Spectrum and Eigenfunctions of the Lattice Hyperbolic Ruijsenaars-Schneider System with Exponential Morse Term

Jan Felipe van Diejen and Erdal Emsiz

Abstract

We place the hyperbolic quantum Ruijsenaars-Schneider system with an exponential Morse term on a lattice and diagonalize the resulting n-particle model by means of multivariate continuous dual q Hahn polynomials that arise as a parameter reduction of the MacdonaldKoornwinder polynomials. This allows to compute the n-particle scattering operator, to identify the bispectral dual system, and to confirm the quantum integrability in a Hilbert space setup.

1. Introduction

It is well known that the hyperbolic Calogero-Moser n-particle system on the line can be placed in an exponential Morse potential without spoiling the integrability $[1,15]$. An extension of Manin's Painlevé-Calogero correspondence links the particle model in question to a multicomponent Painlevé III equation [26]. Just as for the conventional Calogero-Moser system without Morse potential, the integrability is preserved upon quantization and the corresponding spectral problem gives rise to a rich theory of remarkable novel hypergeometric functions in several variables $[9-11,19]$.

An integrable Ruijsenaars-Schneider type (q-)deformation [20,24] of the hyperbolic Calogero-Moser system with Morse potential was introduced in [25] and in a more general form in [3, Sec. II.B]. Recently, it was pointed out that particle systems of this kind can be recovered from the Heisenberg double of $S U(n, n)$ via Hamiltonian reduction [18]. In the present work, we address the eigenvalue problem for a quantization of the latter hyperbolic RuijsenaarsSchneider system with Morse term. Specifically, it is shown that the eigenfunctions are given by multivariate continuous dual q-Hahn polynomials that arise as a parameter reduction of the Macdonald-Koornwinder polynomials $[14,17]$.

This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grants \# 1130226 and \# 1141114.

As immediate by-products, one reads off the n-particle scattering operator and the commuting quantum integrals of a bispectral dual system $[7,8]$.

The material is organized is as follows. In Sect. 2, we place the hyperbolic Ruijsenaars-Schneider system with Morse term from [3] on a lattice. The diagonalization of the resulting quantum model in terms of multivariate continuous dual q-Hahn polynomials is carried out in Sect. 3. In Sects. 4 and 5 , the n-particle scattering operator and the bispectral dual integrable system are exhibited. Finally, the quantum integrability of both the hyperbolic Ruijsenaars-Schneider system with Morse term on the lattice and its bispectral dual system are addressed in Sect. 6 .

2. Hyperbolic Ruijsenaars-Schneider System with Morse Term

The hyperbolic quantum Ruijsenaars-Schneider system on the lattice was briefly introduced in [21, Sec. 3C2] and studied in detail from the point of view of its scattering behavior in [23] (see also [5, Sec. 6] for a further generalization in terms of root systems). In this section, we formulate a corresponding lattice version of the hyperbolic quantum Ruijsenaars-Schneider system with Morse term introduced in [3, Sec. II.B].

2.1. Hamiltonian

The Hamiltonian of our n-particle model is given by the formal difference operator [3, Eqs. (2.25), (2.26)]:

$$
\begin{align*}
H:= & \sum_{j=1}^{n}\left(w_{+}\left(x_{j}\right)\left(\prod_{\substack{1 \leq k \leq n \\
k \neq j}} \frac{t^{-1}-q^{x_{j}-x_{k}}}{1-q^{x_{j}-x_{k}}}\right)\left(T_{j}-1\right)\right. \\
& \left.+w_{-}\left(x_{j}\right)\left(\prod_{\substack{1 \leq k \leq n \\
k \neq j}} \frac{t-q^{x_{j}-x_{k}}}{1-q^{x_{j}-x_{k}}}\right)\left(T_{j}^{-1}-1\right)\right), \tag{2.1}
\end{align*}
$$

where

$$
\begin{aligned}
& w_{+}(x):=\sqrt{\frac{q t_{0} t_{3}}{t_{1} t_{2}}}\left(1-t_{1} q^{x}\right)\left(1-t_{2} q^{x}\right), \\
& w_{-}(x):=\sqrt{\frac{t_{1} t_{2}}{q t_{0} t_{3}}}\left(1-t_{0} q^{x}\right)\left(1-t_{3} q^{x}\right),
\end{aligned}
$$

and $T_{j}(j=1, \ldots, n)$ acts on functions $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ by a unit translation of the j th position variable

$$
\left(T_{j} f\right)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{j-1}, x_{j}+1, x_{j+1}, \ldots, x_{n}\right) .
$$

Here, q denotes a real-valued scale parameter, t plays the role of the coupling parameter for the Ruijsenaars-Schneider inter-particle interaction, and the parameters $t_{r}(r=0, \ldots, 3)$ are coupling parameters governing the exponential Morse interaction. Upon setting $t_{0}=\epsilon t^{n-1} q^{-1}$ and $t_{r}=\epsilon$ for $r=1,2,3$, one has that $w_{ \pm}\left(x_{j}\right) \rightarrow t^{ \pm(n-1) / 2}$ when $\epsilon \rightarrow 0$. We thus recover in this limit the Hamiltonian of the hyperbolic quantum Ruijsenaars-Schneider system given in
terms of Ruijsenaars-Macdonald difference operators [16,20]. By a translation of the center-of-mass of the form $q^{x_{j}} \rightarrow c q^{x_{j}}(j=1, \ldots, n)$ for some suitable constant c, it is possible to normalize one of the t_{r}-parameters to unit value; from now on, it will, therefore, always be assumed that $t_{3} \equiv 1$ unless explicitly stated otherwise.

2.2. Restriction to Lattice Functions

Let $\rho+\Lambda:=\{\rho+\lambda \mid \lambda \in \Lambda\}$, where Λ denotes the cone of integer partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with weakly decreasingly ordered parts $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0$, and $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$ with

$$
\begin{equation*}
\rho_{j}=(n-j) \log _{q}(t) \quad(j=1, \ldots, n) \tag{2.2}
\end{equation*}
$$

The action of H (2.1) (with $t_{3}=1$) preserves the space of lattice functions $f: \rho+\Lambda \rightarrow \mathbb{C}$:

$$
\begin{align*}
(H f)(\rho+\lambda)= & \sum_{\substack{1 \leq j \leq n \\
\lambda+e_{j} \in \Lambda}} v_{j}^{+}(\lambda)\left(f\left(\rho+\lambda+e_{j}\right)-f(\rho+\lambda)\right) \\
& +\sum_{\substack{1 \leq j \leq n \\
\lambda-e_{j} \in \Lambda}} v_{j}^{-}(\lambda)\left(f\left(\rho+\lambda-e_{j}\right)-f(\rho+\lambda)\right) \tag{2.3}
\end{align*}
$$

where e_{1}, \ldots, e_{n} denotes the standard basis of \mathbb{R}^{n} and

$$
\begin{aligned}
& v_{j}^{+}(\lambda)=\sqrt{\frac{q t_{0}}{t_{1} t_{2}}}\left(1-t_{1} t^{n-j} q^{\lambda_{j}}\right)\left(1-t_{2} t^{n-j} q^{\lambda_{j}}\right) \prod_{\substack{1 \leq k \leq n \\
k \neq j}} \frac{t^{-1}-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}, \\
& v_{j}^{-}(\lambda)=\sqrt{\frac{t_{1} t_{2}}{q t_{0}}}\left(1-t_{0} t^{n-j} q^{\lambda_{j}}\right)\left(1-t^{n-j} q^{\lambda_{j}}\right) \prod_{\substack{1 \leq k \leq n \\
k \neq j}} \frac{t-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}
\end{aligned}
$$

Indeed, given $\lambda \in \Lambda$, one has that $v_{j}^{+}(\lambda)=0$ if $\lambda+e_{j} \notin \Lambda$ due to a zero stemming from the factor $t^{-1}-t^{-1} q^{\lambda_{j-1}-\lambda_{j}}$ when $\lambda_{j-1}=\lambda_{j}$ and one has that $v_{j}^{-}(\lambda)=0$ if $\lambda-e_{j} \notin \Lambda$ due to a zero stemming from either the factor $t-t q^{\lambda_{j}-\lambda_{j+1}}$ when $\lambda_{j}=\lambda_{j+1}$ or from the factor $\left(1-q^{\lambda_{n}}\right)$ when $\lambda_{n}=0$.

3. Spectrum and Eigenfunctions

Ruijsenaars' starting point in [23] is the fact that the hyperbolic quantum Ruijsenaars-Schneider system on the lattice is diagonalized by the celebrated Macdonald polynomials [16, Ch.VI]. In this section, we show that in the presence of the Morse interaction the role of the Macdonald eigenpolynomials is taken over by multivariate continuous dual q-Hahn eigenpolynomials that arise as a parameter reduction of the Macdonald-Koornwinder polynomials [14, 17].

3.1. Multivariate Continuous Dual \boldsymbol{q}-Hahn Polynomials

Continuous dual q-Hahn polynomials are a special limiting case of the AskeyWilson polynomials in which one of the four Askey-Wilson parameters is set to vanish [12, Ch. 14.3]. The corresponding reduction of the MacdonaldKoornwinder multivariate Askey-Wilson polynomials $[14,17]$ is governed by a weight function of the form

$$
\begin{equation*}
\hat{\Delta}(\xi):=\frac{1}{(2 \pi)^{n}} \prod_{1 \leq j \leq n}\left|\frac{\left(e^{2 i \xi_{j}}\right)_{\infty}}{\prod_{0 \leq r \leq 2}\left(\hat{t}_{r} e^{\left.i \xi_{j}\right)_{\infty}}\right.}\right|^{2} \prod_{1 \leq j<k \leq n}\left|\frac{\left(e^{i\left(\xi_{j}+\xi_{k}\right)}, e^{i\left(\xi_{j}-\xi_{k}\right)}\right)_{\infty}}{\left(t e^{i\left(\xi_{j}+\xi_{k}\right)}, t e^{i\left(\xi_{j}-\xi_{k}\right)}\right)_{\infty}}\right|^{2} \tag{3.1}
\end{equation*}
$$

supported on the alcove

$$
\begin{equation*}
\mathbb{A}:=\left\{\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \mid \pi>\xi_{1}>\xi_{2}>\cdots>\xi_{n}>0\right\} \tag{3.2}
\end{equation*}
$$

where $(x)_{m}:=\prod_{l=0}^{m-1}\left(1-x q^{l}\right)$ and $\left(x_{1}, \ldots, x_{l}\right)_{m}:=\left(x_{1}\right)_{m} \cdots\left(x_{l}\right)_{m}$ refer to the q-Pochhammer symbols, and it is assumed that

$$
\begin{equation*}
q, t \in(0,1) \quad \text { and } \quad \hat{t}_{r} \in(-1,1) \backslash\{0\} \quad(r=0,1,2) \tag{3.3}
\end{equation*}
$$

More specifically, the multivariate continuous dual q-Hahn polynomials $P_{\lambda}(\xi)$, $\lambda \in \Lambda$ are defined as the trigonometric polynomials of the form

$$
\begin{equation*}
P_{\lambda}(\xi)=\sum_{\substack{\mu \in \Lambda \\ \mu \leq \lambda}} c_{\lambda, \mu} m_{\mu}(\xi) \quad\left(c_{\lambda, \mu} \in \mathbb{C}\right) \tag{3.4a}
\end{equation*}
$$

such that

$$
\begin{equation*}
c_{\lambda, \lambda}=\prod_{1 \leq j \leq n} \frac{\hat{t}_{0}^{\lambda_{j}} t^{(n-j) \lambda_{j}}}{\left(\hat{t}_{0} \hat{t}_{1} t^{n-j}, \hat{t}_{0} \hat{t}_{2} t^{n-j}\right)_{\lambda_{j}}} \prod_{1 \leq j<k \leq n} \frac{\left(t^{k-j}\right)_{\lambda_{j}-\lambda_{k}}}{\left(t^{1+k-j}\right)_{\lambda_{j}-\lambda_{k}}} \tag{3.4b}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{A}} P_{\lambda}(\xi) \overline{P_{\mu}(\xi)} \hat{\Delta}(\xi) \mathrm{d} \xi=0 \quad \text { if } \mu<\lambda \tag{3.4c}
\end{equation*}
$$

Here, we have employed the dominance partial order

$$
\begin{equation*}
\forall \mu, \lambda \in \Lambda: \quad \mu \leq \lambda \text { iff } \sum_{1 \leq j \leq k} \mu_{j} \leq \sum_{1 \leq j \leq k} \lambda_{j} \quad \text { for } k=1, \ldots, n, \tag{3.5}
\end{equation*}
$$

and the symmetric monomials

$$
\begin{equation*}
m_{\lambda}(\xi):=\sum_{\nu \in W \lambda} e^{i\left(\nu_{1} \xi_{1}+\cdots+\nu_{n} \xi_{n}\right)}, \quad \lambda \in \Lambda, \tag{3.6}
\end{equation*}
$$

associated with the hyperoctahedral group $W=S_{n} \ltimes\{1,-1\}^{n}$ of signed permutations.

The present choice of the leading coefficient $c_{\lambda, \lambda}$ in Eq. (3.4b) normalizes the polynomials in question such that $P_{\lambda}(i \hat{\rho})=1$, where $\hat{\rho}=\left(\hat{\rho}_{1}, \ldots, \hat{\rho}_{n}\right)$ is given by $\hat{\rho}_{j}=(n-j) \log (t)+\log \left(\hat{t}_{0}\right), j=1, \ldots, n$ (cf. [4, Sec. 6], [17, Ch. 5.3]). With this normalization, the orthogonality relations obtained as
the degeneration of those for the Macdonald-Koornwinder polynomials [14, Sec. 5], [4, Sec. 7], [17, Ch. 5.3] read:

$$
\int_{\mathbb{A}} P_{\lambda}(\xi) \overline{P_{\mu}(\xi)} \hat{\Delta}(\xi) \mathrm{d} \xi= \begin{cases}\Delta_{\lambda}^{-1} & \text { if } \lambda=\mu \tag{3.7a}\\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\begin{align*}
\Delta_{\lambda}:= & \Delta_{0} \prod_{1 \leq j \leq n} \frac{\left(\hat{t}_{0} \hat{t}_{1} t^{n-j}, \hat{t}_{0} \hat{t}_{2} t^{n-j}\right)_{\lambda_{j}}}{\hat{t}_{0}^{2 \lambda_{j}} t^{2(n-j) \lambda_{j}}\left(q t^{n-j}, \hat{t}_{1} \hat{t}_{2} t^{n-j}\right)_{\lambda_{j}}} \\
& \times \prod_{1 \leq j<k \leq n} \frac{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}{1-t^{k-j}} \frac{\left(t^{1+k-j}\right)_{\lambda_{j}-\lambda_{k}}}{\left(q t^{k-j-1}\right)_{\lambda_{j}-\lambda_{k}}} \tag{3.7b}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta_{0}:=\prod_{1 \leq j \leq n}\left(\frac{\left(q, t^{j}\right)_{\infty}}{(t)_{\infty}} \prod_{0 \leq r<s \leq 2}\left(\hat{t}_{r} \hat{t}_{s} t^{n-j}\right)_{\infty}\right) \tag{3.7c}
\end{equation*}
$$

3.2. Diagonalization

Let $\ell^{2}(\rho+\Lambda, \Delta)$ denote the Hilbert space of lattice functions $f: \rho+\Lambda \rightarrow \mathbb{C}$ determined by the inner product

$$
\begin{equation*}
\langle f, g\rangle_{\Delta}:=\sum_{\lambda \in \Lambda} f(\rho+\lambda) \overline{g(\rho+\lambda)} \Delta_{\lambda} \quad\left(f, g \in \ell^{2}(\rho+\lambda, \Delta)\right) \tag{3.8}
\end{equation*}
$$

with ρ and Δ_{λ} as in Eqs. (2.2) and (3.7a)-(3.7c), and let $L^{2}(\mathbb{A}, \hat{\Delta}(\xi) \mathrm{d} \xi)$ be the Hilbert space of functions $\hat{f}: \mathbb{A} \rightarrow \mathbb{C}$ determined by the inner product

$$
\begin{equation*}
\langle\hat{f}, \hat{g}\rangle_{\hat{\Delta}}:=\int_{\mathbb{A}} \hat{f}(\xi) \overline{\hat{g}(\xi)} \hat{\Delta}(\xi) \mathrm{d} \xi \quad\left(\hat{f}, \hat{g} \in L^{2}(\mathbb{A}, \hat{\Delta}(\xi) \mathrm{d} \xi)\right) \tag{3.9}
\end{equation*}
$$

with $\hat{\Delta}$ taken from Eq. (3.1). We denote by $\psi_{\xi}: \rho+\Lambda \rightarrow \mathbb{C}$ the lattice wave function given by

$$
\begin{equation*}
\psi_{\xi}(\rho+\lambda):=P_{\lambda}(\xi) \quad(\xi \in \mathbb{A}, \lambda \in \Lambda) \tag{3.10}
\end{equation*}
$$

Then, the orthogonality relations in Eqs. (3.7a)-(3.7c) imply that the associated Fourier transform $\boldsymbol{F}: \ell^{2}(\rho+\Lambda, \Delta) \rightarrow L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)$ of the form

$$
\begin{equation*}
(\boldsymbol{F} f)(\xi):=\left\langle f, \psi_{\xi}\right\rangle_{\Delta}=\sum_{\lambda \in \Lambda} f(\rho+\lambda) \overline{\psi_{\xi}(\rho+\lambda)} \Delta_{\lambda} \tag{3.11a}
\end{equation*}
$$

$\left(f \in \ell^{2}(\rho+\Lambda, \Delta)\right)$ constitutes a Hilbert space isomorphism with an inversion formula given by

$$
\begin{equation*}
\left(\boldsymbol{F}^{-1} \hat{f}\right)(\rho+\lambda)=\langle\hat{f}, \overline{\psi(\rho+\lambda)}\rangle_{\hat{\Delta}}=\int_{\mathbb{A}} \hat{f}(\xi) \psi_{\xi}(\rho+\lambda) \hat{\Delta}(\xi) \mathrm{d} \xi \tag{3.11b}
\end{equation*}
$$

$\left(\hat{f} \in L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)\right)$.

Theorem 1. Let \hat{E} denote the bounded real multiplication operator acting on $\hat{f} \in L^{2}(\mathbb{A}, \hat{\Delta} d \xi)$ by $(\hat{E} \hat{f})(\xi):=\hat{E}(\xi) \hat{f}(\xi)$ with

$$
\begin{equation*}
\hat{E}(\xi):=\sum_{1 \leq j \leq n}\left(2 \cos \left(\xi_{j}\right)-t^{n-j} \hat{t}_{0}-t^{j-n} \hat{t}_{0}^{-1}\right) . \tag{3.12a}
\end{equation*}
$$

For

$$
\begin{equation*}
t_{0}=q^{-1} \hat{t}_{1} \hat{t}_{2}, \quad t_{1}=\hat{t}_{0} \hat{t}_{2}, \quad t_{2}=\hat{t}_{0} \hat{t}_{1} \tag{3.12b}
\end{equation*}
$$

with q, t and \hat{t}_{r} in the parameter domain (3.3) and $\sqrt{\frac{t_{1} t_{2}}{q t_{0}}}:=\hat{t}_{0}$, the hyperbolic lattice Ruijsenaars-Schneider Hamiltonian with Morse interaction H (2.3) constitutes a bounded self-adjoint operator in the Hilbert space $\ell^{2}(\rho+\Lambda, \Delta)$ diagonalized by the Fourier transform \boldsymbol{F} (3.11a), (3.11b):

$$
\begin{equation*}
H=\boldsymbol{F}^{-1} \circ \hat{E} \circ \boldsymbol{F} . \tag{3.12c}
\end{equation*}
$$

Proof. It suffices to verify that the Fourier kernel ψ_{ξ} (3.10) satisfies the eigenvalue equation $H \psi_{\xi}=\hat{E}(\xi) \psi_{\xi}$, or more explicitly that:

$$
\begin{aligned}
& \sum_{\substack{1 \leq j \leq n \\
\lambda+e_{j} \in \Lambda}} v_{j}^{+}(\lambda)\left(\psi_{\xi}\left(\rho+\lambda+e_{j}\right)-\psi_{\xi}(\rho+\lambda)\right) \\
& \quad+\sum_{\substack{1 \leq j \leq n \\
\lambda-e_{j} \in \Lambda}} v_{j}^{-}(\lambda)\left(\psi_{\xi}\left(\rho+\lambda-e_{j}\right)-\psi_{\xi}(\rho+\lambda)\right)=\hat{E}(\xi) \psi_{\xi}(\rho+\lambda) .
\end{aligned}
$$

This eigenvalue equation amounts to the continuous dual q-Hahn reduction of the Pieri recurrence formula for the Macdonald-Koornwinder polynomials corresponding to Eqs. (6.4), (6.5) and Section 6.1 of [4].

It is immediate from Theorem 1 that the hyperbolic lattice RuijsenaarsSchneider Hamiltonian with Morse interaction H (2.3) has purely absolutely continuous spectrum in $\ell^{2}(\rho+\Lambda, \Delta)$, with the wave functions $\psi_{\xi}, \xi \in \mathbb{A}$ in Eq. (3.10) constituting an orthogonal basis of (generalized) eigenfunctions.

Remark 2. For $\hat{t}_{2} \rightarrow 0$, the lattice Hamiltonian H (3.12c) becomes of the form

$$
\begin{align*}
H= & \sum_{j=1}^{n}\left(\hat{t}_{0}^{-1}\left(1-\hat{t}_{0} \hat{t}_{1} q^{x_{j}}\right)\left(\prod_{\substack{1 \leq k \leq n \\
k \neq j}} \frac{t^{-1}-q^{x_{j}-x_{k}}}{1-q^{x_{j}-x_{k}}}\right) T_{j}\right. \\
& \left.+\hat{t}_{0}\left(1-q^{x_{j}}\right)\left(\prod_{\substack{1 \leq k \leq n \\
k \neq j}} \frac{t-q^{x_{j}-x_{k}}}{1-q^{x_{j}-x_{k}}}\right) T_{j}^{-1}+\left(\hat{t}_{0}+\hat{t}_{1}\right) q^{x_{j}}\right)-\varepsilon_{0}, \tag{3.13a}
\end{align*}
$$

with $x=\rho+\lambda$ and

$$
\begin{equation*}
\varepsilon_{0}:=\sum_{j=1}^{n}\left(\hat{t}_{0} t^{n-j}+\hat{t}_{0}^{-1} t^{j-n}\right) \tag{3.13b}
\end{equation*}
$$

Indeed, this readily follows from Eqs. (2.1), (3.12b) with the aid of the elementary polynomial identity (cf. Example 2. (a) of [16, Ch. VI.3])

$$
\sum_{j=1}^{n}\left(1+z_{j}\right) \prod_{\substack{1 \leq k \leq n \\ k \neq j}} \frac{t-z_{j} / z_{k}}{1-z_{j} / z_{k}}=\sum_{j=1}^{n}\left(z_{j}+t^{n-j}\right)
$$

4. Scattering

In this section, we rely on results from [5], permitting to describe briefly how the n-particle scattering operator for the hyperbolic quantum RuijsenaarsSchneider system on the lattice computed by Ruijsenaars [23] gets modified due to the presence of the external Morse interactions. Specifically, the scattering process of the present model with Morse terms turns out to be governed by an n-particle scattering matrix $\hat{\mathcal{S}}(\xi)$ that factorizes in two-particle and oneparticle matrices:

$$
\begin{equation*}
\hat{\mathcal{S}}(\xi):=\prod_{1 \leq j<k \leq n} s\left(\xi_{j}-\xi_{k}\right) s\left(\xi_{j}+\xi_{k}\right) \prod_{1 \leq j \leq n} s_{0}\left(\xi_{j}\right), \tag{4.1a}
\end{equation*}
$$

with

$$
\begin{equation*}
s(x):=\frac{\left(q e^{i x}, t e^{-i x}\right)_{\infty}}{\left(q e^{-i x}, t e^{i x}\right)_{\infty}} \quad \text { and } \quad s_{0}(x):=\frac{\left(q e^{2 i x}\right)_{\infty}}{\left(q e^{-2 i x}\right)_{\infty}} \prod_{0 \leq r \leq 2} \frac{\left(\hat{t}_{r} e^{-i x}\right)_{\infty}}{\left(\hat{t}_{r} e^{i x}\right)_{\infty}} \tag{4.1b}
\end{equation*}
$$

which compares to Ruijsenaars' scattering matrix $\prod_{1 \leq j<k \leq n} s\left(\xi_{j}-\xi_{k}\right)$ for the corresponding model without Morse interactions [23].

To substantiate further some additional notation is needed. Let us denote by \mathcal{H}_{0} the self-adjoint discrete Laplacian in $\ell^{2}(\Lambda)$ of the form

$$
\left(\mathcal{H}_{0} f\right)(\lambda):=\sum_{\substack{1 \leq j \leq n \\ \lambda+e_{j} \in \Lambda}} f\left(\lambda+e_{j}\right)+\sum_{\substack{1 \leq j \leq n \\ \lambda-e_{j} \in \Lambda}} f\left(\lambda-e_{j}\right) \quad\left(f \in \ell^{2}(\Lambda)\right),
$$

and let

$$
\begin{equation*}
\mathcal{H}:=\boldsymbol{\Delta}^{1 / 2}\left(H+\varepsilon_{0}\right) \boldsymbol{\Delta}^{-1 / 2} \tag{4.2}
\end{equation*}
$$

with H and ε_{0} taken from (2.3) and (3.13b), respectively. Here, the operator $\Delta^{1 / 2}: \ell^{2}(\rho+\Lambda, \Delta) \rightarrow \ell^{2}(\Lambda)$ refers to the Hilbert space isomorphism

$$
\begin{equation*}
\left(\Delta^{1 / 2} f\right)(\lambda):=\Delta_{\lambda}^{1 / 2} f(\rho+\lambda) \quad\left(f \in \ell^{2}(\rho+\Lambda, \Delta)\right) \tag{4.3}
\end{equation*}
$$

[with $\left.\boldsymbol{\Delta}^{-1 / 2}:=\left(\boldsymbol{\Delta}^{1 / 2}\right)^{-1}\right]$. Then, (by Theorem 1)

$$
\begin{equation*}
\mathcal{H}=\mathcal{F}^{-1}\left(\hat{E}+\varepsilon_{0}\right) \mathcal{F} \quad \text { with } \quad \mathcal{F}:=\hat{\boldsymbol{\Delta}}^{1 / 2} \boldsymbol{F} \boldsymbol{\Delta}^{-1 / 2} \tag{4.4}
\end{equation*}
$$

where $\hat{\boldsymbol{\Delta}}^{1 / 2}: L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi) \rightarrow L^{2}(\mathbb{A})$ denotes the Hilbert space isomorphism

$$
\begin{equation*}
\left(\hat{\boldsymbol{\Delta}}^{1 / 2} \hat{f}\right)(\xi):=\hat{\Delta}^{1 / 2}(\xi) \hat{f}(\xi) \quad\left(\hat{f} \in L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)\right) \tag{4.5}
\end{equation*}
$$

[and \hat{E} (3.12a) is now regarded as a self-adjoint bounded multiplication operator in $\left.L^{2}(\mathbb{A})\right]$. Furthermore, one has that

$$
\mathcal{H}_{0}=\mathcal{F}_{0}^{-1}\left(\hat{E}+\varepsilon_{0}\right) \mathcal{F}_{0}
$$

where $\mathcal{F}_{0}: \ell^{2}(\Lambda) \rightarrow L^{2}(\mathbb{A})$ denotes the Fourier isomorphism recovered from \mathcal{F} in the limit $q, t \rightarrow 0, \hat{t}_{r} \rightarrow 0(r=0,1,2)$. Specifically, this amounts to the Fourier transform

$$
\begin{equation*}
\left(\mathcal{F}_{0} f\right)(\xi)=\sum_{\lambda \in \Lambda} f(\lambda) \overline{\chi_{\xi}(\lambda)} \tag{4.6a}
\end{equation*}
$$

$\left(f \in \ell^{2}(\Lambda)\right)$ with the inversion formula

$$
\begin{equation*}
\left(\mathcal{F}_{0}^{-1} \hat{f}\right)(\lambda)=\int_{\mathbb{A}} \hat{f}(\xi) \chi_{\xi}(\lambda) \mathrm{d} \xi \tag{4.6b}
\end{equation*}
$$

$\left(\hat{f} \in L^{2}(\mathbb{A})\right)$ associated with the anti-invariant Fourier kernel

$$
\chi_{\xi}(\lambda):=\frac{1}{(2 \pi)^{n / 2} i^{n^{2}}} \sum_{w \in W} \operatorname{sign}(w) e^{i\left\langle w\left(\rho_{0}+\lambda\right), \xi\right\rangle}
$$

where $\operatorname{sign}(w)=\epsilon_{1} \cdots \epsilon_{n} \operatorname{sign}(\sigma)$ for $w=(\sigma, \epsilon) \in W=S_{n} \ltimes\{1,-1\}^{n}$ and $\rho_{0}=(n, n-1, \ldots, 2,1)$.

Let $C_{0}\left(\mathbb{A}_{\mathrm{reg}}\right)$ be the dense subspace of $L^{2}(\mathbb{A})$ consisting of smooth test functions with compact support in the open dense subset $\mathbb{A}_{\text {reg }} \subset \mathbb{A}$ on which the components of the gradient

$$
\nabla \hat{E}(\xi)=\left(-2 \sin \left(\xi_{1}\right), \ldots,-2 \sin \left(\xi_{n}\right)\right), \quad \xi \in \mathbb{A}
$$

do not vanish and are all distinct in absolute value. We define the following unitary multiplication operator $\hat{\mathcal{S}}: L^{2}(\mathbb{A}, \mathrm{~d} \xi) \rightarrow L^{2}(\mathbb{A}, \mathrm{~d} \xi)$ via its restriction to $C_{0}\left(\mathbb{A}_{\mathrm{reg}}\right)$:

$$
\begin{equation*}
(\hat{\mathcal{S}} \hat{f})(\xi):=\hat{\mathcal{S}}\left(w_{\xi} \xi\right) \hat{f}(\xi) \quad\left(\hat{f} \in C_{0}\left(\mathbb{A}_{\mathrm{reg}}\right)\right) \tag{4.7}
\end{equation*}
$$

where $w_{\xi} \in W$ for $\xi \in \mathbb{A}_{\text {reg }}$ is the signed permutation such that the components of $w_{\xi} \nabla \hat{E}(\xi)$ are all positive and reordered from large to small.

Theorem 4.2 and Corollary 4.3 of Ref. [5] now provide explicit formulas for the wave operators and scattering operator comparing the large-times asymptotics of the interacting particle dynamics $e^{i \mathcal{H} t}$ relative to the Laplacian's reference dynamics $e^{i \mathcal{H}_{0} t}$ as a continuous dual q-Hahn reduction of [5, Thm. 6.7].

Theorem 3 (Wave and scattering operators). The operator limits

$$
\Omega^{ \pm}:=s-\lim _{t \rightarrow \pm \infty} e^{i t \mathcal{H}} e^{-i t \mathcal{H}_{0}}
$$

converge in the strong $\ell^{2}(\Lambda)$-norm topology and the corresponding wave operators $\Omega^{ \pm}$intertwining the interacting dynamics $e^{i \mathcal{H} t}$ with the discrete Laplacian's dynamics $e^{i \mathcal{H}_{0} t}$ are given by unitary operators in $\ell^{2}(\Lambda)$ of the form

$$
\Omega^{ \pm}=\mathcal{F}^{-1} \circ \hat{\mathcal{S}}^{\mp 1 / 2} \circ \mathcal{F}_{0}
$$

where the branches of the square roots are to be chosen such that

$$
s(x)^{1 / 2}=\frac{\left(q e^{i x}\right)_{\infty}}{\left|\left(q e^{i x}\right)_{\infty}\right|} \frac{\left|\left(t e^{i x}\right)_{\infty}\right|}{\left(t e^{i x}\right)_{\infty}} \quad \text { and } \quad s_{0}(x)^{1 / 2}=\frac{\left(q e^{2 i x}\right)_{\infty}}{\left|\left(q e^{2 i x}\right)_{\infty}\right|} \prod_{0 \leq r \leq 2} \frac{\left|\left(\hat{t}_{r} e^{i x}\right)_{\infty}\right|}{\left(\hat{t}_{r} e^{i x}\right)_{\infty}} .
$$

The scattering operator relating the large-times asymptotics of $e^{i \mathcal{H} t}$ for $t \rightarrow$ $-\infty$ and $t \rightarrow+\infty$ is thus given by the unitary operator

$$
\mathcal{S}:=\left(\Omega^{+}\right)^{-1} \Omega^{-}=\mathcal{F}_{0}^{-1} \circ \hat{\mathcal{S}} \circ \mathcal{F}_{0}
$$

5. Bispectral Dual System

The bispectral dual in the sense of Duistermat and Grünbaum $[7,8]$ of the hyperbolic quantum Ruijsenaars-Schneider system on the lattice is given by the trigonometric Ruijsenaars-Macdonald q-difference operators [16,20]. This bispectral duality is a quantum manifestation of the duality between the classical Ruijsenaars-Schneider systems with hyperbolic/trigonometric dependence on the position/momentum variables and vice versa [22], which (at the classical level) states that the respective action-angle transforms linearizing the two systems under consideration are inverses of each other. As a degeneration of the Macdonald-Koornwinder q-difference operator [14, Eq. (5.4)], we immediately arrive at a bispectral dual Hamiltonian for our hyperbolic quantum Ruijsenaars-Schneider system with Morse term.

Indeed, the continuous dual q-Hahn reduction of the q-difference equation satisfied by the Macdonald-Koornwinder polynomials [14, Thm. 5.4] reads

$$
\begin{equation*}
\hat{H} P_{\lambda}=E_{\lambda} P_{\lambda} \quad \text { with } \quad E_{\lambda}=\sum_{j=1}^{n} t^{j-1}\left(q^{-\lambda_{j}}-1\right) \quad(\lambda \in \Lambda), \tag{5.1a}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{H}=\sum_{j=1}^{n}\left(\hat{v}_{j}(\xi)\left(\hat{T}_{j, q}-1\right)+\hat{v}_{j}(-\xi)\left(\hat{T}_{j, q}^{-1}-1\right)\right) \tag{5.1b}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{v}_{j}(\xi)=\frac{\prod_{0 \leq r \leq 2}\left(1-\hat{t}_{r} e^{i \xi_{j}}\right)}{\left(1-e^{2 i \xi_{j}}\right)\left(1-q e^{2 i \xi_{j}}\right)} \prod_{\substack{1 \leq k \leq n \\ k \neq j}} \frac{1-t e^{i\left(\xi_{j}+\xi_{k}\right)}}{1-e^{i\left(\xi_{j}+\xi_{k}\right)}} \frac{1-t e^{i\left(\xi_{j}-\xi_{k}\right)}}{1-e^{i\left(\xi_{j}-\xi_{k}\right)}} \tag{5.1c}
\end{equation*}
$$

Here, $\hat{T}_{j, q}$ acts on trigonometric (Laurent) polynomials $\hat{p}\left(e^{i \xi_{1}}, \ldots, e^{i \xi_{n}}\right)$ by a q-shift of the j th variable:

$$
\left(\hat{T}_{j, q} \hat{p}\right)\left(e^{i \xi_{1}}, \ldots, e^{i \xi_{n}}\right):=\hat{p}\left(e^{i \xi_{1}}, \ldots, e^{i \xi_{j-1}}, q e^{i \xi_{j}}, e^{i \xi_{j+1}}, \ldots, e^{i \xi_{n}}\right)
$$

In other words, the bispectral dual Hamiltonian \hat{H} (5.1b),(5.1c) constitutes a nonnegative unbounded self-adjoint operator with purely discrete spectrum in $L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)$ that is diagonalized by the (inverse) Fourier transform \boldsymbol{F} (3.11a), (3.11b):

$$
\begin{equation*}
\hat{H}=\boldsymbol{F} \circ E \circ \boldsymbol{F}^{-1}, \tag{5.2}
\end{equation*}
$$

where E denotes the self-adjoint multiplication operator in $\ell^{2}(\rho+\Lambda, \Delta)$ of the form $(E f)(\rho+\lambda):=E_{\lambda} f(\rho+\lambda)$ (for $\lambda \in \Lambda$ and $f \in \ell^{2}(\rho+\Lambda, \Delta)$ with $\left.\langle E f, E f\rangle_{\Delta}<\infty\right)$.

6. Quantum Integrability

In this final section, we provide explicit formulas for a complete system of commuting quantum integrals for the hyperbolic quantum Ruijsenaars-Schneider Hamiltonian with Morse term on the lattice H (2.3) and for its bispectral dual Hamiltonian \hat{H} (5.1b), (5.1c). This confirms the quantum integrability of both Hamiltonians in the present Hilbert space setup.

6.1. Hamiltonian

The quantum integrals for the hyperbolic Ruijsenaars-Schneider Hamiltonian with Morse term are given by commuting difference operators H_{1}, \ldots, H_{n} that are defined via their action on $f \in \ell^{2}(\rho+\Lambda, \Delta)$ (cf. [3, Eqs. (2.20)-(2.23)]):

$$
:=\sum_{\substack{J_{+}, J_{-} \subset\{1, \ldots, n\} \\ J_{+} \cap \cap=\emptyset \\ J_{-}=\emptyset,\left|J_{+}+\left|+\left|J_{-}\right| \leq l \\ \lambda+e_{J_{+}}-e_{J_{-}} \in \Lambda\right.\right.}} U_{J_{+}^{c} \cap J_{-}^{c}, l-\left|J_{+}\right|-\left|J_{-}\right|}(\lambda) V_{J_{+}, J_{-}}(\lambda) f\left(\rho+\lambda+e_{J_{+}-}-e_{J_{-}}\right)
$$

$(\lambda \in \Lambda, l=1, \ldots, n)$, where $e_{J}:=\sum_{j \in J} e_{j}$ for $J \subset\{1, \ldots, n\}, J^{c}:=$ $\{1, \ldots, n\} \backslash J$ and

$$
\begin{aligned}
V_{J_{+}, J_{-}}(\lambda)= & t^{-\frac{1}{2}\left|J_{+}\right|\left(\left|J_{+}\right|-1\right)+\frac{1}{2}\left|J_{-}\right|\left(\left|J_{-}\right|-1\right)} \\
& \times \prod_{j \in J_{+}} \sqrt{\frac{q t_{0}}{t_{1} t_{2}}}\left(1-t_{1} t^{n-j} q^{\lambda_{j}}\right)\left(1-t_{2} t^{n-j} q^{\lambda_{j}}\right) \\
& \times \prod_{j \in J_{-}} \sqrt{\frac{t_{1} t_{2}}{q t_{0}}}\left(1-t_{0} t^{n-j} q^{\lambda_{j}}\right)\left(1-t^{n-j} q^{\lambda_{j}}\right) \\
& \times \prod_{\substack{j \in J_{+} \\
k \in J_{-}}}\left(\frac{1-t^{1+k-j} q^{\lambda_{j}-\lambda_{k}}}{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}\right)\left(\frac{t^{-1}-t^{k-j} q^{\lambda_{j}-\lambda_{k}+1}}{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}+1}}\right) \\
& \times \prod_{\substack{j \in J_{+} \\
k \notin J_{+} \cup J_{-}}} \frac{t^{-1}-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}}} \prod_{\substack{j \in J_{-} \\
k \notin J_{+} \cup J_{-}}} \frac{t-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}, \\
U_{K, p}(\lambda)= & (-1)^{p}\left(\prod_{j \in I_{+}} \sqrt{\frac{q t_{0}}{t_{1} t_{2}}}\left(1-t_{1} t^{n-j} q^{\lambda_{j}}\right)\left(1-t_{2} t^{n-j} q^{\lambda_{j}}\right)\right. \\
& \times \sum_{I_{+}}^{\substack{I_{+}, I_{-} \subset K}} \\
& \times \prod_{j \in I_{-}} \sqrt{\frac{t_{1} t_{2}}{q t_{0}}}\left(1-t_{0} t^{n-j} q^{\lambda_{j}}\right)\left(1-t^{n-j} q^{\lambda_{j}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times \prod_{\substack{j \in I_{+} \\
k \in I_{-}}}\left(\frac{1-t^{1+k-j} q^{\lambda_{j}-\lambda_{k}}}{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}\right)\left(\frac{1-t^{-1+k-j} q^{\lambda_{j}-\lambda_{k}+1}}{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}+1}}\right) \\
& \left.\times \prod_{\substack{j \in I_{+} \\
k \in K \backslash\left(I_{+} \cup I_{-}\right)}} \frac{t^{-1}-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}}} \prod_{\substack{j \in I_{-} \\
k \in K \backslash\left(I_{+} \cup I_{-}\right)}} \frac{t-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}{1-t^{k-j} q^{\lambda_{j}-\lambda_{k}}}\right) .
\end{aligned}
$$

For $l=1$, the action of $H_{l}(6.1)$ is seen to reduce to that of H (2.3). The diagonalization in Theorem 1 generalizes to these higher commuting quantum integrals as follows.

Theorem 4. For parameters of the form as in Theorem 1, the difference operators H_{1}, \ldots, H_{n} (6.1) constitute bounded commuting self-adjoint operators in the Hilbert space $\ell^{2}(\rho+\Lambda, \Delta)$ that are simultaneously diagonalized by the Fourier transform \boldsymbol{F} (3.11a), (3.11b):

$$
\begin{equation*}
H_{l}=\boldsymbol{F}^{-1} \circ \hat{E}_{l} \circ \boldsymbol{F} \quad(l=1, \ldots, n), \tag{6.2a}
\end{equation*}
$$

where \hat{E}_{l} denotes the bounded real multiplication operator acting on $\hat{f} \in L^{2}$ $(\mathbb{A}, \hat{\Delta} d \xi)$ by $\left(\hat{E}_{l} \hat{f}\right)(\xi):=\hat{E}_{l}(\xi) \hat{f}(\xi)$ with

$$
\begin{align*}
& \hat{E}_{l}(\xi):=\sum_{1 \leq j_{1}<\cdots<j_{l} \leq n} \tag{6.2b}\\
& \quad\left(2 \cos \left(\xi_{j_{1}}\right)-t^{j_{1}-1} \hat{t}_{0}-t^{-\left(j_{1}-1\right)} \hat{t}_{0}^{-1}\right) \cdots\left(2 \cos \left(\xi_{j_{l}}\right)-t^{j_{l}-l} \hat{t}_{0}-t^{-\left(j_{l}-l\right)} \hat{t}_{0}^{-1}\right) .
\end{align*}
$$

Proof. The eigenvalue equation $H_{l} \psi_{\xi}=\hat{E}_{l}(\xi) \psi_{\xi}$ reads explicitly

$$
\quad \sum_{\substack{J_{+}, J_{-} \subset\{1, \ldots, n\} \\ J_{+} \cap J_{-}=\emptyset,\left|J_{+}\right|+\left|J_{-}\right| \leq l \\ \lambda+e_{J_{+}}-e_{-} \in \Lambda}} U_{J_{+}^{c} \cap J_{-}^{c}, l-\left|J_{+}\right|-\left|J_{-}\right|}(\lambda) V_{J_{+}, J_{-}}(\lambda) \psi_{\xi}\left(\rho+\lambda+e_{J_{+}}-e_{J_{-}}\right)
$$

This eigenvalue identity corresponds to the continuous dual q-Hahn reduction of the Pieri recurrence formula for the Macdonald-Koornwinder polynomials in $\left[4\right.$, Thm. 6.1], where we have expressed the eigenvalues $\hat{E}_{l}(\xi)$ in a compact form stemming from [13, Eq. (5.1)] (cf. also [6, Sec. 2.2]).

6.2. Bispectral Dual Hamiltonian

The continuous dual q-Hahn reduction of the system of higher q-difference equations for the Macdonald-Koornwinder polynomials in [4, Sec. 5.1] reads

$$
\begin{equation*}
\hat{H}_{l} P_{\lambda}=E_{\lambda, l} P_{\lambda} \quad(\lambda \in \Lambda, l=1, \ldots, n) \tag{6.3a}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{\lambda, l}:=t^{-l(l-1) / 2} \sum_{1 \leq j_{1}<\cdots<j_{l} \leq n}\left(t^{j_{1}-1} q^{-\lambda_{j_{1}}}-t^{n-j_{1}}\right) \cdots\left(t^{j_{l}-1} q^{-\lambda_{j_{l}}}-t^{n+l-j_{l}-1}\right) \tag{6.3b}
\end{equation*}
$$

(cf. [13, Eq. (5.1)]), and

$$
\begin{equation*}
\hat{H}_{l}:=\sum_{\substack{J \subset\{1, \ldots, n\}, 0 \leq|J| \leq l \\ \epsilon_{j} \in\{1,-1\}, j \in J}} \hat{U}_{J^{c}, l-|J|} \hat{V}_{\epsilon J} \hat{T}_{\epsilon J, q}, \tag{6.3c}
\end{equation*}
$$

with $\hat{T}_{\epsilon J, q}:=\prod_{j \in J} \hat{T}_{j, q}^{\epsilon_{j}}$ and

$$
\begin{aligned}
\hat{V}_{\epsilon J}= & \prod_{j \in J} \frac{\prod_{0 \leq r \leq 2}\left(1-\hat{t}_{r} e^{i \epsilon_{j} \xi_{j}}\right)}{\left(1-e^{2 i \epsilon_{j} \xi_{j}}\right)\left(1-q e^{2 i \epsilon_{j} \xi_{j}}\right)} \prod_{\substack{j \in J \\
k \notin J}} \frac{1-t e^{i\left(\epsilon_{j} \xi_{j}+\xi_{k}\right)}}{1-e^{i\left(\epsilon_{j} \xi_{j}+\xi_{k}\right)}} \frac{1-t e^{i\left(\epsilon_{j} \xi_{j}-\xi_{k}\right)}}{1-e^{i\left(\epsilon_{j} \xi_{j}-\xi_{k}\right)}} \\
& \times \prod_{\substack{j, k \in J \\
j<k}} \frac{1-t e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{k} \xi_{k}\right)}}{1-e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{k} \xi_{k}\right)}} \frac{1-t q e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{j} \xi_{k}\right)}}{1-q e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{k} \xi_{k}\right)}} \\
\hat{U}_{K, p}= & (-1)^{p} \sum_{\substack{I \subset K,|I|=p \\
\epsilon_{j} \in\{1,-1\}, j \in I}}\left(\prod_{j \in I} \frac{\prod_{0 \leq r \leq 2}\left(1-\hat{t}_{r} e^{i \epsilon_{j} \xi_{j}}\right)}{\left(1-e^{2 i \epsilon_{j} \xi_{j}}\right)\left(1-q e^{\left.2 i \epsilon_{j} \xi_{j}\right)}\right.}\right. \\
& \times \prod_{\substack{j \in I \\
k \in K \backslash I}} \frac{1-t e^{i\left(\epsilon_{j} \xi_{j}+\xi_{k}\right)}}{1-e^{i\left(\epsilon_{j} \xi_{j}+\xi_{k}\right)}} \frac{1-t e^{i\left(\epsilon_{j} \xi_{j}-\xi_{k}\right)}}{1-e^{i\left(\epsilon_{j} \xi_{j}-\xi_{k}\right)}} \\
& \left.\times \prod_{\substack{j, k \in I \\
j<k}} \frac{1-t e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{k} \xi_{k}\right)}}{1-e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{k} \xi_{k}\right)}} \frac{t-q e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{j} \xi_{k}\right)}}{1-q e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{k} \xi_{k}\right)}}\right) .
\end{aligned}
$$

For $l=1$, this reproduces the continuous dual q-Hahn reduction of the Macdonald-Koornwinder q-difference equation in Eqs. (5.1a)-(5.1c).

The q-difference operators $\hat{H}_{1}, \ldots, \hat{H}_{n}$ extend the bispectral dual Hamiltonian \hat{H} (5.1b)-(5.1c) into a complete system of commuting quantum integrals that are simultaneously diagonalized by the multivariate continuous dual q-Hahn polynomials.

Theorem 5. For parameter values in the domain (3.3), the q-difference operators $\hat{H}_{1}, \ldots, \hat{H}_{n}$ constitute nonnegative unbounded self-adjoint operators with purely discrete spectra in $L^{2}(\mathbb{A}, \hat{\Delta} d \xi)$ that are simultaneously diagonalized by the (inverse) Fourier transform \boldsymbol{F} (3.11a), (3.11b):

$$
\begin{equation*}
\hat{H}_{l}=\boldsymbol{F} \circ E_{l} \circ \boldsymbol{F}^{-1}, \quad l=1, \ldots, n, \tag{6.4}
\end{equation*}
$$

where E_{l} denotes the self-adjoint multiplication operator in $\ell^{2}(\rho+\Lambda, \Delta)$ given by $\left(E_{l} f\right)(\rho+\lambda):=E_{\lambda, l} f(\rho+\lambda)$ (on the domain of $f \in \ell^{2}(\rho+\Lambda, \Delta)$ such that $\left.\left\langle E_{l} f, E_{l} f\right\rangle_{\Delta}<\infty\right)$.

Notice in this connection that although the domain of the unbounded operator \hat{H}_{l} in $L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)$ depends on l, the resolvent operators $\left(\hat{H}_{1}-z_{1}\right)^{-1}, \ldots$, $\left(\hat{H}_{n}-z_{n}\right)^{-1}\left(\right.$ with $\left.z_{1}, \ldots, z_{n} \in \mathbb{C} \backslash[0,+\infty)\right)$ commute as bounded operators on $L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)$, and the q-difference operators $\hat{H}_{1}, \ldots, \hat{H}_{n}$ moreover commute themselves on the joint polynomial eigenbasis $P_{\lambda}, \lambda \in \Lambda$.

Remark 6. To infer that the eigenvalues $E_{\lambda, l}$ (6.3b) are nonnegative-thus indeed giving rise to a nonnegative operator \hat{H}_{l} in Theorem 5 -it is helpful to note that these can be rewritten as (cf. [4, Sec. 5.1]):

$$
E_{\lambda, l}=t^{-l(l-1) / 2} E_{l, n}\left(q^{-\lambda_{1}}, t q^{-\lambda_{2}}, \ldots, t^{n-1} q^{-\lambda_{n}} ; t^{l-1}, t^{l}, \ldots, t^{n-1}\right)
$$

with

$$
E_{l, n}\left(z_{1}, \ldots, z_{n} ; y_{l}, \ldots, y_{n}\right):=\sum_{0 \leq k \leq l}(-1)^{l+k} \boldsymbol{e}_{k}\left(z_{1}, \ldots, z_{n}\right) \boldsymbol{h}_{l-k}\left(y_{l}, \ldots, y_{n}\right)
$$

Here, $\boldsymbol{e}_{k}\left(z_{1}, \ldots, z_{n}\right)$ and $\boldsymbol{h}_{k}\left(y_{l}, \ldots, y_{n}\right)$ refer to the elementary and the complete symmetric functions of degree k (cf. [16, Ch. I.2]), with the convention that $\boldsymbol{e}_{0}=\boldsymbol{h}_{0} \equiv 1$. The nonnegativity of the eigenvalues now readily follows inductively in the particle number n by means of the recurrence (cf. [2, Lem. B.2])

$$
\begin{aligned}
& E_{l, n}\left(q^{-\lambda_{1}}, t q^{-\lambda_{2}}, \ldots, t^{n-1} q^{-\lambda_{n}} ; t^{l-1}, t^{l}, \ldots, t^{n-1}\right) \\
& \quad=\left(q^{-\lambda_{1}}-t^{l-1}\right) E_{l-1, n-1}\left(t q^{-\lambda_{2}}, \ldots, t^{n-1} q^{-\lambda_{n}} ; t^{l-1}, \ldots, t^{n-1}\right) \\
& \quad+E_{l, n-1}\left(t q^{-\lambda_{2}}, \ldots, t^{n-1} q^{-\lambda_{n}} ; t^{l}, \ldots, t^{n-1}\right)
\end{aligned}
$$

and the homogeneity

$$
E_{l, n}\left(t z_{1}, \ldots, t z_{n} ; t y_{l}, \ldots, t y_{n}\right)=t^{l} E_{l, n}\left(z_{1}, \ldots, z_{n} ; y_{l}, \ldots, y_{n}\right)
$$

Remark 7. The hyperbolic Ruijsenaars-Schneider Hamiltonian with Morse term (2.1) can be retrieved as a limit of the Macdonald-Koornwinder q difference operator [3]. In this limit, the center-of-mass is sent to infinity, which causes the hyperoctahedral symmetry of the Macdonald-Koornwinder operator to be broken: while the permutation-symmetry still persists, the paritysymmetry is no longer present. Indeed, the limit in question restores the translational invariance of the interparticle pair interactions enjoyed by the original Ruijsenaars-Schneider model and gives moreover rise to additional Morse terms that are not parity-invariant. It turns out that most of our results above can in fact be lifted to the Macdonald-Koornwinder level, even though such a generalization is presumably somewhat less relevant from a physical point of view. Specifically, the scattering of the corresponding quantum lattice model associated with the full six-parameter family of Macdonald-Koornwinder polynomials was briefly discussed in [5, Sec. 6.4], its commuting quantum integrals can be read off from the Pieri formulas for the Macdonald-Koornwinder polynomials in [4, Thm. 6.1], and the pertinent bispectral dual Hamiltonian and its commuting quantum integrals are given by the Macdonald-Koornwinder q difference operator [14] and its higher-order commuting q-difference operators [4, Thm. 5.1].

References

[1] Adler, M.: Some finite dimensional integrable systems and their scattering behavior. Commun. Math. Phys. 55, 195-230 (1977)
[2] van Diejen, J.F.: Commuting difference operators with polynomials eigenfunctions. Compos. Math. 95, 183-233 (1995)
[3] van Diejen, J.F.: Difference Calogero-Moser systems and finite Toda chains. J. Math. Phys. 36, 1299-1323 (1995)
[4] van Diejen, J.F.: Properties of some families of hypergeometric orthogonal polynomials in several variables. Trans. Am. Math. Soc. 351, 233-270 (1999)
[5] van Diejen, J.F.: Scattering theory of discrete (pseudo) Laplacians on a Weyl chamber. Am. J. Math. 127, 421-458 (2005)
[6] van Diejen, J.F., Emsiz, E.: Branching formula for Macdonald-Koornwinder polynomials. J. Algebra. doi:10.1016/j.jalgebra.2015.08.009
[7] Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys. 103, 177-240 (1986)
[8] Grünbaum F.A.: The bispectral problem: an overview. In: Bustoz, J., Ismail, M.E.H., Suslov, S.K. (eds.) Special Functions 2000: Current Perspective and Future Directions. NATO Science Series II Mathematics, Physics and Chemistry, vol. 30, pp. 129-140. Kluwer Acad. Publ., Dordrecht (2001)
[9] Hallnäs, M.: Multivariable Bessel polynomials related to the hyperbolic Sutherland model with external Morse potential. Int. Math. Res. Not. IMRN 2009(9), 1573-1611 (2009)
[10] Hallnäs, M., Langmann, E.: A unified construction of generalized classical polynomials associated with operators of Calogero-Sutherland type. Constr. Approx. 31, 309-342 (2010)
[11] Inozemtsev, V.I., Meshcheryakov, D.V.: The discrete spectrum states of finitedimensional quantum systems connected with Lie algebras. Phys. Scripta 33, 99104 (1986)
[12] Koekoek, R., Lesky, P., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their q-Analogues. Springer Monographs in Mathematics, Springer, New York (2010)
[13] Komori, Y., Noumi, M., Shiraishi, J.: Kernel functions for difference operators of Ruijsenaars type and their applications. SIGMA Symmetry Integrability Geometry Methods and Applications 5, 054 (2009)
[14] Koornwinder, T.H.: Askey-Wilson polynomials for root systems of type BC. In: Richards, D. St. P. (ed.) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications. Contemporary Mathematics, vol. 138, pp. 189-204. American Mathematical Society, Providence (1992)
[15] Levi, D., Wojciechowski, S.: On the Olshanetsky-Perelomov many-body system in an external field. Phys. Lett. A 103, 11-14 (1984)
[16] Macdonald, I.G.: Symmetric Functions and Hall Polynomial, 2nd edn. Clarendon Press, Oxford (1995)
[17] Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge University Press, Cambridge (2003)
[18] Marshall, I.: A new model in the Calogero-Ruijsenaars family. Commun. Math. Phys. 338, 563-587 (2015)
[19] Oshima, T.: Completely integrable systems associated with classical root systems. SIGMA Symmetry Integrability Geometry Methods and Applications 3, 061 (2007)
[20] Ruijsenaars, S.N.M.: Complete integrability of relativistic Calogero-Moser systems and elliptic function identities. Commun. Math. Phys. 110, 191-213 (1987)
[21] Ruijsenaars, S.N.M. : Finite-dimensional soliton systems. In: Kupershmidt, B.A. (ed.) Integrable and Superintegrable Systems, pp. 165-206. World Scientific Publishing Co., Inc., Teaneck (1990)
[22] Ruijsenaars, S.N.M.: Action-angle maps and scattering theory for some finitedimensional integrable systems. III. Sutherland type systems and their duals. Publ. Res. Inst. Math. Sci. 31, 247-353 (1995)
[23] Ruijsenaars, S.N.M.: Factorized weight functions vs. factorized scattering. Commun. Math. Phys. 228, 467-494 (2002)
[24] Ruijsenaars, S.N.M., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann. Phys. 170, 370-405 (1986)
[25] Schneider, H.: Integrable relativistic N-particle systems in an external potential. Physica D 26, 203-209 (1987)
[26] Takasaki, K.: Painlevé-Calogero correspondence revisited. J. Math. Phys. 42, 1443-1473 (2001)

Jan Felipe van Diejen
Instituto de Matemática y Física
Universidad de Talca
Casilla 747, Talca, Chile
e-mail: diejen@inst-mat.utalca.cl
Erdal Emsiz
Facultad de Matemáticas
Pontificia Universidad Católica de Chile
Casilla 306
Correo 22, Santiago, Chile
e-mail: eemsiz@mat.puc.cl

Communicated by Jean-Michel Maillet.
Received: January 1, 2015.
Accepted: August 12, 2015.

