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Spectrum and Eigenfunctions of the Lattice
Hyperbolic Ruijsenaars–Schneider System
with Exponential Morse Term

Jan Felipe van Diejen and Erdal Emsiz

Abstract. We place the hyperbolic quantum Ruijsenaars–Schneider sys-
tem with an exponential Morse term on a lattice and diagonalize the
resulting n-particle model by means of multivariate continuous dual q-
Hahn polynomials that arise as a parameter reduction of the Macdonald–
Koornwinder polynomials. This allows to compute the n-particle scatter-
ing operator, to identify the bispectral dual system, and to confirm the
quantum integrability in a Hilbert space setup.

1. Introduction

It is well known that the hyperbolic Calogero–Moser n-particle system on the
line can be placed in an exponential Morse potential without spoiling the in-
tegrability [1,15]. An extension of Manin’s Painlevé–Calogero correspondence
links the particle model in question to a multicomponent Painlevé III equation
[26]. Just as for the conventional Calogero–Moser system without Morse po-
tential, the integrability is preserved upon quantization and the corresponding
spectral problem gives rise to a rich theory of remarkable novel hypergeometric
functions in several variables [9–11,19].

An integrable Ruijsenaars–Schneider type (q-)deformation [20,24] of the
hyperbolic Calogero–Moser system with Morse potential was introduced in
[25] and in a more general form in [3, Sec. II.B]. Recently, it was pointed out
that particle systems of this kind can be recovered from the Heisenberg double
of SU(n, n) via Hamiltonian reduction [18]. In the present work, we address
the eigenvalue problem for a quantization of the latter hyperbolic Ruijsenaars–
Schneider system with Morse term. Specifically, it is shown that the eigenfunc-
tions are given by multivariate continuous dual q-Hahn polynomials that arise
as a parameter reduction of the Macdonald–Koornwinder polynomials [14,17].
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As immediate by-products, one reads off the n-particle scattering operator and
the commuting quantum integrals of a bispectral dual system [7,8].

The material is organized is as follows. In Sect. 2, we place the hyper-
bolic Ruijsenaars–Schneider system with Morse term from [3] on a lattice.
The diagonalization of the resulting quantum model in terms of multivariate
continuous dual q-Hahn polynomials is carried out in Sect. 3. In Sects. 4 and
5, the n-particle scattering operator and the bispectral dual integrable sys-
tem are exhibited. Finally, the quantum integrability of both the hyperbolic
Ruijsenaars–Schneider system with Morse term on the lattice and its bispectral
dual system are addressed in Sect. 6.

2. Hyperbolic Ruijsenaars–Schneider System with Morse Term

The hyperbolic quantum Ruijsenaars–Schneider system on the lattice was
briefly introduced in [21, Sec. 3C2] and studied in detail from the point of
view of its scattering behavior in [23] (see also [5, Sec. 6] for a further general-
ization in terms of root systems). In this section, we formulate a corresponding
lattice version of the hyperbolic quantum Ruijsenaars–Schneider system with
Morse term introduced in [3, Sec. II.B].

2.1. Hamiltonian

The Hamiltonian of our n-particle model is given by the formal difference
operator [3, Eqs. (2.25), (2.26)]:

H :=
n∑

j=1

(
w+(xj)

(
∏

1≤k≤n
k �=j

t−1 − qxj−xk

1 − qxj−xk

)
(Tj − 1)

+ w−(xj)

(
∏

1≤k≤n
k �=j

t − qxj−xk

1 − qxj−xk

)
(T−1

j − 1)

)
, (2.1)

where

w+(x) :=
√

qt0t3
t1t2

(1 − t1q
x)(1 − t2q

x),

w−(x) :=
√

t1t2
qt0t3

(1 − t0q
x)(1 − t3q

x),

and Tj (j = 1, . . . , n) acts on functions f : R
n → C by a unit translation of

the jth position variable

(Tjf)(x1, . . . , xn) = f(x1, . . . , xj−1, xj + 1, xj+1, . . . , xn).

Here, q denotes a real-valued scale parameter, t plays the role of the coupling
parameter for the Ruijsenaars–Schneider inter-particle interaction, and the
parameters tr (r = 0, . . . , 3) are coupling parameters governing the exponential
Morse interaction. Upon setting t0 = εtn−1q−1 and tr = ε for r = 1, 2, 3, one
has that w±(xj) → t±(n−1)/2 when ε → 0. We thus recover in this limit the
Hamiltonian of the hyperbolic quantum Ruijsenaars–Schneider system given in
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terms of Ruijsenaars–Macdonald difference operators [16,20]. By a translation
of the center-of-mass of the form qxj → cqxj (j = 1, . . . , n) for some suitable
constant c, it is possible to normalize one of the tr-parameters to unit value;
from now on, it will, therefore, always be assumed that t3 ≡ 1 unless explicitly
stated otherwise.

2.2. Restriction to Lattice Functions

Let ρ + Λ := {ρ + λ | λ ∈ Λ}, where Λ denotes the cone of integer partitions
λ = (λ1, . . . , λn) with weakly decreasingly ordered parts λ1 ≥ · · · ≥ λn ≥ 0,
and ρ = (ρ1, . . . , ρn) with

ρj = (n − j) logq(t) (j = 1, . . . , n). (2.2)

The action of H (2.1) (with t3 = 1) preserves the space of lattice functions
f : ρ + Λ → C:

(Hf)(ρ + λ) =
∑

1≤j≤n
λ+ej∈Λ

v+
j (λ)

(
f(ρ + λ + ej) − f(ρ + λ)

)

+
∑

1≤j≤n
λ−ej∈Λ

v−
j (λ)

(
f(ρ + λ − ej) − f(ρ + λ)

)
, (2.3)

where e1, . . . , en denotes the standard basis of R
n and

v+
j (λ) =

√
qt0
t1t2

(1 − t1t
n−jqλj )(1 − t2t

n−jqλj )
∏

1≤k≤n
k �=j

t−1 − tk−jqλj−λk

1 − tk−jqλj−λk
,

v−
j (λ) =

√
t1t2
qt0

(1 − t0t
n−jqλj )(1 − tn−jqλj )

∏

1≤k≤n
k �=j

t − tk−jqλj−λk

1 − tk−jqλj−λk
.

Indeed, given λ ∈ Λ, one has that v+
j (λ) = 0 if λ + ej �∈ Λ due to a zero

stemming from the factor t−1 − t−1qλj−1−λj when λj−1 = λj and one has
that v−

j (λ) = 0 if λ − ej �∈ Λ due to a zero stemming from either the factor
t − tqλj−λj+1 when λj = λj+1 or from the factor (1 − qλn) when λn = 0.

3. Spectrum and Eigenfunctions

Ruijsenaars’ starting point in [23] is the fact that the hyperbolic quantum
Ruijsenaars–Schneider system on the lattice is diagonalized by the celebrated
Macdonald polynomials [16, Ch.VI]. In this section, we show that in the pres-
ence of the Morse interaction the role of the Macdonald eigenpolynomials is
taken over by multivariate continuous dual q-Hahn eigenpolynomials that arise
as a parameter reduction of the Macdonald–Koornwinder polynomials [14,17].
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3.1. Multivariate Continuous Dual q-Hahn Polynomials

Continuous dual q-Hahn polynomials are a special limiting case of the Askey–
Wilson polynomials in which one of the four Askey–Wilson parameters is
set to vanish [12, Ch. 14.3]. The corresponding reduction of the Macdonald–
Koornwinder multivariate Askey–Wilson polynomials [14,17] is governed by a
weight function of the form

Δ̂(ξ) :=
1

(2π)n

∏

1≤j≤n

∣∣∣∣∣
(e2iξj )∞∏

0≤r≤2(t̂reiξj )∞

∣∣∣∣∣

2 ∏

1≤j<k≤n

∣∣∣∣
(ei(ξj+ξk), ei(ξj−ξk))∞

(tei(ξj+ξk), tei(ξj−ξk))∞

∣∣∣∣
2

(3.1)
supported on the alcove

A := {(ξ1, ξ2, . . . , ξn) ∈ R
n | π > ξ1 > ξ2 > · · · > ξn > 0}, (3.2)

where (x)m :=
∏m−1

l=0 (1 − xql) and (x1, . . . , xl)m := (x1)m · · · (xl)m refer to
the q-Pochhammer symbols, and it is assumed that

q, t ∈ (0, 1) and t̂r ∈ (−1, 1)\{0} (r = 0, 1, 2). (3.3)

More specifically, the multivariate continuous dual q-Hahn polynomials Pλ(ξ),
λ ∈ Λ are defined as the trigonometric polynomials of the form

Pλ(ξ) =
∑

μ∈Λ
μ≤λ

cλ,μmμ(ξ) (cλ,μ ∈ C) (3.4a)

such that

cλ,λ =
∏

1≤j≤n

t̂
λj

0 t(n−j)λj

(t̂0t̂1tn−j , t̂0t̂2tn−j)λj

∏

1≤j<k≤n

(tk−j)λj−λk

(t1+k−j)λj−λk

(3.4b)

and ∫

A

Pλ(ξ)Pμ(ξ)Δ̂(ξ)dξ = 0 if μ < λ. (3.4c)

Here, we have employed the dominance partial order

∀μ, λ ∈ Λ : μ ≤ λ iff
∑

1≤j≤k

μj ≤
∑

1≤j≤k

λj for k = 1, . . . , n, (3.5)

and the symmetric monomials

mλ(ξ) :=
∑

ν∈Wλ

ei(ν1ξ1+···+νnξn), λ ∈ Λ, (3.6)

associated with the hyperoctahedral group W = Sn � {1,−1}n of signed per-
mutations.

The present choice of the leading coefficient cλ,λ in Eq. (3.4b) normalizes
the polynomials in question such that Pλ(iρ̂) = 1, where ρ̂ = (ρ̂1, . . . , ρ̂n)
is given by ρ̂j = (n − j) log(t) + log(t̂0), j = 1, . . . , n (cf. [4, Sec. 6], [17,
Ch. 5.3]). With this normalization, the orthogonality relations obtained as
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the degeneration of those for the Macdonald–Koornwinder polynomials [14,
Sec. 5], [4, Sec. 7], [17, Ch. 5.3] read:

∫

A

Pλ(ξ)Pμ(ξ)Δ̂(ξ)dξ =

{
Δ−1

λ if λ = μ,

0 otherwise,
(3.7a)

where

Δλ := Δ0

∏

1≤j≤n

(t̂0t̂1tn−j , t̂0t̂2t
n−j)λj

t̂
2λj

0 t2(n−j)λj (qtn−j , t̂1t̂2tn−j)λj

×
∏

1≤j<k≤n

1 − tk−jqλj−λk

1 − tk−j

(t1+k−j)λj−λk

(qtk−j−1)λj−λk

(3.7b)

and

Δ0 :=
∏

1≤j≤n

⎛

⎝ (q, tj)∞
(t)∞

∏

0≤r<s≤2

(t̂r t̂stn−j)∞

⎞

⎠ . (3.7c)

3.2. Diagonalization

Let �2(ρ + Λ,Δ) denote the Hilbert space of lattice functions f : ρ + Λ → C

determined by the inner product

〈f, g〉Δ :=
∑

λ∈Λ

f(ρ + λ)g(ρ + λ)Δλ (f, g ∈ �2(ρ + λ,Δ)), (3.8)

with ρ and Δλ as in Eqs. (2.2) and (3.7a)–(3.7c), and let L2(A, Δ̂(ξ)dξ) be the
Hilbert space of functions f̂ : A → C determined by the inner product

〈f̂ , ĝ〉Δ̂ :=
∫

A

f̂(ξ)ĝ(ξ)Δ̂(ξ)dξ (f̂ , ĝ ∈ L2(A, Δ̂(ξ)dξ)), (3.9)

with Δ̂ taken from Eq. (3.1). We denote by ψξ : ρ + Λ → C the lattice wave
function given by

ψξ(ρ + λ) := Pλ(ξ) (ξ ∈ A, λ ∈ Λ). (3.10)

Then, the orthogonality relations in Eqs. (3.7a)–(3.7c) imply that the associ-
ated Fourier transform F : �2(ρ + Λ,Δ) → L2(A, Δ̂dξ) of the form

(F f)(ξ) := 〈f, ψξ〉Δ =
∑

λ∈Λ

f(ρ + λ)ψξ(ρ + λ)Δλ (3.11a)

(f ∈ �2(ρ + Λ,Δ)) constitutes a Hilbert space isomorphism with an inversion
formula given by

(F−1f̂)(ρ + λ) = 〈f̂ , ψ(ρ + λ)〉Δ̂ =
∫

A

f̂(ξ)ψξ(ρ + λ)Δ̂(ξ)dξ (3.11b)

(f̂ ∈ L2(A, Δ̂dξ)).
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Theorem 1. Let Ê denote the bounded real multiplication operator acting on
f̂ ∈ L2(A, Δ̂dξ) by (Êf̂)(ξ) := Ê(ξ)f̂(ξ) with

Ê(ξ) :=
∑

1≤j≤n

(
2 cos(ξj) − tn−j t̂0 − tj−nt̂−1

0

)
. (3.12a)

For

t0 = q−1t̂1t̂2, t1 = t̂0t̂2, t2 = t̂0t̂1 (3.12b)

with q, t and t̂r in the parameter domain (3.3) and
√

t1t2
qt0

:= t̂0, the hyperbolic

lattice Ruijsenaars–Schneider Hamiltonian with Morse interaction H (2.3)
constitutes a bounded self-adjoint operator in the Hilbert space �2(ρ + Λ,Δ)
diagonalized by the Fourier transform F (3.11a), (3.11b):

H = F−1 ◦ Ê ◦ F . (3.12c)

Proof. It suffices to verify that the Fourier kernel ψξ (3.10) satisfies the eigen-
value equation Hψξ = Ê(ξ)ψξ, or more explicitly that:

∑

1≤j≤n
λ+ej∈Λ

v+
j (λ)

(
ψξ(ρ + λ + ej) − ψξ(ρ + λ)

)

+
∑

1≤j≤n
λ−ej∈Λ

v−
j (λ)

(
ψξ(ρ + λ − ej) − ψξ(ρ + λ)

)
= Ê(ξ)ψξ(ρ + λ).

This eigenvalue equation amounts to the continuous dual q-Hahn reduction
of the Pieri recurrence formula for the Macdonald–Koornwinder polynomials
corresponding to Eqs. (6.4), (6.5) and Section 6.1 of [4]. �

It is immediate from Theorem 1 that the hyperbolic lattice Ruijsenaars–
Schneider Hamiltonian with Morse interaction H (2.3) has purely absolutely
continuous spectrum in �2(ρ+Λ,Δ), with the wave functions ψξ, ξ ∈ A in Eq.
(3.10) constituting an orthogonal basis of (generalized) eigenfunctions.

Remark 2. For t̂2 → 0, the lattice Hamiltonian H (3.12c) becomes of the form

H =
n∑

j=1

(
t̂−1
0 (1 − t̂0t̂1q

xj )

(
∏

1≤k≤n
k �=j

t−1 − qxj−xk

1 − qxj−xk

)
Tj

+ t̂0(1 − qxj )

(
∏

1≤k≤n
k �=j

t − qxj−xk

1 − qxj−xk

)
T−1

j + (t̂0 + t̂1)qxj

)
− ε0, (3.13a)

with x = ρ + λ and

ε0 :=
n∑

j=1

(t̂0tn−j + t̂−1
0 tj−n). (3.13b)
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Indeed, this readily follows from Eqs. (2.1), (3.12b) with the aid of the ele-
mentary polynomial identity (cf. Example 2. (a) of [16, Ch. VI.3])

n∑

j=1

(1 + zj)
∏

1≤k≤n
k �=j

t − zj/zk

1 − zj/zk
=

n∑

j=1

(zj + tn−j).

4. Scattering

In this section, we rely on results from [5], permitting to describe briefly how
the n-particle scattering operator for the hyperbolic quantum Ruijsenaars–
Schneider system on the lattice computed by Ruijsenaars [23] gets modified due
to the presence of the external Morse interactions. Specifically, the scattering
process of the present model with Morse terms turns out to be governed by
an n-particle scattering matrix Ŝ(ξ) that factorizes in two-particle and one-
particle matrices:

Ŝ(ξ) :=
∏

1≤j<k≤n

s(ξj − ξk)s(ξj + ξk)
∏

1≤j≤n

s0(ξj), (4.1a)

with

s(x) :=
(qeix, te−ix)∞
(qe−ix, teix)∞

and s0(x) :=
(qe2ix)∞
(qe−2ix)∞

∏

0≤r≤2

(t̂re−ix)∞
(t̂reix)∞

, (4.1b)

which compares to Ruijsenaars’ scattering matrix
∏

1≤j<k≤n s(ξj − ξk) for the
corresponding model without Morse interactions [23].

To substantiate further some additional notation is needed. Let us denote
by H0 the self-adjoint discrete Laplacian in �2(Λ) of the form

(H0f)(λ) :=
∑

1≤j≤n
λ+ej∈Λ

f(λ + ej) +
∑

1≤j≤n
λ−ej∈Λ

f(λ − ej) (f ∈ �2(Λ)),

and let
H := Δ1/2(H + ε0)Δ−1/2, (4.2)

with H and ε0 taken from (2.3) and (3.13b), respectively. Here, the operator
Δ1/2 : �2(ρ + Λ,Δ) → �2(Λ) refers to the Hilbert space isomorphism

(Δ1/2f)(λ) := Δ1/2
λ f(ρ + λ) (f ∈ �2(ρ + Λ,Δ)) (4.3)

[with Δ−1/2 := (Δ1/2)−1]. Then, (by Theorem 1)

H = F−1(Ê + ε0)F with F := Δ̂
1/2

FΔ−1/2, (4.4)

where Δ̂
1/2

: L2(A, Δ̂dξ) → L2(A) denotes the Hilbert space isomorphism

(Δ̂
1/2

f̂)(ξ) := Δ̂1/2(ξ)f̂(ξ) (f̂ ∈ L2(A, Δ̂dξ)) (4.5)

[and Ê (3.12a) is now regarded as a self-adjoint bounded multiplication oper-
ator in L2(A)]. Furthermore, one has that

H0 = F−1
0 (Ê + ε0)F0,
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where F0 : �2(Λ) → L2(A) denotes the Fourier isomorphism recovered from
F in the limit q, t → 0, t̂r → 0 (r = 0, 1, 2). Specifically, this amounts to the
Fourier transform

(F0f)(ξ) =
∑

λ∈Λ

f(λ)χξ(λ) (4.6a)

(f ∈ �2(Λ)) with the inversion formula

(F−1
0 f̂)(λ) =

∫

A

f̂(ξ)χξ(λ)dξ (4.6b)

(f̂ ∈ L2(A)) associated with the anti-invariant Fourier kernel

χξ(λ) :=
1

(2π)n/2 in2

∑

w∈W

sign(w)ei〈w(ρ0+λ),ξ〉,

where sign(w) = ε1 · · · εnsign(σ) for w = (σ, ε) ∈ W = Sn � {1,−1}n and
ρ0 = (n, n − 1, . . . , 2, 1).

Let C0(Areg) be the dense subspace of L2(A) consisting of smooth test
functions with compact support in the open dense subset Areg ⊂ A on which
the components of the gradient

∇Ê(ξ) = (−2 sin(ξ1), . . . ,−2 sin(ξn)), ξ ∈ A

do not vanish and are all distinct in absolute value. We define the following
unitary multiplication operator Ŝ : L2(A,dξ) → L2(A,dξ) via its restriction
to C0(Areg):

(Ŝ f̂)(ξ) := Ŝ(wξξ)f̂(ξ) (f̂ ∈ C0(Areg)), (4.7)

where wξ ∈ W for ξ ∈ Areg is the signed permutation such that the components
of wξ∇Ê(ξ) are all positive and reordered from large to small.

Theorem 4.2 and Corollary 4.3 of Ref. [5] now provide explicit formu-
las for the wave operators and scattering operator comparing the large-times
asymptotics of the interacting particle dynamics eiHt relative to the Lapla-
cian’s reference dynamics eiH0t as a continuous dual q-Hahn reduction of [5,
Thm. 6.7].

Theorem 3 (Wave and scattering operators). The operator limits

Ω± := s − lim
t→±∞ eitHe−itH0

converge in the strong �2(Λ)-norm topology and the corresponding wave oper-
ators Ω± intertwining the interacting dynamics eiHt with the discrete Lapla-
cian’s dynamics eiH0t are given by unitary operators in �2(Λ) of the form

Ω± = F−1 ◦ Ŝ∓1/2 ◦ F0,

where the branches of the square roots are to be chosen such that

s(x)1/2 =
(qeix)∞
|(qeix)∞|

|(teix)∞|
(teix)∞

and s0(x)1/2 =
(qe2ix)∞
|(qe2ix)∞|

∏

0≤r≤2

|(t̂reix)∞|
(t̂reix)∞

.
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The scattering operator relating the large-times asymptotics of eiHt for t →
−∞ and t → +∞ is thus given by the unitary operator

S := (Ω+)−1Ω− = F−1
0 ◦ Ŝ ◦ F0.

5. Bispectral Dual System

The bispectral dual in the sense of Duistermaat and Grünbaum [7,8] of the
hyperbolic quantum Ruijsenaars–Schneider system on the lattice is given by
the trigonometric Ruijsenaars–Macdonald q-difference operators [16,20]. This
bispectral duality is a quantum manifestation of the duality between the classi-
cal Ruijsenaars–Schneider systems with hyperbolic/trigonometric dependence
on the position/momentum variables and vice versa [22], which (at the clas-
sical level) states that the respective action-angle transforms linearizing the
two systems under consideration are inverses of each other. As a degeneration
of the Macdonald–Koornwinder q-difference operator [14, Eq. (5.4)], we im-
mediately arrive at a bispectral dual Hamiltonian for our hyperbolic quantum
Ruijsenaars–Schneider system with Morse term.

Indeed, the continuous dual q-Hahn reduction of the q-difference equation
satisfied by the Macdonald–Koornwinder polynomials [14, Thm. 5.4] reads

ĤPλ = EλPλ with Eλ =
n∑

j=1

tj−1(q−λj − 1) (λ ∈ Λ), (5.1a)

where

Ĥ =
n∑

j=1

(
v̂j(ξ)(T̂j,q − 1) + v̂j(−ξ)(T̂−1

j,q − 1)
)

, (5.1b)

and

v̂j(ξ) =

∏
0≤r≤2(1 − t̂re

iξj )
(1 − e2iξj )(1 − qe2iξj )

∏

1≤k≤n
k �=j

1 − tei(ξj+ξk)

1 − ei(ξj+ξk)

1 − tei(ξj−ξk)

1 − ei(ξj−ξk)
. (5.1c)

Here, T̂j,q acts on trigonometric (Laurent) polynomials p̂(eiξ1 , . . . , eiξn) by a
q-shift of the jth variable:

(T̂j,qp̂)(eiξ1 , . . . , eiξn) := p̂(eiξ1 , . . . , eiξj−1 , qeiξj , eiξj+1 , . . . , eiξn).

In other words, the bispectral dual Hamiltonian Ĥ (5.1b),(5.1c) consti-
tutes a nonnegative unbounded self-adjoint operator with purely discrete spec-
trum in L2(A, Δ̂dξ) that is diagonalized by the (inverse) Fourier transform F
(3.11a), (3.11b):

Ĥ = F ◦ E ◦ F−1, (5.2)

where E denotes the self-adjoint multiplication operator in �2(ρ + Λ,Δ) of
the form (Ef)(ρ + λ) := Eλf(ρ + λ) (for λ ∈ Λ and f ∈ �2(ρ + Λ,Δ) with
〈Ef,Ef〉Δ < ∞).
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6. Quantum Integrability

In this final section, we provide explicit formulas for a complete system of com-
muting quantum integrals for the hyperbolic quantum Ruijsenaars–Schneider
Hamiltonian with Morse term on the lattice H (2.3) and for its bispectral dual
Hamiltonian Ĥ (5.1b), (5.1c). This confirms the quantum integrability of both
Hamiltonians in the present Hilbert space setup.

6.1. Hamiltonian

The quantum integrals for the hyperbolic Ruijsenaars–Schneider Hamiltonian
with Morse term are given by commuting difference operators H1, . . . , Hn that
are defined via their action on f ∈ �2(ρ + Λ,Δ) (cf. [3, Eqs. (2.20)–(2.23)]):

(Hlf)(ρ + λ)

:=
∑

J+,J−⊂{1,...,n}
J+∩J−=∅, |J+|+|J−|≤l

λ+eJ+−eJ−∈Λ

UJc
+∩Jc

−,l−|J+|−|J−|(λ)VJ+,J−(λ)f(ρ + λ + eJ+−eJ−)

(6.1)

(λ ∈ Λ, l = 1, . . . , n), where eJ :=
∑

j∈J ej for J ⊂ {1, . . . , n}, Jc :=
{1, . . . , n}\J and

VJ+,J−(λ) = t−
1
2 |J+|(|J+|−1)+ 1

2 |J−|(|J−|−1)

×
∏

j∈J+

√
qt0
t1t2

(1 − t1t
n−jqλj )(1 − t2t

n−jqλj )

×
∏

j∈J−

√
t1t2
qt0

(1 − t0t
n−jqλj )(1 − tn−jqλj )

×
∏

j∈J+
k∈J−

(
1 − t1+k−jqλj−λk

1 − tk−jqλj−λk

) (
t−1 − tk−jqλj−λk+1

1 − tk−jqλj−λk+1

)

×
∏

j∈J+
k �∈J+∪J−

t−1 − tk−jqλj−λk

1 − tk−jqλj−λk

∏

j∈J−
k �∈J+∪J−

t − tk−jqλj−λk

1 − tk−jqλj−λk
,

UK,p(λ) = (−1)p

×
∑

I+,I−⊂K
I+∩I−=∅, |I+|+|I−|=p

(
∏

j∈I+

√
qt0
t1t2

(1 − t1t
n−jqλj )(1 − t2t

n−jqλj )

×
∏

j∈I−

√
t1t2
qt0

(1 − t0t
n−jqλj )(1 − tn−jqλj )
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×
∏

j∈I+
k∈I−

(
1 − t1+k−jqλj−λk

1 − tk−jqλj−λk

)(
1 − t−1+k−jqλj−λk+1

1 − tk−jqλj−λk+1

)

×
∏

j∈I+
k∈K\(I+∪I−)

t−1 − tk−jqλj−λk

1 − tk−jqλj−λk

∏

j∈I−
k∈K\(I+∪I−)

t − tk−jqλj−λk

1 − tk−jqλj−λk

)
.

For l = 1, the action of Hl (6.1) is seen to reduce to that of H (2.3). The
diagonalization in Theorem 1 generalizes to these higher commuting quantum
integrals as follows.

Theorem 4. For parameters of the form as in Theorem 1, the difference op-
erators H1, . . . , Hn (6.1) constitute bounded commuting self-adjoint operators
in the Hilbert space �2(ρ + Λ,Δ) that are simultaneously diagonalized by the
Fourier transform F (3.11a), (3.11b):

Hl = F−1 ◦ Êl ◦ F (l = 1, . . . , n), (6.2a)

where Êl denotes the bounded real multiplication operator acting on f̂ ∈ L2

(A, Δ̂dξ) by (Êlf̂)(ξ) := Êl(ξ)f̂(ξ) with

Êl(ξ) :=
∑

1≤j1<···<jl≤n

(6.2b)

(2 cos(ξj1) − tj1−1t̂0 − t−(j1−1)t̂−1
0 ) · · · (2 cos(ξjl) − tjl−l t̂0 − t−(jl−l)t̂−1

0 ).

Proof. The eigenvalue equation Hlψξ = Êl(ξ)ψξ reads explicitly
∑

J+,J−⊂{1,...,n}
J+∩J−=∅, |J+|+|J−|≤l

λ+eJ+−eJ−∈Λ

UJc
+∩Jc

−,l−|J+|−|J−|(λ)VJ+,J−(λ)ψξ(ρ + λ + eJ+ − eJ−)

= Êl(ξ)ψξ(ρ + λ).

This eigenvalue identity corresponds to the continuous dual q-Hahn reduction
of the Pieri recurrence formula for the Macdonald–Koornwinder polynomials
in [4, Thm. 6.1], where we have expressed the eigenvalues Êl(ξ) in a compact
form stemming from [13, Eq. (5.1)] (cf. also [6, Sec. 2.2]). �

6.2. Bispectral Dual Hamiltonian

The continuous dual q-Hahn reduction of the system of higher q-difference
equations for the Macdonald–Koornwinder polynomials in [4, Sec. 5.1] reads

ĤlPλ = Eλ,lPλ (λ ∈ Λ, l = 1, . . . , n), (6.3a)

where

Eλ,l := t−l(l−1)/2
∑

1≤j1<···<jl≤n

(tj1−1q−λj1 − tn−j1) · · · (tjl−1q−λjl − tn+l−jl−1)

(6.3b)
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(cf. [13, Eq. (5.1)]), and

Ĥl :=
∑

J⊂{1,...,n}, 0≤|J|≤l
εj∈{1,−1},j∈J

ÛJc,l−|J|V̂εJ T̂εJ,q, (6.3c)

with T̂εJ,q :=
∏

j∈J T̂
εj
j,q and

V̂εJ =
∏

j∈J

∏
0≤r≤2(1 − t̂re

iεjξj )
(1 − e2iεjξj )(1 − qe2iεjξj )

∏

j∈J
k �∈J

1 − tei(εjξj+ξk)

1 − ei(εjξj+ξk)

1 − tei(εjξj−ξk)

1 − ei(εjξj−ξk)

×
∏

j,k∈J
j<k

1 − tei(εjξj+εkξk)

1 − ei(εjξj+εkξk)

1 − tqei(εjξj+εjξk)

1 − qei(εjξj+εkξk)
,

ÛK,p = (−1)p
∑

I⊂K, |I|=p
εj∈{1,−1},j∈I

( ∏

j∈I

∏
0≤r≤2(1 − t̂re

iεjξj )
(1 − e2iεjξj )(1 − qe2iεjξj )

×
∏

j∈I
k∈K\I

1 − tei(εjξj+ξk)

1 − ei(εjξj+ξk)

1 − tei(εjξj−ξk)

1 − ei(εjξj−ξk)

×
∏

j,k∈I
j<k

1 − tei(εjξj+εkξk)

1 − ei(εjξj+εkξk)

t − qei(εjξj+εjξk)

1 − qei(εjξj+εkξk)

)
.

For l = 1, this reproduces the continuous dual q-Hahn reduction of the
Macdonald–Koornwinder q-difference equation in Eqs. (5.1a)–(5.1c).

The q-difference operators Ĥ1, . . . , Ĥn extend the bispectral dual Hamil-
tonian Ĥ (5.1b)–(5.1c) into a complete system of commuting quantum inte-
grals that are simultaneously diagonalized by the multivariate continuous dual
q-Hahn polynomials.

Theorem 5. For parameter values in the domain (3.3), the q-difference opera-
tors Ĥ1, . . . , Ĥn constitute nonnegative unbounded self-adjoint operators with
purely discrete spectra in L2(A, Δ̂dξ) that are simultaneously diagonalized by
the (inverse) Fourier transform F (3.11a), (3.11b):

Ĥl = F ◦ El ◦ F−1, l = 1, . . . , n, (6.4)

where El denotes the self-adjoint multiplication operator in �2(ρ + Λ,Δ) given
by (Elf)(ρ + λ) := Eλ,lf(ρ + λ) (on the domain of f ∈ �2(ρ + Λ,Δ) such that
〈Elf,Elf〉Δ < ∞).

Notice in this connection that although the domain of the unbounded op-
erator Ĥl in L2(A, Δ̂dξ) depends on l, the resolvent operators (Ĥ1−z1)−1, . . . ,

(Ĥn − zn)−1 (with z1, . . . , zn ∈ C\[0,+∞)) commute as bounded operators
on L2(A, Δ̂dξ), and the q-difference operators Ĥ1, . . . , Ĥn moreover commute
themselves on the joint polynomial eigenbasis Pλ, λ ∈ Λ.
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Remark 6. To infer that the eigenvalues Eλ,l (6.3b) are nonnegative—thus
indeed giving rise to a nonnegative operator Ĥl in Theorem 5—it is helpful to
note that these can be rewritten as (cf. [4, Sec. 5.1]):

Eλ,l = t−l(l−1)/2El,n(q−λ1 , tq−λ2 , . . . , tn−1q−λn ; tl−1, tl, . . . , tn−1)

with

El,n(z1, . . . , zn; yl, . . . , yn) :=
∑

0≤k≤l

(−1)l+kek(z1, . . . , zn)hl−k(yl, . . . , yn).

Here, ek(z1, . . . , zn) and hk(yl, . . . , yn) refer to the elementary and the com-
plete symmetric functions of degree k (cf. [16, Ch. I.2]), with the convention
that e0 = h0 ≡ 1. The nonnegativity of the eigenvalues now readily fol-
lows inductively in the particle number n by means of the recurrence (cf. [2,
Lem. B.2])

El,n(q−λ1 , tq−λ2 , . . . , tn−1q−λn ; tl−1, tl, . . . , tn−1)

= (q−λ1 − tl−1)El−1,n−1(tq−λ2 , . . . , tn−1q−λn ; tl−1, . . . , tn−1)

+ El,n−1(tq−λ2 , . . . , tn−1q−λn ; tl, . . . , tn−1)

and the homogeneity

El,n(tz1, . . . , tzn; tyl, . . . , tyn) = tlEl,n(z1, . . . , zn; yl, . . . , yn).

Remark 7. The hyperbolic Ruijsenaars–Schneider Hamiltonian with Morse
term (2.1) can be retrieved as a limit of the Macdonald–Koornwinder q-
difference operator [3]. In this limit, the center-of-mass is sent to infinity, which
causes the hyperoctahedral symmetry of the Macdonald–Koornwinder oper-
ator to be broken: while the permutation-symmetry still persists, the parity-
symmetry is no longer present. Indeed, the limit in question restores the trans-
lational invariance of the interparticle pair interactions enjoyed by the origi-
nal Ruijsenaars–Schneider model and gives moreover rise to additional Morse
terms that are not parity-invariant. It turns out that most of our results above
can in fact be lifted to the Macdonald–Koornwinder level, even though such a
generalization is presumably somewhat less relevant from a physical point of
view. Specifically, the scattering of the corresponding quantum lattice model
associated with the full six-parameter family of Macdonald–Koornwinder poly-
nomials was briefly discussed in [5, Sec. 6.4], its commuting quantum integrals
can be read off from the Pieri formulas for the Macdonald–Koornwinder poly-
nomials in [4, Thm. 6.1], and the pertinent bispectral dual Hamiltonian and
its commuting quantum integrals are given by the Macdonald–Koornwinder q-
difference operator [14] and its higher-order commuting q-difference operators
[4, Thm. 5.1].
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[7] Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral para-
meter. Commun. Math. Phys. 103, 177–240 (1986)
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