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Abstract. The divisible sandpile starts with i.i.d. random variables
(“masses”) at the vertices of an infinite, vertex-transitive graph, and
redistributes mass by a local toppling rule in an attempt to make all
masses ≤ 1. The process stabilizes almost surely if m < 1 and it almost
surely does not stabilize if m > 1, where m is the mean mass per vertex.
The main result of this paper is that in the critical case m = 1, if the
initial masses have finite variance, then the process almost surely does
not stabilize. To give quantitative estimates on a finite graph, we relate
the number of topplings to a discrete bi-Laplacian Gaussian field.

1. Introduction

This paper is concerned with the dichotomy between stabilizing and exploding
configurations in a model of mass redistribution, the divisible sandpile model.
The main interest in this model is twofold. First, it is a natural starting place
for the analogous and more difficult dichotomy in the abelian sandpile model.
Second, the divisible sandpile itself leads to interesting questions in potential
theory. For example, under what conditions must a random harmonic function
be an almost sure constant? (Lemma 5.4 gives some sufficient conditions.) Both
the motivation for this paper and many of the proof techniques are directly
inspired by the work of Fey, Meester and Redig [6].

By a graph G = (V,E), we will always mean a connected, locally finite
and undirected graph with vertex set V and edge set E. We write x ∼ y to
mean that (x, y) ∈ E, and deg(x) for the number of y such that x ∼ y. A
divisible sandpile configuration on G is a function s : V → R. We refer to s(x)
as an amount of ‘mass’ present at vertex x; a negative value of s(x) can be
imagined as a ‘hole’ waiting to be filled by mass. A vertex x ∈ V is called
unstable if s(x) > 1. An unstable vertex x topples by keeping mass 1 for itself
and distributing the excess s(x)−1 equally among its neighbors y ∼ x. At each
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discrete time step, all unstable vertices topple simultaneously. (This parallel
toppling assumption is mainly for simplicity; in Sect. 2, we will relax it.) The
following trivial consequence of the toppling rule is worth emphasizing: if for a
particular vertex x, the inequality s(x) ≥ 1 holds at some time, then it holds
at all later times.

Note that the entire system evolves deterministically once an initial con-
dition s is fixed. The initial s can be deterministic or random; below we will see
one example of each type. Write un(x) for the total amount of mass emitted
before time n from x to one of its neighbors. (By the symmetry of the toppling
rule, it does not matter which neighbor.) This quantity increases with n, so
un ↑ u as n ↑ ∞ for a function u : V → [0,∞]. We call this function u the
odometer of s. Note that if u(x) = ∞ for some x, then each neighbor of x
receives an infinite amount of mass from x, so u(y) = ∞ for all y ∼ x. We,
therefore, have the following dichotomy:

Either u(x) < ∞ for all x ∈ V ,

or u(x) = ∞ for all x ∈ V .

In the former case, we say that s stabilizes, and in the latter case we say that
s explodes.

The following theme repeats itself at several places: The question of
whether s stabilizes depends not only on s itself but also on the underlying
graph. For instance, fixing a vertex o, we will see that the divisible sandpile

s(x) =

{
1 x �= o

2 x = o

stabilizes on G if and only if the simple random walk on G is transient
(Lemma 2.9).

Our main result treats the case of initial masses s(x) that are independent
and identically distributed (i.i.d.) random variables with finite variance. Write
Es and Var s for the common mean and variance of the s(x). The mean Es is
sometimes called the density (in the physical sense of the word, mass per unit
volume). Because sites topple when their mass exceeds 1, intuition suggests
that the density should be the main determiner of whether or not s stabilizes:
the higher the density, the harder it is to stabilize. Indeed, we will see that s
stabilizes almost surely if Es < 1 (Lemma 4.2) and explodes almost surely if
Es > 1 (Lemma 4.1). Our main result addresses the critical case Es = 1.

Theorem 1.1. Let s be an i.i.d. divisible sandpile on an infinite, vertex-
transitive graph, with Es = 1 and 0 < Var s < ∞. Then, s almost surely
does not stabilize.

Our theme that ‘stabilizability depends on the underlying graph’ repeats
again in the proof of Theorem 1.1. The proof splits into three cases depending
on the graph. The cases in increasing order of difficulty are
• recurrent (Lemma 4.4). Examples: Z,Z2.
• transient with

∑
x∈V g(o, x)2 = ∞ (Sect. 5.1). Examples: Z3,Z4.
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• transient with
∑

x∈V g(o, x)2 < ∞ (Sect. 5.2). Examples: Zd with d ≥ 5.
Here, g denotes Green’s function: g(o, x) is the expected number of visits to
x by a simple random walk started at o. The reason for the order of difficulty
is that ‘stabilization is harder in lower dimensions,’ in a sense formalized by
Theorem 1.2 below.

1.1. Potential Theory of Real-Valued Functions

The graph Laplacian Δ acts on functions u : V → R by

Δu(x) =
∑
y∼x

(u(y) − u(x)). (1)

Using a ‘least action principle’ (Proposition 2.5), the question of whether a
divisible sandpile stabilizes can be reformulated as a question in potential
theory:

Given a function s : V → R, does there exist a nonnegative function
u : V → R such that s + Δu ≤ 1 pointwise?

1.2. Potential Theory of Integer-Valued Functions

In the related abelian sandpile model, configurations are integer-valued func-
tions s : V → Z. We think of s(x) as a number of particles present at x. A
vertex x ∈ V is unstable if it has at least deg(x) particles. An unstable site
x topples by sending one particle to each of its deg(x) neighbors. This model
also has a dichotomy between stabilizing (u < ∞) and exploding (u ≡ ∞),
which can be reformulated as follows:

Given a function s : V → Z, does there exist a nonnegative function
u : V → Z such that s + Δu ≤ deg −1 pointwise?
The restriction that u must be integer-valued introduces new difficulties

that are not present in the divisible sandpile model. The first step in the proof
of Theorem 1.1 is to argue that if Es = 1 and s stabilizes, then it necessarily
stabilizes to the all 1 configuration. This step fails for the abelian sandpile
except in dimension 1. Indeed, a result analogous to Theorem 1.1 does hold for
the abelian sandpile when the underlying graph is Z [6, Theorem 3.2], but no
such result can hold in higher dimensions: The density Es alone is not enough
to determine whether an abelian sandpile s on Z

d stabilizes, if d < Es < 2d−1
(see [7, Section 5], [6, Theorem 3.1] and [5, Proposition 1.4]; the essential idea
in these arguments arose first in bootstrap percolation [17,20]).

We would like to highlight an open problem: Given a probability dis-
tribution μ on Z (say, supported on {0, 1, 2, 3, 4} with rational probabilities)
is it algorithmically decidable whether the i.i.d. abelian sandpile on Z

2 with
marginal μ stabilizes almost surely?

1.3. Quantitative Estimates and Bi-Laplacian Field

For a finite connected graph G = (V,E), the divisible sandpile s : V → R

stabilizes if and only if
∑

x∈V s(x) ≤ |V |. Our next result gives the order of
the odometer in a critical case when this sum is exactly |V |. Specifically, to
formalize the idea that ‘stabilization is harder in lower dimensions,’ we take
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an identically distributed Gaussian initial condition on the discrete torus Z
d
n,

conditioned to have total mass nd. The expected odometer can be taken as
an indication of difficulty to stabilize: How much mass must each site emit on
average? According to Eq. (2) below, the expected odometer tends to ∞ with
n in all dimensions (reflecting the failure to stabilize on the infinite lattice Z

d),
but it decreases with dimension.

Theorem 1.2. Let (σ(x))x∈Zd
n

be i.i.d. N(0, 1), and consider the divisible sand-
pile

sd,n(x) = 1 + σ(x) − 1
nd

∑
y∈Zd

n

σ(y).

Then, sd,n : Zd
n → R stabilizes to the all 1 configuration, and there exists a

constant Cd such that the odometer ud,n satisfies

C−1
d φd(n) ≤ Eud,n(x) ≤ Cdφd(n)

for all n ≥ 2, where φd is defined by

φd(n) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n3/2, d = 1
n, d = 2
n1/2, d = 3
log n, d = 4
(log n)1/2, d ≥ 5.

(2)

The first step in computing these orders is proving an equality in law
between the odometer ud,n and a certain ‘discrete bi-Laplacian Gaussian field’
shifted to have minimum value 0. This equality in law actually holds for any
finite connected graph, as detailed in the next proposition.

Proposition 1.3. Let G = (V,E) be a finite connected graph. Let (σ(x))x∈V be
i.i.d. N(0, 1), and consider the divisible sandpile

s(x) = 1 + σ(x) − 1
|V |

∑
y∈V

σ(y).

Then, s stabilizes to the all 1 configuration, and the distribution of its odometer
u : V → [0,∞) is

(u(x))x∈V
d= (η(x) − min η)x∈V

where the η(x) are jointly Gaussian with mean zero and covariance

E[η(x)η(y)] =
1

deg(x) deg(y)

∑
z∈V

g(z, x)g(z, y)

where g is defined by g(x, y) = 1
|V|

∑
z∈V gz(x, y) and gz(x, y) is the expected

number of visits to y by the simple random walk started at x before hitting z.
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Proposition 1.3 suggests the possibility of a central limit theorem for the
divisible sandpile odometer on Z

d
n: We believe that if σ is identically distributed

with zero mean and finite variance, then the odometer, after a suitable shift
and rescaling, converges weakly as n → ∞ to the bi-Laplacian Gaussian field
on R

d.

1.4. Proof Ideas

By conservation of density (Proposition 3.1), the assumption Es = 1 implies
that if s stabilizes then it must stabilize to the all 1 configuration, so that the
odometer u satisfies

Δu = 1 − s. (3)

where Δ is the Laplacian (1). This relation leads to a contradiction in one of
the three ways:

• If G is recurrent (examples: Z,Z2), then 1 + βδo does not stabilize
(Lemma 2.9). By resampling the random variable s(o), we derive a con-
tradiction from (3).

• If G is simply transient (examples: Z3,Z4), then we can attempt to solve
(3) for u, writing

u(y) =
∑

x

g(x, y)(s(x) − 1) (4)

where g is Green’s function. The sum on the right side diverges a.s. if
taken over all x ∈ V (since g(·, y) is not square-summable), but we can
stabilize s in nested finite subsets Vn ↑ V instead. The corresponding
finite sums, suitably normalized, tend in distribution to a mean zero
Gaussian by the Lindeberg central limit theorem, contradicting the non-
negativity of u(y).

• If G is doubly transient (example Z
d for d ≥ 5), then the right side of (4)

converges a.s.. The difference between the left and right sides is then a
random harmonic function with automorphism-invariant law. The proof
is completed by showing that under mild moment assumptions any such
function is an almost sure constant (Lemma 5.4).

1.5. Related Work

The divisible sandpile was introduced in [13,14] to study the scaling limits of
two growth models, rotor aggregation and internal DLA. The divisible sandpile
has also been used as a device for proving an exact mean value property for
discrete harmonic functions [9, Lemma 2.2]. These works focused on sandpiles
with finite total mass on an infinite graph, in which case exploding is not a
possibility. In the present paper, we expand the focus to sandpiles with infinite
total mass.

The abelian sandpile has a much longer history: it arose in statistical
physics as a model of ‘self-organized criticality’ (SOC) [1,4]. The dichotomy
between stabilizing and exploding configurations arose in the course of a debate
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about whether SOC does or does not involve tuning a parameter to a criti-
cal value [7,15]. Without reopening that particular debate, we view the sta-
bilizing/exploding dichotomy as a topic with its own intrinsic mathematical
interest. An example of its importance can be seen in the partial differential
equation for the scaling limit of the abelian sandpile on Z

2, which relies on
a classification of certain ‘quadratic’ sandpiles according to whether they are
stabilizing or exploding [12].

The Gaussian vector η in Proposition 1.3 can be interpreted as a discrete
bi-Laplacian field. In Z

d for dimensions d ≥ 5, Sun and Wu construct another
discrete model for the bi-Laplacian field by assigning random signs to each
component of the uniform spanning forest [18].

2. Toppling Procedures and Stabilization

In this section, G = (V,E) is a locally finite, connected, undirected graph.
Denote by X = R

V the set of divisible sandpile configurations on G.

Definition 2.1. Let T ⊂ [0,∞) be a well-ordered set of toppling times such that
0 ∈ T and T is a closed subset of [0,∞). A toppling procedure is a function

T × V → [0,∞)

(t, x) �→ ut(x)

satisfying for all x ∈ V

1. u0(x) = 0.
2. ut1(x) ≤ ut2(x) for all t1 ≤ t2.
3. If tn ↑ t, then utn

(x) ↑ ut(x).

In the more general toppling procedures considered by Fey, Meester and
Redig [6], the assumption that T is well-ordered becomes a “no infinite back-
ward chain” condition, but we will not need that level of generality. See Exam-
ples 1–3 below for the three specific toppling procedures we will use.

The interpretation of a toppling procedure is that starting from an ini-
tial configuration s ∈ X , the total mass emitted by a site x ∈ V to each
of its neighbors during the time interval [0, t] is ut(x), so that the resulting
configuration at time t is

st = s + Δut

where Δ is the graph Laplacian (1).
For a ∈ R write a+ = max(a, 0). For t ∈ T write t− := sup{r ∈ T : r <

t}. Note that t− ∈ T since T is closed.

Definition 2.2. A toppling procedure u is called legal for initial configuration
s if

ut(x) − ut−(x) ≤ (st−(x) − 1)+

deg(x)

for all x ∈ V and all t ∈ T\{0}.
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Thus, in a legal toppling procedure, a site with mass ≤ 1 cannot emit
any mass, while a site with mass > 1 must keep at least mass 1 for itself.

Definition 2.3. A toppling procedure u is called finite if for all x ∈ V we have

u∞(x) := lim
t→sup T

ut(x) < ∞

and infinite otherwise. The limit exists in [0,∞] since ut(x) is nondecreasing
in t.

Note that if u is a finite toppling procedure, then the limit

s∞ := lim
t→sup T

st = s + lim
t→sup T

Δut

exists and equals s + Δu∞.

Definition 2.4. Let s ∈ X . A toppling procedure u is called stabilizing for s
if u is finite and s∞ ≤ 1 pointwise. We say that s stabilizes if there exists a
stabilizing toppling procedure for s.

Throughout this paper, all inequalities between functions hold pointwise,
and we will usually omit the word “pointwise.”

A basic question arises: For which s ∈ X does there exist a stabilizing
toppling procedure? For instance, one might expect (correctly) that there is
no such procedure for s ≡ 2. We can rephrase this question in terms of the set
of functions

Fs := {f : V → R | f ≥ 0 and s + Δf ≤ 1}.

If u is a stabilizing toppling procedure for s, then u∞ ∈ Fs. Conversely, any
f ∈ Fs arises from a stabilizing toppling procedure for s simply by setting
T = {0, 1} and u1 = f . Therefore, s stabilizes if and only if Fs is nonempty.

Proposition 2.5. (Least action principle and abelian property) Let s ∈ X , and
let � be a legal toppling procedure for s.

(i) For all f ∈ Fs,

�∞ ≤ f.

(ii) If u is any stabilizing toppling procedure for s, then

�∞ ≤ u∞.

(iii) If u is any legal stabilizing toppling procedure for s, then for all x ∈ V ,

u∞(x) = inf{f(x) | f ∈ Fs} (5)

In particular, u∞ and the final configuration

s∞ = s + Δu∞

do not depend on the choice of legal stabilizing toppling procedure u.
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Proof. (i) For y ∈ V let τy = inf{t ∈ T : �t(y) > f(y)}, and suppose for
a contradiction that τy < ∞ for some y ∈ V . Since T is well ordered, the
infimum is attained. Moreover, τ−

y := sup{t ∈ T : t < τy} < τy by assumption
(3) of Definition 2.1.

Let τ = infy∈V τy. Since T is well ordered, τ = τy for some y ∈ V . Now
at time τ−, since u is legal for s,

sτ−(y) ≥ 1 + deg(y) (�τ (y) − �τ−(y)) > 1 + deg(y)w(y)

where w = f − �τ− . On the other hand,

sτ−(y) = (s + Δ�τ−)(y)

= (s + Δf)(y) − Δw(y)

≤ 1 + deg(y)w(y) −
∑
x∼y

w(x).

It follows that
∑

x∼y w(x) < 0. But for all x ∈ V we have τ− < τ ≤ τx, so
w(x) ≥ 0, which yields the required contradiction.

Part (ii) follows from (i), using f = u∞.
Part (iii) also follows from (i): the function u∞ simultaneously attains

the infimum for all x ∈ V . �
Whenever we need to fix a particular toppling procedure, we will choose

one of the following three.

Example 1. (Toppling in parallel) Let T = N. At each time t ∈ N, all unstable
sites of st−1 topple all of their excess mass simultaneously: For all x ∈ V ,

ut(x) − ut−1(x) =
(st−1(x) − 1)+

deg(x)
.

This u is a legal toppling procedure. Two further observations about u will be
useful in the proof of Lemma 2.7 below. First, if s stabilizes, then u is finite by
Proposition 2.5(ii). Second, whenever u is finite, u is stabilizing for s: indeed,
if u∞(x) = 1

deg(x)

∑
t∈N

(st(x) − 1)+ < ∞, we have (st(x) − 1)+ → 0 as t → ∞
and hence s∞(x) ≤ 1.

Example 2. (Toppling in nested volumes) Let V1 ⊂ V2 ⊂ · · · be finite sets with⋃
n≥1 Vn = V . Between times n− 1 and n, we topple in parallel to stabilize all

sites in Vn: Formally, we take T to be the set of all rationals of the form n− 1
k

for positive integers n and k. For n ≥ 1 and k ≥ 1, we set

un− 1
k
(x) − un− 1

k−1
(x) =

(sn− 1
k−1

(x) − 1)+ · 1x∈Vn

deg(x)
and

un(x) = lim
k→∞

un− 1
k
(x).

Example 3. (Toppling in two stages) In this procedure, we are given a decom-
position of the initial configuration into two pieces

s = s1 + s2
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where s1 stabilizes and s2 ≥ 0. In the first stage, we ignore the extra mass s2

and stabilize the s1 piece by toppling in parallel at times 1 − 1
k for positive

integers k, obtaining

s1 = s + Δu1
∞ = s1

∞ + s2.

The condition that s1 stabilizes ensures u1
∞ < ∞, and the condition s2 ≥ 0

ensures that all topplings that are legal for s1 are also legal for s. Now, we
topple s1

∞ + s2 in parallel at times 2 − 1
k for positive integers k.

Now, we come to a central definition of this paper. Let s ∈ X .

Definition 2.6. The odometer of s is the function u∞ : V → [0,∞] of (5). If s
stabilizes, then its stabilization is the configuration

s∞ = s + Δu∞.

If s stabilizes, then its odometer u∞(x) is the total amount of mass sent
from x to one of its neighbors, in any legal stabilizing toppling procedure for s.
If s does not stabilize, then u∞ ≡ ∞: The odometer is defined as a pointwise
infimum, with the usual convention that the infimum of the empty set is ∞.
Next, we observe that the odometer can also be expressed as a pointwise
supremum.

Lemma 2.7. Let u∞ be the odometer of s ∈ X . Then for all x ∈ V ,

u∞(x) = sup{�∞(x) | � is a legal toppling procedure for s}. (6)

Proof. Denote the right side of (6) by L(x). By Proposition 2.5(i), L ≤ u∞.
To prove the reverse inequality, we will use a particular legal �, the parallel
toppling procedure of Example 1. There are two cases: First, if this � is finite,
then � is stabilizing as well as legal, so L ≥ �∞ = u∞ by Proposition 2.5(iii).

Second, if � is not finite, then �∞(o) = ∞ for some o ∈ V . Then for any
neighbor x ∼ o, we have

�t+1(x) ≥ �t(o) + s(x) − 1

and the right side tends to ∞ with t, so �∞(x) = ∞. Since the graph G is
connected, it follows that �∞ ≡ ∞. In this case, both L and u∞ are identi-
cally ∞. �

We pause to record several equivalent conditions for s stabilizing.

Corollary 2.8. Let s ∈ X have odometer u∞. The following are equivalent.

1. There exists a legal stabilizing toppling procedure for s.
2. There exists a stabilizing toppling procedure for s.
3. Fs �= ∅.
4. u∞(x) < ∞ for all x ∈ V .
5. Every legal toppling procedure for s is finite.
6. The parallel toppling procedure for s is finite.
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Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) and (5) ⇒ (6) are immedi-
ate from the definitions. The implication (4) ⇒ (5) follows from Lemma 2.7.
Finally, let u be the parallel toppling procedure for s. If u is finite, then u
is both legal and stabilizing for s, which shows the remaining implication
(6) ⇒ (1). �

Denote by Po the law of the discrete time simple random walk (Xj)j∈N

on G started at X0 = o. Writing pj(x) = Po(Xj = x)/deg(x), observe that the
Laplacian (1) of pj satisfies

Δpj(x) =
∑
y∼x

(
Po(Xj = y)

deg(y)
− Po(Xj = x)

deg(x)

)

=
∑
y∼x

Po(Xj = y,Xj+1 = x) − Po(Xj = x)

= deg(x)(pj+1(x) − pj(x)). (7)

The next lemma will play an important role in the proof of the recurrent case
of Theorem 1.1. It relates the stabilizability of a particular configuration s to
the transience of the simple random walk.

Lemma 2.9. Fix o ∈ V and β > 0. The divisible sandpile

s(x) =

{
1, x �= o

1 + β, x = o

stabilizes on G if and only if the simple random walk on G is transient.

Proof. We compute the parallel toppling procedure ut and the configuration
st at time t of Example 1. Setting pt(x) = Po(Xt = x)/deg(x), let us show by
induction on t that

ut(x) = β

t−1∑
j=0

pj(x) (8)

and

st(x) = 1 + β deg(x)pt(x) (9)

for all x ∈ V and all t ∈ N. Indeed, if (8) holds at time t, then summing (7)
we obtain

st = s + Δut = s + β deg(x)(pt − p0) = 1 + β deg(x)pt

so (9) holds at time t, whence

ut+1(x) − ut(x) =
(st(x) − 1)+

deg(x)
= βpt(x)

so (8) holds at time t + 1, completing the inductive step.
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Taking t ↑ ∞ in (8) yields u∞(x) = βg(o, x)/deg(x) where

g(o, x) =
∞∑

j=0

Po(Xj = x) (10)

is the Green function of G, which is finite if and only if G is transient.
If G is transient, then the parallel toppling procedure u is finite and

s + Δu∞ ≡ 1, so s stabilizes. If G is recurrent, then the parallel toppling
procedure is infinite, so s does not stabilize by Corollary 2.8. �

3. Conservation of Density

In this section, we assume that G = (V,E) is vertex-transitive, and we fix
a subgroup Γ of Aut(G) that acts transitively: for any x, y ∈ V there is an
automorphism α ∈ Γ such that αx = y.

For the rest of the paper, we assume o ∈ V be an arbitrary fixed vertex.
Write X = R

V (viewed as a measurable space with the Borel σ-field) and
Tα : X → X for the shift (Tαf)(x) = f(α−1x). Let P be a probability measure
on X satisfying E|s(o)| < ∞. We assume that P is Γ-invariant; that is, if s has
distribution P then Tαs has distribution P for all α ∈ Γ.

Proposition 3.1. (Conservation of density) If P is Γ-invariant and P{s
stabilizes} = 1, then the stabilization s∞ satisfies

Es∞(o) = Es(o).

Fey, Meester and Redig [6] used an ergodic theory argument to prove the
conservation of density for the abelian sandpile on Z

d when Γ is the group of
translations. They considered only nonnegative initial conditions: s ≥ 0. We
will give an elementary proof which starts in the same way, by choosing an
automorphism-invariant toppling procedure (toppling in parallel) and uses the
following observation about averages of uniformly integrable random variables.

Lemma 3.2. If X is a random variable with E|X| < ∞, and X1,X2, . . . is any
sequence of random variables such that Xi

d= X for all i, then the family

S =
{

a1X1 + · · · + akXk | k ≥ 1, ai ≥ 0,
∑

ai = 1
}

is uniformly integrable.

Proof. We may assume X ≥ 0. Given ε > 0, we must show that there is a
δ > 0 so that for any set A with P(A) < δ we have E(Y 1A) < ε for all Y ∈ S.

Since EX < ∞, there is such δ for X itself: choose M so that
E(X1{X>M}) < ε and then set δ = P(X > M). Now for any set A with
P(A) < δ and any Y =

∑
aiXi ∈ S

E[Y 1A] =
k∑

i=1

aiE[Xi1A] < ε

so the same δ works for all Y ∈ S. �
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Proof of Proposition 3.1. We topple in parallel: at each time step t = 0, 1, . . .,
each site x ∈ V distributes all of its excess mass σt(x) = (st(x) − 1)+ equally
among its r neighbors where r is the common degree of all vertices in G. The
resulting configuration after t time steps is

st = s0 + Δut.

where ut = r−1(σ0 + · · · + σt−1). Since P{s stabilizes} = 1 we have st(o) →
s∞(o), a.s.. We will show that the random variables σt(o) for t ∈ N are uni-
formly integrable. To finish the proof from there, note that the law of ut is
Γ-invariant, so Eut(x) = Eut(y) for all x, y ∈ V . In particular, EΔut(o) = 0
and hence Est(o) = Es0(o) for all t < ∞. Since st ≥ min(s0, 1), the uniform
integrability of σt(o) implies that of st(o), so we conclude Es∞(o) = Es0(o).

At time step t, the origin retains mass ≤ 1 and receives mass σt−1(y)/r
from each neighbor y, so

st(o) ≤ 1 +
∑
x∼o

σt−1(x)
r

hence

σt(o) ≤ 1
r

∑
x∼o

σt−1(x).

Inducting on t, we find that

σt(o) ≤ Yt :=
∑
x∈V

at(x)σ0(x)

where at(x) is the probability that a t-step simple random walk started at o ∈
V ends at x. By Lemma 3.2, the random variables Yt are uniformly integrable,
which completes the proof. �

We remark that the above proof also applies to the abelian sandpile to
show [6, Lemma 2.10], by taking σt(x) = �st(x)+/r�, the number of times x
topples at time t.

4. Behavior at Critical Density

In this section, G = (V,E) is an infinite vertex-transitive graph, o ∈ V is a
fixed vertex, Γ ⊂ Aut(G) is a group of automorphisms that acts transitively
V , and P is a Γ-invariant and ergodic probability measure on X = R

V with
E|s(o)| < ∞. The event that s stabilizes is Γ-invariant, so it has probability 0
or 1 by ergodicity.

Lemma 4.1. If Es(o) > 1, then P{s stabilizes} = 0.

Proof. If s stabilizes, then by conservation of density (Proposition 3.1), we have
Es∞(o) = Es(o). Since the final configuration s∞ is stable, we have s∞(o) ≤ 1,
so Es(o) ≤ 1. �

Lemma 4.2. If Es(o) < 1, then P{s stabilizes} = 1.
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Proof. We will show the contrapositive. We will use the observation made in
the introduction that if st(o) ≥ 1 for some time t, then sT (o) ≥ 1 for all T ≥ t.

Consider first the case that s is bounded below: P(s(o) ≥ M) = 1 for
some M ∈ (−∞, 0]. Define ut and st by toppling in parallel as in Sect. 3.
Supposing that P{s stabilizes} = 0, we have ut(o) > 0 for some sufficiently
large t, a.s.; this fact is contained in the proof of Lemma 2.7. Since ut(o) > 0
implies st(o) ≥ 1 and hence sT (o) ≥ 1 for all T ≥ t, we have

P

{
lim inf
t→∞ st(o) ≥ 1

}
= 1.

Since st ≥ min(s, 1) ≥ M , by Fatou’s lemma E(lim inft→∞ st(o)) ≤ Es(o),
which shows Es(o) ≥ 1 as desired.

Now, we use a truncation argument to reduce the general case to case
where s is bounded below. Choose sufficiently small M ∈ (−∞, 0] such that
Es(o)1s(o)≥M < 1. By the previous case, the configuration s1s≥M stabilizes
almost surely. Since s ≤ s1s≥M , we have that s stabilizes almost surely. �

If s stabilizes, then the odometer of s is the function u∞ : V → [0,∞),
where u is any legal stabilizing toppling procedure for s.

Lemma 4.3. If s has Γ-invariant law P and P{s stabilizes} = 1, then the
odometer u∞ has Γ-invariant law. Moreover, if Es(o) = 1, then s∞ ≡ 1 and
Δu∞ = 1 − s.

Proof. We use (5) along with the fact that Δ commutes with Tα: if s+Δf ≤ 1,
then Tαs + Δ(Tαf) = Tα(s + Δf) ≤ 1, so if u∞ is the odometer for s then
Tαu∞ is the odometer for Tαs.

By conservation of density (Proposition 3.1), Es∞(o) = 1. Since s∞ ≤ 1,
it follows that s∞ ≡ 1, and hence Δu∞ = 1 − s. �

In the case that G is recurrent, we can prove our main theorem with no
moment assumption, using an “extra head” construction.

Lemma 4.4. Suppose that G is an infinite, recurrent, vertex-transitive graph
and {s(x)}x∈V are i.i.d. with Es(x) = 1 and P{s(x) = 1} �= 1. Then

P{s stabilizes} = 0.

Proof. Let S ⊂ X denote the set of configurations that stabilize. By ergodicity,
P(S) ∈ {0, 1}. We will show that if P(S) = 1, then the graph G must be tran-
sient. Let s : V → R denote an i.i.d. configuration with the given distribution
such that Es = 1, and fix a vertex o ∈ V . We create a new i.i.d. configuration
s′ with the same law as s, by independently resampling s(o) from the same
distribution. Then, s′ = s+βδo, where δo(x) = 1{x = o} and β is a mean zero
random variable. Since Var s > 0, we have that P(β > 0) > 0. Using P(S) = 1
along with Lemma 4.3, there exist s : V → R and β > 0 such that s and
s + βδo both stabilize to the all 1 configuration. By toppling s + βδo in two
stages (Example 3), it follows that 1 + βδo stabilizes to 1, so G is transient by
Lemma 2.9. �
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In the preceding lemma, the hypothesis that s is i.i.d. can be substantially
weakened: The proof uses only the fact that with positive probability, the
conditional distribution of s(o) given {s(x)}x�=o is not a single atom.

5. Proof of Theorem 1.1

5.1. Singly Transient Case

Recall Green’s function (10). In this section, we assume that g(o, y) < ∞ for
all y ∈ V but ∑

y∈V

g(o, y)2 = ∞. (11)

Define Vn = {x ∈ V : d(x, o) ≤ n} where d is the graph distance. Then,
V1 ⊂ V2 ⊂ · · · are finite sets with

⋃
n≥1 Vn = V . Let gn(x, y) be the expected

number of visits to y by simple random walk started at x and killed on exiting
Vn. By the monotone convergence theorem, for fixed x, y ∈ V , we have

gn(x, y) ↑ g(x, y)

as n → ∞. In particular, setting

νn :=

⎛
⎝ ∑

y∈Vn

gn(o, x)2

⎞
⎠

1/2

we have νn ↑ ∞ as n → ∞ by (11).
The proof of the following lemma is inspired by [7, Theorem 3.1] and [6,

Theorem 3.5].

Lemma 5.1. Let G = (V,E) be singly transient (11), vertex transitive graph.
Let {s(x)}x∈V be i.i.d. with Es = 1 and Var s < ∞. If

1
νn

∑
x∈Vn

gn(o, x)(s(x) − 1)

converges in distribution as n → ∞ to a nondegenerate normal random vari-
able Z, then P{s stabilizes} = 0.

Proof. Assume to the contrary that s stabilizes a.s.. Let u be the nested volume
toppling procedure (Example 2). Then for each n ∈ N,

s + Δun = ξn on Vn (12)

with ξn ≤ 1 on Vn. Equation (12) can be rewritten as:

un(y) = r−1
∑

x∈Vn

gn(x, y)(s(x) − 1) + r−1
∑

x∈Vn

gn(x, y)(1 − ξn(x))

where r is the common degree (both sides have Laplacian ξn − s in Vn and
vanish on V c

n ). Observe that the second term is a nonnegative random variable.
Therefore, for any ε > 0
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P{un(o) > ενn} ≥ P

{
1
νn

∑
x∈Vn

gn(o, x)(s(x) − 1) > rε

}
. (13)

Since u is a legal toppling procedure and we have assumed that s stabilizes
a.s., we have u∞(o) < ∞, a.s.. Now since un(o) ↑ u∞(o) and νn ↑ ∞, the left
side of (13) tends to zero as n → ∞. However, the right side tends to a positive
limit P (Z > rε) > 0, which gives the desired contradiction. �

To complete the proof of Theorem 1.1 in the singly transient case, it
remains to show that 1

νn

∑
x∈Vn

gn(o, x)(s(x) − 1) converges in distribution to
a nondegenerate normal random variable. We show this using Lindeberg–Feller
central limit theorem as follows.

Lemma 5.2. Let {Xn1 : n ≥ 1; i = 1, . . . , kn} be a triangular array of identically
distributed random variables such that for each n ∈ N, {Xni : i = 1, . . . , kn}
is independent. Assume that E[X11] = 0 and E[X2

11] = 1. Let ank > 0 be such
that

∑kn

k=1 a2
nk = 1 and limn→∞ bn = 0 where bn = max1≤k≤kn

ank. Then,
the sequence Yn =

∑kn

k=1 ankXnk converges in distribution to standard normal
random variable as n → ∞.

Proof. By Lindeberg–Feller central limit theorem [3, Theorem 27.2], it suffices
to check the Lindeberg condition:

lim
n→∞

kn∑
k=1

E
[
a2

nkX2
nk1|ankXnk|>ε

]
= 0

for all ε > 0. Since E[X2
nk1|ankXnk|>ε] ≤ E[X2

111|X11|>ε/bn
] and

∑
k a2

nk = 1, we
have

lim
n→∞

kn∑
k=1

E
[
a2

nkX2
nk1|ankXnk|>ε

] ≤ lim
n→∞E

[
X2

111|X11|>ε/bn

]
= 0

because limn→∞ bn = 0 and E[X2
11] = 1. �

Lemma 5.3. Let G = (V,E) be a singly transient (11), vertex transitive graph.
Suppose {s(x)}x∈V are i.i.d. random variables with Es = 1 and 0 < Var s < ∞.
Then, P{s stabilizes} = 0.

Proof. Since g(o, o) < ∞ and νn ↑ ∞, we have

lim
n→∞ max

x∈Vn

gn(o, x)
νn

= lim
n→∞

gn(o, o)
νn

≤ lim
n→∞

g(o, o)
νn

= 0.

For n ∈ N and x ∈ Vn, define Xnx = (s(x) − 1)/
√

Var s and anx = gn(o,x)
νn

and
bn = maxx∈Vn

anx. By Lemma 5.2, we have that
1
νn

∑
x∈Vn

gn(o, x)(s(x) − 1)

converges in distribution to a normal random variable with mean 0 and vari-
ance Var(s). Lemma 5.1 implies the desired conclusion. �
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5.2. Doubly Transient Case

We start by outlining our proof strategy. Recall from Lemma 4.3 that if s
stabilizes with Es(o) = 1, then it must stabilize to the constant configuration
s∞ ≡ 1. In particular, the odometer u∞ satisfies Δu∞ = 1 − s. In Lemma 5.5
below, by convolving s−1 with Green’s function we can build an explicit func-
tion v with Laplacian 1 − s; the convolution is defined almost surely provided
that ∑

y∈V

g(o, y)2 < ∞. (14)

(This condition says that the expected number of collisions of two independent
random walks started at o is finite. The essential feature of Green’s function
here is of course that

Δg(·, y) = −rδy (15)
where r is the common degree of all vertices of G, and δy(x) = 1{x = y}.)

Having built the function v, the difference v − u∞ is then a random
harmonic function with Γ-invariant law, which must be an almost sure constant
by the following lemma.

Lemma 5.4. (Harmonic Functions With Invariant Law) Let Γ be a group of
automorphisms of G that acts transitively on the vertex set V . Suppose that
h : V → R has Γ-invariant law and Δh ≡ 0. If h can be expressed as a
difference of two functions h = v − u where u ≥ 0 and supx∈V Ev(x)+ < ∞,
then h is almost surely constant.

Proof. Let (Xn)n≥0 be simple random walk on G started at X0 = o. Although
h is harmonic, h(Xn) need not be a martingale since it need not have finite
expectation. But for any a ∈ R, since h = v − u and u ≥ 0, the truncation

Mn := a + (h(Xn) − a)+

: ≤ a + (v(Xn) − a)+

has finite expectation. Since the function t �→ (t − a)+ is convex, x �→ (h(x) −
a)+ is subharmonic, so Mn is a submartingale:

E[Mn+1|h,X0, . . . , Xn] =
1
r

∑
w∼Xn

(a + (h(w) − a)+) ≥ Mn.

A submartingale bounded in L1 converges almost surely [21, 11.5]. Since this
holds for any a ∈ R it follows that h(Xn) converges almost surely. But since
h has Γ-invariant law, h(Xn) is a stationary sequence, so the only way it can
converge a.s. is if h(Xn) = h(X0) for all n. Since G is connected, for any vertex
x ∈ V there exists n with P(Xn = x) > 0, so h(x) = h(o). �
Lemma 5.5. Let Γ be a countable subgroup of Aut(G) which acts transitively on
the vertices of V . Suppose {σ(x)}x∈V are i.i.d. random variables with Eσ(x) =
0 and 0 < Var σ(0) < ∞ Let y1, y2, . . . be an enumeration of the vertex set of
G. For α ∈ Γ, let

vα(x) :=
1
r

∞∑
i=1

g(x, αyi)σ(αyi). (16)
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If G is doubly transient (14), then the following hold almost surely.

(a) The series defining vα(x) converges for all x ∈ V, α ∈ Γ.
(b) vα = vβ for all α, β ∈ Γ.
(c) Δve = −σ where e denotes the identity automorphism.
(d) ve has Γ-invariant law, that is Tαve

d= ve for all α ∈ Γ.
(e) ve is unbounded above and below.

Proof. (a) Each term in the series (16) is independent, and the ith term has
variance g(x, αyi)2U where U = r−2

Eσ(0)2. By (14), the sum of these vari-
ances is finite, which implies that the series converges a.s..

(b) Note that there is something to check here because the series defining
vα is only conditionally convergent. Fix x ∈ V and denote the partial sum
r−1

∑n
i=1 g(x, αyi)σ(αyi) by vα,n. We compare vα,n and ve,n where e is the

identity element of Γ. Given ε > 0, choose n1 such that

U
∞∑

i=n1

g(x, yi)2 < ε3.

There exists N1 depending on n1 and α such that

{yi : i = 1, 2, . . . , n1} ⊂ {αyi : i = 1, 2, . . . , N1}.

This implies that for any N ≥ N1 we have Var (vα,N − ve,N ) < 2ε3. By Cheby-
shev’s inequality,

P (|vα,N − ve,N | > ε) ≤ ε−2 Var (vα,N − ve,N ) < 2ε

for all N ≥ N1. By part (a) there a.s. exists N2 ≥ N1 such that max(|vα,n −
vα(x)|, |ve,n−ve(x)|) < ε/3 for all n ≥ N2. By the triangle inequality, it follows
that

P

(
|vα(x) − ve(x)| >

ε

3

)
< 2ε.

Since ε was arbitrary, we obtain vα(x) = ve(x), a.s.. By taking countable
intersections, we have that vα = ve, a.s..

(c) Using (15), we compute

Δve(x) =
1
r

∑
w∼x

(ve(w) − ve(x))

=
1
r

∑
w∼x

( ∞∑
i=1

g(w, yi)σ(yi) −
∞∑

i=1

g(x, yi)σ(yi)

)

=
∞∑

i=1

σ(yi)
1
r

∑
w∼x

(g(w, yi) − g(x, yi))

= −
∞∑

i=1

σ(yi)1{yi = x}

= −σ(x).
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(d) To show that ve has Γ-invariant law, write ve = vσ
e to make the

dependence on the initial configuration σ explicit. We have for all α ∈ Γ

Tαvσ
e (x) =

∞∑
i=1

g(α−1x, yi)σ(yi)

=
∞∑

i=1

g(x, αyi)σ(yi)

=
∞∑

i=1

g(x, αyi)(Tασ)(αyi)

= vTασ
α (x)

= vTασ
e (x)

where in the last equality we have used part (b). Hence Tαvσ
e = vTασ

e
d= vσ

e

since σ has Γ-invariant law.
(e) To show that ve is almost surely unbounded below, we use the assump-

tion that σ(o) has zero mean and positive variance, which implies that

P(σ(o) < −δ) > p

for some p, δ > 0. Since
∑

y∈V g(o, y) = ∞ and
∑

y∈V g(o, y)2 < ∞, we can
choose N large enough so that

δr−1
N∑

i=1

g(o, yi) > 2M, U

∞∑
i=N+1

g(o, yi)2 < 1.

By Chebyshev’s inequality

P

(
r−1

∞∑
i=N+1

g(x, yi)σ(yi) ≥ M

)
≤ 1

M2
.

On the event that σ(yi) < −δ for all 1 ≤ i ≤ N and r−1
∑∞

i=N+1 g(x, yi)σ(yi) ≥
M we have ve(o) < −2M + M . Since the random variables σ(yi) are i.i.d., we
obtain

P(ve(o) < −M) ≥ pN

(
1 − 1

M2

)
> 0.

Since ve is stationary, we have P(inf ve < −M) ∈ {0, 1} by ergodicity. Since this
probability is > 0, it must be 1. Since M was arbitrary, ve is a.s. unbounded
below.

A similar argument shows that ve is also a.s. unbounded above. �

Lemma 5.6. Let G = (V,E) be a doubly transient (14), vertex transitive graph
and let {s(x)}x∈V be i.i.d. random variables with Es = 1 and 0 < Var s < ∞.
Then, P{s stabilizes} = 0.

Proof. Assume to the contrary that s stabilizes a.s. with odometer u∞. Let Γ
be a countable subgroup of Aut(G) that acts transitively on the vertices of G.
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Let v : V → R be given by Eq. (16) with α = e and σ = s − 1. By Lemma 5.5,
v has Γ-invariant law and Δv = 1 − s. Therefore

h := v − u∞
has Γ-invariant law and h is harmonic: Δh ≡ 0 on V . Further, by Fatou’s
lemma, Ev(x)2 ≤ deg(x)−2 Var(s)

∑∞
i=1 g(x, yi)2 < ∞. Lemma 5.4 now implies

that h is almost surely constant. This contradicts Lemma 5.5 because u∞ ≥ 0
and v is almost surely unbounded below. �

6. Stabilizability of Cones

Until now, we have mainly been concerned with the stabilizability of random
initial configurations. In this section, we examine stabilizability of a few deter-
ministic configurations on the square grid Z

2. We present two examples, one
of which stabilizes.

Lemma 6.1. Define C1 = {(x, y) ∈ Z
2 : x ≥ 0, |y| ≤ x}. Then, the configuration

s0 = (1 + α)1C1 does not stabilize for α > 0.

Proof. By least action principle (Proposition 2.5), it suffices to show the exis-
tence of an infinite legal toppling procedure.

Let uk denote the parallel toppling procedure of Example 1 where k ∈ N.
Let C = {(x, y) ∈ Z

2 : x > 0, |y| < x}. Let (Xn, Yn) denote the simple random
walk on Z

2 and let N denote the stopping time N = min{n ≥ 0 : Xn = |Yn|}.
As in the proof of Lemma 2.9, we keep track of the mass from each (x, y) ∈ C
to obtain

uk(1, 0) ≥ α

4

∑
(x,y)∈C

k∑
l=0

P(x,y)((XN , YN ) = (0, 0), N = l).

for all k ∈ N. To see this note that N is the exit time of the set C and the
only way to exit C at (0, 0) is from (1, 0). As a result, we have

u∞(1, 0) ≥ α

4

∑
(x,y)∈C

p(x, y)

where p(x, y) = P
(x,y) ((XN , YN ) = (0, 0)). Consider the function q : Z

2 →
[0, 1] given by

q(x, y) =

⎧⎪⎨
⎪⎩

p(|x|, y) if |y| < |x|,
−p(|y|, x) if |x| < |y|,
0 otherwise.

Note that Δq = δ(0,1)+δ(0,−1)−δ(1,0)−δ(−1,0). Let g(x, y) denote the potential
kernel in Z

2 defined by

g(x, y) =
∞∑

n=0

[
P(0,0)(Xn = (x, y)) − P(0,0)(Xn = (0, 0))

]
where (Xn)n∈N denotes the simple random walk on Z

2. Although the sim-
ple random walk on Z

2 is transient, it turns out that the sum defining g is
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absolutely convergent. By standard estimates on g (See [10, Chapter 1]), we
know that g has sub-linear (logarithmic) growth. This combined with [8, The-
orem 6.1] implies that

q(x, y) − 1
4

(g(x + 1, y) + g(x − 1, y) − g(x, y − 1) − g(x, y + 1))

is identically zero because it is harmonic with sub-linear growth and attains
the value 0 at (0, 0). Therefore, there exists c1 > 0 such that for all (x, y) ∈ C,
we have

q(x, y) =
1
4

(g(x + 1, y) + g(x − 1, y) − g(x, y − 1) − g(x, y + 1)) +
1
4
Δg(x, y)

=
1
2

(g(x + 1, y) + g(x − 1, y) − 2g(x, y))

> c1
x2 − y2

(x2 + y2)2

The first line above follows from the fact that Δg = 0 for all points except
(0, 0). The last line above follows from [10, Theorem 1.6.5 (b)]. Therefore,
u∞(1, 0) ≥ α

4

∑
(x,y)∈C q(x, y) > αc1

4

∑
(x,y)∈B

x2−y2

(x2+y2)2 = ∞. Hence s0 does
not stabilize. �

We need the following technical lemma for the next example:

Lemma 6.2. Let σ : V → R be a configuration in G = (V,E). Assume that
H := {x : σ(x) > 1} satisfies |H| < ∞ and∑

x∈H

(σ(x) − 1)+ < ∞.

Let F ⊂ V be such that |F| < ∞ and∑
x∈V

(σ(x) − 1)+ ≤
∑
x∈F

(1 − σ(x))+.

Then, σ stabilizes.

Proof. Let a : H × F → [0,∞) be a non-negative function such that∑
y∈F a(x, y) = σ(x) − 1 for all x ∈ H and

∑
x∈H a(x, y) ≤ 1 − σ(y) for

all y ∈ F . The function a encodes how to redistribute the excess mass from H
to F .

Let

fx,z(y) =
gz(x, y)
deg(y)

=
E

x(number of visits to y before being killed at z)
deg(y)

denote the Green’s function normalized with degree. Observe that Δfx,z =
δz −δx. Therefore, the function u :=

∑
x∈H,y∈F a(x, y)fx,y satisfies σ+Δu ≤ 1

and u ≥ 0. This in turn implies that σ stabilizes. �
Remark. The condition that |H|, |F| < ∞ in the above lemma is necessary. The
following example illustrates this: Consider a probability measure μ on N

∗ =
{1, 2, 3, . . .} and consider the function σμ = 1+δ0−μ(x) where μ(x) = μ({x}).
Then, it can be shown that σμ stabilizes if and only if

∑
x∈N∗ xμ(x) < ∞.
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Lemma 6.3. Define Ca = {(x, y) ∈ Z
2 : x ≥ 0, |y| ≤ ax}. Then, the con-

figuration sa = m1Ca
stabilizes if 2ma

1+a2 ≤ 1 and a ∈ (0, 1]. Moreover,
s0(x, y) = x1{x>0, y=0} stabilizes.

Proof. The case a = 1 is trivial. Define for a ∈ (0, 1]

ua(x, y) =
(ax − |y|)2
2(1 + a2)

1Ca
.

To see that s0 stabilizes, we check that s0 +Δu1 ≤ 1. This follows imme-
diately from the computation of Δu1 as:

Δu1(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − x if x > 0, y = 0
1 if |y| < x, x > 0
1
2 if |y| = x, x > 0
1
4 if x = y = 0
0 otherwise.

A direct computation yields Δua in different regions: Δua(0, 0) =
a2

2(1+a2) ≤ 1
4 . If y = 0, x > 0 and all neighbors of (x, 0) are in Ca (i.e.,

x ≥ �1/a�), then

Δua(x, 0) = 1 − 2a

1 + a2
x.

If y = 0, x > 0 and (x,±1) /∈ Ca, then

Δua(x, 0) =
a2(1 − x2)

1 + a2
.

If all neighbors of (x, y) are in Ca with y �= 0, then

Δua(x, y) = 1.

If (x, y) ∈ Ca with y �= 0 and one of the neighbors is not in Ca, then

0 <
a2

1 + a2
≤ Δua(x, y) ≤ 1.

If (x, y) /∈ Ca and if all neighbors of (x, y) are not in Ca, then

Δua(x, y) = 0.

If (x, y) /∈ Ca and one of the neighbors in Ca, then at least 2 of the neighbors
are not in Ca and

0 ≤ Δua(x, y) < 1.

Consider va(x, y) = u1(x + �1/a�, y) − mua(x + �1/a�, y). It is easy to check
that va ≥ 0 if 2ma

1+a2 ≤ 1.
If x > 0, we have

sa(x, 0) + Δva(x, 0) = m + (1 − �1/a� − x) − m (1 − a (x + �1/a�))

≤ 1 +
(

2am

1 + a2
− 1

)
(x + �1/a�)

≤ 1.
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If x > 0, y �= 0, (x, y) ∈ Ca, then

sa(x, y) + Δva(x, y) = m + 1 − m = 1.

If y �= 0, (x, y) /∈ Ca, then

sa(x, y) + Δva(x, y) ≤ Δu1 ≤ 1.

If x < −�1/a� − 1, then

sa(x, y) + Δva(x, y) = 0.

Therefore, sa+Δva ≤ 1 for all points except on the finite set {(x, 0) : −�1/a�−
1 ≤ x ≤ 0} and sa + Δva = 0 for all x < −1 − �1/a�. Lemma 6.2 implies that
sa + Δva stabilizes and, therefore, sa stabilizes. �

We conjecture that the bound in Lemma 6.3 is sharp.

Conjecture 6.4. Define for a ∈ (0, 1], Ca = {(x, y) ∈ Z
2 : x ≥ 0, |y| ≤ ax}.

Then, the divisible sandpile sa = m1Ca
stabilizes if and only if 2ma

1+a2 ≤ 1.
Furthermore, the divisible sandpile s0 = kx1{x>0, y=0} stabilizes if and only if
k ≤ 1.

More generally, we have the following problem.

Open problem 6.5. (Tests for stabilizability) Given s : Zd → R, find series
tests or other criteria that can distinguish between stabilizing and exploding s.

7. Finite Graphs

Let G = (V,E) be a finite connected graph with |V | = n. For a finite connected
graph, all harmonic functions are constant: the kernel of Δ is 1-dimensional
spanned by the constant function 1.

Lemma 7.1. Let s : V → R be a divisible sandpile with
∑

x∈V s(x) = n. Then,
s stabilizes to the all 1 configuration, and the odometer of s is the unique
function u satisfying s + Δu = 1 and min u = 0.

Proof. Since Δ has rank n−1 and
∑

x∈V (s(x)−1) = 0, we have s−1 = Δv for
some v. Letting w = v −min v, we have w ≥ 0 and s+Δw = 1, so s stabilizes.

Now if u is any function satisfying s + Δu ≤ 1, then∑
x∈V

(s + Δu)(x) = n

so in fact s + Δu = 1. This shows that s stabilizes to the all 1 configuration,
and moreover any two functions u satisfying s + Δu ≤ 1 differ by an additive
constant. By the least action principle (Proposition 2.5), among these functions
the odometer is the smallest nonnegative one, so its minimum is 0. �

Fix x, z ∈ V and let f(y) = gz(x,y)
deg(y) be the function satisfying f(z) = 0

and Δf = δz − δx. (Here, gz(x, y) is the expected number of visits to y by a
random walk started at x before hitting z). With a slight abuse of notation,
we define g(x, y) :=

∑
z∈V

1
ngz(x, y).
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Proof of Proposition 1.3. Observe that
∑

x∈V s(x) = n. Therefore, s stabilizes
to the all 1 configuration by Lemma 7.1, and the odometer u satisfies

s + Δu = 1

and min u = 0.
Since Δ gz(x,·)

deg(·) = δz − δx, the function

vz(y) :=
1

deg(y)

∑
x∈V

gz(x, y)(s(x) − 1)

has Δvz(y) = 1 − s(y) for y �= z and

Δvz(z) =
∑
x�=z

(s(x) − 1) = 1 − s(z).

Thus, u − vz is harmonic on V and hence is a (random) constant.
Let v = 1

n

∑
z∈V vz. Since u − vz is constant for all z, the difference

u − v is also constant. Recalling that g = 1
n

∑
z∈V gz, we have v(y) =

1
deg(y)

∑
x∈V g(x, y)(s(x)−1). To compute the covariance of the Gaussian vec-

tor v, note that

E[(s(z) − 1)(s(w) − 1)] = 1{z=w} − 1
n

hence

E[v(x)v(y)]

=
1

deg(x) deg(y)

∑
z,w∈V

g(z, x)g(w, y)E[(s(z) − 1)(s(w) − 1)]

=
1

deg(x) deg(y)

(∑
z∈V

g(z, x)g(z, y) − 1
n

(∑
z∈V

g(z, x)

)(∑
w∈V

g(w, y)

))
.

The function K(y) := 1
deg(y)

∑
w∈V g(w, y) has ΔK =

∑
z,w∈V

1
n (δz −

δw) = 0, so K is a constant. The second term on the right is just K2

n . Letting
C be a N(0, K2

n ) random variable independent of v, the Gaussian vectors η
and (v(x) + C)x∈V have the same covariance matrix, so

η
d= v + C.

Since u − v is constant and minu = 0, we conclude that

u = v − min v
d= η − min η.

�
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Table 1. Statistics of the bi-Laplacian Gaussian field η on
the discrete torus Z

d
n

d = 1 d = 2 d = 3 d = 4 d ≥ 5

E(η0 − ηx)2 � ψd(n, r) := nr2 r2 log
(
n
r

)
r log(1 + r) 1

Emax{ηx : x ∈ Z
d
n} � n3/2 n n1/2 log n (log n)1/2

In the first line, r = ‖x‖2 and the symbol � means that there is a dimension-dependent

constant Cd such that E(η0 − ηx)2 ≤ Cdψd(n, r) for all x ∈ Z
d
n. The second line gives the

order of the expected value of the maximum of the field up to a dimension-dependent
constant factor

8. Green Function and Bi-Laplacian Field on Z
d
n

The rest of the paper is devoted to the proof of Theorem 1.2. Taking Proposi-
tion 1.3 as a starting point, the expected odometer equals the expected maxi-
mum of the bi-Laplacian Gaussian field η, since

Eu(x) = E(ηx − min η) = −Emin η = Emax η

where we have used that Eηx = 0. From the covariance matrix for η, we see
that

E(ηx − ηy)2 =
∑
z∈V

(
g(z, x)
deg(x)

− g(z, y)
deg(y)

)2

.

We will use asymptotics for the Green function g of the discrete torus Z
d
n

to estimate the right side. This will enable us to use Talagrand’s majorizing
measure theorem to determine the order of Emax{ηx : x ∈ Z

d
n} up to a

dimension-dependent constant factor. These calculations are carried out below
and summarized in Table 1. The table entries give bounds up to a constant
factor depending only on the dimension d. For example, the d = 3 column
means that there is a positive constant C such that E(η0 − ηx)2 ≤ C ‖x‖2 for
all x ∈ Z

3
n and C−1n1/2 ≤ Emax η ≤ Cn1/2.

Remark 1. For the rest of our work, we identify the discrete torus Z
d
n with

(Z ∩ (−n/2, n/2])d which in turn is viewed as a subset of Rd. For x ∈ Z
d
n and

1 ≤ p ≤ ∞, we denote by ‖x‖p the p-norm under the above identification.
Note that for standard graph distance dG on Z

d
n, we have dG(0,x) = ‖x‖1.

8.1. Fourier Analysis on the Discrete Torus

In this section, we derive a formula for E(η0 − ηx)2. We begin by recalling
some basic facts about Fourier analysis on the discrete torus and the spectral
theory of the Laplacian. We equip the torus Zd

n with normalized Haar measure
μ (in other words the uniform probability measure). Consider the Hilbert space
H = L2(Zd

n, μ) of complex valued functions on torus with inner product

〈f, g〉 =
∫
Zd

n

fḡ dμ =
1
nd

∑
x∈Zd

n

f(x)g(x).

We identify the Pontryagin dual group Ẑd
n with Z

d
n as follows. For any a ∈ Z

d
n,

the map x �→ exp (i2πx · a/n) gives the corresponding element in Ẑd
n (The dot
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product is the usual Euclidean dot product in R
n). We denote this character

by χa. Recall that {χa : a ∈ Z
d
n} forms an orthonormal basis for H. Moreover,

each χa is an eigenfunction for the Laplacian Δ with eigenvalue

λa = −4
d∑

i=1

sin2
(πai

n

)
.

Thus, the Laplacian Δ : H → H is a non-positive, bounded operator. More-
over, λa = 0 if and only if a = 0. Laplacian Δ is a self-adjoint operator, that
is

〈f1,Δf2〉 = 〈Δf1, f2〉 (17)
for all f1, f2 ∈ H (see Remark 2). We denote by gx(y) = g(y,x). Recall that

Δgx = 2d

(
1
nd

χ0 − δx

)
. (18)

Denote by ĝx(a), the Fourier coefficient 〈gx, χa〉. Since the function x �→∑
y gx(y) is harmonic, it is constant. This implies that there exists L ≥ 0

such that
ĝx(0) = n−d

∑
y∈Zd

n

gx(y) = L (19)

for all x ∈ Z
d
n. For a �= 0, we have

λaĝx(a) = λa〈gx, χa〉 = 〈gx,Δχa〉 = 〈Δgx, χa〉
= −2d〈δx, χa〉 = −2dn−dχ−a(x). (20)

For the above equation, we used Δχa = λaχa, Eqs. (17), (18) and 〈χ0, χa〉 = 0.
By Parseval’s theorem and Eqs. (19), (20),

E(η0 − ηx)2 = (2d)−2
∑
z∈Zd

n

(g(z,0) − g(z,x))2

= (2d)−2nd〈g0 − gx, g0 − gx〉
= (2d)−2nd

∑
z∈Zd

n

|ĝ0(z) − ĝx(z)|2

=
1
4
Fn,d(x) (21)

where

Fn,d(x) := n−d
∑

z∈Zd
n\{0}

sin2
(

πx.z
n

)
(∑d

i=1 sin2
(

πzi

n

))2 (22)

Remark 2. In R
d, we have the Green’s second identity∫
f1Δf2 dx = −

∫
∇f1.∇f2 dx =

∫
f1Δf2 dx

for all f1, f2 ∈ C∞
c (Rd). Similarly, in our discrete setting we have

〈f1,Δf2〉 = − 1
2nd

∑
x,y∈Zd

n

(f1(x) − f2(y))(f2(x) − f2(y))k(x,y) = 〈Δf1, f2〉
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where k(x,y) = 1x∼y and x ∼ y if x and y are neighbors in Z
d
n. See for

instance, [16, Lemma 2.1.2] or [11, Lemma 13.11] for a proof.

Our task now is to estimate the expression Fn,d(x). Henceforth we assume
that x �= 0. To study the quantity maxx,y∈Zd

n
(ηx − ηy) as n goes to ∞, we

want to estimate E(η0 − ηx)2 with d fixed and n large for different values of
x. We approximate Fn,d(x) by an integral of a function over R

d. For w ∈ R
d

and r > 0, we denote by B∞(w, r) the open ball with center w and radius r
under supremum norm, that is

B∞(w, r) =
{
y ∈ R

d : ‖y − w‖∞ < r
}

.

We denote the indicator function of the ball B∞(z/n, 1/(2n)) by Iz,n : Rd →
{0, 1}, that is Iz,n = 1B∞(z/n,1/(2n)). Define the function Gn,d,x : Rd → R

Gn,d,x =
∑

z∈Zd
n\{0}

sin2
(

πx·z
n

)
(∑d

i=1 sin2
(

πzi

n

))2 Iz,n.

Since the cubes B∞(z/n, 1/(2n)) are disjoint with volume n−d , we have

Fn,d(x) =
∫
Rd

Gn,d,x(y) dy. (23)

By triangle inequality, we have

(1 +
√

d)−1 ‖z/n‖2 ≤ ‖y‖2 ≤ (1 +
√

d) ‖z/n‖2 (24)

for all z ∈ Z
d
n\{0} and for all y ∈ B∞(z/n, 1/(2n)) under the usual identifica-

tion from Remark 1. We will estimate the function Gn,d,x using the function
Hn,d,x : Rd → R defined by

Hn,d,x(y) =
∑

z∈Zd
n\{0}

sin2
(

πx·z
n

)
‖y‖4

2

Iz,n(y).

More precisely, we have the following lemma.

Lemma 8.1. Fix d ∈ N
∗. There exist positive reals c1, C1 such that

c1Hn,d,x(y) ≤ Gn,d,x(y) ≤ C1Hn,d,x(y) (25)

for all n ∈ N
∗, for all x ∈ Z

d
n\{0} and for all y ∈ R

d.

Remark 3. We will use Ci for large constants and ci for small constants. Here
and in what follows, all constants are allowed to depend on d but not on
x ∈ Z

d
n\{0} or n.

Proof. The idea is to use the estimate
2
π

|t| ≤ |sin t| ≤ |t|
for all t ∈ [−π/2, π/2]. Thus, there exists a constant C2 > 0 such that

C−1
2 ‖z/n‖4

2 ≤
(

d∑
i=1

sin2
(πzi

n

))2

≤ C2 ‖z/n‖4
2 (26)
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for all z ∈ Z
d
n and for all n ∈ N

∗. By (24), we have

(1 +
√

d)−4 Iz,n(y)
‖z/n‖4

2

≤ Iz,n(y)
‖y‖4

2

≤ (1 +
√

d)4
Iz,n(y)
‖z/n‖4

2

(27)

for all z ∈ Z
d
n\{0}, for all y ∈ R

d and for all n ∈ N
∗. Combining Eqs. (26) and

(27) gives (25). �

By (21), (23) along with integration of (25) over the variable y, there
exists c1, C1 > 0 such that

c1d
2

∫
Rd

Hn,d,x(y) dy ≤ E(η0 − ηx)2 ≤ C1d
2

∫
Rd

Hn,d,x(y) dy (28)

for all n ∈ N
∗ and for all x ∈ Z

d
n\{0}.

By (28), it suffices to estimate
∫
Rd Hn,d,x(y) dy. Observe that the support

of Hn,d,x satisfies

Support(Hn,d,x) ⊆ B2(0,
√

d)\B2(0, 1/(2n))

for all d, n ∈ N
∗ and for all x ∈ Z

d
n, where B2 denotes open ball with respect

to Euclidean norm in R
d.

8.2. Upper Bounds

Define ψd by

ψd(n, r) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nr2 if d = 1
r2 log

(
n
r

)
if d = 2

r if d = 3
log(1 + r) if d = 4
1 if d ≥ 5.

(29)

for all n ∈ N
∗ and all r > 0 along with ψd(n, 0) := 0 for all d, n ∈ N

∗. The
upper bounds for E(η0 − ηx)2 are summarized in the following Proposition.

Proposition 8.2. For each d ∈ N
∗, there exists Cd > 0 such that

E(η0 − ηx)2 ≤ Cdψd(n, ‖x‖2) (30)

for all n ∈ N
∗ and for all x ∈ Z

d
n , where ψd is defined by (29).

Proof. By (28) it suffices to find upper bounds for
∫
Rd Hn,d,x(y) dy. The strat-

egy to establish upper bounds for
∫
Rd Hn,d,x(y) dy is to split it into two inte-

grals as
∫
Rd =

∫
1/(2n)≤‖y‖2≤√

d/‖x‖2
+
∫√

d/‖x‖2<‖y‖2≤√
d
. Note that both the

integrals are over non-empty annuli since 1/(2n) ≤ √
d/(4 ‖x‖2) ≤ √

d/ ‖x‖2 ≤√
d for all x ∈ Z

d
n\{0} with the identification from Remark 1. Using Cauchy–

Schwarz inequality and the bound |sin t| ≤ t, we have |sin(πx.z/n)| ≤
π ‖x‖2 ‖z/n‖2. This bound competes with the trivial bound |sin(πx.z/n)| ≤ 1.
It will become clear that up to constants, the first bound is better for the first
term and the trivial bound |sin(πx.z/n)| ≤ 1 is better for the second term.
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For the first integral, we use the bound |sin t| ≤ |t| and Cauchy–Schwarz
inequality to obtain

Hn,d,x(y) ≤
∑

z∈Zd
n\{0}

π2 ‖x‖2
2 ‖z/n‖2

2

‖y‖4
2

Iz,n(y).

By (24), we have ‖z/n‖2
2 Iz,n(y) ≤ (1+

√
d)2 ‖y‖2

2 Iz,n(y). Therefore, we obtain

Hn,d,x(y) ≤
∑

z∈Zd
n\{0}

(1 +
√

d)2π2 ‖x‖2
2

‖y‖2
2

Iz,n(y). (31)

for all n, d ∈ N
∗, for all y ∈ R

d and for all x ∈ Z
d
n\{0}. Hence, we have

I1 :=
∫

1/(2n)≤‖y‖2≤√
d/‖x‖2

Hn,d,x(y) dy ≤ (1 +
√

d)2π2 ‖x‖2
2 ωd−1

×
∫ √

d/‖x‖2

1/(2n)

rd−1

r2
dr (32)

where ωd−1 = 2πd/2

Γ(d/2) is the (d − 1)-dimensional surface measure of unit sphere
S

d−1 in R
d.

For the second integral, we use the bound |sin t| ≤ 1, to obtain

I2 :=
∫

√
d/‖x‖2<‖y‖2≤√

d

Hn,d,x(y) dy ≤ ωd−1

∫ √
d

√
d/‖x‖2

rd−1

r4
dr. (33)

Combining Eqs. (32) and (33), we obtain∫
Rd

Hn,d,x(y) dy

≤ (1 +
√

d)2π2 ‖x‖2
2 ωd−1

∫ √
d/‖x‖2

1/(2n)

rd−3 dr + ωd−1

∫ √
d

√
d/‖x‖2

rd−5 dr. (34)

The desired upper bounds on E(η0 − ηx)2 for all dimensions follow from (34)
along with (28). �

Remark 4. The terms I1 and I2 correspond to the energy (square of 2-norm)
of the low- and high-frequency oscillations of the function g0−gx, respectively.
For d = 1, 2, the term I1 dominates I2. For d = 3, both I1 and I2 are of the
same order. For d ≥ 4, the term I2 dominates I1. Hence our approach to obtain
matching lower bounds in the next subsection is as follows: For d = 1, 2, we
obtain lower bounds on lower frequency terms and for d ≥ 3 we obtain lower
bounds on higher frequency terms.

It is well know that the Gaussian field η induces a Hilbert space on Z
d
n

given by the distance metric

dη(x,y) :=
(
E(ηx − ηy)2

)1/2
.
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The upper bounds on dη provided by Proposition 8.2 transfer to upper bounds
on E supx∈Zd

n
ηx. The main tool to transfer bounds is Dudley’s bound [19,

Proposition 1.2.1] described below. There exists L > 0 such that

E sup
x∈Zd

n

≤ L

∞∑
k=0

2k/2ek (35)

where ek = inf supt∈Zd
n

dη(t, Tk) and the infimum is taken over all subsets

Tk ⊆ Z
d
n with |Tk| ≤ 22k

.

Proposition 8.3. For each d ∈ N
∗, there exists Cd > 0 such that

E sup
x∈Zd

n

ηx ≤ Cdφd(n) (36)

for all n ∈ N
∗, where φd is defined by (2).

Proof. Let dG denote the standard graph distance on the torus Zd
n. By choosing

a submesh of appropriate cardinality, the following statement is clear: For any
d ∈ N

∗, there exists Cd,1 > 0 such that for any n ≥ 2 and for any 2 ≤ m < nd,
there exists a set Sm ⊂ Z

d
n with |Sm| = m such that

sup
t∈Zd

n

dG(t, Sm) = sup
t∈Zd

n

inf
s∈Sm

dG(t, s) ≤ Cd,1
n

m1/d
. (37)

For each d ∈ N
∗ by Dudley’s bound (35), (37) and Proposition 8.2, there exists

Cd,2, Cd,3 > 0

E max
x∈Zd

n

ηx ≤ Cd,2

log log nd�∑
k=0

2k/2

[
ψd

(
n,

Cd,1n

2(2k/d)

)]1/2

≤ Cd,3φd(n) (38)

The second inequality above follows from a straightforward case by case cal-
culation. �

8.3. Lower Bounds

Next, we prove matching lower bounds on E(η0−ηx)2. For dimensions d = 1, 2,
we estimate Fn,d directly.
d = 1: We use the bound |t| ≥ |sin t| ≥ 2

π |t| for all |t| ≤ π/2 to obtain

Fn,1(x) ≥ n−1 sin2 πx
n

sin4 π
n

≥ 4π−4n ‖x‖2
2

for all n ∈ N
∗ and for all x ∈ Zn\{0}. Hence there exists c1 > 0 such that

E(η0 − ηx)2 ≥ c1n ‖x‖2
2 (39)

for all n ∈ N
∗ and for all x ∈ Zn\{0}.
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d = 2: Let Sk ⊂ Z
2 denote the sphere with center 0 and radius k in the

supremum norm, that is Sk = {y ∈ Z
2 : ‖y‖∞ = k}. For x ∈ R

2, we define
Hx = {y ∈ Z

2 : |x · y| ≥ ‖x‖2 ‖y‖2 /
√

2}. It is easy to check that |Sk| = 4k

and |Sk ∩ Hx| ≥ 2k for all k ∈ N
∗ and for all x ∈ R

2. Let α ∈ (1,
√

2). If
‖z‖2 ≤ n

α‖x‖2
by Cauchy–Schwarz inequality, we have |x · z/n| ≤ α−1. We

need the inequality π|t| ≥ |sin πt| ≥ β|t| for all |t| ≤ α−1 where β = α sin(πα−1).
Putting together the above pieces, we obtain

Fn,2(x) ≥

⌊
n

α‖x‖2

⌋
∧n/4�∑

k=1

∑
z∈Sk

β2π−4 ‖z‖−4
2 |x · z|2

≥ β2

2π4
‖x‖2

2

⌊
n

α‖x‖2

⌋
∧n/4�∑

k=1

∑
z∈Sk∩Hx

‖z‖−2
2

≥ β2

4π4
‖x‖2

2

⌊
n

α‖x‖2

⌋
∧n/4�∑

k=1

∑
z∈Sk∩Hx

k−2

≥ β2

2π4
‖x‖2

2

⌊
n

α‖x‖2

⌋
∧n/4�∑

k=1

k−1

≥ β2

2π4
‖x‖2

2 log
((⌊

n

α ‖x‖2

⌋
∧ �n/4�

)
+ 1

)

≥ β2

2π4
‖x‖2

2 log
(

n

α ‖x‖2

∧ n

4

)
.

Since ‖x‖2 ≤ n/
√

2 for all x ∈ Z
2
n, we have the desired lower bound using

α <
√

2. That is, there exists c2 > 0 such that

E(η0 − ηx)2 ≥ c2 ‖x‖2
2 log

(
n

‖x‖2

)
(40)

for all n ∈ N
∗ with n ≥ 4 and for all x ∈ Z

2
n\{0}.

d ≥ 3: For dimensions d ≥ 3, we will approximate Hn,d,x by its almost every-
where pointwise limit H∞,d,x defined by

H∞,d,x(y) =
sin2(πx · y)

‖y‖4
2

1B∞(0,1/2)(y).

for y �= 0 and 0 otherwise. Therefore, we would like to estimate integrals of
the form ∫

r1≤‖y‖2≤r2

sin2(πx · y)
‖y‖4

2

dy =
∫ r2

r1

rd−5sd(r ‖x‖2) dr (41)

where sd(t) =
∫
Sd−1 sin2(πty1) νd−1(dy) and νd−1 denotes the surface measure

in S
d−1. We will need the following lower bound for sd.
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Lemma 8.4. Fix d ∈ N
∗ with d ≥ 3. Then for all ε > 0, there exists δ > 0 such

that sd(t) ≥ δ for all t ≥ ε.

Proof. Since sd : R → R is a continuous function with sd(t) > 0 for all
t �= 0, it suffices to show that lim inft→∞ sd(t) > 0. By [2, Corollary 4] (See
Remark 5(b)),

sd(t) = cd

∫ 1

−1

(1 − x2)(d−3)/2 sin2(πtw) dw ≥ cd2(3−d)/2

∫ 1/2

−1/2

sin2(πtw) dw

where cd is a constant that depends on d. Since limt→∞
∫ 1/2

−1/2
sin2(πtw) dw =

1/2, the conclusion follows. �

Remark 5. (a) Recall that we used the pointwise bound |sin t| ≤ 1 to obtain
upper bounds on I2. We want to somehow reverse that inequality to
obtain corresponding lower bounds. Although the reverse inequality
|sin t| > δ is not true for any δ > 0 in a pointwise sense, it is true in
an average sense. That is the content of Lemma 8.4.

(b) [2, Corollary 4] implies the following striking result in geometric prob-
ability: Let d ≥ 3. For a uniformly distributed random vector y =
(y1, y2, . . . , yd) in the (d − 1)-dimensional unit sphere S

d−1 in R
d, the

projection (y1, y2, . . . , yd−2) is uniformly distributed in the (d − 2)-
dimensional unit ball Bd−2 = B2(0, 1) in R

d−2.
(c) Since limn→∞ Hn,d,x = H∞,d,x almost everywhere, one might wonder if

we can prove matching lower bounds for I2 using dominated convergence
theorem. This approach gives a lower bound as n goes to ∞ but with both
d and x fixed. However, we want lower bounds with fixed d and with both
n and x varying. Hence, there is a need to quantify this convergence as
both n and x varies. We fulfill this need in Lemma 8.5.

One can easily check that limn→∞ Hn,d,x = H∞,d,x almost everywhere.
We need the following quantitative version of this convergence.

Lemma 8.5. Fix d ∈ N
∗. For any ε > 0, there exist positive reals δ,N such that∣∣∣∣∣Hn,d,x(y) − sin2(πx · y)

‖y‖4
2

∣∣∣∣∣ ≤ ε

‖y‖4
2

for all n ≥ N , for all x ∈ Z
d
n\{0} with ‖x‖2 < δn and for almost every

y ∈ B2(0, 1/4)\B2(0, 1/(8 ‖x‖2)).

Proof. Note that, we have the inclusion

B∞(0, 1/(2n)) ⊂ B2(0, 1/(8 ‖x‖2)) ⊂ B2(0, 1/4)

for all n ≥ 4
√

d and for all x ∈ Z
d
n\{0} with ‖x‖2 ≤ n/4

√
d. We use ‖x‖2 ≥ 1

and the comparison of norms ‖w‖2 ≤ √
d ‖w‖∞ to prove the above inclusions.

The function y �→ sin2(πx · y) has gradient bounded uniformly in 2-norm by
π ‖x‖2. Hence, we have
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∣∣∣∣∣Hn,d,x(y) − sin2(πx · y)
‖y‖4

2

∣∣∣∣∣ ≤ π ‖x‖2

√
d

n
‖y‖−4

2

for all n ≥ 4
√

d and for all x ∈ Z
d
n\{0} with ‖x‖2 ≤ n/4

√
d and for almost

every y ∈ B2(0, 1/4)\B2(0, 1/(8 ‖x‖2)). The choice δ = min
(

1
4
√

d
, ε

π
√

d

)
and

N = 4
√

d satisfies all the requirements. �
We put together the above pieces to obtain the following lower bound for

d ≥ 3.

Lemma 8.6. Fix d ≥ 3. There exist positive reals δ,N, cd such that∫
Rd

Hn,d,x(y) dy ≥ cd

∫ 1/4

1/(8‖x‖2)

rd−5 dr

for all n ≥ N and for all x ∈ Z
d
n\{0} with ‖x‖2 < δn.

Proof. By Lemma 8.4, there exists ε1 > 0 such that sd(t) ≥ 2ε1 for all t ≥ 1/8.
By Lemma 8.5, there exist positive reals δ,N such that∣∣∣∣∣Hn,d,x(y) − sin2(πx · y)

‖y‖4
2

∣∣∣∣∣ ≤ ε1

ωd−1 ‖y‖4
2

for all n ≥ N , for all x ∈ Z
d
n\{0} with ‖x‖2 < δn and for almost every

y ∈ B2(0, 1/4)\B2(0, 1/(8 ‖x‖2)).
Combining the above observations, we have for all n ≥ N and for all

x ∈ Z
d
n\{0} with ‖x‖2 < δn∫
Rd

Hn,d,x(y) dy ≥
∫

1/(8‖x)‖2≤‖y‖2≤1/4

Hn,d,x(y) dy

≥
∫

1/(8‖x)‖2≤‖y‖2≤1/4

(H∞,d,x(y) − ε1ω
−1
d−1 ‖y‖−4

2 ) dy

=
∫ 1/4

1/(8‖x‖2)

rd−5(sd(r ‖x‖2) − ε1) dr

≥ ε1

∫ 1/4

1/(8‖x‖2)

rd−5 dr.

�
We now establish the following lower bounds corresponding to the upper

bounds in Proposition 8.2.

Proposition 8.7. For each d ∈ N
∗, there exist positive reals δd, Nd, cd such that

E(η0 − ηx)2 ≥ cdψd(n, ‖x‖2)

for all n ≥ Nd and for all x ∈ Z
d
n\{0} with ‖x‖2 < δdn, where ψd is defined

by (29).

Proof. The cases d = 1, 2 follow from (39) and (40), respectively. The case
d ≥ 3 follows from Lemma 8.6 along with (28). �
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Remark 6. The condition ‖x‖2 < δdn that appears in the lower bound for the
case d ≥ 3 is somewhat unsatisfactory. We believe that the lower bound is true
without any such an additional condition. However, the lower bounds in the
present form are good enough for our main application.

Next, we obtain lower bounds matching the upper bounds in Proposi-
tion 8.3. We start by recalling notation and setup for Talagrand’s majorizing
measure [19, Theorem 2.1.1]. We consider centered multivariate Gaussian ran-
dom variables (ηt)t∈T indexed by a set T with cardinality |T|. An admissible
sequence {Ak} is an increasing sequence of partitions of T such that |Ak| ≤ 22k

.
Here “increasing sequence” refers to the fact that every set in An+1 is con-
tained in a set in An. We denote by Ak(t) the unique element of An that
contains t ∈ T . Recall that dη(t1, t2) =

(
E(ηt1 − ηt2)

2
)1/2 denotes the Hilbert

space metric induced by (ηt)t∈T . We define the function

γ2(T, dη) = inf sup
t∈T

∞∑
k=0

diamη(An(t))

where diamη denotes the diameter in the dη metric and the infimum is taken
over all admissible sequences. The majorizing measure theorem [19, Theorem
2.1.1] states that there is some universal constant L for which

1
L

γ2(T, d) ≤ E sup
t∈T

ηt ≤ Lγ2(T, d). (42)

Proposition 8.8. For each d ∈ N
∗, there exists cd > 0 such that

E sup
x∈Zd

n

ηx ≥ cdφd(n) (43)

for all n ∈ N
∗, where φd is defined by (2).

Proof. The strategy is to use the lower bound for dη given by Proposition 8.7
along with (42) where T = {x ∈ Z

d
n : ‖x‖2 < δdn} and E supt∈Zd

n
ηt ≥

E supt∈T ηt. Note that it suffices to show (43) for large enough n, i.e., n > Nd

for some fixed Nd.
For d = 1, 2, 3, by (42), we have

E sup
t∈Zd

n

ηt ≥ L−1 inf sup
t∈T

diamη(A0(t)). (44)

Since |A0| ≤ 2, we have supt∈T diamG(A0(t)) ≥ c0n for some c0 > 0. Therefore,
by Proposition 8.7 along with (44), we obtain the desired result.

For d = 4, by (42), we have

E sup
t∈Zd

n

ηt ≥ L−1 inf sup
t∈T

2k/2 diamη(Ak(t)). (45)

where k = �log2 log2 |T|� − 1. This gives 2k/2 ≥ c0

√
log n for some c0 > 0.

Moreover, k = �log2 log2 |T|� − 1 and |Ak| ≤ 22k

implies that at least one of
the sets Ak(t) has cardinality greater than or equal to

√|T|, which in turn
implies diamG(Ak(t)) ≥ c1

√
n for some c1 > 0. By Proposition 8.7, we obtain
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diamG(Ak(t)) ≥ c2

√
log n for some c2 > 0 and for large enough n. The con-

clusion for d = 4 then follows from (45).
The case d ≥ 5 is a direct consequence of Sudakov minoration ([19,

Lemma 2.1.2]). �

Proof of Proposition 1.2. The upper and lower bounds follow from Proposi-
tions 8.3 and 8.8. �
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