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Quantum Scattering in a Periodically Pulsed
Magnetic Field

Tadayoshi Adachi and Masaki Kawamoto

Abstract. In this paper, we study the quantum dynamics of a charged
particle in the plane in the presence of a periodically pulsed magnetic
field perpendicular to the plane. We show that by controlling the cycle
when the magnetic field is switched on and off appropriately, the result of
the asymptotic completeness of wave operators can be obtained under the
assumption that the potential V satisfies the decaying condition |V (x)| ≤
C(1 + |x|)−ρ for some ρ > 0.

1. Introduction

The purpose of this paper was to study of the quantum dynamics of a charged
particle in the plane R2 in the presence of a periodically pulsed magnetic field
perpendicular to the plane.

We consider a quantum system of a charged particle moving in the plane
R2 in the presence of a periodically pulsed magnetic field B(t) which is per-
pendicular to the plane. We suppose that positive constants B and TB are
given, and that B(t) = (0, 0, B(t)) ∈ R3 is given by

B(t) =

{
B, t ∈ ⋃

n∈Z [nT, nT + TB) =: IB ,

0, t ∈ ⋃
n∈Z [nT + TB , (n + 1)T ) =: I0,

(1.1)

for some T with T > TB . T is the period of B(t). We put T0 := T − TB > 0
for simplicity. Then the free Hamiltonian under consideration is defined by

H0(t) =
1

2m
(p − qA(t, x))2 (1.2)

acting on H := L2(R2), where m > 0, q ∈ R\{0}, x = (x1, x2) and
p = (p1, p2) = (−i∂1,−i∂2) are the mass, the charge, the position, and the
momentum of the charged particle, respectively, and
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A(t, x) =
(

−B(t)
2

x2,
B(t)

2
x1

)
=

⎧⎨
⎩
(

−B

2
x2,

B

2
x1

)
=: A(x), t ∈ IB,

(0, 0), t ∈ I0,

(1.3)

is the vector potential in the symmetric gauge. By introducing the operator J
defined as

(Jx)T =
(

0 −1
1 0

)
xT, (1.4)

A(x) can be written as

A(x) =
B

2
Jx. (1.5)

Here xT denotes the transpose of x. Then H0(t) is represented as

H0(t) =

{
HB

0 , t ∈ IB,

H0
0 , t ∈ I0,

(1.6)

where the free Landau Hamiltonian HB
0 and the free Schrödinger operator H0

0

are given by

HB
0 =

1
2m

D2, H0
0 =

1
2m

p2. (1.7)

D is the momentum of the charged particle in the presence of the constant
magnetic field B = (0, 0, B), which is given by

D = (D1,D2) =
(

p1 +
qB

2
x2, p2 − qB

2
x1

)
= p − qA(x) = p − qB

2
Jx.

(1.8)

Let U0(t, s) be the propagator generated by H0(t) (in the sense of Theorem 2
of Huang [7]). By (1.6) and the self-adjointness of HB

0 and H0
0 , U0(t, 0) is

represented as

U0(t, 0) =

{
e−i(t−nT )HB

0 U0(T, 0)n, t ∈ [nT, nT + TB),
e−i(t−(nT+TB))H0

0 e−iTBHB
0 U0(T, 0)n, t ∈ [nT + TB , (n + 1)T ),

(1.9)

with n ∈ Z, where

U0(T, 0) = e−iT0H0
0 e−iTBHB

0 (1.10)

is the Floquet operator associated with H0(t), U0(T, 0)0 = Id, and U0(T, 0)n

= (U0(T, 0)∗)−n when −n ∈ N . Put

ω :=
qB

m
, ω̄ :=

ω

2
, ¯̄ω :=

ω̄

2
=

ω

4
. (1.11)

|ω| is the Larmor frequency of the charged particle in the presence of the
constant magnetic field B. As is well known,

σ(HB
0 ) = σpp(HB

0 ) =
{

|ω|
(

n +
1
2

) ∣∣∣ n ∈ N ∪ {0}
}

(1.12)
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holds. This is one of the most remarkable properties of HB
0 . Each eigenvalue

of HB
0 is called a Landau level. Equation (1.12) implies that

e−i(2π/|ω|)HB
0 = −Id (1.13)

holds. Taking account of this fact, we always assume 0 < TB < 2π/|ω|, that
is,

0 < |ω̄|TB < π (1.14)

for the sake of simplicity.
In order to capture the distinctive features of this quantum system, we

first watch the corresponding classical orbits: We denote the position and the
canonical momentum by xcl(t)=(xcl,1(t), xcl,2(t)) and ξcl(t)=(ξcl,1(t), ξcl,2(t)),
respectively. Suppose n ∈ Z. In the interval (nT, nT + TB), (xcl(t), ξcl(t))
satisfies Hamilton’s equations

dxcl

dt
(t)=

1
m

(
ξcl(t)− qB

2
Jxcl(t)

)
,

dξcl

dt
(t)=−qB

2m
J

(
ξcl(t)− qB

2
Jxcl(t)

)
(1.15)

because B(t) ≡ B on [nT, nT + TB). Putting

Dcl(t) := ξcl(t) − qB

2
Jxcl(t), kcl(t) := ξcl(t) +

qB

2
Jxcl(t), (1.16)

(Dcl(t), kcl(t)) satisfies

dDcl

dt
(t) = −ωJDcl(t),

dkcl

dt
(t) = 0. (1.17)

Hence we see that

Dcl(t) = R̂(−ωt̃n)Dcl(nT ), kcl(t) ≡ kcl(nT ) (1.18)

hold in the interval [nT, nT + TB]. Here R̂(θ) is the rotation operator defined
by

(R̂(θ)x)T =
(

cos θ − sin θ
sin θ cos θ

)
xT, θ ∈ R, (1.19)

and we put t̃n := t − nT with t ∈ R for simplicity. We note that J is the
generator of {R̂(θ)}θ∈R. Equation (1.18) yields

xcl(t) =
1

qB
J(Dcl(t) − kcl(t)) =

1
qB

R̂(−ωt̃n)JDcl(nT ) − 1
qB

Jkcl(nT )

=
1
2
(R̂(−ωt̃n) + 1)xcl(nT ) +

1
qB

(R̂(−ωt̃n) − 1)Jξcl(nT ),

ξcl(t) =
1
2
(Dcl(t) + kcl(t)) =

1
2
R̂(−ωt̃n)Dcl(nT ) +

1
2
kcl(nT )

=
1
2
(R̂(−ωt̃n) + 1)ξcl(nT ) − qB

4
(R̂(−ωt̃n) − 1)Jxcl(nT ) (1.20)

for t ∈ [nT, nT + TB ]. Here we used J2 = −1, and [R̂(−ωt), J ] = 0 for any
t ∈ R. By using
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R̂(−ωt) + 1 = 2 cos(−ω̄t)R̂(−ω̄t), (R̂(−ωt) − 1)J = −2 sin(−ω̄t)R̂(−ω̄t),
cos(−ω̄t) = cos(|ω̄|t), sin(−ω̄t) = −(sgn ω̄) sin(|ω̄|t),

(1.20) can be written as(
xcl(t)
ξcl(t)

)
= L|ω̄|(t̃n)

(
R̂(−ω̄t̃n)xcl(nT )
R̂(−ω̄t̃n)ξcl(nT )

)
= L|ω̄|(t̃n)R̂(−ω̄t̃n)

(
xcl(nT )
ξcl(nT )

)
(1.21)

with

L|ω̄|(t) :=

⎛
⎝ cos(|ω̄|t) 1

m|ω̄| sin(|ω̄|t)
−m|ω̄| sin(|ω̄|t) cos(|ω̄|t)

⎞
⎠ , t ∈ R,

R̂(θ) :=
(

R̂(θ) 0
0 R̂(θ)

)
, θ ∈ R.

(1.22)

On the other hand, in the interval [nT + TB, (n + 1)T ],(
xcl(t)
ξcl(t)

)
= L+0(t̃n − TB)

(
xcl(nT + TB)
ξcl(nT + TB)

)
(1.23)

holds with

L+0(t) :=

(
1

1
m

t

0 1

)
, t ∈ R, (1.24)

because B(t) ≡ 0 on [nT + TB, (n + 1)T ). In particular, it follows from (1.21)
and (1.23) that(

xcl((n + 1)T )
ξcl((n + 1)T )

)
= L+0(T0)

(
xcl(nT + TB)
ξcl(nT + TB)

)
= LR̂(−ω̄TB)

(
xcl(nT )
ξcl(nT )

)
(1.25)

holds for any n ∈ Z. Here L is given by

L =
(

L11 L12

L21 L22

)
= L+0(T0)L|ω̄|(TB)

=

⎛
⎝cos(|ω̄|TB) − |ω̄|T0 sin(|ω̄|TB)

1
m|ω̄| (|ω̄|T0 cos(|ω̄|TB) + sin(|ω̄|TB))

−m|ω̄| sin(|ω̄|TB) cos(|ω̄|TB)

⎞
⎠.

(1.26)

LR̂(−ω̄TB) is called the Floquet matrix of Hamilton’s equations (1.15). Since
L+0(t), L|ω̄|(t) ∈ SL(2,R), we see that L ∈ SL(2,R). Equation (1.25) yields(

xcl(nT )
ξcl(nT )

)
= LnR̂(−nω̄TB)

(
xcl(0)
ξcl(0)

)
(1.27)

for any n ∈ Z. Here L0 is equal to the identity matrix E, and Ln with −n ∈ N
denotes (L−1)−n. Thus we obtain the solution (xcl(t), ξcl(t)) of (1.15) with the
initial value (xcl(0), ξcl(0)), by virtue of (1.21), (1.23) and (1.27).
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Now we will compute Ln: since the characteristic equation of L is

λ2 − (L11 + L22)λ + 1 = 0

by detL = 1, the eigenvalues λ± of L are given as

λ± := λ0 ±
√

λ2
0 − 1, λ0 := cos(|ω̄|TB) − 1

2
|ω̄|T0 sin(|ω̄|TB) ∈ R,

(1.28)

and satisfy

λ+ + λ− = 2λ0 = L11 + L22, λ+λ− = 1. (1.29)

By (1.14), sin(|ω̄|TB) > 0 and −1 < cos(|ω̄|TB) < 1 hold. Hence we have
L21 < 0 and λ0 < cos(|ω̄|TB) < 1. In particular, λ0 − 1 < 0 holds. We first
consider the case where λ2

0 −1 �= 0, which is equivalent to λ0 +1 �= 0. By using
the fact

(L − λ±E)
(

L22 − λ±
−L21

)
=
(

0
0

)
, (1.30)

L can be diagonalized as

P−1LP =
(

λ+ 0
0 λ−

)
, P =

(
L22 − λ+ L22 − λ−

−L21 −L21

)
.

Hence, by straightforward calculation, we obtain

Ln =
(

L11μn − μn−1 L12μn

L21μn L22μn − μn−1

)
(1.31)

for n ∈ Z, where

μn :=
λn

+ − λn
−

λ+ − λ−
=

λn
+ − λn

−
2
√

λ2
0 − 1

. (1.32)

Here we used L22 − λ± = −(L11 − λ∓) and (L22 − λ+)(L22 − λ−) = −(L22 −
λ+)(L11 − λ+) = −L12L21. In particular, we have

xcl(nT ) = R̂(−nω̄TB){(L11μn − μn−1)xcl(0) + L12μnξcl(0)}.

=
λn

+

2
√

λ2
0 − 1

R̂(−nω̄TB){(L11 − λ−)xcl(0) + L12ξcl(0)}

− λn
−

2
√

λ2
0 − 1

R̂(−nω̄TB){(L11 − λ+)xcl(0) + L12ξcl(0)}

=: x+
cl(nT ) + x−

cl(nT ). (1.33)

Now we consider the subcase where λ0 + 1 < 0, which can be written as

T0 >
2(cos(|ω̄|TB) + 1)

|ω̄| sin(|ω̄|TB)
=

cos(| ¯̄ω|TB)
| ¯̄ω| sin(| ¯̄ω|TB)

=: T0,cr > 0. (1.34)

Since λ2
0 − 1 = (λ0 + 1)(λ0 − 1) > 0, we see that

λ− < λ0 < −1 < λ+ = λ−1
− < 0. (1.35)
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Since |λ−| > 1 > |λ+|, we have

lim
n→±∞ |λ±|n = 0, lim

n→±∞ |λ∓|n = +∞, (1.36)

which yields

lim
n→±∞(xcl(nT ) − x∓

cl(nT )) = lim
n→±∞ x±

cl(nT ) = 0, (1.37)

and

lim
n→±∞ |xcl(nT )| = ∞ (1.38)

if (L11 − λ±)xcl(0) + L12ξcl(0) �= 0. Since x∓
cl(nT ) can be written as

∓|λ∓|n
2
√

λ2
0 − 1

R̂(n(sgn ω̄)(π − |ω̄|TB)){(L11 − λ±)xcl(0) + L12ξcl(0)},

x∓
cl(nT ) is located on the logarithmic spiral

∓et log |λ∓|/T

2
√

λ2
0 − 1

R̂

(
(sgn ω̄)(π − |ω̄|TB)

T
t

)
{(L11 − λ±)xcl(0) + L12ξcl(0)}.

If we overlook the behavior of xcl(t) in each interval (nT, (n + 1)T ), then
this makes us expect that classical orbits behave asymptotically like logarith-
mic spirals. Taking account of L21 < 0, L11 − λ+ = −|ω̄|T0 sin(|ω̄|TB)/2 −√

λ2
0 − 1 < 0 and (L11 − λ+)(L11 − λ−) = −L12L21, we see that L11 − λ− = 0

if and only if L12 = 0. In the case where L11 − λ− = L12 = 0, we have

Ln =
(

λn
− 0

L21μn λn
+

)
, λ+ = cos(|ω̄|TB), λ− =

1
cos(|ω̄|TB)

, (1.39)

for n ∈ Z, which yields

lim
n→−∞ xcl(nT ) = 0, (1.40)

even if xcl(0) �= 0. When |ω̄|TB = π/2, we have L12 = 1/(m|ω̄|) �= 0; while,
when |ω̄|TB �= π/2, L12 �= 0 is equivalent to

T0 �= − sin(|ω̄|TB)
|ω̄| cos(|ω̄|TB)

=
sin(| ¯̄ω|TB) cos(| ¯̄ω|TB)
| ¯̄ω|(2 sin2(| ¯̄ω|TB) − 1)

=: T0,res. (1.41)

When 0 < |ω̄|TB < π/2, (1.41) is satisfied automatically because of T0,res <
0; while, when π/2 < |ω̄|TB < π, we have to assume (1.41) additionally to
guarantee L12 �= 0, because T0,res > T0,cr.

Next we consider the subcase where λ0 + 1 > 0, which is equivalent to
T0 < T0,cr. Then λ2

0 − 1 = (λ0 + 1)(λ0 − 1) < 0 holds. Since λ+ = λ− and
λ+λ− = 1, there exists a unique ϑ ∈ (0, π) such that λ± can be represented as
λ± = e±iϑ. By using this ϑ, μn can be represented as sin(nϑ)/

√
1 − λ2

0. Hence
xcl(t) is bounded in t.

Next we consider the case where λ2
0 − 1 = 0, which is equivalent to

λ0 + 1 = 0 by λ0 − 1 < 0. Then T0 = T0,cr holds. By using the fact
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(L − λ0E)
(

L22 − λ0

−L21

)
=
(

0
0

)
, (L − λ0E)

(−1
0

)
=
(

L22 − λ0

−L21

)
(1.42)

because of −(L11 − λ0) = L22 − λ0, we see that L is equivalent to a Jordan
matrix:

P−1LP =
(

λ0 1
0 λ0

)
, P =

(
L22 − λ0 −1

−L21 0

)
.

Hence, by straightforward calculation, we obtain

Ln =
(

L11nλn−1
0 − (n − 1)λn−2

0 L12nλn−1
0

L21nλn−1
0 L22nλn−1

0 − (n − 1)λn−2
0

)
(1.43)

for n ∈ Z. Here we used L22 − λ0 = −(L11 − λ0), (L22 − λ0)2 = −(L22 −
λ0)(L11 − λ0) = −L12L21, and λ2

0 = 1. In the same way as above, this makes
us expect that classical orbits behave asymptotically like Archimedes’ spirals.

Now we return to the quantum system under consideration. We first
watch the spectral properties of the Floquet operator U0(T, 0). To this end,
we study the behavior of the time-dependent observables

x(t) = U0(t, 0)∗xU0(t, 0), p(t) = U0(t, 0)∗pU0(t, 0). (1.44)

As will be seen in Sect. 2, (x(t), p(t)) satisfies formally Hamilton’s equations
(1.15) by replacement (xcl(t), ξcl(t)) with (x(t), p(t)). Therefore, the following
theorem can be obtained easily by the above argument:

Theorem 1.1. Suppose (1.14).
1. When T0 > T0,cr,

lim
n→±∞ |λ∓|−n‖xU0(nT, 0)ϕ‖H 2 =

1
2
√

λ2
0 − 1

‖{(L11 − λ±)x + L12p}ϕ‖H 2 ,

lim
n→±∞ |λ∓|−n‖pU0(nT, 0)ϕ‖H 2 =

1
2
√

λ2
0 − 1

‖{L21x + (L22 − λ±)p}ϕ‖H 2

(1.45)

hold for ϕ ∈ S (R2).
2. When T0 = T0,cr,

lim
n→±∞ |n|−1‖xU0(nT, 0)ϕ‖H 2 = ‖{(L11 − λ0)x + L12p}ϕ‖H 2 ,

lim
n→±∞ |n|−1‖pU0(nT, 0)ϕ‖H 2 = ‖{L21x + (L22 − λ0)p}ϕ‖H 2 (1.46)

hold for ϕ ∈ S (R2). Here λ0 = −1.
3. When T0 ≥ T0,cr, one has

sup
t∈R

‖xU0(t, 0)ϕ‖H 2 = ∞, sup
t∈R

‖pU0(t, 0)ϕ‖H 2 = ∞ (1.47)

for 0 �= ϕ ∈ S (R2); while, when 0 < T0 < T0,cr, one has

sup
t∈R

‖xU0(t, 0)ϕ‖H 2 < ∞, sup
t∈R

‖pU0(t, 0)ϕ‖H 2 < ∞. (1.48)
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Corollary 1.2. Suppose (1.14). When 0 < T0 < T0,cr, U0(T, 0) has a pure point
spectrum, that is,

H = H 2
pp(U0(T, 0)), (1.49)

where H 2
pp(U0(T, 0)) is the pure point spectral subspace associated with

U0(T, 0).

In order to obtain this corollary of Theorem 1.1, we have only to use
Theorem 1 of [7].

By using (xcl(t), ξcl(t)), we will introduce (x̃cl(t), ξ̃cl(t)) as follows: for
t ∈ [nT, (n + 1)T ) with n ∈ Z, we put

x̃cl(t) :=

{
R̂(ω̄t̃n + nω̄TB)xcl(t), t ∈ [nT, nT + TB),
R̂((n + 1)ω̄TB)xcl(t), t ∈ [nT + TB , (n + 1)T ),

ξ̃cl(t) :=

{
R̂(ω̄t̃n + nω̄TB)ξcl(t), t ∈ [nT, nT + TB),
R̂((n + 1)ω̄TB)ξcl(t), t ∈ [nT + TB , (n + 1)T ),

(1.50)

where t̃n = t−nT . We note that ω̄t̃n +nω̄TB can be written as ω̄(t−nT0). By
simple computation, we see that (x̃cl(t), ξ̃cl(t)) satisfies Hamilton’s equations

dx̃cl

dt
(t) =

1
m

ξ̃cl(t),
dξ̃cl

dt
(t) = −mω̄(t)2x̃cl(t) (1.51)

with ω̄(t) := qB(t)/(2m). What we emphasize here is that the Floquet matrix
of (1.51) is given by the matrix L in (1.26) and that the corresponding quan-
tum system is governed by the T -periodic two-dimensional quantum harmonic
oscillator Hamiltonian

H0,|ω̄|(t) =
1

2m
p2 +

m

2
|ω̄(t)|2x2. (1.52)

By virtue of the above argument, especially when T0 > T0,cr and T0 �= T0,res,
one can see the exponential amplification property of the propagator U0,|ω̄|(t, s)
generated by H0,|ω̄|(t) (see Hagedorn–Loss–Slawny [4] for related results about
general T -periodic quantum harmonic oscillator Hamiltonians).

From now on, we will focus on the case where T0 > T0,cr and T0 �= T0,res.
In this case, it can be expected that the charged particle moves away from the
origin along orbits which behave asymptotically like some logarithmic spirals
as t → ±∞, as we have seen above. Thus one can consider some scattering
problems for this situation. In this paper, we treat the problem of the asymp-
totic completeness.

Now we will state the assumption on the time-independent potential V :
(V )ρ V is a real-valued continuous function on R2 satisfying the decaying
condition

|V (x)| ≤ C〈x〉−ρ (1.53)

with ρ > 0, where 〈x〉 =
√

1 + x2.
Here we introduce the time-periodic Hamiltonian H(t) given by

H(t) := H0(t) + V, (1.54)
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and the propagator U(t, s) generated by H(t). H(t) is represented as

H(t) =

{
HB := HB

0 + V, t ∈ IB ,

H0 := H0
0 + V, t ∈ I0.

(1.55)

We note that under the condition (V )ρ for some ρ > 0, HB and H0 are self-
adjoint on D(HB

0 ) and D(H0
0 ), respectively. U(t, 0) is represented as

U(t, 0) =

{
e−i(t−nT )HB

U(T, 0)n, t ∈ [nT, nT + TB),
e−i(t−(nT+TB))H0

e−iTBHB

U(T, 0)n, t ∈ [nT + TB , (n + 1)T ),

(1.56)

with n ∈ Z, where

U(T, 0) = e−iT0H0
e−iTBHB

(1.57)

is the Floquet operator associated with H(t). The main result of this paper is
as follows:

Theorem 1.3. Suppose (1.14), and that T0 satisfies (1.34). When π/2 < |ω̄|TB

< π, assume that T0 satisfies (1.41) additionally. Assume that V satisfies the
condition (V )ρ for some ρ > 0. Then the wave operators

W± = s-lim
t→±∞ U(t, 0)∗U0(t, 0) (1.58)

exist and are asymptotically complete:

Ran(W±) = Hac(U(T, 0)). (1.59)

Here Hac(U(T, 0)) is the absolutely continuous spectral subspace associated
with U(T, 0).

As far as the authors know, there are very few results on quantum scatter-
ing in a time-periodic magnetic field. In Korotyaev [10], the free Hamiltonian

h0(t) = −1
2
Δ − b(t)L̃ + p(t)x2

1/2 (1.60)

on L2(Rm1 × Rm2) was considered, where x = (x1, x2) ∈ Rm1 × Rm2 , x1 =
(x11, . . . , x1m1), L̃ = −i(x11∂x12 − x12∂x11) for m1 ≥ 2; L̃ = 0 for m1 = 1,
b(t) and p(t) are T -periodic real-valued continuous functions on R. Under the
implicit assumption on p(t) that the Hill equation y′′(t) + p(t)y(t) = 0 has
solutions y1(t) = eλtχ1(t) and y2(t) = e−λtχ2(t), where λ > 0, and χ1(t)
and χ2(t) are periodic in t, Korotyaev obtained the result corresponding to
Theorem 1.3. Our result can be recognized as an extension of the result of
[10] with p(t) = b(t)2, m1 = 2 and m2 = 0 to the case where B(t) is a
periodically pulsed magnetic field. What we would like to emphasize here is
that the implicit assumption on p(t) mentioned above can be replaced by the
explicit conditions T0 > T0,cr and T0 �= T0,res for our model. In [10], Korotyaev
also treated the case where the Hill equation y′′(t)+p(t)y(t) = 0 has solutions
y1(t) = ty2(t) + χ1(t) and y2(t) = χ2(t). Here χ1(t) and χ2(t) are periodic
and antiperiodic in t, respectively. This is corresponding to the case where
T0 = T0,cr for our model.
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In the proof of Theorem 1.3, the limiting absorption principle for the
Floquet Hamiltonian K0 associated with H0(t) plays an important role: put
K := L2(T ;H ), where T = R/(TZ), and introduce a family of unitary
operators {U0(σ)}σ∈R on K as

(U0(σ)f)(t) = U0(t, t − σ)f(t − σ), f ∈ K . (1.61)

Then {U0(σ)}σ∈R forms a strongly continuous one-parameter unitary group
on K . By virtue of the Stone theorem, one can write U0(σ) = e−iσK0 with a
certain self-adjoint operator K0 on K . K0 is called the Floquet Hamiltonian
associated with H0(t). As will be seen in Sect. 5, when T0 > T0,cr and T0 �=
T0,res, we have obtained the limiting absorption principle for K0; while, when
T0 = T0,cr, we have not obtained it yet, although it can be shown by the results
of [4] that the Floquet operator U0(T, 0) has a pure absolutely continuous
spectrum, which implies that the Floquet Hamiltonian K0 also has a pure
absolutely continuous spectrum. When T0 > T0,cr and T0 �= T0,res, we introduce
the Floquet Hamiltonian K associated with H(t) similarly and obtain the
result of the existence and the asymptotic completeness of

W ± = s-lim
σ→±∞ eiσKe−iσK0 (1.62)

(see Theorem 5.6), by utilizing the abstract stationary scattering theory. Then,
by virtue of the Howland–Yajima method (see, e.g. [5,6,13]), one can also
obtain the asymptotic completeness of W± by showing the existence of W±.
This is an outline of the proof of Theorem 1.3.

The plan of this paper is as follows: in Sect. 2, we prove Theorem 1.1. In
Sect. 3, we derive the integral kernel of U0(t, 0). In Sect. 4, using the integral
kernel of U0(t, 0), we show the local compactness property of K0. In Sect. 5,
when T0 > T0,cr and T0 �= T0,res, we obtain the limiting absorption principles
for K0 and K, which yield the existence and the asymptotic completeness of
W ±. In Sect. 6, when T0 > T0,cr and T0 �= T0,res, we prove the existence and
the asymptotic completeness of W± under the assumptions in Theorem 1.3.

2. Proof of Theorem 1.1

We first introduce the pseudomomentum k of the charged particle by

k = (k1, k2) = (p1 − qBx2/2, p2 + qBx1/2) = p + qA(x). (2.1)

Here we note that the commutation relations

i[D1,D2] = −qB, i[k1, k2] = qB, i[Dj1 , kj2 ] = 0 (j1, j2 ∈ {1, 2})
(2.2)

hold (see, e.g. Avron–Herbst–Simon [1,2] and Gérard–�Laba [3]). Now we put

D(t) = U0(t, 0)∗DU0(t, 0), k(t) = U0(t, 0)∗kU0(t, 0) (2.3)

for the sake of brevity. Suppose n ∈ Z. It follows from (2.2) that (D(t), k(t))
satisfies

dD

dt
(t) = −ωJD(t),

dk

dt
(t) = 0 (2.4)
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for t ∈ (nT, nT + TB) (cf. (1.17)). Hence we have for t ∈ [nT, nT + TB ],

D(t) = R̂(−ωt̃n)D(nT ), k(t) ≡ k(nT ) (2.5)

(cf. (1.18)). Since (x(t), p(t)) in (1.44) can be written as

x(t) =
1

qB
J(D(t) − k(t)), p(t) =

1
2
(D(t) + k(t)) (2.6)

(cf. (1.20)), one can obtain(
x(t)
p(t)

)
= L|ω̄|(t̃n)R̂(−ω̄t̃n)

(
x(nT )
p(nT )

)
(2.7)

for t ∈ [nT, nT + TB ] in the same way as in Sect. 1 (see (1.21)). On the other
hand, for t ∈ [nT + TB , (n + 1)T ], one can obtain(

x(t)
p(t)

)
= L+0(t̃n − TB)

(
x(nT + TB)
p(nT + TB)

)
(2.8)

(cf. (1.23)). By virtue of (2.7) and (2.8), one can see easily that if

x̄(ϕ) := sup
n∈Z

‖x(nT )ϕ‖H 2 < ∞ and p̄(ϕ) := sup
n∈Z

‖p(nT )ϕ‖H 2 < ∞,

then

¯̄x(ϕ) := sup
t∈R

‖x(t)ϕ‖H 2 < ∞ and ¯̄p(ϕ) := sup
t∈R

‖p(t)ϕ‖H 2 < ∞;

while, if x̄(ϕ) = ∞ or p̄(ϕ) = ∞ holds, then both ¯̄x(ϕ) = ∞ and ¯̄p(ϕ) = ∞
hold, by virtue of (2.7). Hence we have only to study about the finiteness of
x̄(ϕ) and p̄(ϕ). By (2.7) and (2.8), one can obtain(

x((n + 1)T )
p((n + 1)T )

)
= LR̂(−ω̄TB)

(
x(nT )
p(nT )

)
(2.9)

in the same way as in Sect. 1 (see (1.25)). Here L is given by (1.26). Equa-
tion (2.9) yields (

x(nT )
p(nT )

)
= LnR̂(−nω̄TB)

(
x
p

)
(2.10)

for any n ∈ Z (cf. (1.27)). Thus we have only to use the explicit form of Ln,
which was already obtained in Sect. 1, to study x̄(ϕ) and p̄(ϕ):

Case I. 0 < T0 < T0,cr:
Since |μn| ≤ 1/

√
1 − λ2

0 by μn = sin(nϑ)/
√

1 − λ2
0 as mentioned in

Sect. 1, one can see easily that x̄(ϕ) < ∞ and p̄(ϕ) < ∞.

Case II. T0 > T0,cr:
By using (1.31) and (1.36), we have

lim
n→±∞ |λ∓|−n‖x(nT )ϕ‖H 2 =

1
2
√

λ2
0 − 1

‖{(L11 − λ±)x + L12p}ϕ‖H 2

=
1

2
√

λ2
0 − 1

|L11 − λ±|‖(x + L̃12,±p)ϕ‖H 2 ,



2420 T. Adachi and M. Kawamoto Ann. Henri Poincaré

lim
n→±∞ |λ∓|−n‖p(nT )ϕ‖H 2 =

1
2
√

λ2
0 − 1

‖{L21x + (L22 − λ±)p}ϕ‖H 2

=
1

2
√

λ2
0 − 1

|L21|‖(x + L̃12,±p)ϕ‖H 2 ,

if L11 − λ− �= 0. Here L̃12,± := (L22 − λ±)/L21. But it can be seen easily that
the above result is valid also when L11 − λ− = 0, since L11 − λ− = L12 = 0.
These imply x̄(ϕ) = ∞ and p̄(ϕ) = ∞ for 0 �= ϕ ∈ S (R2).

Case III. T0 = T0,cr:
We first note that |λn

0 | = 1 holds for any n ∈ Z, because λ0 = −1. Taking
account of L11 − λ0 = −|ω̄|T0 sin(|ω̄|TB)/2 < 0 by (1.14), we have

lim
n→±∞ |n|−1‖x(nT )ϕ‖H 2 = ‖{(L11 − λ0)x + L12p}ϕ‖H 2

= |L11 − λ0|‖(x + L̃12,0p)ϕ‖H 2 ,

lim
n→±∞ |n|−1‖p(nT )ϕ‖H 2 = ‖{L21x + (L22 − λ0)p}ϕ‖H 2

= |L21|‖(x + L̃12,0p)ϕ‖H 2 .

Here L̃12,0 := (L22 − λ0)/L21. These imply x̄(ϕ) = ∞ and p̄(ϕ) = ∞ for
0 �= ϕ ∈ S (R2).

Thus the proof of Theorem 1.1 is completed.

3. Integral Kernel of the Free Propagator

In this section, we would like to find the integral kernel of the free propaga-
tor U0(t, s) generated by H0(t). From now on, we denote by S0(t, s;x, y) the
integral kernel of U0(t, s). And, we put S̃0(t;x, y) := S0(t, 0;x, y), which is the
integral kernel of U0(t, 0) obviously.

(I) S̃0(t;x, y) for t ∈ [0, T ]:
We first consider the case where t ∈ [0, TB ]. S̃0(t;x, y) is just the integral

kernel SB
0 (t;x, y) of e−itHB

0 . Now we introduce

H0,|ω̄| :=
1

2m
p2 +

m

2
|ω̄|2x2, L̃ := x1p2 − x2p1. (3.1)

L̃ is called the angular momentum. It is well known that e−itHB
0 can be repre-

sented as eiω̄tL̃e−itH0,|ω̄| , because HB
0 = H0,|ω̄| − ω̄L̃ and [H0,|ω̄|, L̃] = 0. Here

we note that

(eiω̄tL̃ψ)(x) = ψ(R̂(ω̄t)x), ψ ∈ L2(R2),

holds. On the other hand, by virtue of Mehler’s formula, the integral kernel
S0,|ω̄|(t;x, y) of e−itH0,|ω̄| is given by

S0,|ω̄|(t;x, y) =
m|ω̄|

2πi sin(|ω̄|t)eim|ω̄|(cos(|ω̄|t)(x2+y2)−2x·y)/(2 sin(|ω̄|t)) (3.2)
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when sin(|ω̄|t) �= 0, which is satisfied in the interval (0, TB ] by (1.14). Then
S̃0(t;x, y) with t ∈ (0, TB ] can be represented as

S̃0(t;x, y) = SB
0 (t;x, y) = S0,|ω̄|(t; R̂(ω̄t)x, y)

=
m|ω̄|

2πi sin(|ω̄|t)eim|ω̄| cot(|ω̄|t)x2/2

× e−im|ω̄|(R̂(ω̄t)x)·y/ sin(|ω̄|t)eim|ω̄| cot(|ω̄|t)y2/2 (3.3)

(see also Avron–Herbst–Simon [1]). Of course, S̃0(0;x, y) is equal to δ(x − y)
as a distributional kernel, where δ is the Dirac delta function. Putting

TB,exc :=
π

2|ω̄| , (3.4)

we have

S̃0(TB,exc;x, y) =
m|ω̄|
2πi

e−im|ω̄|(R̂(ω̄TB,exc)x)·y, (3.5)

if TB,exc ≤ TB , since cos(|ω̄|TB,exc) = 0 and sin(|ω̄|TB,exc) = 1. Now we focus
on the case where t �= TB,exc. For the sake of simplicity, we will write (3.3) as
the formula

S̃0(t;x, y) =
1

2πic0(t)θ0(t)
eix2/(2θ0(t))

× e−i(R̂(φ0(t))x)·y/(c0(t)θ0(t))eiσ0(t)y
2/(2θ0(t)) (3.6)

with θ0(t) := tan(|ω̄|t)/(m|ω̄|), c0(t) := cos(|ω̄|t), φ0(t) := ω̄t and σ0(t) := 1
for t ∈ [0, TB ]\{TB,exc}. Here we introduce

S0
0(t;x) =

⎧⎨
⎩

δ(x), t = 0,
1

2πit
eix2/(2t), t �= 0.

(3.7)

It is well known that S0
0(t;x − y) is the integral kernel of e−itp2/2. Obviously,

the integral kernel of e−itH0
0 can be represented as S0

0(t/m;x − y). By using
this S0

0 , we will give a representation of S̃0(t;x, y): since

x2 − 2
R̂(φ0(t))x · y

c0(t)
+ σ0(t)y2

= σ0(t)

(
R̂(φ0(t))x
c0(t)σ0(t)

− y

)2

+
(

1 − 1
c0(t)2σ0(t)

)
x2

=

(
x − R̂(−φ0(t))y

c0(t)

)2

+
(

σ0(t) − 1
c0(t)2

)
y2,

S̃0(t;x, y) can be written as
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S̃0(t;x, y) =
1

c0(t)σ0(t)
ei{1−1/(c0(t)

2σ0(t))}x2/(2θ0(t))S0
0

(
θ0(t)
σ0(t)

;
R̂(φ0(t))x
c0(t)σ0(t)

− y

)

=
1

c0(t)
ei{σ0(t)−1/c0(t)

2}y2/(2θ0(t))S0
0

(
θ0(t);x − R̂(−φ0(t))y

c0(t)

)

(3.8)

for t ∈ (0, TB ]\{TB,exc}. Since

σ0(s) − 1
c0(s)2

= − tan2(|ω̄|s) = −m|ω̄| tan(|ω̄|s)θ0(s)

for s ∈ (0, TB ]\{TB,exc}, one can see that S̃0(s;x, y) converges to δ(x − y) as
s → +0. Hence, (3.8) with t = 0 is also valid.

We next consider the case where t ∈ (TB , T ]. Then S̃0(t;x, y) is just the
integral kernel of e−i(t−TB)H0

0 e−iTBHB
0 . When TB = TB,exc, one can obtain

S̃0(t;x, y) =
m|ω̄|
2πi

e−im|ω̄|(R̂(ω̄TB)x)·ye−im|ω̄|2(t−TB)y2/2 (3.9)

by calculating the Fourier transform of S0
0((t − TB)/m; ·), since (3.5) holds.

On the other hand, when TB �= TB,exc, one can obtain

S̃0(t;x, y) =
1

c0(TB)
ei{σ0(TB)−1/c0(TB)2}y2/(2θ0(TB))

×S0
0

(
θ0(t);x − R̂(−φ0(TB))y

c0(TB)

)
(3.10)

with θ0(t) := (t−TB)/m+θ0(TB) for t ∈ (TB , T ], if θ0(t) �= 0, by taking account
of that S0

0(t + s;x − y) is the integral kernel of e−i(t+s)p2/2 = e−itp2/2e−isp2/2.
Then (3.10) can be represented as (3.6) by putting c0(t) := c0(TB), φ0(t) :=
φ0(TB) and

σ0(t) :=
(

σ0(TB) − 1
c0(TB)2

)
θ0(t)

θ0(TB)
+

1
c0(TB)2

for t ∈ (TB , T ]. In particular,(
σ0(t) − 1

c0(t)2

)
1

θ0(t)
≡
(

σ0(TB) − 1
c0(TB)2

)
1

θ0(TB)
= −m|ω̄| tan(|ω̄|TB)

holds on (TB , T ], which yields σ0(t) = 1/c0(t)2 − m|ω̄| tan(|ω̄|TB)θ0(t) = 1 −
|ω̄|(t − TB) tan(|ω̄|TB). By using this and (3.8), we have

S̃0(t;x, y) =
1

c0(t)σ0(t)
e−im|ω̄| tan(|ω̄|TB)x2/(2σ0(t))S0

0

(
θ0(t)
σ0(t)

;
R̂(φ0(t))x
c0(t)σ0(t)

− y

)
.
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By this formula, S̃0(t;x, y) with θ0(t) = 0 can be also given as a distributional
kernel. Consequently, S̃0(t;x, y) for t ∈ [0, T ] is represented as (3.6) with

θ0(t) =

⎧⎪⎪⎨
⎪⎪⎩

tan(|ω̄|t)
m|ω̄| (t ∈ [0, TB ])

1
m

(
t − TB +

tan(|ω̄|TB)
|ω̄|

)
(t ∈ (TB , T ]),

c0(t) =

{
cos(|ω̄|t) (t ∈ [0, TB ])
cos(|ω̄|TB) (t ∈ (TB , T ]),

φ0(t) =

{
ω̄t (t ∈ [0, TB ])
ω̄TB (t ∈ (TB , T ]),

σ0(t) =

{
1 (t ∈ [0, TB ])
1 − |ω̄|(t − TB) tan(|ω̄|TB) (t ∈ (TB , T ]).

(3.11)

Here, in the case where TB = TB,exc and t ∈ [TB , T ], one has only to recog-
nize 1/θ0(t), 1/(c0(t)θ0(t)) and σ0(t)/θ0(t) as 0, m|ω̄| and −m|ω̄|2(t − TB),
respectively, by taking account of cos(|ω̄|TB) = 0 and sin(|ω̄|TB) = 1.

(II) S̃0(nT ;x, y) for n ∈ N :
For the sake of simplicity, we focus on the general case, that is, the case

where TB �= TB,exc, θ0(T ) �= 0, and σ0(T ) �= 0. By virtue of (3.6), the integral
kernel S̃0(T ;x, y) of the Floquet operator U0(T, 0) is given by

S̃0(T ;x, y) =
1

2πic1θ1
eix2/(2θ1)e−i(R̂(φ1)x)·y/(c1θ1)eiσ1y2/(2θ1) (3.12)

with

θ1 = θ0(T ) =
L12

L22
, c1 = c0(T ) = L22,

φ1 = φ0(T ) = ω̄TB , σ1 = σ0(T ) =
L11

L22
.

(3.13)

Then one can find the following representation of the integral kernel
S̃0(nT ;x, y) of U0(nT, 0) with n ∈ N :

S̃0(nT ;x, y) =
1

2πicnθn
eix2/(2θn)e−i(R̂(φn)x)·y/(cnθn)eiσny2/(2θn). (3.14)

In fact, in the same way as above, by using

S̃0(T ;x, y) =
1

c1σ1
ei{1−1/(c21σ1)}x2/(2θ1)S0

0

(
θ1

σ1
;
R̂(φ1)x
c1σ1

− y

)
,

S̃0(nT ;x, y) =
1
cn

ei{σn−1/c2n}y2/(2θn)S0
0

(
θn;x − R̂(−φn)y

cn

) (3.15)
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we have

S̃0((n + 1)T ;x, y) =
1

c1σ1cn
ei{1−1/(c21σ1)}x2/(2θ1)ei{σn−1/c2n}y2/(2θn)

×S0
0

(
θ1

σ1
+ θn;

R̂(φ1)x
c1σ1

− R̂(−φn)y
cn

)
(3.16)

in the same way as above. By equating the coefficients of x2, (R̂(φ)x) ·y and y2

in the exponents of the exponential functions in (3.16), the recurrence relations

1
θn+1

=
(

1 − 1
c2
1σ1

)
1
θ1

+
1

(c1σ1)2(θ1/σ1 + θn)
, (3.17)

1
cn+1θn+1

=
1

c1σ1cn(θ1/σ1 + θn)
, (3.18)

σn+1

θn+1
=
(

σn − 1
c2
n

)
1
θn

+
1

c2
n(θ1/σ1 + θn)

, (3.19)

φn+1 = φ1 + φn, (3.20)

can be obtained. Obviously, we have

φn = nφ1 = nω̄TB (3.21)

by (3.20). Since (3.17) can be written as

1
θn+1

=
(

1 − 1
L11L22

)
L22

L12
+

1
L2

11(L12/L11 + θn)

=
L21

L11
+

1
L11(L11θn + L12)

=
L21(L11θn + L12) + 1

L11(L11θn + L12)
=

L21θn + L22

L11θn + L12

by c2
1σ1 = L11L22, c1σ1 = L11 and 1 = L11L22 − L12L21, we obtain

θn+1 =
L11θn + L12

L21θn + L22
. (3.22)

We will solve these recurrence relations:

Case 1. T0 �= T0,cr:
Taking account of (1.30), we put

α± :=
L22 − λ±

−L21
=

L11 − λ∓
L21

. (3.23)

Then we see that α± are the roots of the equation

α =
L11α + L12

L21α + L22
. (3.24)

Since

θn+1 − α± =
(L11L22 − L12L21)(θn − α±)
(L21α± + L22)(L21θn + L22)

=
θn − α±

λ±(L21θn + L22)

by L11L22 − L12L21 = 1 and L21α± + L22 = λ±, we have
θn+1 − α+

θn+1 − α−
=

λ−
λ+

× θn − α+

θn − α−
,
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which yields

θn =
α+(θ1 − α−)λn−1

+ − α−(θ1 − α+)λn−1
−

(θ1 − α−)λn−1
+ − (θ1 − α+)λn−1

−
=

L12μn

L22μn − μn−1
. (3.25)

Here we used

θ1 − α± =
L12

L22
− L11 − λ∓

L21
=

L22λ∓ − 1
L21L22

=
λ∓(L22 − λ±)

L21L22
,

α∓(θ1 − α±) =
λ∓(L11 − λ±)(L22 − λ±)

L2
21L22

=
L12λ∓
L21L22

by L11L22 −L12L21 = 1 and (L11 −λ±)(L22 −λ±) = L12L21. Then, by (3.17),
(3.18) and (3.25), we have

cn

cn+1
= L11

(
1

θn+1
− L21

L11

)
θn+1 = L11 − L21θn+1 = L11 − L12L21μn+1

L22μn+1 − μn

=
μn+1 − L11μn

L22μn+1 − μn
=

L22μn − μn−1

L22μn+1 − μn
.

Here we used L11L22 − L12L21 = 1 and μn+1 = (λ+ + λ−)μn − μn−1 =
(L11 + L22)μn − μn−1. This yields

cn = c1

n−1∏
k=1

ck+1

ck
= L22μn − μn−1

by c1 = L22, μ1 = 1 and μ0 = 0. We finally consider (3.19). Here we note that

σn+1

θn+1
− σn

θn
=

1
c2
n

(
1

L12/L11 + θn
− 1

θn

)
= − L12/L11

c2
nθn(L12/L11 + θn)

= − L12

cnθn(L12cn + L11cnθn)
= − 1

L12μn+1μn

= − 1
L12

(
μn

μn+1
− μn−1

μn

)

holds by cnθn = L12μn, L12cn + L11cnθn = L12(L22μn − μn−1 + L11μn) =
L12μn+1 and μ2

n − μn+1μn−1 = (λ+ − λ−)2/(λ+ − λ−)2 = 1. Thus we have

σn

θn
=

1
L12

(
−μn−1

μn
+ L11

)
=

L11μn − μn−1

L12μn
,

which yields

σn =
L11μn − μn−1

L22μn − μn−1
.

Therefore, the solutions of (3.17), (3.18) and (3.19) are given by

θn =
L12μn

L22μn − μn−1
, cn = L22μn − μn−1, σn =

L11μn − μn−1

L22μn − μn−1
. (3.26)

Case 2. T0 = T0,cr:
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Taking account of (1.42), we put

α0 =
L22 − λ0

−L21
. (3.27)

Then one can obtain

θn+1 − α0 =
θn − α0

λ0(L21θn + L22)

in the same way as in case 1, which yields

1
θn+1 − α0

=
λ0(L21α0 + L22)

θn − α0
+ λ0L21 =

1
θn − α0

+ λ0L21,

where we used λ2
0 = 1. Hence we obtain

θn = α0 +
θ1 − α0

1 + (n − 1)λ0L21(θ1 − α0)
=

θ1 + (n − 1)λ0L21α0(θ1 − α0)
1 + (n − 1)λ0L21(θ1 − α0)

,

which can be written as

θn =
nL12

nL22 − (n − 1)λ0
.

Here we used λ2
0 = 1 and

θ1 =
L12

L22
, θ1 − α0 =

L22λ0 − 1
L21L22

, α0(θ1 − α0) =
L12λ0

L21L22
.

Then, in the same way as in case 1, one can solve (3.18) and (3.19). Therefore,
the solutions of (3.17), (3.18) and (3.19) are given by

θn =
nL12

nL22 − (n − 1)λ0
, cn = λn−1

0 {nL22 − (n − 1)λ0},

σn =
nL11 − (n − 1)λ0

nL22 − (n − 1)λ0
.

(3.28)

Now we will mention exceptional cases: when TB = TB,exc, L22 = 0 holds.
Then we will recognize 1/θ1, 1/(c1θ1) and σ1/θ1 as 0, m|ω̄| and −m|ω̄|2T0,
respectively, as mentioned in the end of (I). By using these, we see that θn,
cn and σn with n ≥ 2 can be given by (3.26) or (3.28). Also in the case where
σ1 = σ0(T ) = 0, that is, L11 = 0, θn, cn and σn can be given by (3.26) or
(3.28). In the case where θ1 = θ0(T ) = 0, that is, L12 = 0, one can obtain

S̃0(nT ;x, y) = λn
+e−im|ω̄| cos(|ω̄|TB)(1−λ2n

+ )x2/(2 sin(|ω̄|TB))

× δ(λn
+R̂(φ(nT ))x − y)

= λn
−e−im|ω̄| cos(|ω̄|TB)(1−λ2n

− )y2/(2 sin(|ω̄|TB))

× δ(x − λn
−R̂(−φ(nT ))y) (3.29)

with λ+ = λ−1
− = cos(|ω̄|TB) (cf. (1.39)), by using the argument in (I). Such

nT ’s should be called resonant times. Here we used the facts that(
σn − 1

c2
n

)
1
θn

=
(

σ1 − 1
c2
1

)
1
θ1

×
n∑

k=1

1
c2
k−1
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holds in the case where L12 �= 0, where c0 = 1 and that ck = λk
+ holds in the

case where L12 = 0.

(III) S̃0(nT ;x, y) for n ∈ Z\{0}:
Even if −n ∈ N , S̃0(nT ;x, y) can be written as (3.14) with (3.21) and

(3.26) when T0 �= T0,cr; while, with (3.21) and (3.28) when T0 = T0,cr: We first
note that S̃0(nT ;x, y) is equal to S̃0(−nT ; y, x). By equating the coefficients
of x2, (R̂(φ)x) · y and y2 in the exponents of the exponential functions in
S̃0(nT ;x, y) and S̃0(−nT ; y, x), we have

1
θn

= −σ−n

θ−n
,

R̂(φn)
cnθn

= − R̂(−φ−n)
c−nθ−n

,
σn

θn
= − 1

θ−n
, (3.30)

Then one can see easily that φn for −n ∈ N is given by (3.21) and that θn,
cn and σn for −n ∈ N are given by (3.26) when T0 �= T0,cr, while, by (3.28)
when T0 = T0,cr, respectively. Here we used μ−n = −μn when T0 �= T0,cr.

(IV) S̃0(t + nT ;x, y) for n ∈ Z\{0} and t ∈ [0, T ):
By using (3.8) and (3.15), one can obtain

S̃0(t + nT ;x, y) =
1

2πicn(t)θn(t)
eix2/(2θn(t))

× e−i(R̂(φn(t))x)·y/(cn(t)θn(t))eiσn(t)y2/(2θn(t)), (3.31)

where
1

θn(t)
=
(

1 − 1
c0(t)2σ0(t)

)
1

θ0(t)
+

1
(c0(t)σ0(t))2(θ0(t)/σ0(t) + θn)

,

(3.32)
1

cn(t)θn(t)
=

1
c0(t)σ0(t)cn(θ0(t)/σ0(t) + θn)

, (3.33)

σn(t)
θn(t)

=
(

σn − 1
c2
n

)
1
θn

+
1

c2
n(θ0(t)/σ0(t) + θn)

, (3.34)

φn(t) = φ0(t) + φn (3.35)

in the same way as above.

(V) S0(t + nT, s;x, y) for n ∈ Z and t, s ∈ [0, T ):
Since the integral kernel of U0(s, 0)∗ is given by

S̃0(s; y, x) =
1

c0(s)σ0(s)
ei{1−1/(c0(s)

2σ0(s))}y2/(−2θ0(s))

×S0
0

(
− θ0(s)

σ0(s)
;x − R̂(φ0(s))y

c0(s)σ0(s)

)
, (3.36)

one can obtain the integral kernel S0(t+nT, s;x, y) of U0(t+nT, s) as follows:

S0(t + nT, s;x, y)

=
1

cn(t)σn(t)
ei{1−1/(cn(t)2σn(t))}x2/(2θn(t))
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× 1
c0(s)σ0(s)

ei{1−1/(c0(s)
2σ0(s))}y2/(−2θ0(s))

×S0
0

(
θn(t)
σn(t)

− θ0(s)
σ0(s)

;
R̂(φn(t))x
cn(t)σn(t)

− R̂(φ0(s))y
c0(s)σ0(s)

)
. (3.37)

4. Local Compactness Property of the Free Floquet
Hamiltonian

Let Ã be the multiplication by Ã ∈ Lp(R2) with some p ∈ [2,∞]. Then we
will consider the operator Ã(K0 − ζ)−1Ã with ζ ∈ C\R = H+ ∪ H−, where
H± :=

{
ζ ∈ C

∣∣ ±Im ζ > 0
}
. It is well known that for ζ ∈ H+ and f ∈ K ,

(Ã(K0 − ζ)−1Ãf)(t) can be represented as

(Ã(K0 − ζ)−1Ã)f(t) = i

∫ ∞

0

eisζÃ(e−isK0Ãf)(t) ds

= i

{ ∞∑
n=1

∫ T

0

ei(t+nT−s)ζÃU0(t + nT, s)(Ãf)(s) ds

+
∫ t

0

ei(t−s)ζÃU0(t, s)(Ãf)(s) ds

}

(see, e.g. Yajima [13]). Also for ζ ∈ H−, a quite similar formula holds.
In order to derive some useful properties of Ã(K0 − ζ)−1Ã, we use the

integral kernel S0(t + nT, s;x, y) of U0(t + nT, s) for n ∈ Z and t, s ∈ [0, T ),
which was found in Sect. 3. By using the method of Kato [8], one can obtain
the estimate

‖ÃU0(t + nT, s)Ãf(s)‖H ≤
(

1
2π|d̃n(t, s)|

)2/p

‖Ã‖2
Lp(R2)‖f(s)‖H , (4.1)

where

d̃n(t, s) = cn(t)σn(t)c0(s)σ0(s)
(

θn(t)
σn(t)

− θ0(s)
σ0(s)

)
. (4.2)

When T0 �= T0,cr, d̃n(t, s) can be represented by

d̃n(t, s) =
1

m|ω̄|
{

−(L11μn − μn−1)Σ0(t)Θ0(s) + m|ω̄|L12μnΣ0(t)Σ0(s)

− L21μn

m|ω̄| Θ0(t)Θ0(s) + (L22μn − μn−1)Θ0(t)Σ0(s)
}

=
−1

L21(λ+ − λ−)
{λn

+Ω+(t)Ω−(s) − λn
−Ω−(t)Ω+(s)}, (4.3)

while, when T0 = T0,cr, d̃n(t, s) can be represented by
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d̃n(t, s) =
λn−1

0

m|ω̄|
{

−(nL11 − (n − 1)λ0)Σ0(t)Θ0(s) + m|ω̄|nL12Σ0(t)Σ0(s)

− nL21

m|ω̄|Θ0(t)Θ0(s) + (nL22 − (n − 1)λ0)Θ0(t)Σ0(s)
}

= λn
0

[
1

L21
nΩ0(t)Ω0(s) +

1
m|ω̄| {Θ0(t)Σ0(s) − Σ0(t)Θ0(s)}

]
, (4.4)

where

Θ0(t) := m|ω̄|c0(t)θ0(t)

=

{
sin(|ω̄|t) (t ∈ [0, TB ])
|ω̄|(t − TB) cos(|ω̄|TB) + sin(|ω̄|TB) (t ∈ (TB , T ]),

Σ0(t) := c0(t)σ0(t)

=

{
cos(|ω̄|t) (t ∈ [0, TB ])
cos(|ω̄|TB) − |ω̄|(t − TB) sin(|ω̄|TB) (t ∈ (TB , T ]),

Ωκ(t) :=
L21

m|ω̄|Θ0(t) − (L22 − λκ)Σ0(t) (κ ∈ {+,−, 0}).

(4.5)

Now we introduce the zero set of d̃n(t, ·)
Zn(t) :=

{
s ∈ [0, T )

∣∣ d̃n(t, s) = 0
}

(4.6)

for t ∈ [0, T ). Since d̃(t, s) with a fixed t is represented as C1 sin(|ω̄|s) +
C2 cos(|ω̄|s) in the interval [0, TB ], it follows from (1.14) that #(Zn(t)∩[0, TB ])
≤ 1, while, since d̃(t, s) with a fixed t is represented as C3s+C4 in the interval
(TB , T ), #(Zn(t) ∩ (TB , T )) ≤ 1 holds. Hence we have #(Zn(t)) ≤ 2. Here we
denote the cardinal number of the set S by #(S). If T0 ≥ T0,cr and T0 �= T0,res,
then one can show easily that #(Zn(t)) = 1 for sufficiently large |n|, because
d̃n(t, 0)d̃n(t, T ) < 0 holds for sufficiently large |n|.

Now we consider the case where Ã = F (|x| ≤ R) with R > 0. Here
F (|x| ≤ R) stands for the characteristic function of the set

{
x ∈ R2

∣∣ |x| ≤ R
}
.

We note Ã ∈ Lp(R2) for any p ∈ [1,∞]. Let ζ ∈ H+ and ε > 0. Take an
Nε ∈ N such that

∞∑
n=Nε

e−(n−1)T Im ζ ≤ ε

2
,

and define the operator Jε,1 on K by

(Jε,1f)(t) =
∞∑

n=Nε

i

∫ T

0

ei(t+nT−s)ζÃU0(t + nT, s)(Ãf)(s) ds.

Here we note that∫ T

0

‖ÃU0(t + nT, s)Ãf(s)‖H ds ≤
√

T‖f‖K (4.7)
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holds for any n ∈ N , by ‖Ã‖L∞(R2) = 1. By using this, we have

‖Jε,1f‖K ≤ ε

2
T‖f‖K .

For each n ∈ {0, . . . , Nε − 1}, there exists a neighborhood V ε
n (t) ⊂ [0, T ] of

Zn(t) such that∫
V ε

n (t)

‖ÃU0(t + nT, s)Ãf(s)‖H ds ≤ ε

2Nε

√
T‖f‖K . (4.8)

By defining the operator Jε,2 on K by

(Jε,2f)(t) =
Nε−1∑
n=1

i

∫
V ε

n (t)

ei(t+nT−s)ζÃU0(t + nT, s)(Ãf)(s) ds

+ i

∫
V ε
0 (t)∩[0,t]

ei(t−s)ζÃU0(t, s)(Ãf)(s) ds,

we also have

‖Jε,2f‖K ≤ ε

2
T‖f‖K . (4.9)

Putting Jε,0 := Ã(K0−ζ)−1Ã−(Jε,1+Jε,2), in the same way as in Møller [11],
one can prove that Jε,0 is compact on K , by virtue of the fact that ÃU0(t +
nT, s)Ã is a Hilbert-Schmidt operator on H . This yields the compactness of
Ã(K0 − ζ)−1Ã:

Proposition 4.1. Suppose (1.14). Let ζ ∈ C\R and Ã = F (|x| ≤ R) with
R > 0. Then Ã(K0 − ζ)−1Ã is compact on K .

By virtue of the first resolvent formula, the local compactness property
of K0 is a direct consequence of Proposition 4.1:

Corollary 4.2. (Local compactness property of K0) Suppose (1.14). Let ζ ∈
C\R and Ã = F (|x| ≤ R) with R > 0. Then Ã(K0 − ζ)−1 is compact on K .

5. Limiting Absorption Principles for Floquet Hamiltonians

In this and the next sections, we always assume T0 > T0,cr, that is, (1.34).
And, when π/2 < |ω̄|TB < π, we assume additionally T0 �= T0,res, that is,
(1.41).

We first show the limiting absorption principle for K0:

Theorem 5.1. (Limiting absorption principle for K0) Suppose (1.14), and that
T0 satisfies the conditions stated in Theorem 1.3. Let κ > 0. Then

sup
Λ∈R, 0<ε<1

‖〈x〉−κ(K0 − (Λ ± iε))−1〈x〉−κ‖B(K ) < ∞ (5.1)

holds.
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Proof. We will watch 〈x〉−κ(K0 − ζ)−1〈x〉−κ with ζ ∈ H+. Putting Ã(x) =
〈x〉−κ, we see that Ã ∈ Lp(R2) for p ∈ (2/κ,∞]. Let n ∈ N . Suppose p
satisfies max{4, 2/κ} < p < ∞. Putting

γn,1(s) :=
1

m|ω̄| {−(L11μn − μn−1)Θ0(s) + m|ω̄|L12μnΣ0(s)},

γn,2(s) :=
1

m|ω̄|
{

−L21μn

m|ω̄| Θ0(s) + (L22μn − μn−1)Σ0(s)
}

,

(5.2)

d̃n(t, s) is written as d̃n(t, s) = γn,1(s)Σ0(t) + γn,2(s)Θ0(t). When t ∈ [0, TB),
d̃n(t, s) can be represented as

d̃n(t, s) = γn,1(s) cos(|ω̄|t) + γn,2(s) sin(|ω̄|t)
= (γn,1(s)2 + γn,2(s)2)1/2 sin(|ω̄|t + ηn(s)) (5.3)

with some ηn(s) ∈ [0, 2π). Then one can obtain∫ TB

0

‖ÃU0(t + nT, s)Ãf(s)‖2
H dt

≤ C1(γn,1(s)2 + γn,2(s)2)−2/p‖Ã‖4
Lp(R2)‖f(s)‖2

H , (5.4)

by (4.1) and −4/p > −1, even if d̃n(·, s) has a zero in the interval [0, TB). Here
C1 is a positive constant which is independent of n and s. When t ∈ [TB , T ),
d̃n(t, s) can be represented as

d̃n(t, s) = (− sin(|ω̄|TB)γn,1(s) + cos(|ω̄|TB)γn,2(s))|ω̄|(t − TB)
+ cos(|ω̄|TB)γn,1(s) + sin(|ω̄|TB)γn,2(s). (5.5)

Then, in the same way as above, one can also obtain∫ T

TB

‖ÃU0(t + nT, s)Ãf(s)‖2
H dt

≤ C2| − sin(|ω̄|TB)γn,1(s) + cos(|ω̄|TB)γn,2(s)|−4/p‖Ã‖4
Lp(R2)‖f(s)‖2

H ,

(5.6)

where C2 is a positive constant which is independent of n and s. From (5.4)
and (5.6), we have

∫ T

0

(∫ T

0

‖ÃU0(t+nT, s)Ãf(s)‖2
H dt

)1/2

ds≤C3|λ−|−2n/p‖Ã‖2
Lp(R2)‖f‖K ,

(5.7)

as well as∫ T

0

(∫ T

s

‖ÃU0(t, s)Ãf(s)‖2
H dt

)1/2

ds ≤ C3‖Ã‖2
Lp(R2)‖f‖K , (5.8)

by using the Schwarz inequality. Here C3 is a positive constant which is inde-
pendent of n. Then, using Minkowski’s integral inequality, ‖(Ã(K0 − ζ)−1Ã)
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f‖K can be estimated as

‖(Ã(K0 − ζ)−1Ã)f‖K ≤ C3

∞∑
n=0

|λ−|−2n/p‖Ã‖2
Lp(R2)‖f‖K

by |ei(t+nT−s)ζ | ≤ 1. Since
∑∞

n=0 |λ−|−2n/p < ∞ by |λ−| > 1, this yields

‖Ã(K0 − ζ)−1Ã‖B(K ) ≤ C4‖Ã‖2
Lp(R2). (5.9)

The case where ζ ∈ H− can treated with similarly. This completes the proof.
�

Since
∑∞

n=1 n−2/p = ∞ for any p ∈ (2,∞), our proof of Theorem 5.1
does not work well in the case where T0 = T0,cr. If the space dimension is
equal to 3, one may use

∑∞
n=1 n−3/p < ∞ for p ∈ (2, 3) even in the case where

T0 = T0,cr.

Corollary 5.2. Suppose (1.14), and that T0 satisfies the conditions stated in
Theorem 1.3. Then K0 has a pure absolutely continuous spectrum, that is,

Kac(K0) = K , (5.10)

where Kac(K0) is the absolutely continuous spectral subspace associated with
K0.

Let V (x) be the potential satisfying the condition (V )ρ for some ρ >

0. Let Ã and B̃ be the multiplication by Ã(x) = |V (x)|1/2 and B̃(x) =
(sgnV (x))|V (x)|1/2, respectively. Then, by virtue of Corollary 4.2 and the proof
of Theorem 5.1, the following results can be obtained in the same way as in
Yajima [13], so we omit the proofs:

Lemma 5.3. Suppose (1.14), and that T0 satisfies the conditions stated in The-
orem 1.3. Assume that V satisfies the condition (V )ρ for some ρ > 0. Put
Q0(ζ) := B̃(K0 − ζ)−1Ã with ζ ∈ C\R = H+ ∪ H−. Then Q0(ζ) has the
following properties:
1. Q0(ζ) is a B(K )-valued analytic function on H±.
2. For each ζ ∈ C\R, Q0(ζ) is compact on K .
3. Q0(Λ ± iε) have boundary values in B(K ) as ε → +0, whose convergence
is uniformly in Λ ∈ R.

Lemma 5.4. Suppose (1.14), and that T0 satisfies the conditions stated in The-
orem 1.3. Assume that V satisfies the condition (V )ρ for some ρ > 0. Then,
for each ζ ∈ C\R,

(K − ζ)−1 = (K0 − ζ)−1 − (K0 − ζ)−1Ã(1 + Q0(ζ))−1B̃(K0 − ζ)−1 (5.11)

holds.

Theorem 5.5. (Limiting absorption principle for K) Suppose (1.14), and that
T0 satisfies the conditions stated in Theorem 1.3. Assume that V satisfies the
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condition (V )ρ for some ρ > 0. Let κ > 0. Then there exists a closed null set
Γ0 ⊂ R such that

sup
Λ∈R\Γ0, 0<ε<1

‖〈x〉−κ(K − (Λ ± iε))−1〈x〉−κ‖B(K ) < ∞ (5.12)

holds.

Then the following theorem can be obtained as a direct consequence of
the abstract stationary scattering theory (see, e.g. Kato–Kuroda [9]):

Theorem 5.6. Suppose (1.14), and that T0 satisfies the conditions stated in
Theorem 1.3. Assume that V satisfies the condition (V )ρ for some ρ > 0.
Then the strong limits

W ± := s-lim
σ→±∞ eiσKe−iσK0 (5.13)

exist and are asymptotically complete:

Ran(W ±) = Kac(K). (5.14)

6. Existence and Asymptotic Completeness of Physical Wave
Operators

At first, we will show the existence of W+. The existence of W− can be shown
similarly.

Let M(τ), D(τ) and F be unitary operators on H given by

(M(τ)ϕ)(x) = eix2/(2τ)ϕ(x), (D(τ)ϕ)(x) =
1
iτ

ϕ
(x

τ

)
,

F [ϕ](ξ) =
1
2π

∫
R2

e−ixξϕ(x) dx, (6.1)

respectively. As is well known, e−itp2/2 is represented as

e−itp2/2 = M(t)D(t)FM(t). (6.2)

Now we see that U0(t+nT, 0) for n ∈ Z and t ∈ [0, T ) can be also represented
as

U0(t + nT, 0) = eiφn(t)L̃M(θn(t))D(cn(t)θn(t))FM

(
θn(t)
σn(t)

)
(6.3)

by virtue of (3.31). Here we used (R̂(φn(t))x)2 = x2. Since

lim
n→∞

θn(t)
σn(t)

=
L12

L11 − λ+
=: τ̂∞ (6.4)

by (3.19) and (3.34), we obtain the following lemma in the same way as in the
proof of Theorem IX.31 of Reed–Simon [12]:

Lemma 6.1. Suppose (1.14), and that T0 satisfies the conditions stated in The-
orem 1.3. Put

Û0(t + nT ) = eiφn(t)L̃M(θn(t))D(cn(t)θn(t))FM(τ̂∞) (6.5)
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for n ∈ N ∪ {0} and t ∈ [0, T ). Let ϕ ∈ S (R2). Then there exists a constant
Cϕ > 0 such that

‖U0(t + nT, 0)ϕ − Û0(t + nT )ϕ‖H ≤ Cϕ|λ−|−2n (6.6)

holds for n ∈ N ∪ {0}.
Proof. We have only to estimate ‖M(θn(t)/σn(t))ϕ − M(τ̂∞)ϕ‖H , by virtue
of the unitarity of eiφn(t)L̃M(θn(t))D(cn(t)θn(t))F . Noting∥∥∥M

(
θn(t)
σn(t)

)
ϕ − M(τ̂∞)ϕ

∥∥∥
H

≤ 1
2

∣∣∣σn(t)
θn(t)

− 1
τ̂∞

∣∣∣‖x2ϕ‖H ,

∣∣∣σn(t)
θn(t)

− σn

θn

∣∣∣ =
∣∣∣ −θ0(t)/σ0(t)
c2
nθn(θ0(t)/σ0(t) + θn)

∣∣∣ ≤ C1|λ−|−2n,

∣∣∣σn

θn
− 1

τ̂∞

∣∣∣ =
∣∣∣ (L11μn − μn−1) − (L11μn − λ+μn)

L12μn

∣∣∣ ≤ C2|λ−|−2n

by (3.19) and (3.34), we have∥∥∥∥M

(
θn(t)
σn(t)

)
ϕ − M(τ̂∞)ϕ

∥∥∥∥
H

≤ 1
2
(C1 + C2)|λ−|−2n‖x2ϕ‖H ,

which yields the lemma. �

Lemma 6.2. Suppose (1.14), and that T0 satisfies the conditions stated in The-
orem 1.3. Assume that V satisfies the condition (V )ρ for some ρ > 0. Let
ϕ ∈ S (R2) be such that F [M(τ̂∞)ϕ] ∈ C∞

0 (R2\{0}). Then∫ ∞

0

‖V Û0(s)ϕ‖H ds < ∞ (6.7)

holds.

Proof. By assumption, one can obtain the estimate

‖V Û0(t + nT )ϕ‖H ≤ C3(1 + |cn(t)θn(t)|)−ρ (6.8)

for n ∈ N ∪ {0} and t ∈ [0, T ). By (4.3) and (4.5), we have

cn(t)θn(t) = d̃n(t, 0) =
λ+ − L11

L21(λ+ − λ−)
λn

+Ω+(t) − λ− − L11

L21(λ+ − λ−)
λn

−Ω−(t).

Here we used θ0(0) = 0, c0(0) = σ0(0) = 1 and Ω±(0) = −(L22 − λ±) =
−(λ∓ − L11). By straightforward calculation, we have

Ω−(T ) = L12L21 − L11(L22 − λ−) = λ−L11 − 1 = λ−Ω−(0),

which implies Ω−(0)Ω−(T ) < 0 by λ− < 0. Hence, we see that for sufficiently
large n, there exists a unique zero τn of cn(t)θn(t) in the interval [0, T ). Put
λ̃− := (|λ−|+1)/2 > 1 and λ̂− := |λ−|/λ̃− > 1. Since τn’s are near the unique
zero T− of Ω−(t) in [0, T ), there exists an N0 ∈ N such that for n ≥ N0, the
λ̃−n

− -neighborhood of τn is included in [0, T ). In [0, T )\(τn − λ̃−n
− , τn + λ̃−n

− ),

‖V Û0(t + nT )ϕ‖H ≤ C4λ̂
−nρ
− (6.9)
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holds. Thus we have∫ T

0

‖V Û0(t + nT )ϕ‖H dt ≤ 2C3λ̃
−n
− + C4T λ̂−nρ

− (6.10)

for n ≥ N0, which yields∫ ∞

0

‖V Û0(s)ϕ‖H ds ≤ C3N0T +
∞∑

n=N0

(2C3λ̃
−n
− + C4T λ̂−nρ

− ) < ∞, (6.11)

by λ̃− > 1 and λ̂ρ
− > 1. This completes the proof. �

By virtue of these two lemmas, one can obtain the following corollary:

Corollary 6.3. Suppose (1.14), and that T0 satisfies the conditions stated in
Theorem 1.3. Assume that V satisfies the condition (V )ρ for some ρ > 0. Let
ϕ ∈ S (R2) be such that F [M(τ̂∞)ϕ] ∈ C∞

0 (R2\{0}). Then∫ ∞

0

‖V U0(s, 0)ϕ‖H ds < ∞ (6.12)

holds.

By virtue of this corollary, one can show easily the existence of W+ϕ for
ϕ ∈ S (R2) be such that F [M(τ̂∞)ϕ] ∈ C∞

0 (R2\{0}), by using the Cook-
Kuroda method. Since

{
ϕ ∈ S (R2)

∣∣ F [M(τ̂∞)ϕ] ∈ C∞
0 (R2\{0})

}
is dense

in L2(R2), the proof of the existence of W+ is completed by the density
argument.

Now, by following the argument of Yajima [13], which is the most impor-
tant part of the so-called Howland–Yajima method, one can prove the asymp-
totic completeness of W±: let V and V0 be unitary operators on K defined
by

(V f)(t) = U(t, 0)f(t), (V0f)(t) = U0(t, 0)f(t)

for f ∈ K . Let Û and Ŵ ± be the multiplication operators by the Floquet
operator U(T, 0) and the wave operators W± on K , respectively. Then we
have

e−iTK = V Û V ∗, W ± = V Ŵ ±V ∗
0 ,

which yield

Kac(K) = Kac(e−iTK) = V Kac(Û ) = V L2(T ;Hac(U(T, 0))),

Ran(W ±) = V Ran(Ŵ ±) = V L2(T ; Ran(W±)).

By virtue of Theorem 5.6, we obtain (1.59), which is just the asymptotic
completeness of W±. This completes the proof of Theorem 1.3.
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7. Remarks

Suppose that B(t) = (0, 0, B(t)) is given by a general T -periodic B(t) ∈
C(R;R). In Korotyaev [10], the following factorization of U0(t, 0) was derived:

U0(t, 0) = ei
∫ t
0 ω̄(s) dsL̃M

( −1
ma2(t)

)
iD

(
1√

ma1(t)

)
e−i

∫ t
0 a1(s) ds(p2+x2)/2,

(7.1)

where ω̄(s) = qB(s)/(2m), a1(t) and a2(t) are the solutions of{
a′
1(t) = 2a1(t)a2(t),

a′
2(t) = a2(t)2 − a1(t)2 + ω̄(t)2

(7.2)

with a1(0) = 1/m and a2(0) = 0. These equations yield Riccati equations

(a2(t) ± ia1(t))′ = (a2(t) ± ia1(t))2 + ω̄(t)2. (7.3)

By putting

−(a2(t) ± ia1(t)) =
y′

±(t)
y±(t)

,

we obtain the Hill equation

y′′
±(t) + ω̄(t)2y±(t) = 0. (7.4)

By using real linearly independent solutions y1(t) and y2(t) of the Hill equation
(7.4), a1(t) and a2(t) are represented as

a1(t) =
y′
1(t)y2(t) − y1(t)y′

2(t)
y1(t)2 + y2(t)2

,

a2(t) = −y1(t)y′
1(t) + y2(t)y′

2(t)
y1(t)2 + y2(t)2

.

(7.5)

As mentioned in Sect. 1, under the assumption on B(t) that the Hill equa-
tion has solutions y1(t) = eλtχ1(t) and y2(t) = e−λtχ2(t) with λ > 0, and
time-periodic functions χ1(t) and χ2(t), Korotyaev [10] showed the asymptotic
completeness of wave operators for potentials V satisfying |V (x)| ≤ C〈x〉−ρ

with some ρ > 0, by using the estimate
1√

ma1(t)
= O(eλ|t|).

Since e−it(p2+x2)/2 is represented as

e−it(p2+x2)/2 = M(tan t)D(sin t)FM(tan t), (7.6)

U0(t, 0) is also represented as

U0(t, 0) = ei
∫ t
0 ω̄(s) dsL̃M

( −1
ma2(t)

)
D

(
1√

ma1(t)

)
M

(
tan

(∫ t

0

a1(s) ds

))

×D

(
sin

(∫ t

0

a1(s) ds

))
FM

(
tan

(∫ t

0

a1(s) ds

))
. (7.7)
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This is quite similar to our factorization of U0(t, 0) which is given as follows:

U0(t, 0) = eiφ(t)L̃M(θ(t))D(c(t)θ(t))FM

(
θ(t)
σ(t)

)
, (7.8)

where θ(t), c(t)θ(t), θ(t)/σ(t) and φ(t) should satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ′(t) =
1
m

(1 + m2ω̄(t)2θ(t)2),

(c(t)θ(t))′

c(t)θ(t)
=

1
m

1
θ(t)

,

(θ(t)/σ(t))′

(θ(t)/σ(t))2
=

1
m

1
(c(t)θ(t))2

,

φ′(t) = ω̄(t).

(7.9)

The first and second equations yield the Hill equation

(c(t)θ(t))′′ + ω̄(t)2(c(t)θ(t)) = 0 (7.10)

(cf. (7.4)). Thus, also in our analysis, solutions of the Hill equation (7.10) play
an important role, as has been seen in the previous sections.
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