9)

Note that by Theorem 1 we know that ‖φh‖H > e−CH/h for h ∈ (0, h0]
with h0 sufficiently small, and this implies that Fh(t) is well defined.

It follows that we shall need to control the complexification FC

h (t) to
obtain upper bounds on #{Zφh

∩ H}. Without loss of generality, we assume
that H ⊂ int(ΩH) where ΩH ⊂ ΩE is a domain whose closure is contained in
ΩE and whose boundary is a closed Cω curve that we call γ. Our goal is to
find a double-layer jumps formula that reproduces φh(x) for x ∈ H in terms
of its values along γ.

Let χ ∈ C∞
0 (M, [0, 1]) with χ(x) = 1 for all x ∈ ΩH and with suppχ ⊂

ΩE . Consider the auxiliary global metric given by

gΩE,h
(x) := (V (x) − E(h))χ(x)g(x) + (1 − χ(x))g(x), x ∈ M. (10)

From now on, to simplify notation, we simply write gΩE
for gΩE,h

since
the dependence of the latter on h is only in the constant eigenvalue term and
is of no real consequence as far as h-pseudodifferential calculus is concerned.

Then, since n = 2, it follows that ΔgΩE
= [(V − E(h))χ + (1 − χ)]−1 Δg

and so, in particular, for all x ∈ ΩH ,

(−h2ΔgΩE
+ 1)φh(x) = −h2(V (x) − E(h))−1Δgφh(x) + φh(x) = 0. (11)

We consider the Green’s operator

G(h) = (−h2ΔgΩE
+ 1)−1.
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Since (−h2ΔgΩE
,y +1)G(x, y, h) = δx(y), (11) implies that for all x ∈ ΩH

φh(x) =
∫

ΩH

(−h2Δy
gΩE

+ 1)G(x, y, h)φh(y)dv(y)

−
∫

ΩH

G(x, y, h)(−h2ΔgΩE
+ 1)φh(y)dv(y). (12)

By Green’s formula, it then follows that for x ∈ ΩH ,

φh(x) = h2

(∫

γ

G(x, y, h)∂νy
φh(y)dσ(y) −

∫

γ

∂νy
G(x, y, h)φh(y)dσ(y)

)
,(13)

where νy is the outward normal vector at y ∈ γ. Let r : [0, 2π] → γ be a Cω

parametrization of γ. Restriction of the outgoing variable x in (13) to H yields
the potential layer formula

φh(q(t)) = h2

∫

γ

G(q(t), r(s), h) ∂νy
φh(r(s))dσ(s)

−h2

∫

γ

∂νy
G(q(t), r(s), h)φh(r(s))dσ(s). (14)

In order to control FC

h (t) in (8), one needs an upper bound for the holo-
morphic continuation (φh ◦ q)C. The latter amounts to estimating the com-
plexification of (14).

Given τ > 0, let qC(t) denote the holomorphic continuation of the Cω

parametrization q : [0, 2π] → H to the strip HC
τ . We claim the following result.

Proposition 3. Suppose dg(H, γ) > ε for some ε > 0. Then, there exist con-
stants C(ε) > 0, τ(ε) > 0, h0(ε), such that for h ∈ (0, h0(ε)],

|GC(qC(t), r(s), h)| = O(e− C(ε)
h ) and

|∂νy
GC(qC(t), r(s), h)| = O(e− C(ε)

h ), (15)

uniformly for (t, s) ∈ HC

τ(ε) × [0, 2π].

Proposition 3 is a consequence of a more general result, Theorem 4, which
we prove in Sect. 3 (see Remark 2). In Theorem 4, we show that the kernel of
the Green’s operator G(h) along with its derivatives can be locally complexified
off-diagonal maintaining the exponential decay exhibited in the real domain.

Substitution of the estimates in Proposition 3 into the complexification
of (14), combined with an application of Theorem 1 and the Cauchy–Schwarz
inequality gives the existence of positive constants C, h0 and dH such that

|FC

h (t)| ≤ Ce−C1(ε)/h

( ‖φh‖L2(γ)

‖φh‖L2(H)
+

‖∂νφh‖L2(γ)

‖φh‖L2(H)

)
= O(edH/h) (16)

for all h ∈ (0, h0]. Then, by (8), there exists CH > 0 such that

#{Zφh
∩ H} ≤ CHh−1, (17)
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as desired. Assuming that Proposition 3 holds, this concludes the proof of
Theorem 2. �

2.2. Estimates in Classically Allowable Versus Forbidden Regions

It is interesting to contrast the growth estimates in (16) with the case where
H is contained in the classically allowable region. For example, when H ⊂ Ω
where Ω ⊂ R

2 is a piecewise-analytic planar domain, and φh is a homogeneous
eigenfunction (satisfying either Neumann or Dirichlet boundary conditions),
one can show that (see [11, Lemma 11]),

|FC

h (t)| ≤ CeC2/h

(‖φh‖L2(∂Ω)

‖φh‖L2(H)
+

‖∂νφh‖L2(∂Ω)

‖φh‖L2(H)

)
= O(ed′

H/h). (18)

In (18), the constant C2 = max(q,r)∈H×∂Ω Re idC(qC(t), r(s)) where dC

is the complexified distance between ∂Ω and H, and q, r are as defined
in Sect. 2.1. Thus, C2 is positive in contrast with the negative constant
−C1(ε) appearing in the forbidden case. This is due to the fact that the
Green’s kernel G(q(t), r(s), h) is a semiclassical pseudodifferential operator
that decays exponentially off the diagonal and so does the corresponding local
complexification GC(qC(t), r(s), h) (see Theorem 4). In the allowable region,
the Green’s kernel G(q(t), r(s), h) is replaced with the restriction of the free
Helmholtz Green’s kernel GR2(q(t), r(s), h) in R

2 which has the WKB asymp-
totics GR2(q(t), r(s), h) ∼h→0+ (2πh)1/2eid(q(t),r(s))/h(a0(t, s)+a1(t, s)h+· · · ),
provided inf(q,r)∈H×∂Ω d(q, r) > 0. This is the kernel of an h-Fourier integral
operator and the phase factor eid/h blows up exponentially as h → 0+ upon
complexification in q(t), unlike in the h-pseudodifferential case where there is
off-diagonal exponential decay in h. In view of the Jensen-type growth esti-
mate in (8), it follows that the constant in the OH(h−1) intersection bound in
the forbidden region is smaller than the one for the allowable region. However,
as the next example shows, the h−1-rate cannot be improved in general. We
hope to return to discuss these issues in more detail elsewhere.

2.3. The Example of a Convex Surface of Revolution

Here we show that the upper bound in Theorem 2 is sharp. To do this, consider
a convex surface of revolution generated by rotating a curve y = f(r) about
the r-axis with f ∈ Cw([−1, 1], R), f(1) = f(−1) = 0 and in addition require
that f ′′(r) < 0 for all r ∈ [−1, 1] so that the surface is strictly convex. Let M
be the corresponding surface of revolution parametrized by

[−1, 1] × [0, 2π) → R
3,

(r, θ) �→ (r , f(r) cos(θ), f(r) sin(θ)).

In these coordinates M inherits a Riemannian metric g given by

g = w2(r)dr2 + f2(r)dθ2,

where we have set w(r) :=
√

1 + (f ′(r))2. Consider on (M, g) an analytic
potential V (r, θ) = V (r) independent of the angular variable with V ′(0) = 0
and V ′(r) > 0 for r > 0. Let E be a regular energy level for the hamiltonian
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Figure 2. Illustration of the level sets of an eigenfunction in
an ellipsoid where the potential is concentrated close to the
poles. The colouring scheme is the same as in Fig. 1

corresponding to −h2Δg + V with minV < E < max V. We shall construct
a curve H contained in the forbidden region {V > E} and a sequence of real
valued solutions {φhk

}k of (−h2Δg+V )φhk
= E(h)φhk

where E(hk) = E+o(1)
as k → +∞, so that

#{φ−1
hk

(0) ∩ H} ≥ 2h−1
k .

Consequently, the O(h−1) bound in Theorem 2 is sharp 2.3.
We seek eigenfunctions of the form φh(r, θ) = vh(r)ψh(θ) that solve

(−h2Δg + V )φh = E(h)φh.

Since the Laplace operator in the coordinates (r, θ) takes the form

Δg =
1

w(r)f(r)
∂

∂r

(
f(r)
w(r)

∂

∂r

)
+

w2(r)
f2(r)

∂2

∂θ2
,

we have that the functions vh and ψh must satisfy

− d2

dθ2
ψh(θ) = m2

h ψh(θ) (19)

and

−h2 f(r)
w(r)

d
dr

(
f(r)
w(r)

d
dr

vh(r)
)

+ f2(r)(V (r) − E(h))vh(r)

= −m2
h h2w2(r)vh(r), (20)

for some mh ∈ Z. From now on let {hk}k be a decreasing sequence with
hk → 0+ as k → +∞ and such that mhk

= 1/hk ∈ Z. One can choose the
solution of (19) to be

ψhk
(θ) = eiθ/hk . (21)

To study the radial part vhk
, we rewrite (20) as a one-dimensional h-

Schrödinger equation. Making the change of variables s �→ r(s) =
∫ s

0
f(τ)
w(τ)dτ

in (20) gives
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(
−h2

k

d2

ds2
+ W (r(s))

)
vhk

(r(s)) = 0, (22)

where

W (r(s)) := f2(r(s))(V (r(s)) − E(hk)) + w2(r(s)).

To finish the argument, let r0 ∈ {r ∈ [−1, 1] : V (r) > E} and set Hr0 to
be the curve

Hr0 := {(r, θ) : r = r0}.

Choose s0 so that r(s0) = r0. Integrating by parts (22) in [s0, 1] and using
that f(1) = 0, we have

−h2v′
hk

(r0)r′(s0)vhk
(r0) = h2

∥∥∥ d
ds

vhk
(r(s))

∥∥∥
2

L2([s0,1])

+ 〈W (r(s))vhk
(r(s)), vhk

(r(s))〉L2([s0,1]).

Since V is increasing, we have that W (r) > 0 for all r ∈ [r0, 1]. We then
conclude that vhk

(r0) �= 0 and so the curve Hr0 is not contained in the nodal
set of φhk

. Given that cos(θ/hk) has 2h−1
k zeros for θ ∈ [0, 2π), our claim is

established once we set

φhk
(r, θ) := Re (eiθ/hk vhk

(r))

with vhk
a solution to (22).

3. The Green’s Operator G(h) and its Complexification

Let (M, g) be a compact, real analytic Riemannian manifold of dimension n.
We consider here the associated Green’s operator

G(h) = (−h2Δg + 1)−1 : C∞(M ; R) → C∞(M ; R).

The purpose of this section is to study the complexification of the kernel
G(x, y, h) in the outgoing variable x. Before we state our main result (Theo-
rem 4), we briefly review some of the complex analytic geometry that is needed
in the formulation and proof of Theorem 4.

3.1. Grauert Tube Complexification of M

By a theorem of Bruhat–Whitney, M has a unique complexification MC with
M ⊂ MC totally real that generalizes the complexification of R

n to C
n. The

open Grauert tube of radius ε is defined to be

MC

τ = {z ∈ MC :
√

ρg(z) < τ},

where √
ρg on MC is the unique solution to the complex Monge–Ampere equa-

tion. For example, in the simplest model case when M = R
2 and MC = C

2,
one has

√
ρ

g
(z) = 2|Im z|. There is a maximal τmax > 0 for which MC

τ is
defined [7, Theorem 1.5], and MC

τ is a strictly pseudoconvex domain in MC
τmax

for all τ ≤ τmax.
For all τ ≤ τmax, we identify the radius τ ball bundle (BM)τ ⊂ TM

with (B∗M)τ ⊂ T ∗M using the Riemannian metric. For x ∈ M and 0 < r <
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inj(M, g), we let expx : Bx(0, r) → M be the geodesic exponential map defined
on the geodesic ball Bx(0, r) ⊂ T ∗

x M . We denote the lifted exponential map
to all of (B∗M)τ by

Exp : (B∗M)τ → M, Exp(x, ξ) = expx(ξ).

Since (M, g) is real-analytic, for fixed x ∈ M and 0 < r < injM, the
geodesic exponential map expx : Bx(0, r) → M admits a holomorphic contin-
uation expC

x : (Bx(0, r))C → MC in the fiber ξ-variables. For 0 < τ < τmax, we
define the associated complexified lifted map by

ExpC : (B∗M)τ → MC, ExpC(x, ξ) = expC

x(iξ).

The map ExpC gives a diffeomorphism between (B∗M)τ and MC
τ with the

property that (ExpC)∗(ρg) = | · |g. Consequently, (B∗M)τ
∼= MC

τ as complex
manifolds via ExpC. Also, the map

π
M

: MC

τ → M, π
M

(ExpC(x, ξ)) = x (23)

is an analytic fibration. The fibers π−1
M

(M) correspond to imaginary directions
over the totally real submanifold M ⊂ MC

τ .
In general, we shall denote by φC : MC

τ → C the complexification of a
real analytic function φ : M → C.

Fix x0 ∈ M . The map

Bx0(0, r) → M

η = r(x) �→ expx0
(η) = x,

is real analytic near the origin and so it can be holomorphically extended as

(Bx0(0, r))C → MC

τ ≈ (B∗M)τ

η + iζ = f(x, ξ) �→ expC

x0
(η + iζ) = (x, ξ).

By Lemma 1.18 in [7], this coordinate system satisfies f(x, 0) = r(x) and
f(x0, ξ) = iξ. Identifying the point (x, ξ) ∈ B∗

τM with expC
x(iξ) ∈ MC

τ as
described above, one has π

M
(x, ξ) = π

M
(ExpC(x, ξ)) = x = expx0

(η). In view
of Lemma 1.18 of [7], we will use holomorphic coordinates (η, ζ) = f(x, ξ) on
the complex manifold (B∗M)τ .

From now on, in a coordinate neighbourhood of x0 ∈ M, we write z =
z(x, ξ) ∈ MC

τ for complex coordinates where

z = (Re z, Im z)

with
Re z := Re f(x, ξ), and Im z := Im f(x, ξ). (24)

Note that with this notation

π
M

(z) = π
M

(x, ξ) = expx0
(η) = expx0

(Re f(x, ξ)) = expx0
(Re z),

and so πM (z) is identified with Re z.
We also have that ρ2

g ∈ C∞(MC
τ ) is a strictly plurisubharmonic exhaus-

tion function, and by Taylor expansion around Im z = 0 it follows that
ρ2

g(z) = 4|Im z|2 +O(|Im z|3). Thus, for z ∈ MC
τ the function √

ρg(z) ∼ 2|Im z|



3074 Y. Canzani and J. A. Toth Ann. Henri Poincaré

and it will sometimes be convenient to work on the subdomain of MC
τ given

by {
z ∈ MC

τmax
: |Im z| ≤ τ

C

}

with C > 0 sufficiently large.

3.2. Statement of the Main Result

Let ε > 0 and consider the ε-diagonal neighborhood Δ(ε) = {(x, y) ∈ M ×M :
dg(x, y) < ε}. Under the analyticity assumption on (M, g),

G(·, ·, h) ∈ Cω(M × M\Δ(ε)). (25)

Indeed, for any h ∈ (0, 1), −h2Δg +1 is a real-analytic partial differential
operator that is uniformly elliptic in h ∈ (0, 1) and for fixed y ∈ M and any
ε > 0,

(−h2Δg,x + 1)G(x, y, h) = h−2δ(x − y) = 0 (26)
whenever (x, y) ∈ (M × M)\Δ(ε). Consequently, (25) follows by analytic
hypoellipticity. We may then consider the complexification GC(z, y, h) in the
outgoing variable for (z, y) ∈ MC

τ(ε) × M with dg(πM
z, y) > ε, where τ(ε) > 0

is sufficiently small depending only on ε. The purpose of this section is to prove
the following asymptotic (in h) supremum bound for the holomorphic contin-
uation GC(z, y, h) in a small complex Grauert tube over the real off-diagonal
domain.

Theorem 4. Given ε > 0 there exists a constant τ(ε) > 0 such that the Green’s
kernel admits a holomorphic extension GC(z, y, h) to (z, y) ∈ MC

τ(ε) × M with
dg(πM

z, y) > ε. Moreover, for any fixed N0 ∈ N
n, and α ∈ N

n with |α| ≤ N0,
there exists C = C(ε,N0) > 0 such that as h → 0+

|∂α
y GC(z, y, h)| = O

(
e− C

h

)
, (27)

uniformly for (z, y) ∈ MC

τ(ε) × M with dg(πM
z, y) > ε.

We prove Theorem 4 in Sect. 3.3.

Remark 2 (Proof of Proposition 3). Proposition 3 follows directly from Theo-
rem 4 as a special case. Indeed, since dg(H, γ) > ε for some ε > 0, by choosing
the Grauert tube radius τ(ε) > 0 small enough, the estimate in (27) is sat-
isfied by the Green’s kernel associated with the extended Agmon metric gΩE

defined in (10). We note that although gΩE
is only globally C∞ on M , it is

real-analytic in the forbidden region ΩE . Thus, the Schwartz kernel, G(x, y, h),
of G(h) = (−h2ΔgΩE

+ 1)−1 is real-analytic for (x, y) ∈ ΩE × ΩE .

To prove Theorem 4, we must first describe the real kernel G(x, y, h) in
detail. In particular, we prove exponential off-diagonal decay estimates for the
real kernel G(x, y, h) in Proposition 5 below. Although such results are known
to experts, we could not find a reference in the literature containing all the
details we need here. As a result, for completeness, we carry out in detail the h-
analytic parametrix construction in [9] using the method of analytic stationary
phase, keeping careful track of the various remainder terms.
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Consider the cut-off function

χ(x, y) := χ(dg(x, y)), (28)

for χ ∈ C∞
0 ([0,+∞]; [0, 1]), with suppχ ⊂ [0, inj(M, g)] and

χ(t) = 1 for t ∈ [0, inj(M, g)/2] .

We cover the manifold with coordinate patches so that if χ(x, y) �= 0 then
x and y belong to a common coordinate neighborhood.

Proposition 5. The Schwartz kernel of the Green’s operator admits a decom-
position of the form

G(x, y, h) = AG(x, y, h) + RG(x, y, h). (29)

Here,

AG(x, y, h) =
χ(x, y)
(2πh)n

∫

Rn

e
i
h 〈g−1

y exp−1
y (x),η〉− 1

4h d2
g(x,y)〈g−1/2

y η〉 aG(x, y, η, h) dη,

with aG(x, y, η, h) =
∑ 1

C0
[ 1

h ]−1

k=0 hkwk(x, y, η) ∈ S0,−2
cl for some C0 > 0. Also,

for each α, β ∈ N
n there exists Cα,β > 0 and h0 = h0(α, β) > 0 such that for

all h ∈ (0, h0],
|∂α

x ∂β
y RG(x, y, h)| = O(e−Cα,β/h), (30)

uniformly in x, y ∈ M.

Remark 3. We note that writing Gy(x;h) := G(x, y, h), it follows that for
x ∈ M\By(ε) the function Gy satisfies P (h)Gy(x) = (−h2Δg + 1)Gy(x) = 0,
and since P (h) is uniformly elliptic for h < h0, it follows from the maximum
principle that

max
{x: dg(x,y)> 1

2 inj(M,g)}
|Gy(x)| ≤ max

{x: dg(x,y)= 1
2 inj(M,g)}

|Gy(x)| = O(e−C/h),

where the last estimate follows directly from Proposition 5. Thus, it suffices
to bound χ(x, y)G(x, y, h) since the far off-diagonal part of the Green’s kernel
(1 − χ(x, y))G(x, y, h) is controlled by the former and is absorbed into the
remainder term RG(x, y, h) in Proposition 5.

We prove Proposition 5 in Sect 3.4. In terms of normal coordinates cen-
tered at y,

AG(x, y, h) =
χ(x, y)
(2πh)n

∫

Rn

e
i
h 〈x−y,η〉− 1

4h |x−y|2〈η〉 aG(x, y, η, h) dη,

and so, restriction of AG(x, y, h) to points x, y ∈ M with dg(x, y) > ε > 0
gives

Re
(
i〈g−1

y exp−1
y (x), η〉 − 1

4
d2

g(x, y)〈g−1/2
y η〉

)
≤ −Cε2

4
〈η〉

for some C > 0. As a consequence of Proposition 5, one gets the off-diagonal
exponential decay estimates for G(x, y, h).
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Corollary 6. Let ε > 0 and N0 ∈ N. Then, there exists C = C(ε,N0) > 0 such
that for all α, β ∈ N

n with |α| ≤ N0 and |β| ≤ N0,

|∂α
x ∂β

y G(x, y, h)| = O
(
e− C

h

)
(31)

as h → 0+, uniformly for (x, y) ∈ M × M with dg(x, y) > ε.

In order to avoid breaking the exposition at this point, we defer the proof
of Proposition 5 to Sect. 3.4 and proceed with the proof of Theorem 4.

3.3. Proof of Theorem 4

For y ∈ M let Gy(x, h) := G(x, y, h) be the real Green’s function in (25). Fix
ε > 0, and consider the ball

By(ε) = {x ∈ M : dg(x, y) ≤ ε}.

Then, since −h2Δg + 1 is h-elliptic, in view of (26), by the semiclassical
Cauchy estimates [6, Theorem 2.6], for each x0 ∈ M\By(ε) there is a coordi-
nate neighborhood U ⊂ (M\By(ε)) with x0 ∈ U and a positive constant C0,
such that for all x ∈ U and α ∈ N

n,

|∂α
x Gy(x, h)| ≤ C

|α|
0 (h−1 + |α|)|α|‖Gy( · , h)‖L∞(U), (32)

for all h ∈ (0, 1). Moreover, the estimate (32) is locally uniform in y ∈ M. Let
z ∈ UC

τ for a tube radius τ > 0 to be determined later. By Taylor expansion
around Re z ∈ U , and using the Cauchy estimates (32), we have

|GC

y (z, h)| ≤
∞∑

|α|=0

|∂α
x Gy(x, h)|

α!
|Im z||α|

≤ ‖Gy( · , h)‖L∞(U)

( ∞∑
|α|=0

C
|α|
0

(h−1 + |α|)|α|

α!
|Im z|α

)
. (33)

Let C1 > 0 be a large constant to be determined. Splitting the RHS of
(33) into two terms, we get

|GC

y (z, h)| ≤ T1(z, y, h) + T2(z, y, h),

for

T1(z, y, h) = ‖Gy( · , h)‖L∞(U)


(C1h)−1�∑
|α|=0

C
|α|
0 (h−1 + |α|)|α|

α!
|Im z||α|, (34)

T2(z, y, h) = ‖Gy( · , h)‖L∞(U)

∑
|α|>
(C1h)−1�

C
|α|
0 (h−1 + |α|)|α|

α!
|Im z||α|.

(35)

To control the term T1 in (34), we use the estimate


(C1h)−1�∑
|α|=0

C
|α|
0 (h−1 + |α|)|α|

α!
|Im z||α| ≤ eC0(1+C−1

1 )|Im z|/h,
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and get that

|T1(z, y, h)| ≤ ‖Gy( · , h)‖L∞(U) eC0(1+C−1
1 )|Im z|/h.

As for the second term T2 in (35), we use the Stirling-type lower bounds
α! ≥ (ne)−|α||α||α| for all α ∈ N

n [6, (2.9)] to get

|T2(z, y, h)|≤‖Gy( · , h)‖L∞(U)

∑

|α|> 1
hC1

|C2e||α||Im z||α| ≤C3‖Gy( · , h)‖L∞(U),

for some C3 > 0, provided z ∈ MC
τ with |Im z| < 1

eC2
.

By the real off-diagonal estimates in Corollary 6, there is a constant
C(ε) > 0 such that

‖Gy( · , h)‖L∞(U) = O(e−C(ε)/h). (36)

Since M\By(ε) is compact, the theorem follows from (36) and the local
bounds for |T1(z, y, h)| and |T2(z, y, h)| above, by choosing |Im z| < τ(ε) with
τ(ε) > 0 sufficiently small. Higher derivatives |∂α

y GC(z, y, h)| are bounded in
a similar fashion. �

3.4. Construction of G(x, y, h): Proof of Proposition 5

In this section, we prove Proposition 5 by constructing an h-analytic
parametrix G̃(h) for the Green’s operator G(h) following closely the treat-
ment in [9, Section 1].

Given a compact, real-analytic Riemannian manifold (M, g), consider a
complex neighborhood of T ∗M of the form

(T ∗M)Cτ :=
{

(z, ζ) : z ∈ MC

τ , |Im ζ| ≤ 1
C

〈ζ〉
}

with C > 0 fixed sufficiently large. Here, we use the usual convention

〈αξ〉 :=
√

1 + |αξ|2.

Following [9], we write a ∈ Sm,k(T ∗M) provided that for all p, q ∈ Z+

∂p
x∂q

ξa = O(1)h−m〈ξ〉k−|q|

uniformly for (x, ξ) ∈ T ∗M . We write a ∈ Sm,k
cl if a ∼ h−m(a0+ha1+...) in the

standard C∞ sense. The symbol a(x, ξ, h) is classical analytic (ie. a ∈ Sm,k
cla )

provided a(x, ξ, h) extends holomorphically to (T ∗M)Cτ and the continuation
(denoted by aC(x, ξ, h)) satisfies the following estimates:

(i)

∣∣∣∣∣∣
aC − h−m

〈ξ〉/C0h∑
k=0

hkaC

k

∣∣∣∣∣∣
= O(1)e−〈ξ〉/C1h

(ii) |aC

j (x, ξ)| ≤ C0 Cj j! 〈ξ〉k−j

(iii) ∂α
x ∂β

ξ ∂(x,ξ) aC = Oα,β(1)e−〈ξ〉/C1h (37)
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uniformly for (x, ξ) ∈ (T ∗M)Cτ . In (37) the constant C0 > 0 is sufficiently
large and C1 > 0 depend on C0. In the analytic case, we henceforth write
a ∼ h−m(a0 + ha1 + . . .) provided (37) (i)–(iii) hold.

Consider the phase function

φ(αx, αξ, y) = −
〈
exp−1

αx
(y), αξ

〉
αx

+
i

2
d2

g(αx, y)〈αξ〉αx
,

for (αx, αξ) ∈ T ∗M and y ∈ M with dg(αx, y) ≤ inj(M, g), and set

φ∗(α, x) = φ(α, x).

Consider the cut-off function

ρ(x, y) := ρ(dg(x, y)), (38)

where ρ ∈ C∞
0 ([0,+∞]; [0, 1]) is a smooth cut-off function with suppρ ⊂

[0, inj(M, g)/4] and

ρ(t) = 1 for t ∈ [0, inj(M, g)/8] .

Given an elliptic symbol b ∈ S
3n
4 , n

4 −2

cla , consider the corresponding opera-
tor Sb(h) : C∞(T ∗M) → C∞(M ; R)

Sb(h)u (x) =
∫

T ∗M

e− i
h φ∗(α,x)ρ(αx, x)b(α, x, h)u(α)dα. (39)

Since P (h) = −h2Δg +1 is h-elliptic, there exists q ∈ S
3n
4 , n

4
cla elliptic with

P (h) ◦ Sb = Sq.

Using that q is elliptic, one can construct an h-analytic FBI transform
Ta(h) : C∞(M ; R) → C∞(T ∗M) of the form

Tav(α;h) =
∫

M

e
i
h φ(α,y)ρ(αx, y)a(α, y;h)v(y)dvg(y) (40)

with a ∈ S
3n
4 , n

4
cla , satisfying

Sq(h) ◦ Ta(h) = I + Rab(h) (41)

where
|∂α

x ∂β
y Rab(x, y, h)| = Oα,β(e−C/h). (42)

Consequently,

P (h) ◦ Sb(h) ◦ Ta(h) = I + Rab(h). (43)

It follows from the parametrix construction (43) that the Greens operator
G(h) = (−h2Δg + 1)−1 ∈ Oph(S0,−2

cla ) is given by

G(h) = Sb(h) ◦ Ta(h) ◦ (I + Rab(h))−1

= G̃(h) + R̃(h). (44)

Here, we have set

G̃(h) := Sb(h) ◦ Ta(h) and R̃(h) = −G̃(h)Rab(h)(I + Rab(h))−1. (45)
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To compute G̃(h), we note that from (39) and (40),

G̃(x, y;h) = χ(x, y)
∫

T ∗M

e
i
h Φ(αx,αξ,x,y)c(αx, αξ, x, y;h) dαξdαx, (46)

where the phase function is

Φ(αx, αξ, x, y) := φ(αx, αξ, y) − φ∗(αx, αξ, x) =
〈
exp−1

αx
(x) − exp−1

αx
(y) , αξ

〉
αx

+
i

2
(
d2

g(αx, x) + d2
g(αx, y)

)
〈αξ〉αx

, (47)

and the amplitude is

c(αx, αξ, x, y;h) := a(αx, αξ, y;h)b(αx, αξ, x, h)ρ(αx, y)ρ(αx, x). (48)

We note that the prefactor χ(x, y) can be added in (46) since χ(x, y) = 1
whenever ρ(αx, y)ρ(αx, x) �= 0.

Given x, y ∈ M with d(x, y) < inj(M, g), let αc
x = αc

x(x, y) be the αx-
critical point of the phase Φ. We claim that

αc
x(x, y) = expy

(exp−1
y (x)
2

)
.

Indeed, in normal coordinates centered at αc
x,

∂αx
ImΦ(αx, αξ, x, y)

∣∣
αx=αc

x
=

1
2
∂αx

[(
d2

g(αx, x) + d2
g(αx, y)

)
〈αξ〉αx

] ∣∣∣
αx=αc

x

= 0.

Because dαx
d2

g(αx, x) = −2 exp−1
αx

(x) and ∂αx
gij(αc

x) = 0, it follows that

−2(x + y)〈αξ〉αc
x

= 0.

Therefore, in normal coordinates centered at αc
x, this gives x = −y. Thus,

the critical point αc
x = αc

x(x, y) is the midpoint of the geodesic segment joining
x and y as claimed.

Since the kernel of G̃(x, y;h) in (46) involves an integral with amplitude
supported in the set {αx ∈ M : dg(y, αx) ≤ 1/2}, the analysis is local and
from now on we work in local coordinates. Then,

G̃(x, y, h) = χ(x, y)
∫

Rn

I(αξ, x, y, h) dαξ,

where

I(αξ, x, y, h) :=
∫

Rn

e
i
h Φ(αx,αξ,x,y)c(αx, αξ, x, y;h) dαx. (49)

To compute I(αξ, x, y, h) in (49), we apply the method of analytic sta-
tionary phase in the αx-variable.

Consider the auxiliary function

Ψ(αx, αξ, x, y) = Φ(αx, αξ, x, y) − Φ(αc
x, αξ, x, y).

Then, ∂αx
Ψ(αc

x, αξ, x, y) = 0, Ψ(αc
x, αξ, x, y) = 0 with d2

αx
Ψ(αc

x, αξ, x, y)
∼ 〈αξ〉 and ImΨ(αx, αξ, x, y) ≥ 0.
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Let U(x, y) ⊂ C
n be an open neighborhood of αc

x(x, y) on which the
Morse Lemma holds (cf. [10, Lemma 2.7]), and set

VR(x, y) = U(x, y) ∩ R
n. (50)

Further, let δ ∈ C∞(Rn, R) be defined as

δ(αξ) =
δ1

〈αξ〉
(51)

for some δ1 > 0 small. For each αξ ∈ R
n let Γ = Γ(αξ, x, y) : VR(x, y) → C

n be
the complex contour given by Γ(αξ, x, y) = ∪αx∈VR(x,y)Γ(αx;αξ, x, y), where

Γ(αx;αξ, x, y) = αx + i δ(αξ) ∂αx
Ψ(αx, αξ, x, y).

We choose δ1 small enough so that Γ(αx;αξ, x, y) ⊂ U(x, y). With this
choice of contour,

Im Ψ(Γ(αx;αξ, x, y), αξ, x, y)

= δ(αξ)|∂αx
Ψ(αx, αξ, x, y)|2 + O(δ2(αξ)|∂αx

Ψ(αx, αξ, x, y)|2)
for all αx ∈ V . Since αc

x(x, y) is a non-degenerate critical point,

Im Ψ(z, αξ, x, y) ≥ C|αx − αc
x|2

for some C > 0 and all z ∈ Γ(αξ, x, y). Consider the boundary surface
SΓ(αξ, x, y) : [0, δ(αξ)]×∂VR(x, y) → C

n joining VR(x, y) and Γ(αξ, x, y) given
by SΓ(αξ, x, y) = ∪t∈[0,δ(αξ)]SΓ(t, αx;αξ, x, y), where

SΓ(t, αx;αξ, x, y) := αx + i t ∂αx
Ψ(αx, αξ, x, y).

Let ΩΓ(αξ, x, y) ⊂ C
n be the domain with boundary

∂ΩΓ(αξ, x, y) = Γ(αξ, x, y) ∪ VR(x, y) ∪ SΓ(αξ, x, y).

SΓ
ΩΓ

VR

∂VR(x, y) αc
x

Γ

SΓ

Γ

ΩΓ
∂VR(x, y)

First, from (49), one can write I(αξ, x, y, h) as

e
i
h Φ(αc

x,αξ,x,y)

∫

VR

e
i
h Ψ(αx,αξ,x,y)c(α, x, y;h) dαx + RRn\VR

(αξ, x, y, h), (52)

where RRn\VR
(αξ, x, y, h) denotes the integral over R

n\VR(x, y). Then, by
Stoke’s Theorem,

I(αξ, x, y, h) = e
i
h Φ(αc

x,αξ,x,y)

∫

Γ

e
i
h ΨC(z,αξ,x,y)cA(z, αξ, x, y, h)dz

+RΓ(αξ, x, y, h) + RRn\VR
(αξ, x, y, h). (53)
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Here, the phase is ΨC(z, αξ, x, y) = ΦC(z, αξ, x, y)−Φ(αc
x, αξ, x, y), where

ΦC denotes the holomorphic continuation of the function Φ defined in (47) in
the αx-variable. In the first term on the RHS of (53),

cA(z, αξ, x, y, h) := aC(z, αξ, y;h)bC(z, αξ, x, h)ρA(z, y)ρA(z, x),

where ρA denotes the almost-analytic extension of ρ (see [16, Theorem 3.6]).
The remainder RΓ involves integration over ΩΓ and SΓ. An explicit descrip-
tion of RΓ, RRn\VR

and all other subsequent remainder terms are given in
Sect. 3.4.2. By choosing the contour deformation space ΩΓ sufficiently small
(after possibly rescaling the parameter t ∈ [0, 1])), it follows from the holo-
morphic Morse Lemma that there exist holomorphic local coordinates w =
(w1, . . . , wn) in a neighbourhood of ΩΓ containing αc

x(x, y) such that

ΨC(w,αξ, x, y) = i
(w − αc

x)2

2
〈αξ〉.

Letting Γ̃(αξ, x, y) be the image of Γ(αξ, x, y) under the change of vari-
ables z �→ w, one can write

I(αξ, x, y, h) = e
i
h Φ(αc

x,αξ,x,y)

∫

Γ̃

e− (w−αc
x)2

2h 〈αξ〉c̃A(w,αξ, x, y, h)dw

+ (RΓ + RRn\VR
)(αξ, x, y, h), (54)

where c̃A(w,αξ, x, y, h) := cA(w,αξ, x, y, h) det
(

dz
dw (w,αξ, x, y)

)
. This choice

of coordinates and the definition of Γ(αξ, x, y) imply that

Re [(w − αc
x)2] ≥ C|w − αc

x|2

for some C > 0 and all w ∈ Γ̃(αξ, x, y).
By the Implicit Function Theorem, there exists an open set Γ̃0(αξ, x, y)

⊂ Γ̃(αξ, x, y) and a neighbourhood VΓ̃0
(αξ, x, y) ⊂ R

n of αc
x(x, y) so that

Γ̃0(αξ, x, y) = {αx + iH(αx;αξ, x, y) : αx ∈ VΓ̃0
, (αξ, x, y)},

where H( · ;αξ, x, y) is an analytic function with |H(αx;αξ, x, y)| ≤ λ|αx| for
some λ < 1 independent of αx. Then,

I(αξ, x, y, h)=e
i
h Φ(αc

x,αξ,x,y)

∫

Γ̃0

e− (w−αc
x)2

2h 〈αξ〉c̃A(w,αξ, x, y, h)dw

+RΓ(αξ, x, y, h)+RRn\VR
(αξ, x, y, h)+RΓ\Γ̃0

(αξ, x, y, h), (55)

where RΓ\Γ̃0
comes from replacing the domain of the integral in (54) with

Γ(x, y)\Γ̃0(x, y).
As before, consider the boundary surface SΓ̃0

: [0, 1] × ∂VΓ̃0
→ C

n

SΓ̃0
(t, αx) = αx + i tH(αx;αξ, x, y)

joining Γ̃0 with VΓ̃0
. Also, set ΩΓ̃0

(αξ, x, y) ⊂ C
n to be the domain whose

boundary is Γ̃0 ∪ VΓ̃0
∪ SΓ̃0

. Then, another application of Stoke’s Theorem in
(55) gives
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I(αξ, x, y, h) = e
i
h Φ(αc

x,αξ,x,y)

∫

VΓ̃0

e− (αx−αc
x)2

2h 〈αξ〉c̃(αx, αξ, x, y, h)dαx

+RΓ(αξ, x, y, h) + RRn\VR
(αξ, x, y, h)

+RΓ\Γ̃0
(αξ, x, y, h) + RΓ̃0

(αξ, x, y, h), (56)

where RΓ̃0
involves integration over ΩΓ̃0

and SΓ̃0
.

To finish the argument, we use that

c̃A(z, αξ, x, y;h) := ãC(z, αξ, y;h)b̃C(z, αξ, x, h)ρ̃A(z, y)ρ̃A(αx, x),

and that (ãC · b̃C)(z, αξ, x, h) is holomorphic in z. Then, by standard asymp-
totics for Laplace integrals [10, Theorem 2.1],∫

VΓ̃0

e− (αx−αc
x)2

2h 〈αξ〉(a · b)(αx, αξ, x, y, h)dαx

=
aG(x, y, αξ, h)

(2πh)n
+ QaG

(x, y, αξ, h), (57)

for aG ∈ S0,−2
cl defined by

aG(x, y, αξ, h) =

1
C0

[ 1
h ]−1∑

k=0

hkwk(x, y, αξ), (58)

where C0 is a positive constant. Here,

wk(x, y, αξ) =
1
k!

(
Δ
2

)k

(a · b)(αc
x, αξ, x, y),

and
|QaG

(x, y, αξ;h)| ≤ C
(
1 + 1

h

) 1
2 e− 1

2h , (59)

for some C > 0. Note that, in particular, w0(αξ, x, y) = (1 + |αξ|2αc
x
)−1.

Combining (55) with (57) gives

I(αξ, x, y, h) = 1
(2πh)n e

i
h Φ(αc

x,αξ,x,y)aG(x, y, αξ, h) + RG̃(x, y, αξ, h) (60)

with remainder

RG̃ = RΓ + RRn\VR
+ RΓ\Γ̃0

+ RΓ̃0
+ R1−ρ + RaG

. (61)

In (61), the additional remainder term R1−ρ(αξ, x, y, h) is given by

e
i
h Φ(αc

x,αξ,x,y)

∫

VΓ̃0

e− (αx−αc
x)2

2h 〈αξ〉(a · b)(αx, αξ, x, y)[1 − ρ(αx, x)ρ(αx, y)]dαx,(62)

and
RaG

(x, y, αξ, h) = e
i
h Φ(αc

x,αξ,x,y)QaG
(x, y, αξ, h). (63)

Finally, it follows from (48), (46) and (60) that G̃(x, y;h) decomposes as

G̃(x, y;h) = AG(x, y, h) + RG̃(x, y, h), (64)
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where we have set

AG(x, y, h) =
χ(x, y)
(2πh)n

∫

Rn

e
i
h Φ(αc

x,αξ,x,y)aG(x, y, αξ, h)dαξ, (65)

and
RG̃(x, y, h) = χ(x, y)

∫

Rn

RG̃(x, y, αξ, h)dαξ (66)

for RG̃(x, y, αξ, h) defined in (61).
We now complete the proof of Proposition 5.

3.4.1. Leading Term AG(x, y, h). Since αc
x(x, y) = expy

(
exp−1

y (x)

2

)
, we have

Φ(αc
x(x, y), αξ, x, y) = −2〈exp−1

αc
x
(y), αξ〉αc

x
+

i

4
d2

g(x, y)〈αξ〉αc
x
.

Given p, q ∈ M , consider the parallel transport operator (along the unique
shortest geodesic from q to p) Tq→p : T ∗

q M → T ∗
p M . This map is an isometry

that satisfies

Tq→p exp−1
q (p) = − exp−1

p (q) and Tq→p = T ∗
p→q.

Changing variables αξ �→ η := T̃αc
x(x,y)→y(αξ), where T̃αc

x(x,y)→y : R
n →

R
n denotes the map induced by the choice of coordinates, and using that

exp−1
y (αc

x) = 1
2 exp−1

y (x), we get from (65) that in local coordinates

AG(x, y, h) = χ(x,y)
(2πh)n

∫

Rn

e
i
h ψ(x,y,η)aG(η, x, y, h)dη,

with
ψ(x, y, η) := 〈g−1

y exp−1
y (x), η〉 +

i

4
d2

g(x, y)〈g−1/2
y η〉, (67)

and where after some abuse of notation we have set

aG(x, y, η, h) := aG(x, y, T̃y→αc
x(x,y)(η), h) det

(dαξ

dη
(η, x, y)

)

for aG ∈ S0,−2
cl defined in (58). In particular, since |Ty→αc

x
(η)|αc

x
= |η|y, we

have aG(x, y, η, 0) = 1

1+|g−1/2
y η|2 det

(dαξ

dη (η, x, y)
)
. This proves the identity (29)

for the leading term AG(x, y, h) in Proposition 5.

3.4.2. Remainder Term RG(x, y, h). We proceed to prove statement (30) in
Proposition 5. In the notation of Theorem 4,

G(x, y, h) = AG(x, y, h) + RG(x, y, h),

with
RG(x, y, h) = RG̃(x, y, h) + R̃(x, y, h).

Here, we recall that R̃(h) = −G̃(h)Rab(h)(I + Rab(h))−1 as defined in
(45) and

RG̃(x, y, h) = χ(x, y)
∫

Rn

RG̃(αξ, x, y, h)dαξ,
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where according to (61)

RG̃ = RΓ + RRn\VR
+ RΓ\Γ̃0

+ RΓ̃0
+ RaG

+ R1−ρ. (68)

We now prove the exponential decay in h for each of the remainder terms
comprising RG(x, y, h). The exponential decay of ∂α

x ∂β
y RG(x, y, h) is proved in

the same way.
Remainders RRn\VR

and RΓ\Γ̃0
. The term RRn\VR

(resp. RΓ\Γ̃0
) is a result of

shrinking the domain of integration R
n to VR(x, y) ⊂ R

n (resp. Γ to Γ̃0 ⊂ Γ).
Namely,

RRn\VR
(x, y, h) = χ(x, y)

∫

Rn

∫

Rn\VR

e
i
h Φ(αx,αξ,x,y)c(αx, αξ, x, y;h) dαxdαξ.

(69)
To study the decay of RRn\VR

, assume without loss of generality that
VR(x, y) is a cube centered at αc

x(x, y) with side length 2δ0 with δ0 > 0 inde-
pendent of x and y:

VR(x, y) = {αx ∈ R
n : |α(k)

x − (αc
x(x, y))(k)| < δ0, k = 1, . . . , n}. (70)

Given αx ∈ R
n\VR(x, y), we have that either dg(y, αx) > δ0/2 or

dg(x, αx) > δ0/2. Consequently, since Im Φ(αx, αξ, x, y) = 1
2 (d2

g(αx, x) +
d2

g(αx, y))〈αξ〉αx
,

Im Φ(αx, αξ, x, y) ≥ δ2
0

8
〈αξ〉αx

.

Thus, there exists C(δ0) > 0 with

RRn\VR
= O(e−C(δ0)/h).

The decay for RΓ\Γ̃0
is proved in the same way.

Remainders RΓ and RΓ̃0
. The term RΓ (resp. RΓ̃0

) is the result of an appli-
cation of Stoke’s Theorem and consists of an integral over SΓ and an integral
over ΩΓ (resp. SΓ̃0

and ΩΓ̃0
). More precisely,

RΓ = RΩΓ + RSΓ ,

where

RSΓ(x, y;h) = χ(x, y)
∫

Rn

∫

SΓ

e
i
h ΦC(w,αξ,x,y)cA(w,αξ, x, y)dwdαξ, (71)

and

RΩΓ(x, y;h) = χ(x, y)
∫

Rn

∫

ΩΓ

e
i
h ΦC(w,αξ,x,y)∂wcA(w,αξ, x, y)dwdαξ. (72)

We first prove decay for RSΓ . As before, for w ∈ ∂VR(x, y), either
dg(w, x) > δ0/2 or dg(w, y) ≥ δ0/2. Also, by choosing δ1 in (51) sufficiently
small in terms of δ0, one can arrange that

dg

(
SΓ(αξ, x, y) , ∂VR(x, y)

)
< δ0/4.
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By Taylor expansion of ΦC(w,αξ, x, y) at |Im w| = 0, there exists C > 0
with Im ΦC(w,αξ, x, y) ≥ C〈αξ〉Re w for all w ∈ SΓ(αξ, x, y). This gives the
exponential decay of RSΓ .

As for the remainder RΩΓ(x, y, h), one uses the fact that the amplitude
in the integral for RΩΓ(x, y, h) contains the term ∂wcA(w,αξ, x, y) and that

∂wcA(w,αξ, x, y) = (a · b)C(w,αξ, x, y) · ∂w[ρA(w, x)ρA(w, y)].

We know that ρA(Re w, x)ρA(Re w, y) = 1 whenever both dg(Re w, x) <
inj(M, g)/8 and dg(Re w, y) < inj(M, g)/8 hold. It follows that the integrand
for RΩΓ(x, y, h) has its support contained in

{w ∈ ΩΓ : dg(Re w, x) > inj(M, g)/8 or dg(Re w, y) > inj(M, g)/8}.

The rest of the argument is the same as that for RSΓ(x, y, h). The analysis
of the decay of RΓ̃0

is analogous to that of RΓ, so we omit it.

Remainder R1−ρ. The term R1−ρ arises after removing the cut-off functions
from the symbol cA so that the result is an analytic symbol and then one can
apply analytic stationary phase for quadratic phase functions. It follows from
(62) that

R1−ρ(x, y, h) =
∫∫

VΓ̃0

e
i
h Φ(αc

x,αξ,x,y)− (αx−αc
x)2〈αξ〉
2h ab(αx, αξ, x, y)

×[1−ρ(αx, x)ρ(αx, y)]dαxdαξ. (73)

The integrand of R1−ρ(x, y, h) is supported in the set of (αx, x, y) ∈
VΓ̃0

× M × M for which dg(αx, x) > inj(M, g)/8 or dg(αx, y) > inj(M, g)/8.
Since the variable αx ranges over VΓ̃0

, we deduce that R1−ρ(x, y, h) = 0 unless
dg(x, y) ≥ C0 for some C0 > 0. The rest of the argument is the same as for
RSΓ(x, y, h).
Remainder RaG

. We recall from (63) that

RaG
(x, y, h)

=
∫∫

VΓ̃0

e
i
h (Φ(αc

x,αξ,x,y)+i
(αx−αc

x)2〈αξ〉
2 )[a · b − ch](αx, αξ, x, y)dαxdαξ (74)

−
∫∫

Rn\VΓ̃0

e
i
h

(
Φ(αc

x,αξ,x,y)+i
(αx−αc

x)2

2 〈αξ〉
)

ch(αx, αξ, x, y)dαxdαξ, (75)

where

ch(αx, αξ, x, y) :=
∑

|γ|≤ 1
C0

[ 1
h ]−1

∂γ
αx

[a · b](αc
x, αξ, x, y)

γ!
(αx − αc

x)γ . (76)

The exponential decay of (74) follows from the fact that a ∈ S
3n
4 , n

4
cla and

b ∈ S
3n
4 , n

4 −2

cla . Indeed, the error term a·b−ch, in the Laplace integral asymptotic
(see (58), (59)) satisfies the estimate
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∣∣(a · b − ch)(αx, αξ, x, y)
∣∣ ≤ e− C1

h 〈αξ〉

with C1 > 0. The exponential decay of (75) is obtained in the same way as for
RRn\VR

.
Remainder R̃(x, y, h). Finally, it remains to estimate the remainder term
R̃(h) = −G̃(h)Rab(h)(I + Rab(h))−1. From (64),

R̃(x, y, h) =
∫

M

AG(x, u, h)Rab(1 + Rab)−1(u, y, h) du

+
∫

M

RG̃(x, u, h)Rab(1 + Rab)−1(u, y, h) du. (77)

To deal with the second integral in (77) one simply uses the pointwise
bound |RG̃(x, u, h)| = O(e−C/h) to get that

∫

M

RG̃(x, u, h)Rab(1 + Rab)−1(u, y, h) du = O(e−C/h).

To estimate the first integral in (77), we note that |AG(x, u, h)| = O(1),
and use that the exponential decay of Rab(x, y, h) in (42) to give R̃(x, y, h) =
O(e−C/h) uniformly for x, y ∈ M. �
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