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Cohomology with Causally Restricted
Supports

Igor Khavkine

Abstract. De Rham cohomology with spacelike compact and timelike com-
pact supports has recently been noticed to be of importance for under-
standing the structure of classical and quantum Maxwell theory on curved
spacetimes. Similarly, causally restricted cohomologies of different differ-
ential complexes play a similar role in other gauge theories. We introduce
a method for computing these causally restricted cohomologies in terms
of cohomologies with either compact or unrestricted supports. The calcu-
lation exploits the fact that the de Rham–d’Alembert wave operator can
be extended to a chain map that is homotopic to zero and that its causal
Green function fits into a convenient exact sequence. As a first applica-
tion, we use the method on the de Rham complex, then also on the Calabi
(or Killing–Riemann–Bianchi) complex, which appears in linearized grav-
ity on constant curvature backgrounds. We also discuss applications to
other complexes, as well as generalized causal structures and functoriality.

1. Introduction

Recently, a number of works on the structure of classical and quantum field the-
ory on curved spacetimes [5,6,15,19,31,34,36,47] have made use of de Rham
cohomology with spacelike compact supports. It appears in the characteri-
zations of the center of Poisson (or quantum) algebra of observables of the
Maxwell field and also of the degeneracy of the bilinear pairing between space-
like compactly supported solutions and compactly supported smearing func-
tions (see Proposition 1 for a specific statement). Similar considerations ap-
pear in more general field theories [34,36], though involving cohomologies of
complexes that are different from the de Rham one. One example is the Cal-
abi complex, which appears in linearized gravity on constant curvature back-
grounds [36, Sect. 4.4] (see Proposition 10 for a specific statement). Note that
cohomologies with timelike compact supports as well as on-shell cohomologies
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(restricted to solution spaces of some particular hyperbolic differential oper-
ators) have also appeared in the same contexts. We shall loosely refer to all
of these variations as causally restricted cohomologies or cohomologies with
causally restricted supports.

It was noticed long ago [1] that non-trivial spacetime topology can influ-
ence in a non-trivial way the construction of the classical and quantum field
theories. However, these effects had not been systematically investigated until
recently. This may explain why neither the standard literature on differential
geometry and topology, nor the literature on relativity seem to have consid-
ered1 cohomologies with supports restricted by causal relations (like spacelike
or timelike compactness). So, given their growing importance, they deserve
independent investigation, which is the subject of this work. We introduce a
method that allows us to compute the causally restricted cohomologies of a
differential complex, provided that complex is equipped with extra structure
similar to that found in Hodge theory [27,33]. The essentials of this method
are illustrated on the case of the de Rham complex. Then, other applications
and implications are discussed.

In Sect. 2, we briefly outline some well-known geometric properties of the
de Rham complex on a Lorentzian spacetime, as well as some basic facts of
homological algebra. These properties form the core of our method and are
reminiscent of the structure found in Hodge theory. Our method of computing
causally restricted cohomologies is then illustrated in Sect. 3 and is used to
express the various causally restricted de Rham cohomologies in terms of the
standard de Rham cohomologies with unrestricted and compact supports. Sec-
tion 4 applies the same method to the Calabi differential complex. The Calabi
complex plays a role in linearized gravity on a constant curvature background
analogous to that of the de Rham complex for Maxwell theory. Its structure is
briefly introduced and shown analogous to that highlighted in Sect. 2. Then,
in Sect. 4.4, its causally restricted cohomologies are computed in analogy with
Sect. 3. Section 5 discusses a few related questions that have appeared in the
study of gauge theories in the framework of locally covariant classical and
quantum field theory. In particular, Sects. 5.1 and 5.2 deal with the behavior
of the causally restricted cohomology groups under changes of causal structure
and under embeddings, and Sect. 5.3 briefly describes how the methods applied
to the de Rham and Calabi examples could be generalized to other differential
complexes that arise in the study of general field theories with constrains and
gauge invariance [34,36]. Finally, Sect. 6 concludes with a discussion of our
results.

It should be mentioned that results very similar to those in Sect. 3 have
been obtained independently in a recent work [5], though by different methods.

1 A notable exception is [39], which, as a byproduct of a different investigation, computed a
few low degree cohomology groups with spacelike compact supports or restricted to solutions
of the wave equation, but only on Minkowski space.
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Those methods are very specific to the de Rham complex, including its invari-
ance properties under topological homotopies. Such strong invariance proper-
ties certainly do not hold for other differential complexes. So it is noteworthy
that the content of our Sects. 4 and 5 goes beyond [5] in several directions.

2. Preliminaries

Fix an n-dimensional smooth manifold M (n ≥ 2) with a Lorentzian met-
ric g such that (M, g) is an oriented, time-oriented space, globally hyper-
bolic spacetime [4,32,43,52]. Recall that, according to the Geroch splitting
theorem, there exists a diffeomorphism M ∼= R × Σ (non-unique, of course)
where the corresponding projection t : M → R is a Cauchy temporal func-
tion [8,9,25]. Let Ωp(M) denote the linear space of differential p-forms on M
and let d: Ωp(M) → Ωp+1(M) denote the de Rham differential, which together
form the de Rham complex

0 Ω0(M) Ω1(M) · · · Ωn(M) 0,d d d (1)

This sequence of maps being a complex means that each pair of successive
maps compose to zero, d ◦ d = 0.

Its cohomology in degree p is defined and denoted by

Hp(M) :=
ker(d: Ωp(M) → Ωp+1(M))
im(d: Ωp−1(M) → Ωp(M))

.

The cohomology of any other complex is defined in a similar way. It is well
known that this de Rham cohomology is isomorphic, Hp(M) ∼= Hp(M,R), to
the singular cohomology of M with coefficients in R [11, Theorem 15.8], to
the Čech cohomology of M with coefficients in R [11, Theorem 8.9], and to
the sheaf cohomology of M with coefficients in the sheaf of locally constant
R-valued functions [11, Proposition 10.6], all of which being isomorphic are de-
noted by Hp(M,R). If we replace Ωp(M) in (1) with Ωp

c(M), the linear space of
differential p-forms with compact support, the corresponding de Rham coho-
mology of M with compact supports, which satisfies the following isomorphism:
Hp

c (M)∗ ∼= Hp(M,R). That isomorphism is implemented by a non-degenerate
bilinear pairing between Ωp(M) and Ωn−p

c (M),

〈α, β〉 =
∫

M

α ∧ β, (2)

which descends to a non-degenerate bilinear pairing between Hp(M) and
Hp

c (M). This result is known as Poincaré duality [11, Remark 5.7].
Using the Hodge star operator ∗ : Ωp(M) → Ωn−p(M) associated to

the metric g, we can define the de Rham co-differential δ = ∗d∗ : Ωp(M) →
Ωp−1(M). Next, we define the so-called de Rham–d’Alembertian or wave op-
erator � : Ωp(M) → Ωp(M),

� = dδ + δd. (3)
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This operator differs from the simple tensor d’Alembertian ∇a∇a by terms of
lower differential order. From its very definition, we see that the
d’Alembertian is a cochain map from the de Rham complex to itself, d� = �d,
which is moreover cochain homotopic to zero, with the co-differential δ the cor-
responding cochain homotopy. That is, it induces the zero map from Hp(M)
to itself. The following diagram illustrates the discussion:

0 Ω0(M) Ω1(M) · · · Ωn(M) 0

0 Ω0(M) Ω1(M) · · · Ωn(M) 0

d

�

d

�δ

d

δ
�δ

d d d

, (4)

where the rows constitute (de Rham) complexes, the solid arrows commute,
and the dashed arrows illustrate the cochain homotopy. This is an important
observation that will be used in an essential way in Sect. 3. Note that the
formula (3) is analogous to the formula for the Hodge–de Rham Laplacian in
Riemannian geometry. There, the observation that this Laplacian is homotopic
to zero lies at the foundation of Hodge theory [27,33].

The causal structure on M defined by the Lorentzian metric g allows us
to restrict the supports of differential forms in other ways as well. Recall that,
for a subset S ⊆ M , by J±(S) we denote the subset of M that can be reached
from S by piecewise smooth, future (+) or past (−) directed causal curves,
while J(S) = J+(S) ∪ J−(S). A closed set S ⊆ M is said to be retarded if
S ⊆ J+(K) for some compact K, advanced if S ⊆ J−(K) for some compact
K, spacelike compact if it S ⊆ J(K) for some compact K, past compact if
S ∩ J−(K) is compact for every compact K, future compact if S ∩ J+(K)
is compact for every compact K, and timelike compact if S is both past and
future compact [2,46]. Timelike compactness is also equivalent to the property
of having compact intersection with every spacelike compact set. Let Ωp

X(M),
with X = +,−, sc, pc, fc or tc, denote the linear space of differential p-forms
with, respectively, retarded, advanced, spacelike compact, past compact, future
compact or timelike compact supports. For brevity, we refer to these spaces as
space of forms with causally restricted supports.

Of course, since differential operators preserve supports, � also restricts
to � : Ωp

c(M) → Ωp
c(M). By the same reasoning, the spaces of forms with

causally restricted supports are also preserved by both d and �. We define
de Rham cohomology with causally restricted supports in the obvious way
and denote it by Hp

X(M), with X = +,−, sc, pc, fc or tc. Let Ωp
�(M) and

Ωp
�,X(M) denote the kernel of the wave operator �, also known as its solution

space, in the spaces of forms with corresponding supports. Finally, by the
cochain map property, the de Rham differential restricts to the kernel of the
wave operator, hence defining the de Rham cohomology groups Hp

�(M) and
Hp

�,X(M) of solutions.
The specific way in which these causally restricted cohomologies are of

importance in Maxwell gauge theory is summarized in the following proposi-
tion. For definiteness of notation let us fix a χ ∈ C∞(M) that is 1 in the future
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of a Cauchy surface Σ+ and 0 in the past of another Cauchy surface Σ−. The
following is a special case of the general result [36, Theorem 3.2].

Proposition 1. Maxwell gauge theory [36, Sect. 4.2] induces a symplectic form
on Ω1

�,sc(M) [36, Definition 3.10] that is non-degenerate when (a) the bilinear
form on H1

sc(M) × Hn−1
c (M) induced by 〈α, β〉 =

∫
M

α ∧ β is non-degenerate
and (b) the bilinear form on H1

�,sc(M) induced by 〈α, β〉� =
∫

M
α ∧ ∗�(χβ)

is non-degenerate (where ∗ denotes the Hodge dual).

From the proof of that proposition it also follows that degeneracies in (a)
and (b) can imply degeneracies in the corresponding (pre-)symplectic struc-
ture.

The wave operator on a globally hyperbolic Lorentzian manifold is well
known to be Green hyperbolic. That is, it has advanced and retarded Green
functions denoted, respectively, G+ and G−, G± : Ωp

c(M) → Ωp
±(M). Since

� commutes with d, then so do G+ and G−. The form β = G±[α] is the
unique solution of �β = α with, respectively, retarded or advanced support.
The domain of definition of the Green functions can be extended, in a unique
way, to Ωp

X(M) for X = +,−, pc or fc. Then, the maps

� : Ωp
Y (M) → Ωp

Y (M), GX : Ωp
Y (M) → Ωp

Y (M) (5)

are mutually inverse bijections, whenever X = + and Y = + or pc, or X = −
and Y = − or fc. The combination G = G+−G− is known as the causal Green
function and fits into the following, in our terminology Green-hyperbolic, exact
sequences [2,3,26,34,36]

0 Ωp
c(M) Ωp

c(M) Ωp
sc(M) Ωp

sc(M) 0,� G �

(6)

0 Ωp
tc(M) Ωp

tc(M) Ωp(M) Ωp(M) 0.� G �

(7)
Note that, according to the above formulas, we can represent the space of
solutions with spacelike compact or unrestricted support either as

Ωp
�,X(M) = ker � ⊂ Ωp

X(M) (8)

or Ωp
�,X(M) = G[Ωp

Y (M)] = Ωp
Y (M)/�Ωp

Y (M), (9)

with X = sc and Y = c, or X empty and Y = tc, respectively. On the other
hand, we have trivial solution spaces Ωp

�,X(M) = {0} when X = +,−, pc or
fc.

The existence of the Green-hyperbolic exact sequences will allow us to
later make use of the following elementary result of homological algebra [11,
p. 17]. Let A• = (Ap,d) be a cochain complex, and similarly for B• and C•. It
is well known that a short exact sequence of cochain maps (maps commuting
with the differentials d),

0 A• B• C• 0,
f g (10)
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induces a long exact sequence in cohomology,

0 H0(A•,d) H0(B•,d) H0(C•,d)

H1(A•,d) H1(B•,d) H1(C•,d) · · ·

[f ] [g]

[d]

[f ] [g] [d]

(11)

The maps [f ], [g] are induced by the corresponding cochain maps, while the
[d] maps are induced by the differentials of the complexes (hence our notation
for them) and are known as connecting homomorphisms.

3. Computation of Cohomology Groups

In this section, we state and prove our main results on de Rham cohomology
with causally restricted supports. We rely essentially on the properties of the
wave operator and its Green functions, as summarized in Sect. 2. The impor-
tant properties are that the wave operator � is cochain homotopic to zero, and
the way its range and kernel are characterized using the causal Green function
G. In particular, we do not explicitly rely on the invariance properties of the
de Rham complex under topological homotopies.

Theorem 2. De Rham cohomology Hp
X(M), with X = +,−, pc or fc, is trivial.

Proof. Let X = +,−, pc or fc. Then, as was noted in Sect. 2, the wave operator
is a cochain map of the corresponding de Rham complex into itself, is invertible
[Eq. (5)] and cochain homotopic to zero [Eq. (3)]. Thus, it induces a map in
cohomology that is both invertible and equal to zero, which can only mean that
all the cohomologies are trivial. More concretely, given any closed α ∈ Ωp

X(M),
the identity d(δGX [α]) = GX [(dδ + δd)α] = α shows that it is also exact. �
Theorem 3. We have the isomorphisms

Hp
sc(M) ∼= Hp+1

c (M), Hp
�,sc

∼= Hp
c (M) ⊕ Hp+1

c (M), (12)

Hp
tc(M) ∼= Hp−1(M), and Hp

�(M) ∼= Hp(M) ⊕ Hp−1(M), (13)

with the convention that all cohomologies vanish in degree p for p < 0 or p > n.

Proof. Recall again from Sect. 2 that both the wave operator � and its causal
Green function G commute with d and hence constitute cochain maps between
the de Rham complexes with appropriate supports, inducing maps in cohomol-
ogy. Moreover, since � is cochain homotopic to zero [Eq. (3)], it induces the
zero map in cohomology.

Let us start with spacelike compact supports. We can break the exact
sequence in (6) into two short exact sequences of complexes:

0 Ωp
c(M) Ωp

c(M) Ωp
�,sc(M) 0,� G (14)

0 Ωp
�,sc(M) Ωp

sc(M) Ωp
sc(M) 0.

⊂ � (15)
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Because � always induces the zero map, [�] = 0, the corresponding long exact
sequences in cohomology [cf. Eq. (11)] break up into the following short exact
sequences:

0 Hp
c (M) Hp

�,sc(M) Hp+1
c (M) 0,

[G] [d] (16)

0 Hp−1
sc (M) Hp

�,sc(M) Hp
sc(M) 0,

[d] [⊂] (17)

again with the convention that any Hp
X(M) vanishes for p < 0 or p > n. Since

we are dealing with real vector spaces, any exact sequence splits, giving us the
isomorphisms

Hp
c (M) ⊕ Hp+1

c (M) ∼= Hp
�,sc(M) ∼= Hp−1

sc (M) ⊕ Hp
sc(M).

Given that H0
c (M) and H−1

sc (M) both vanish (M is non-compact and there
are no forms in degree p = −1), plugging p = 0 into the above isomorphism
implies H0

sc(M) ∼= H1
c (M). Proceeding by induction on p, we can check that

Hp
sc(M) ∼= Hp+1

c (M) for all p. Thus, we obtain the isomorophisms

Hp
sc(M) ∼= Hp+1

c (M), (18)

Hp
�,sc(M) ∼= Hp

c (M) ⊕ Hp+1
c (M). (19)

Applying the same argument to the exact sequence (7), we obtain the
isomorphisms

Hp
tc(M) ∼= Hp−1(M), (20)

Hp
�(M) ∼= Hp(M) ⊕ Hp−1(M). (21)

This completes the proof. �

Let Σ ⊂ M be a Cauchy surface. Recall that, by the smooth Geroch
splitting theorem, we can always smoothly factor M ∼= R×Σ. This observation
results in

Corollary 4. We have the isomorphisms

Hp
sc(M) ∼= Hp

c (Σ), Hp
�,sc(M) ∼= Hp

c (Σ) ⊕ Hp−1
c (Σ) (22)

Hp
tc(M) ∼= Hp−1(Σ), and Hp

�(M) ∼= Hp(Σ) ⊕ Hp−1(Σ), (23)

with the convention that all cohomologies vanish in degree p for p < 0 or p > n.

Proof. The splitting M ∼= R×Σ shows that M is homotopic to Σ. Hence, by the
homotopy invariance of de Rham cohomologies with unrestricted supports, we
have the isomorphism Hp(M) ∼= Hp(Σ). On the other hand, Poincaré duality
induces the isomorphism Hp

c (M) ∼= Hp−1
c (Σ). Therefore, the desired conclu-

sion follows directly from these identities in combination with Theorem 3. �

Finally, knowing the respective de Rham cohomologies with spacelike
and timelike compact supports, we have the following generalization of the
Poincaré lemma.
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Corollary 5. The non-degenerate bilinear pairing between Ωp
sc(M) and

Ωn−p
tc (M) descends to a non-degenerate bilinear pairing between Hp

sc(M) and
Hn−p

tc (M). There exists also a non-degenerate bilinear pairing between
Hp

�,sc(M) and Hn−p
� (M).

Proof. A consequence of Theorem 3 is that Hp
sc(M) ∼= Hp+1

c (M) and
Hn−p

tc (M) = Hn−p−1(M). So, the usual Poincaré duality establishes that
Hp

sc(M)∗ ∼= Hn−p
tc (M). The isomorphism can be exhibited by bilinear pair-

ing, which descends from the standard bilinear pairing between Ωp
sc(M) and

Ωn−p
tc (M), tracing its effect throughout the proof of Theorem 3. Its non-

degeneracy is also a consequence of the Poincaré lemma applied to Hp
c (M)

and Hn−p(M).
It also follows from Theorem 3 that Hp

�,sc(M) ∼= Hp
c (M) ⊕ Hp+1

c (M)
and Hn−p

� (M) ∼= Hn−p(M) ⊕ Hn−p−1(M). Again, the usual Poincaré dual-
ity establishes the isomorphism Hp

�,sc(M)∗ ∼= Hn−p
� (M). The isomorphism

can be exhibited by a bilinear pairing between Ωp
�,sc(M) and Ωn−p

� (M) ∼=
Ωn−p

tc (M)/�Ωn−p
tc (M), defined by the latter identity and the self-adjointness

of � with respect to our pairing between forms. Again, tracing this pairing
through the proof of Theorem 3 and appealing to the standard Poincaré du-
ality establishes its non-degeneracy. �

As already discussed in Sect. 1, the importance of knowing the above
cohomology groups is important for understanding the (pre)symplectic and
Poisson structure of classical field theories, as emphasized in [5,6,34,36,47].
The same result as Corollary 4 was obtained independently in [5]. As a matter
of fact, the method of [5] can be seen as a special case of our homological
calculation, as discussed more explicitly at the end of Sect. 5.1.2.

4. Calabi or Killing–Riemann–Bianchi Complex

In [34,36], it was pointed out that the construction of the symplectic and
Poisson structures on the phase space of field theories with constraints and/or
gauge invariance can be done using a general framework, provided a given
field theory satisfies certain geometric conditions. These conditions include
the existence of certain differential complexes that extend the operators that
constitute the constraints and that generate the gauge transformations. For
Maxwell (and similar) theories, all of these complexes are invariably part of
the de Rham complex [36, Sects. 4.2–.3]. On the other hand, for linearized
gravity, one has to use something different. Unfortunately, the explicit form
of these differential complexes is not currently known for linearized gravity
on an arbitrary background [36, Sect. 4.4]. However, in the special case of
constant curvature backgrounds, the answer is known and it is the so-called
Calabi complex [13]. It is likely that, once an explicit understanding of the
corresponding differential complexes for more general backgrounds is achieved,
the general framework of [34,36] would supersede recent covariant treatments
of the quantization of linearized gravity like [18,30].
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The Calabi complex provides a fine resolution [12, Sect. II.9] of the sheaf
of Killing vectors, similarly to how the de Rham complex provides a fine res-
olution of the sheaf of locally constant functions. The cohomology of a sheaf
(a rather abstract object) is isomorphic to the cohomology of the complex of
global sections of a fine resolution of the same sheaf (a more concrete object),
which is what makes fine resolutions significant [12, Theorem II.4.1]. As such,
the Calabi complex has been studied in some literature on the deformation
of constant curvature geometric structures [7,13,16,23,24,29,44]. Because its
structure is substantially different from the de Rham complex, we summarize
some of its relevant properties in Sects. 4.1 through 4.3 before concentrating on
its causally restricted cohomologies in Sect. 4.4. Many of these properties are
scattered throughout or are simply not available in the existing literature. We
defer a fuller discussion of the Calabi complex, which collects these properties
and their proofs, to [35]. However, all that we really need for the purposes of
Sect. 4.4 is the existence of differential operators listed in Sect. 4.2 and the
identities between them. Since these differential operators are explicitly given,
the identities can in principle be verified by direct calculation.

4.1. Tensor Bundles

We will present later a differential complex whose nodes are sections of ten-
sor bundles that are not so easy to express in conventional notation. So, let
us introduce the following short-hands. We denote the cotangent bundle by
V M = T ∗M and the bundle of metrics (symmetric, covariant 2-tensors)
by S2M = S2T ∗M . Let RM ⊂ (T ∗)4M denote the sub-bundle of covari-
ant 4-tensors that satisfy the algebraic symmetries of the Riemann tensor
(R(ab)cd = Rab(cd) = Rabcd −Rcdab = R[abc]d = 0). Next, we let BM ⊂ (T ∗)5M
denote the target bundle of the Bianchi operator ∇[aRbc]de. At this point it
is convenient to notice that the fiber of each of these bundles carries [20] an
irreducible representation of GL(n), with n = dim M . In fact, it is easiest to
describe the remaining tensor bundles in terms of the irreducible GL(n) rep-
resentation carried by their fibers. So let ClM ⊂ (T ∗)l+2M (with C standing
for Calabi) denote the sub-bundles of covariant (l + 2)-tensors with the cor-
responding irreducible representations listed in Table 1, which also lists their
fiber ranks. It is consistent for us to assign C0M ∼= V M , C1M ∼= S2M and
C2M ∼= RM and C3M ∼= BM . Recall that, on an n-dimensional manifold, the
largest rank of a fully antisymmetric tensor is n. So the bundles ClM become
trivial (zero fiber rank) for l > n.

The table below lists the tensor bundles of the Calabi complex, the cor-
responding irreducible GL(n) representations (labeled by Young diagrams),
and their fiber ranks, for dimM = n. The rank is given by the famous hook
formula, which is the following fraction. The numerator is the product of the
following numbers: place n in the top left cell, increase by 1 to the right and
decrease by 1 down, until all cells are filled. The denominator is the product of
the following numbers: fill a given cell with the number of cells constituting a
hook with vertex at the given location, extending to the right and down [21].
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Table 1. It is conventional to label irreducible GL(n) repre-
sentations by Young diagrams [21]

Bundle Young diagram Fiber rank

VM ∼= C0M n

S2M ∼= C1M
n(n+1)

2

RM ∼= C2M
n2(n2−1)

12

BM ∼= C3M
n2(n2−1)(n−2)

24

ClM
1

2
.
.
.

l

n2(n2−1)(n−2)···(n−l+1)
2(l+1)l(l−2)!

Recall that a Young diagram with k cells of type (r1, r2, . . .) consists of a number of rows
of non-increasing lengths ri, ri+1 ≤ ri, such that

∑
i ri = k. Given a Young diagram with

k cells, an instance of the corresponding irreducible GL(n) representation class can be
realized as the image of the space of covariant k-tensors after two projections: assign an

independent tensor index to each cell of the diagram, symmetrize over each row,
antisymmetrize over each column

Given two S2M tensors, we can construct an RM tensor out of them
using the formula

(g � h)abcd = gachbd − gbchad − gadhbc + gbdhac. (24)

In fact, the above formula represents a GL(n)-equivariant map between S2⊗S2

and R (where we use the bundle prefixes to stand in for the corresponding
irreducible representations). The decomposition of the S2 ⊗S2 tensor product
has only one copy of R, so by Schur’s lemma such a map is unique, up to an
overall rescaling. The same argument can be repeated for the tensor product
S2⊗Y , where Y corresponds to any other Young diagram. This tensor product
decomposes into irreducible subrepresentations without multiplicities. Then
the projection onto any of the subrepresentations Y ′ is well defined up to a
rescaling. If we fix sections g of S2M and h of Y M , these projections define a
bilinear operation between g and h with the result a section of Y ′M . We use
the following explicit formulas:

(g � t)abc:de = +gadtbc:e + gbdtca:e + gcdtab:e

− gaetbc:d − gbetca:d − gcetab:d, (25)

(g � t)abcd:ef = +gaetbcd:f − gbetcda:f + gcetdab:f − gdetabc:f

− gaf tbcd:e + gbf tcda:e − gcf tdab:e + gdf tabc:e. (26)
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Note that a tensor with indices written as in tabc:de has the symmetry type
(2, 2, 1), while tabc:d corresponds to the symmetry type (2, 1, 1), and so on. The
colon : is used purely as a visual aid to separate groups of indices belonging
to different columns of a Young diagram.

The metric gab itself, an S2M tensor, can now be used to produce an
RM tensor,

(g � g)ab:cd = 2(gacgbd − gbcgad), (27)
which is obviously covariantly constant. In fact, a constant curvature spacetime
must have (covariant) Riemann tensor, Ricci tensor and Ricci scalar of the
following form

R̄abcd =
k

n(n − 1)
(gacgbd − gbcgad), R̄ac =

k

n
gac, R̄ = k. (28)

We have decorated these quantities with a bar to indicate the fact that we
shall fix a constant curvature background metric g and consider perturbations
on it. For our purposes, we also require that the Lorentzian manifold (M, g)
is globally hyperbolic.

We should note that solutions of Einstein equations (including a possible
cosmological constant term) with constant curvature include Minkowski space
(k = 0), de Sitter space (k > 0) and anti-de Sitter space (k < 0). There is
(up to isometry) a unique simply connected version of each of these cases [32,
Sects. 5.1–2]. Other examples may be obtained by taking quotients thereof
with respect to a discrete subgroup, thus changing the topology. The list of
possibilities is thus exhausted by considering open subsets of such quotients.
Some examples will not be globally hyperbolic (like anti-de Sitter space or
quotients of Minkowski space with respect to timelike translations) and thus
excluded from part of our discussion.

4.2. Differential Operators

Now, we introduce a number of differential operators between the tensor bun-
dles that we have defined. For convenience of notation, we denote the space of
sections of a bundle by the same symbol as the bundle itself. These operators
fit into the following diagram:

0 C0M C1M C2M · · · CnM 0

0 C0M C1M C2M · · · CnM 0.

B1

P0

B2

P1
E1

Bn

P2
E2

Pn
En

B1 B2 Bn
(29)

All the solid arrows commute and the rows constitute (cochain) complexes.
The vertical maps are then necessarily cochain maps. They happen to satisfy
the identities Pl = El+1 ◦ Bl+1 + Bl ◦ El, which means that they are null-
homotopic, with the El supplying the corresponding cochain homotopy.

Below, we give explicit formulas for all these differential operators in
dimension n = 4. More details can be found in [35], which draws from the
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earlier works [7,13,16,23,24,29,44]. As we shall see, for low indices they are
well known in the relativity literature. However, the relations between them in
terms of fitting into the above diagram do not seem to have been fully noted.

The Calabi differential complex is given by

B1[v]ab = ∇avb + ∇bva, (30)

B2[h]ab:cd =
(∇(a∇c)hbd − ∇(b∇c)had − ∇(a∇d)hbc + ∇(b∇d)hac

)

+ k
1

n(n − 1)
(g � h)ab:cd, (31)

B3[r]abc:de = 3∇[arbc]:de = ∇arbc:de + ∇brca:de + ∇crab:de, (32)

B4[b]abcd:ef = 4∇[abbcd]:ef (33)

= ∇abbcd:ef − ∇bbcda:ef − ∇cbdab:ef − ∇dbabc:ef , (34)

Bl[b]a1···al:bc = l∇[a1ba2···al]:bc (l ≥ 3), (35)

where (a1 · · · al) and [a1 · · · al] denote, respectively, complete idempotent sym-
metrization and antisymmetrization of a group of indices [52, Eqs. 2.4.3–4].
Recall also that the colon : is used purely as a visual aid to separate groups of
indices belonging to different columns of the Young diagrams in Table 1. The
details showing that these operators have the desired symmetry properties and
indeed define a complex, Bl+1 ◦ Bl = 0, which is moreover elliptic,2 can be
found in [35].

It is interesting to note the following relations with well-known differential
operators in relativity. The Killing operator is K[h] = B1[h]. The linearized
Riemann tensor is ˙FR[h] = − 1

2B2[h]+ k 2
n(n−1) (g �h), where the all covariant

non-linear Riemann tensor is expanded as R[g + λh]ab:cd = R̄ab:cd + λṘ[h]ab:cd

(convention of [52]). The background Bianchi operator is B̄[r] = B3[r], with
B̄[R̄] = 0. Finally, though the name is not standard, it is meaningful to call
B4[b] a higher Bianchi operator. Thus, it would also make sense to refer to the
Calabi complex as the Killing–Riemann–Bianchi complex. This complex also
happens to be locally exact3 [13,35]. Thus, according to the general machinery
of sheaf theory, the Calabi complex provides a fine resolution of the sheaf of
Killing vectors (or Killing sheaf) Kg on the Lorentzian manifold (M, g) [35,
Sect. 3]. This observation immediately gains us the following:

Proposition 6 (Calabi [13]). The (unrestricted) cohomology HCl(M, g) = ker
Bl+1/ im Bl of the Calabi complex is isomorphic to the sheaf cohomology H•

(M,Kg) of the sheaf of Killing vectors on any spacetime (M, g) of constant
curvature.

Calabi’s proof was rather elementary and relied on the specific structure
of this complex. Unfortunately, his method does not generalize easily to other

2 A complex of differential operators is elliptic if the corresponding complex of symbol maps
is exact for every non-zero covector.
3 A differential complex on a manifold M is locally exact if every x ∈ M has a neighborhood
such that the complex restricted to it becomes exact. For example, this condition is fulfilled
for the de Rham complex thanks to the Poincaré lemma.
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differential complexes. So, we discuss below a different method to get local ex-
actness, which relies mostly on the ellipticity of the Calabi complex, a property
which is expected to be shared by other complexes of interest.

Next, we give explicitly the homotopy differential operators

E1[h]a = D[h]a = ∇bhab − 1
2
∇ah, (36)

E2[r]a:b = tr[r]a:b = rac:b
c, (37)

E3[b]ab:cd = ∇ebeab:cd +
1
2
∇e(bcab:de − bdab:ce)

− 1
2
(∇cbabe:d

e − ∇dbabe:c
e)

− 1
2
(∇abcbe:d

e − ∇abdbe:c
e

+ ∇bbace:d
e − ∇bbade:c

e), (38)

E4[b]abc:de = ∇f bfabc:de +
1
3
∇f (bdabc:ef − beabc:df )

+
1
3
(∇dbabcf :e

f − ∇ebabcf :d
f )

+
1
6
(∇abdbcf :e

f − ∇abebcf :d
f

+ ∇bbadcf :e
f − ∇bbaecf :d

f

+ ∇cbabdf :e
f − ∇cbabef :d

f ), (39)

El+1[b]a1···al:bc = ∇abaa1···al:bc + l−1∇a(bba1···al:ca − bca1···al:ba)

− (−1)l

l
(∇bba1···ala:c

a − ∇cba1···ala:b
a)

− (−1)l

l(l − 1)
(∇{b}b{a1···al}a:c

a − ∇{c}b{a1···al}a:b
a)

for (l ≥ 2), where (40)

p{b}t{a1···al} =
l∑

i=1

(−1)i+1pai
taa1···âi···al

(âi omitted).

Their desired Young symmetry properties are demonstrated in [35]. Again, we
find the following relations with classical differential operators from relativity.
The de Donder operator is D[h] = E1[h]. The trace from the Riemann to
the Ricci tensors is given by R̄ab = R̄ac:b

c = E2[R̄]ab. The higher homotopy
operators El do not seem to be part of the classical literature. However, they
are essentially modified divergence operators and are thus reminiscent of the
de Rham co-differentials.

Finally, the cochain maps Pl = El+1 ◦Bl+1 +Bl ◦El (with the edge cases
P0 = E1 ◦ B1 and Pn = Bn ◦ En) are given by

P0[v]a = �va + k
1
n

va, (41)
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P1[h]ab = �hab − k
2

n(n − 1)
hab + 2k

gab tr[h]
n(n − 1)

, (42)

P2[r]ab:cd = �rab:cd − k
2
n

rab:cd + 2k
(g � tr[r])ab:cd

n(n − 1)
, (43)

P3[b]abc:de = �babc:de − k
(3n − 7)
n(n − 1)

babc:de − 2k
(g � tr[b])abc:de

n(n − 1)
, (44)

P4[b]abcd:ef = �babcd:ef − k
(4n − 14)
n(n − 1)

babcd:ef + 2k
(g � tr[b])abcd:ef

n(n − 1)
, (45)

Pl[b]a1···al:bc = �ba1···al:bc − k
(ln − l2 + 2)

n(n − 1)
ba1···al:bc

+ (−)l2k
(g � tr[b])a1···al:bc

n(n − 1)
(l ≥ 3), (46)

where we have defined the traces as tr[h] = he
e, tr[r]ab = rae:b

e, tr[b]ab:c =
babe:c

e, tr[b]abc:d = babce:d
e, and tr[b]a1···al:b = ba1···ala:b

a. The required null-
homotopy identities Pl = El+1 ◦ Bl+1 + Bl ◦ El (including the edge cases
P0 = E1 ◦B1 and Pn = Bn ◦En) are demonstrated in [35]. These identities for
P0[v] and P1[v] are well known and are tightly linked with the de Donder gauge
fixing condition in linearized gravity [18,52]. The higher cochain maps and the
corresponding identities appear to be new. Though, the identity for P2[r] is
related to the non-linear wave equations satisfied by the Riemann and Weyl
tensors on any vacuum background, sometimes known as the Lichnerowicz
Laplacian [40, Sect. 1.3] (see also [14, Sect. 7.1], [41, Exr. 15.2], [10, Eq. 35]).

4.3. Cohomology with Unrestricted and Compact Supports

Let us denote the cohomology of the Calabi complex by HCl
X(M, g), where

X = c,+,−, fc, pc, sc, tc or empty, according to the conventions of Sect. 2. As
in the case of the de Rham complex in Sect. 3, we will later relate the coho-
mology with causally restricted supports to that with unrestricted or compact
supports. It remains still to find a means to calculate these cohomology groups.
We will state some results in that direction below, referring to [35] for a fuller
discussion.

An important observation is that each of the Pl operators is wave-like,
that is, it has the same principal symbol as the wave operator �g with respect
to the background Lorentzian metric g. This observation has a dual role. First,
this means that each of the Pl operators is Green hyperbolic [2,3], while being
cochain homotopic to zero, opening the door to using the methods of Sect. 3
to compute the cohomology with causally restricted supports.

The second role is more subtle:

Remark 1. Note that the principal symbols of the Bl maps in the Calabi
complex are actually GL(n)-equivariant and so do not actually involve the
background metric g. On the other hand, the principal symbols of the cochain
maps Pl do depend on g. This dependence comes purely from the cochain
homotopy operators El = Eg

l and the identity Pl = P g
l = Eg

l+1◦Bl+1+Bl◦Eg
l ,

where we have used the subscript g to indicate that the background metric
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was used for covariant differentiation and index raising. On the other hand,
we are completely free to define a different set of cochain maps P gR

l = EgR

l+1 ◦
Bl+1 +Bl ◦EgR

l , which now depend on a different metric gR with Riemannian
signature. It is crucial to note that the principal symbol of P gR

l depends only
on the principal symbols of the EgR

l and Bl. So, in fact, it is equal to the
principal symbol of P g

l , but with the Lorentzian metric g replaced by the
Riemannian metric gR. In other words, each of the P gR

l operators is elliptic,
since its principal symbol coincides with the Laplace operator ΔgR

. Of course,
P gR

l would differ much more radically from the formulas we have given for P g
l

in the terms of subleading differential orders.

The ellipticity of the complex (together with a subtler property known
as a δ-estimate, discussed in more detail in [35,51]) results in the following

Proposition 7. Let us denote by Γ(ClM) the space of smooth sections of the
tensor bundle ClM → M . (a) The cohomology HC•(M, g) of the Calabi com-
plex (Γ(ClM), Bl) is isomorphic to the cohomology H•(M,Kg) of the sheaf
Kg of Killing vectors on (M, g). (b) If (M, g) is a simply connected, constant
curvature Lorentzian manifold, then H•(M,Kg) ∼= H•(M) ⊗ Vg, where Vg is
the vector space of all Killing vectors and H•(M) is the de Rham cohomology
group.

Killing vectors (or rather covectors in our notation) are solutions v ∈
Γ(T ∗M) of the Killing equation K[v]ab = ∇avb + ∇bva = 0. On simply con-
nected, constant curvature n-dimensional spacetimes, dim Vg =

(
n+1
2

)
. Note

also that the simple connectedness condition implies that H1(M) = 0. The
precise definition of a sheaf and its cohomology is not of particular importance
for the moment. For present purposes, it suffices that the above result, at the
very least, answers the question of what HC•(M, g) is for the simply connected
versions of Minkowski (Rn), de Sitter (R × Sn−1 for n ≥ 3, R2 for n = 2) and
anti-de Sitter (Rn) spacetimes. The proof, together with a partial discussion
of the non-simply connected case, can be found in [35].

It remains to discuss Calabi cohomology with compact supports
HC•

c (M, g). First, we note that the chain complex (Γ(C∗
l M), B∗

l ) formally ad-
joint to the Calabi complex has the interesting property that equation B∗

n[b] =
0 is equivalent to the (rank-(n − 2)) Killing–Yano equation Y [w]abc4···cn =
∇(awb)c4···cn , where a solution with w[bc4···cn] = wbc4···cn is called a (rank-
(n−2)) Killing–Yano tensor on (M, g). We define Calabi homology HCl(M, g)
as the cohomology of this adjoint complex (Γc(C∗

l M), B∗
l ) with compact sup-

ports and also locally finite Calabi homology as the cohomology of the adjoint
complex (Γ(C∗

l M), B∗
l ) with unrestricted supports. Since taking formal ad-

joints preserves the homotopy identities and ellipticity, appealing to the same
arguments as above (again, including a δ-estimate [35,51]) we also have

Proposition 8. (a) Locally finite Calabi homology HC lf
l (M, g) is isomorphic

to the cohomology H•(M,KYg) of the sheaf KYg of Killing–Yano tensors on
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(M, g). (b) If (M, g) is a simply connected, constant curvature Lorentzian man-
ifold, then H•(M,KYg) ∼= H•(M) ⊗ Wg, where Wg is the vector space of all
Killing–Yano tensors and H•(M) is the de Rham cohomology group.

On simply connected, constant curvature n-dimensional spacetimes,
dim Wg =

(
n+1
2

)
[49]. Furthermore, using Remark 1 and some general results

from the theory of elliptic differential complexes (see Example 5.1.11 of [51],
which relies on the results of [48]), we have the following generalized Poincaré
duality isomorphisms [35]:

Proposition 9. When finite dimensional, Calabi homology is the linear dual
of Calabi cohomology, HCl(M, g) = HCl(M, g)∗, while Calabi cohomology
with compact supports is the linear dual of locally finite Calabi homology,
HCl

c(M, g) = HC lf
l (M, g)∗. In both cases, the duality can be exhibited via

the non-degeneracy of the pairing descended from the natural pairing between
the chains and cochains of corresponding complexes.

4.4. Cohomology with Causally Restricted Supports

Recall that, in Sect. 2, we defined de Rham cohomologies Hp
X(M) with causally

restricted supports X = +,−, sc, tc, pc or fc by restricting the de Rham com-
plex to forms with supports indicated by X, with the on-shell cohomologies
Hp

�(M) and Hp
�,sc(M). Substituting the Calabi complex for the de Rham com-

plex and the Pl operators for the d’Alembertians �, by direct analogy we can
define the causally restricted Calabi cohomologies HCl

X(M, g), HCl
P (M, g)

and HCl
P,sc(M, g). We can use the same definitions also in the case of the ad-

joint Calabi complex, with slightly altered notation. Let the causally restricted
Calabi homology HCX

l (M, g) be the cohomology of the complex (ΓY (C∗
l M),

B∗
l ) where the pair (X,Y ) is one of retarded (+, fc), advanced (−, pc) , space-

like locally finite (slf , tc), timelike locally finite (tlf , sc) , future locally finite
(flf ,−) and past locally finite (plf ,+). Similarly, we define the on-shell Calabi
homologies HCP,lf

l (M, g) and HCP,tlf (M, g) as the cohomologies of the com-
plexes (ker P ∗

l ∩ Γ(C∗
l M), B∗

l ) and (ker P ∗
l ∩ Γsc(C∗

l M), B∗
l ), respectively. The

above (X,Y ) pairs are chosen specifically so that there is a bilinear pairing
between Calabi homology HCX

l (M, g) and Calabi cohomology HCl
Y (M, g),

which descends from the natural pairing between the corresponding spaces of
sections of C∗

l M and ClM .
The specific way in which these causally restricted cohomologies are of

importance in linearized gravity is summarized in the following proposition.
For definiteness of notation let us fix a χ ∈ C∞(M) that is 1 in the future of
a Cauchy surface Σ+ and 0 in the past of another Cauchy surface Σ−. The
following is a special case of the general result [36, Theorem 3.2].

Proposition 10. Linearized gravity on a constant curvature background [36,
Sect. 4.4] induces a symplectic form on ΓP,sc(C1M) [36, Definition 3.10] that
is non-degenerate when (a) the bilinear form on HC1

sc(M, g) × HC1(M, g)
induced by 〈α, β〉 =

∫
M

α · β is non-degenerate and (b) the bilinear form on
HC1

P,sc(M) induced by 〈α, β〉P =
∫

M
α · P1[χβ] is non-degenerate.



Vol. 17 (2016) Cohomology with Causally Restricted Supports 3593

From the proof of that proposition it also follows that degeneracies in (a)
and (b) can imply degeneracies in the corresponding (pre-)symplectic struc-
ture.

With the above discussion in mind, we can see immediately that we are in
a situation very similar to that of Sect. 3, with the de Rham complex replaced
by the Calabi complex (or its adjoint complex) and the wave operators � re-
placed by the operators Pl (or P ∗

l ), which have wave-like principal symbols and
are Green hyperbolic. So, repeating the arguments of Sect. 3, we immediately
have the following

Theorem 11. Consider a globally hyperbolic, constant curvature Lorentzian
manifold (M, g). The Calabi cohomology HCl

X(M, g) with the causally re-
stricted supports X = +,−, pc or fc is trivial. Moreover, for the cases X =
sc, tc, we have the isomorphisms

HCl
sc(M, g) ∼= HCl+1

c (M, g), HCl
P,sc(M, g) ∼= HCl

c(M, g)⊕HCl+1
c (M, g),

(47)

HCl
tc(M, g) ∼= HCl−1(M, g), HCl

P (M, g) ∼= HCl(M, g)⊕HCl−1(M, g),
(48)

with the convention that all cohomologies vanish in degree l for l < 0 or l > n.
Similarly, the Calabi homology HCX

l (M, g) with the causally restricted sup-
ports X = +,−, plf or flf is trivial. Moreover, for the cases X = tlf , slf , we
have the isomorphisms

HCtlf
l (M, g) ∼= HCl−1(M, g), HCl

P,tlf (M, g) ∼= HCl(M, g)⊕HCl−1(M, g),
(49)

HCslf
l (M, g) ∼= HC lf

l+1(M, g), HCl
P,lf (M, g) ∼= HC lf

l (M, g)⊕HC lf
l+1(M, g),

(50)

again with the convention that all cohomologies vanish in degree l for l < 0 or
l > n.

The Calabi cohomology with spacelike compact support in degree l = 1
is important in understanding the symplectic and Poisson structure of the
classical field theory (and of course the quantization) of linearized gravitons
on a background of constant curvature. This was pointed out explicitly in [36,
Sect. 4.4] as a special case of a more general phenomenon (also discussed
in [34]).

Remark 2. Using the above theorem and the results of Sect. 4.3, we can assert
that for n-dimensional Minkowski space HCl

sc vanishes in all degrees except
l = n − 1, while HCl

P,sc vanishes in all degrees except l = n, n − 1. For n-
dimensional de Sitter space HCl

sc vanishes in all degrees except l = n − 1,
while HCl

P,sc vanish in all degrees except l = 0, n − 1, n. Similar remarks
apply to Calabi homologies.
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5. Notes and Generalizations

5.1. Generalized Causal Structures

The notion of a causal structure on a manifold or even a topological space
(in the sense of a partial order on events) can be generalized quite far beyond
the context of Lorentzian geometry [22,37]. We will stick with the context of
differential geometry, where a natural generalization consists of introducing
at every point of a manifold an arbitrary convex cone in the tangent4 bun-
dle. Such a manifold could be called a conal manifold [34,38,42,50]. Various
notions generated by the causal structure on Lorentzian manifolds survive al-
most without modification on conal manifolds, including spacelike and timelike
compactness. The main question we will try to answer in this section is the
following: is it possible to use the methods of Sect. 3 to compute causally re-
stricted cohomologies on a conal manifold? We shall see that the answer is yes,
even if the conal manifold is not Lorentzian.

5.1.1. Conal Manifolds. Before dealing with spacelike and timelike compactly
supported forms, let us introduce the basics of conal manifolds and causal
relations on them. Let M be a smooth manifold and C ⊂ TM be an open
subset, such that Cx = C ∩TxM is an open, convex cone in TxM that does not
contain any affine line. It can be shown that the interior C�

x of the polar dual
(or convex dual) cone T ∗

x M ⊃ C∗
x = {p ∈ T ∗

x M | ∀v ∈ Cx : p · v ≥ 0} satisfies
the same conditions, with C� = �x∈MC�

x . The pair (M,C) or (M,C�) is
called a conal manifold, with C (or C�) called the tangent (or cotangent) cone
distribution or cone bundle. For example, the subset of non-vanishing, future-
pointing, timelike vectors on a Lorentzian manifold with a time orientation
satisfies the above conditions. In general, the cones Cx need not even have
elliptic cross sections, thus not be associated to any Lorentzian metric. The
cones of future pointing timelike vectors of linear symmetric hyperbolic PDE
systems also satisfy the same properties [34, Sect. 4.1]. Sometimes, it is also
convenient to admit degenerate cases where the cones are not open or contain
some affine lines, but some special care must be taken in those situations.

Given a conal manifold (M,C) we can define a chronological order re-
lation on the points of M . Namely, x � y if there exists a smooth curve
γ : [0, 1] → M , such that γ(0) = x, γ(1) = y and γ̇(t) ∈ C for all t ∈ [0, 1]. It
can be shown that the chronological order relation I+ ⊂ M × M is open and
transitive. We can also define the reverse chronological order, I−, and chrono-
logical influence, I = I+ ∪ I−, relations in the obvious way. We avoid defining
the analog of the causal order relation usually denoted by J+, simply because
we have not made any hypotheses about the regularity of the set of causal vec-
tors (Cx ⊂ TxM). Given any set K ⊆ M , we denote by I±(K) the set of all
points of M that, respectively, chronologically precede ore are preceded by the
points of K. In general, I±(K) is not closed, even if K is. So, for convenience
we define I

±
(K) = I±(K). We also use the notation I(K) = I+(K) ∪ I−(K)

4 One could equally do so in the cotangent bundle, and produce a tangent cone by convex
(or polar) duality.
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and I(K) = I
+
(K) ∪ I

−
(K). Note that I

± ⊆ M × M need not be transitive
as relations.

The definition of a Cauchy surface Σ ⊂ M is the usual one, every inex-
tensible smooth curve with timelike tangents must intersect Σ exactly once.
It has recently been shown that the smooth version of the Geroch splitting
theorem [8,9,25] generalizes to conal manifolds [17]. So, globally hyperbolicity
can be simply characterized by the existence of a Cauchy surface. Also, the
results of [46] should also directly carry over to conal manifolds. Finally, we
define the notions of advanced, retarded, spacelike compact, timelike compact,
future compact and past compact exactly in the same way as in Sect. 2, with
the exception that we use the relations Ī± and Ī instead of the relations J±

and J .5

5.1.2. Cohomology with Causally Restricted Supports. Let M be a globally
hyperbolic conal manifold and g an auxiliary globally hyperbolic Lorentzian
metric that induces another conal structure on M that is “slower” than the
original one. That is, Ωp

±g
(M) ⊆ Ωp

±(M), which also implies that Ωp
scg

(M) ⊆
Ωp

sc(M), while Ωp
fcg,pcg

(M) ⊇ Ωp
fc,pc(M), and hence Ωp

tcg
(M) ⊇ Ωp

tc(M). Any
conal manifold admits a nowhere vanishing vector field (contract each cone to a
ray and select a vector from it), which is moreover everywhere future directed.
So, the existence of such an auxiliary Lorentzian metric follows from the same
known, general arguments that show the existence of Lorentzian metrics on
manifolds of vanishing Euler characteristic (i.e., admitting a nowhere vanishing
vector field) [4,43]. The “slowness” requirement is implemented by making sure
that the Lorentzian timelike cones closely hug the directions singled out by the
above everywhere timelike vector field.

Let G± denote once again the advanced and retarded Green functions of
the wave operator �g defined with respect to g. Then it is easy to see that
the Green functions are still well defined and injective as maps G± : Ωp

c(M) →
Ωp

±(M). Appealing to the same logic as in the standard proofs6 [2,3,26,34,36],
we can extend the Green functions to bijective maps G± : Ωp

±(M) → Ωp
±(M)

and G± : Ωp
fc,pc(M) → Ωp

fc,pc(M), from which it is straightforward to establish
exactness of the following sequences, with G = G+ − G−:

0 Ωp
0(M) Ωp

0(M) Ωp
sc(M) Ωp

sc(M) 0,� G �

(51)

0 Ωp
tc(M) Ωp

tc(M) Ωp(M) Ωp(M) 0,� G �

(52)

5 We are not concerned with possible minor inconsistencies this substitution introduces in
the case of Lorentzian manifolds with ill-behaved causal structures. In any case, we shall
only apply these notions for globally hyperbolic spacetimes, where these differences do not
appear.
6 Pick an exhaustion of M by compact sets and adapt a sequence of smooth “step functions”
to this exhaustion. Precomposing G± with multiplication by these step functions gives a
sequence of operators which converges to an operator with the desired extended domain.
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where the supports are restricted by the given conal structure on M and not by
that induced by the auxiliary Lorentzian metric g. Note that the proofs would
make use of the hypothesis that the given conal structure is globally hyperbolic,
specifically in the construction of explicit splitting maps that demonstrate
exactness [36, Lemma 2.1]. Thus, repeating the arguments Sect. 3, we establish
the following generalization of Theorems 2 and 3.

Theorem 12. Consider a globally hyperbolic conal manifold M . Its de Rham
cohomology Hp

X(M) with causally restricted supports X = +,−, pc or fc is
trivial. Moreover, we have the isomorphisms

Hp
sc(M) ∼= Hp+1

c (M), Hp
�,sc

∼= Hp
c (M) ⊕ Hp+1

c (M), (53)

Hp
tc(M) ∼= Hp−1(M), and Hp

�(M) ∼= Hp(M) ⊕ Hp−1(M), (54)

with the convention that all cohomologies vanish in degree p for p < 0 or p > n.

It should be clear from the preceding discussion that there is nothing
inherently special in our use of the d’Alembertian �g, when it comes to the
calculation of de Rham cohomologies with causally restricted supports on a
globally hyperbolic conal manifold M . It is merely one of multiple possible
auxiliary hyperbolic differential operators that can serve the same purpose.
Here are the key required properties for such an operator h: (a) h must be a
cochain map that is homotopic to zero with respect to the de Rham complex,
(b) it must possess retarded and advanced Green functions, (c) these Green
functions must be causal with respect to the given conal structure on M .
In fact, the conclusion of our Theorem 3 was reached independently in the
recent paper [5] by following an argument structurally similar to ours, with
the d’Alembertian replaced by the Lie derivative Lv with respect to a complete
timelike vector field v. It is clearly (Green) hyperbolic [2,3,34,36] with Green
functions simply given by integration (into the future or past) along the flow
lines of v. Moreover, it is cochain homotopic to zero because of the well-known
magic formula of Cartan: Lv = ιvd + dιv.

5.2. Functoriality

Recall that ordinary de Rham cohomology is defined on any finite dimen-
sional manifold and the pullback of differential forms along a smooth map
between manifolds induces a map between their cohomologies (in the direc-
tion opposite the original smooth map). This observation has the following
well-known formalization: de Rham cohomology in degree p, Hp(−), is a con-
travariant functor7 from the category of smooth manifolds to the category
of real vector spaces. The same cannot be said for de Rham cohomology
with compact supports, Hp

c (−), because the pullback of a compactly sup-
ported form need not be compactly supported itself. This pullback problem is

7 We shall not delve here into the details of category theory. It suffices to say that any
statement that we shall make involving functors and categories will be simply a very terse
transcription of some other property that will be spelled out in more elementary terms. More
details about the functorial properties of de Rham cohomology can be found in [11].
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fixed by considering only proper8 smooth maps between manifolds. So, given
a proper smooth map f : M → N , pullback along it induces a contravari-
ant map between de Rham cohomologies in degree p with compact support,
f∗ : Hp

c (N) → Hp
c (M). If the map f satisfies a different restrictive condi-

tion, namely that it is an open embedding, it is possible to define a covariant
pushforward map f∗ : Hp

c (M) → Hp
c (N): we can identify M with its image

f(M), an open subset of N , and extend by zero any compactly supported
form defined M to all of N . In short, de Rham cohomology with compact
supports, Hp

c (−), defines a contravariant functor on the category of smooth
manifolds with proper maps as morphisms, when paired with the pullback,
while it defines a covariant functor on the category of smooth manifolds with
open embeddings as morphisms, when paired with the pushforward.

A natural question is the following: do similar properties hold, and under
what precise conditions, for de Rham cohomologies with causally restricted
supports? For instance, this question was briefly raised, but without any defi-
nite answer, in [5]. In fact, it is straight forward to present causally restricted
cohomologies as functors, provided we modify the domain category by adding
generalized causal structures to manifolds (as in Sect. 5.1) and by modifying
the notion of a proper map with respect to the causal structure.

Consider two conal manifolds M and N , with a smooth map f : M → N
between them. We call the map f reflectively spacelike-proper if the preim-
age of any spacelike compact set is also spacelike compact, while we call it
reflectively timelike-proper if the preimage of any timelike compact set is also
timelike compact. When the map f is an open embedding, we also introduce
the terminology monotonically spacelike-proper for the case when the image
of any spacelike compact set is itself spacelike-compact and monotonically
timelike-proper for the case when the image of any timelike compact set is
timelike compact. We should note that the above terminology is partly in-
spired by some general notions from the theory of partially ordered sets. A
map f : M → N between two partially ordered sets (M,≤) and (N,≤) is said
to be monotonic if x ≤ y implies f(x) ≤ f(y) and, on the other hand, it is said
to be order-reflecting if f(x) ≤ f(y) implies x ≤ y. The following theorem is a
straight forward generalization of the previous arguments for the simpler case
of compact supports.

Theorem 13. Let CMansc and CMantc be the categories of conal manifolds
with, respectively, reflectively spacelike-proper and reflectively timelike-proper,
smooth maps as morphisms, while the CMane

sc and CMane
tc categories have, re-

spectively, monotonically spacelike-proper and monotonically timelike-
proper open embeddings as morphisms. Then, de Rham cohomologies with
spacelike and timelike supports, Hp

sc(−) and Hp
tc(−), are contravariant func-

tors on CMansc and CMantc, respectively. Similarly, Hp
tc(−) and Hp

sc(−) are
covariant functors on CMane

tc and CMane
sc, respectively.

8 A continuous map is proper if the preimage of any compact set is compact.



3598 I. Khavkine Ann. Henri Poincaré

Proof. The proof is a direct parallel of the above arguments for the case with
compact supports, since the definitions have been specifically adapted to that
argument. �

To show that the definitions of spacelike- and timelike-proper maps are
in some sense natural, we give a couple of examples.

Lemma 14. Let M be a manifold and two conal structures on it, C ⊆ C ′ ⊆ TM
(C is “slower” than C ′) (Sect. 5.1). The identity map is a reflectively spacelike-
proper from (M,C ′) to (M,C) and reflectively timelike-proper from (M,C) to
(M,C ′).

Proof. Let K ⊆ M be any compact subset. Then, by hypothesis, the C-
influence set is smaller than the C ′-influence set, IC(K) ⊆ IC′(K). Therefore,
any C-spacelike compact set is also C ′-spacelike and hence the identity from
(M,C ′) to (M,C) is reflectively spacelike-proper. On the other hand, if U ⊆ M
is C ′-timelike compact, then we have the inclusion IC(K) ∩ U ⊆ IC′(K) ∩ U ,
the latter being compact. Therefore, U is also C-timelike compact and the
identity from (M,C) to (M,C ′) is reflectively timelike-proper. �
Lemma 15. Let (M, g) and (N,h) be two globally hyperbolic Lorentzian man-
ifolds and f : M → N an open isometric embedding, such that the image of
a Cauchy surface of M is a Cauchy surface of N . Then, f is monotonically
timelike-proper.

Proof. Let U ⊆ M be timelike compact. According to [46], this is equivalent
to U being contained between two Cauchy surfaces in (M, g), say Σ1,Σ2 ⊂ M .
This means that the image, f(U) is contained between f(Σ1) and f(Σ2), with
the latter, by hypothesis, being Cauchy surfaces in (N,h). Thus, f(U) is also
timelike compact and the map f is monotonically timelike-proper. �
5.3. Other Differential Complexes

Our interest in computing the de Rham and Calabi cohomologies with
causally restricted supports has was motivated by their importance in un-
derstanding the geometric structure of classical and quantum field theories [5,
6,15,19,31,34,36,47]. Namely, for a general class of linear field theories, one
can formulate sufficient conditions for the non-degeneracy of the theory’s Pois-
son structure and the completeness of compactly supported smeared fields as
physical observables in terms of the cohomologies of corresponding differential
complexes. Non-linear field theories can be studied in terms of their lineariza-
tions about arbitrary background solutions. To Maxwell electrodynamics cor-
responds the de Rham complex [36, Sect. 4.2]. To linearized gravity on constant
curvature backgrounds, corresponds the Calabi complex [36, Sect. 4.4]. Simi-
larly, to Yang–Mills linearized about a flat connection corresponds a twisted
de Rham complex.

Each of these examples can be treated using the methods presented in this
paper. Few other explicit examples of differential complexes corresponding to
other field theories of physical interest seem to be known. In particular, they
do not seem to be known for linearized gravity on non-constant curvature
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backgrounds and, perhaps, not even for Yang–Mills linearized about non-flat
connections. On the other hand, there are strong abstract reasons to believe
that such differential complexes do indeed exist [28,44,45].

If such a differential complex also shares the apparently crucial property
of admitting cochain homotopies that generate hyperbolic and elliptic cochain
maps (cf. the Eg

l , P g
l , EgR

l and P gR

l maps of Sects. 4.2 and 4.3), then its
causally restricted cohomologies can be related to those with unrestricted and
compactly supported ones, as in Theorems 3 and 11.

If, in addition, such a differential complex could also be seen as resolving
a locally constant sheaf, its unrestricted cohomologies could be computed by
algebraic means, without actually solving complicated systems of differential
equations, as in Sect. 4.3. The latter requirement is closely related to the initial
differential operator in the complex having only a finite dimensional space of
solutions (being of finite type), as is the case for the locally constant (de Rham)
and Killing (Calabi) conditions.

The compactly supported cohomologies could also be obtained if the cor-
responding formally adjoint complex satisfied similar requirements, as illus-
trated in Sect. 4.3 by the appearance of the locally constant sheaf of Killing–
Yano tensors.

6. Discussion

We have shown how to compute the de Rham cohomology with causally re-
stricted supports (retarded, advanced, past compact, future compact, spacelike
compact and timelike compact) on a globally hyperbolic Lorentzian space-
time, using special properties of the d’Alembert wave operator and its Green
functions. The result (Theorems 2, 3; Corollary 5) expresses these causally
restricted cohomologies in terms of the standard de Rham cohomologies of
the spacetime manifold, with either unrestricted or compact supports. These
results, confirm the independent similar results of the recent work [5]. How-
ever, since our method does not rely on the strong invariance properties of the
de Rham complex under topological homotopies, we have also obtained fur-
ther results. In particular, our method is also applicable to the Calabi complex
(Theorem 11). The Calabi complex appears in linearized gravity on constant
curvature backgrounds in a way similar to the de Rham complex in Maxwell
theory. These results answer some questions that have naturally arisen in re-
cent investigations of classical and quantum gauge theories on curved space-
times.

Finally, we have also made comments about other questions that have
naturally appeared in these investigations. Namely, we discussed the covariance
of causally restricted cohomologies under specific types of morphisms between
spacetimes, adapted to their causal structure, and under changes of the causal
structure itself.

We have presented almost the bare minimum of information about the
Calabi complex that is needed to obtain our results. A fuller discussion of this
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interesting complex, including relevant geometric properties that are difficult
to locate in or are absent from the current literature, is deferred to future
work [35]. In the future, it will also be interesting to find the analogs of the
Calabi complex on more general Lorentzian backgrounds, which would con-
sist of differential complexes resolving the sheaf of Killing vectors on a given
background. However, we conjecture that the Hodge-like structure that we
have used to compute causally restricted cohomologies will be shared by all of
them.
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