
Ann. Henri Poincaré 17 (2016), 1181–1208
c© 2015 Springer Basel
1424-0637/16/051181-28
published online September 25, 2015

DOI 10.1007/s00023-015-0431-z Annales Henri Poincaré

Dynamics of Noncommutative Solitons I:
Spectral Theory and Dispersive Estimates

August J. Krueger and Avy Soffer

Abstract. We consider the Schrödinger equation with a Hamiltonian given
by a second-order difference operator with nonconstant growing coeffi-
cients, on the half one-dimensional lattice. This operator appeared first
naturally in the construction and dynamics of noncommutative solitons
in the context of noncommutative field theory. We prove pointwise in time
decay estimates with the decay rate t−1 log−2 t, which is optimal with the
chosen weights and appears to be so generally. We use a novel technique
involving generating functions of orthogonal polynomials to achieve this
estimate.

1. Introduction and Background

The notion of noncommutative soliton arises when one considers the nonlinear
Klein–Gordon equation (NLKG) for a field which is dependent on, for exam-
ple, two “noncommutative coordinates”, x, y, whose coordinate functions sat-
isfy canonical commutation relations (CCR) [X,Y ] = iε. This follows through
the method of deformation quantization, see e.g., [3] for a review and [4] for
applications. By going to a representation of the above CCR, one can reduce
the dynamics of the problem to an equation for the coefficients of an expan-
sion in the Hilbert space representation of the above CCR, see e.g., [14,15,22].
By restricting to rotationally symmetric functions the noncommutative defor-
mation of the Laplacian reduces to a second-order finite difference operator,
which is symmetric, and with variable coefficient growing like the lattice co-
ordinate, at infinity. Therefore, this operator is unbounded, and in fact has
continuous spectrum [0,∞). These preliminary analytical results, as well as
additional numerical results, were obtained by Chen et al. [7]. The dynam-
ics and scattering of the (perturbed) soliton can then be inferred from the
NLKG with such a discrete operator as the linear part. We will be interested
in studying the dynamics of discrete NLKG and discrete NLS equations with
these Hamiltonians.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-015-0431-z&domain=pdf
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We will be working with a discrete Schrödinger operator L0 which can
be considered either a discretization or a noncommutative deformation of the
radial 2D negative Laplacian, −Δ2D

r = −r−1∂rr∂r. We will briefly review both
perspectives.

In 1D one may find a discrete Laplacian via

x ∈ R
discrete−−−−−−→ n ∈ Z, −Δ1D = −∂2

x
discrete−−−−−−→ −D+D−,

where D+v(n) = v(n + 1) − v(n),D−v(n) = v(n) − v(n − 1) are, respectively,
the forward and backward finite difference operators. It is important to im-
plement this particular combination of these finite difference operators due to
ensure that the resulting discrete Laplacian is symmetric. In 2D one may find
a discrete Laplacian via

r = (x2 + y2)1/2 = 2ρ1/2, ρ ∈ R+
discrete−−−−−−→ n ∈ Z+,

−Δ2D
r = −r−1∂rr∂r = −∂ρρ∂ρ

discrete−−−−−−→ −D+MD− = L0,

where Mv(n) = nv(n). For any 1D continuous coordinate x one may discretize
a pointwise multiplication straightforwardly via vp(x) discrete−−−−−→ vp(n), where n
is a discrete coordinate.

One may also follow the so-called noncommutative space perspective.
Here one considers the formal “Moyal star deformation” of the algebra of
functions on R

2:

Φ1 · Φ2(x, y) = Φ1(x, y)Φ2(x, y)
ε>0−−−→ Φ1 � Φ2(x, y) = exp[i(ε/2)(∂x1∂y2 − ∂y1∂x2)]Φ1(x1, y1)

× Φ2(x2, y2)�(xj ,yj)=(x,y).

One calls the coordinates, x, y, noncommutative in this context because the
coordinate functions X(x, y) = x, Y (x, y) = y satisfy a nontrivial commuta-
tion relation X �Y −Y �X ≡ [X,Y ] = iε. This prescription can be considered
equivalent to the multiplication of functions of q, p in quantum mechanics
where operator ordering ambiguities are set by the normal ordering prescrip-
tion for each product. For Φ a deformed function of r = (x2 + y2)1/2 alone:
Φ =

∑∞
n=0 v(n)Φn where v(n) ∈ C and the {Φn}∞

n=0 are distinguished func-
tions of r: the projectors onto the eigenfunctions of the noncommutative space
variant of quantum simple harmonic oscillator system. One may find for Φ a
function of r alone:

−Δ2DΦ = −Δ2D
r Φ = −r−1∂rr∂rΦ

ε>0−−−→ 2
ε
L0Φn =

2
ε

{
−(n + 1)Φn+1 + (2n + 1)Φn − nΦn−1, n > 0
−Φ1 + Φ0, n = 0

which may be transferred to 2
ε L0v(n), an equivalent action on the v(n), due to

the symmetry of L0. Since the Φn are noncommutative space representations
of projection operators on a standard quantum mechanical Hilbert space, they
diagonalize the Moyal star product: Φm�Φn = δm,nΦn. This property is shared
by all noncommutative space representations of projection operators. Thereby
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products of the Φn may be transferred to those of the expansion coefficients:
v(n)v(n) = v2(n).

See Durhuus et al. [14,15] and Chen et al. [7] for reviews of the two
approaches. In the following we will work on a lattice explicitly so x ∈ Z+ will
be a discrete spatial coordinate.

The principle of replacing the usual space with a noncommutative space
(or space–time) has found extensive use for model building in physics and
in particular for allowing easier construction of localized solutions, see e.g.,
[2,30] for surveys. An example of the usefulness of this approach is that it may
provide a robust procedure for circumventing classical nonexistence theorems
for solitons, e.g., that of Derrick [10]. The NLKG variant of the equation
we study here first appeared in the context of string theory and associated
effective actions in the presence of background D-brane configurations, see
e.g., [22]. We have decided to look in a completely different direction. The NLS
variant and its solitons can in principle be materialized experimentally with
optical devices, suitably etched, see e.g., [8]. Thus, the dynamics of NLS with
such solitons may offer new and potentially useful coherent states for optical
devices. Furthermore, we believe the NLS solitons to have special properties,
in particular asymptotic stability as opposed to the asymptotic metastability
of the NLKG solitons conjectured in [7].

We will be following a procedure for the proof of asymptotic stability
which has become standard within the study of nonlinear PDE [38]. Crucial
aspects of the theory and associated results were established by Buslaev and
Perelman [5], Buslaev and Sulem [6], and Gang and Sigal [21]. Important el-
ements of these methods are the dispersive estimates. Various such estimates
have been found in the context of 1D lattice systems, for example see the work
of Komech et al. [26] and of Egorova et al. [16], as well as the continuum
2D problem to which our system bears many resemblances, see e.g., the work
of Kopylova and Komech [27]. Extensive results have been found on the as-
ymptotic stability on solitons of 1D nonlinear lattice Schrödinger equations by
Palmero et al. [34], Kevrekidis et al. [24], as well as Cuccagna and Tarulli [9].
Typically the literature on 1D lattice NLS systems focuses on cases where the
free linear Schrödinger operator is given by the negative of the standard 1D
discrete Laplacian. Our work is on a different free linear Schrödinger operator,
L0 defined above, which has some distinguishing properties. Important aspects
of the application of these models to optical nonlinear waveguide arrays have
been established by Eisenberg et al. [17].

This work is the first of a series of papers (this one, [28,29]) devoted to
the construction, scattering, and asymptotic stability of radial noncommuta-
tive solitons with two noncommuting spatial coordinates. We have chosen to
restrict our study to these solutions for a number of reasons: it builds upon the
observations and results of [7]; the radial cases allow one to work with effec-
tive 1D lattices and thereby standard Jacobi operators; for two noncommuting
spatial coordinates the free radial system is equivalent to a known Jacobi op-
erator spectral problem; the method proposed is by far the most illustrative
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for the given restrictions. The three papers are devoted to separate aspects of
the problem in order of necessity. The organization of this work is as follows.

In this paper, we focus on a key estimate that is needed for scattering and
stability, namely the decay in time of solutions of relevant Schrödinger oper-
ators. Fortunately, for boundary-perturbed operators, we find it is integrable,
given by t−1 log−2 t. The proof of this result is rather direct, and employs
the generating functions of the corresponding generalized eigenfunctions, to
explicitly represent and estimate the resolvent of the Hamiltonian at all ener-
gies. We follow the general approach established by Jensen and Kato [23] and
extended by Murata [32] whereby time decay follows largely from the behavior
of the resolvent near the threshold. From this one can see that for the chosen
weights the estimate we find is optimal and should be optimal in general due to
the elimination of the threshold resonance by boundary perturbations, by the
generality of the method. We also conclude the absence of positive eigenvalues
and singular continuous spectrum.

Previous results for the scattering theory of the associated noncommuta-
tive waves and solitons were found by Durhuus and Gayral [13]. In particular
they find local decay estimates for the associated noncommutative NLS. They
consider general noncommutative estimates for all even dimensions of pairwise
noncommuting spaces. We consider radial solutions on 2D noncommutative
space by alternative methods and find local decay for both the free Schrödinger
operator as well as a class of rank one perturbations thereof. Our decay esti-
mates are an improvement on those of [13] for this restricted class of solutions.
An important element of this analysis is the study of the spectral properties of
the free and boundary-perturbed Schrödinger operator. The boundary pertur-
bation is crucial to the work as it not only eliminates the threshold resonance
of the free operator (thereby improving the time decay) as well as allows one
to approximate and control solitons that are large only at the boundary via
linear operators. We extend the linear analysis of Chen et al. [7] and reproduce
some of their results with alternative techniques.

In [28] we address the construction and properties of a family of ground-
state solitons. These stationary states satisfy a nonlinear eigenvalue equation,
are positive, monotonically decaying and sharply peaked for large spectral
parameter. The proof of this result follows directly from our spectral results
in this paper by iteration for small data and root finding for large data. The
existence and many properties of solutions for a similar nonlinear eigenvalue
equation were found by Durhuus et al. [14,15]. We utilize a simple power law
nonlinearity for which their existence proofs do not apply. We additionally find
estimates for the peak height, spatial decay rate, norm bounds, and parameter
dependence.

In [29], we focus on deriving a decay rate estimate for the Hamiltonian
which results from linearizing the original NLS around the soliton constructed
in [28]. We determine the full spectrum of this operator, which is the union of
a multiplicity two null eigenvalues and a real absolutely continuous spectrum.
This establishes a well-defined set of modulation equations [38] and points
toward the asymptotic stability of the soliton.
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In the conclusion of [29], we describe how the results can be applied to
prove stability of the soliton we constructed in [28]. The issue of asymptotic
stability of NLS solitons has been sufficiently well studied in such a broad con-
text that the proof thereof is often considered as following straightforwardly
from the appropriate spectral and decay estimates, of the kind found in [29].
We sketch how the theory of modulation equations established by Soffer and
Weinstein [38] can be used to prove asymptotic stability. Chen et al. [7] conjec-
tured that in the NLKG case the corresponding solitons are unstable but with
exponential long decay: the so-called metastability property, see [39]. There is
a great deal of evidence to suggest that this is in fact the case but a proof has
yet to be provided. This will be the subject of future work.

2. Notation

Let Z+ and R+, respectively, be the nonnegative integers and nonnegative reals
and H = �2(Z+, C) the Hilbert space of square integrable complex functions,
e.g., v : Z+ � x �→ v(x) ∈ C, on the 1D half-lattice with inner product (·, ·),
which is conjugate-linear in the first argument and linear in the second argu-
ment, and the associated norm ||·||, where ||v|| = (v, v)1/2,∀v ∈ H . Where the
distinction is clear from context ||·|| ≡ ||·||op will also represent the norm for op-
erators on H given by ||A||op = supv∈H ||v||−1||Av||, for all bounded A on H .
Denote the lattice �1 norm by || · ||1 where ||v||1 =

∑∞
x=0 |v(x)|,∀v ∈ �1(Z+, C).

We denote by ⊗ the tensor product and by z �→ z complex conjugation
for all z ∈ C. We write H ∗ for the space of linear functionals on H : the dual
space of H . For every v ∈ H one has that v∗ ∈ H ∗ is its dual satisfying
v∗(w) = (v, w) for all v, w ∈ H . For every operator A on H we take D(A) as
standing for the domain of A. For each operator A on H define A∗ on H ∗ to
be its dual and A† on H its adjoint such that v∗(Aw) = A∗v∗(w) = (A†v, w)
for all v ∈ D(A†) and all w ∈ D(A). Let {χx}∞

x=0 be the orthonormal set
of vectors such that χx(x) = 1 and χx1(x2) = 0 for all x2 �= x1. We write
Px = χx ⊗ χ∗

x for the orthogonal projection onto the space spanned by χx.
We define T to be the topological vector space of all complex sequences

on Z+ endowed with topology of pointwise convergence, B(H ) to be the space
of bounded linear operators on H , and L(T ) to be the space of linear op-
erators on T , endowed with the pointwise topology induced by that of T .
When an operator A on H can be given by an explicit formula through
A(x1, x2) = (χx1 , Aχx2) < ∞ for all x1, x2 ∈ Z+ one may make the nat-
ural inclusion of A into L(T ), the image of which will also be denoted by A.
We consider T to be endowed with pointwise multiplication, i.e., the product
uv is specified by (uv)(x) = u(x)v(x) for all u, v ∈ T .

We represent the spectrum of each A on H by σ(A). We term each el-
ement λ ∈ σ(A) a spectral value. We write σd(A) for the discrete spectrum,
σe(A) for the essential spectrum, σp(A) for the point spectrum, σac(A) for the
absolutely continuous spectrum, and σsc(A) for the singularly continuous spec-
trum. Should an operator A satisfy the spectral theorem there exist scalar
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measures {μk}n
k=1 on σ(A) which furnish the associated spectral represen-

tation of H for A such that the action of A is given by multiplication by
λ ∈ σ(A) on ⊕n

k=1L
2(σ(A),dμk). If H = ⊕n

k=1L
2(σ(A),dμk) we term n the

generalized multiplicity of A. For an operator of arbitrary generalized mul-
tiplicity we will write μA for the associated operator-valued measure, such
that A =

∫
σ(A)

λ dμA
λ . For each operator A that satisfies the spectral theo-

rem, its spectral (Riesz) projections will be written as PA
d and the like for

each of the distinguished subsets of the spectral decomposition of A. Define
RA

· : ρ(A) → B(H ), the resolvent of A, to be specified by RA
z := (A − z)−1,

where ρ(A) := C\σ(A) is the resolvent set of A and where by abuse of notation
zI ≡ z ∈ B(H ) here.

Allow an eigenvector of A to be a vector v ∈ H for which Av = λv
for some λ ∈ C. Should A admit inclusion into L(T ), we define a generalized
eigenvector of A be a vector φ ∈ T \H which satisfies Aφ = λφ for some
λ ∈ C such that φ(x) is polynomially bounded, which is to say that there
exists a p ≥ 0 such that limx↗∞(x+1)−pφ(x) = 0. We define a spectral vector
of A to be a vector which is either an eigenvector or generalized eigenvector of
A. We define the subspace of spectral vectors associated to the set Σ ⊆ σ(A)
to be the spectral space over Σ.

We write ∂z ≡ ∂
∂z and dz ≡ d

dz , respectively, for formal partial and total
derivative operators with respect to a parameter z ∈ R, C.

3. Results

Definition 3.1. Define L0 to be the operator on H with action

L0v(x) =
{

−(x + 1)v(x + 1) + (2x + 1)v(x) − xv(x − 1), x > 0
−v(1) + v(0), x = 0

and domain D(L0) := {v ∈ H | ||Mv|| < ∞}, where M is the multiplication
operator with action Mv(x) = xv(x) ∀v ∈ T .

Consider the linear Schrödinger equation

i∂tu = L0u + V u (1)

where u : Rt×Z+ → C and V is a potential (energy) multiplication operator on
H . To find solutions to Eq. (1) it is sufficient to analyze the spectral measure
of L0 + V . The regularity and boundedness properties of V are crucial for the
analysis of solutions and for general results such must be given in advance.
In our work, any potential introduced will be given explicitly so all relevant
properties will be given by its representation and domain of definition.

Proposition 1. The operator L0 has the following properties.
1. L0 is essentially self-adjoint.
2. L0 has generalized multiplicity 1.
3. The spectrum of L0 is absolutely continuous, σ(L0) = σac(L0) = [0,∞),

and its generalized eigenfunctions are the Laguerre polynomials φλ(x) ≡
φL0

λ (x) =
∑x

k=0
(−λ)k

k!

(
x
k

)
for choice of normalization φλ(0) = 1.
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Chen, Fröhlich, and Walcher determined the above properties for L0 in
[7] via methods which are different from ours. We refer the reader to the
presentation of the spectral projection δL0

λ in Definition 5.3.

Definition 3.2. Let wλ ≡ wL0
λ := (χ0, δ

L0
λ χ0) be termed the spectral integral

weight, ψz ≡ ψL0
z := RL0

z χ0 the resolvent vector, ξz ≡ ξL0
z := ψz −ψz(0)φz the

auxilliary resolvent vector, and fz ≡ fL0
z := (χ0, R

L0
z χ0) the resolvent function

of L0 for all λ ∈ σ(L0) for all z ∈ ρ(L0).

Since φλ(x) is a polynomial of degree x in λ, one has that the analytic
continuation φz ∈ T , z ∈ C, exists. The above permits the useful representa-
tion ψz = fzφz + ξz. φz and ψz are connected to the Stieltjes transform theory
of orthogonal polynomials. In that context φz is termed a primary polynomial
and ψz the corresponding secondary polynomial [41].

Definition 3.3. Define L to be the operator on H with domain D(L) = D(L0)
and specified by L := L0 − qP0 where q > 0 is a fixed constant and P0 :=
χ0 ⊗ χ∗

0. Let ψL
z := RL

z χ0 be the resolvent vector and fL
z = (χ0, R

L
z χ0) the

resolvent function of L for all z ∈ ρ(L).

The addition of the attractive boundary potential enhances the time de-
cay. It also allows one to approximate and control solutions with data that are
only large at the boundary in applications to nonlinear problems.

Theorem 1. Let φL
λ , λ ∈ σ(L), denote spectral vectors of L chosen to satisfy the

normalization condition (χ0, φ
L
λ ) = φL

λ (0) = 1,∀λ ∈ σ(L). L has the following
properties.

1. σd(L) = σp(L) = {λ0}, where λ0 < 0 uniquely satisfies 1 = qψλ0(0) and
the unique eigenfunction over λ0 is ψL

λ0
= qψλ0 .

2. σe(L) = σac(L) = σ(L0) = [0,∞) and has generalized multiplicity 1.
3. dμL(λ) = wL

λ φL
λ ⊗ φL,∗

λ dλ, where wL
λ = {[1 + qe−λEi(λ)]2 + [πqe−λ]2}−1

e−λ,dλ is the Lebesgue measure on [0,∞), and Ei(λ) :=
∫ ∞

−λ
du u−1e−u,

λ > 0, is the exponential integral. The generalized eigenfunctions of L
are given by φL

λ = φλ + qξλ, λ ∈ σac(L).

We are ultimately interested in studying the solutions of a nonlinear
equation so it is important to acquire decay estimates for dispersive “scattering
states”.

Definition 3.4. Let Wκ,τ be the multiplication operator weight specified by
Wκ,τv(x) = (x + κ)τv(x),∀v ∈ T , where 0 < κ ∈ R, τ ∈ R.

Theorem 2. For all −3 ≥ τ ∈ R, t > 0, v ∈ �1, there exists a constant c > 0
and a 1 < κ ∈ R such that

||Wκ,τe−itL0Wκ,τv||∞ < ct−1||v||1

Theorem 3. For all −3 ≥ τ ∈ R, v ∈ �1, there exists a 1 < κ ∈ R such that

||Wκ,τe−itLPL
e Wκ,τv||∞ = O(t−1 log−2 t), t ↗ ∞
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Our proof of these estimates will rely heavily on the generating func-
tions of the generalized eigenvalues. This approach draws upon known prop-
erties of certain special functions. Hereby the problem of sequences on a lat-
tice will be transformed into a problem of analytic functions in the complex
plane.

4. Spectral Properties of L0

Lemma 4.1. Any vector, v, the set of whose components, {v(x)}∞
x=0, have fi-

nitely many nonzero elements is a semi-analytic vector for L0, which is to say
that ||Lk

0v|| ≤ cv(2k)! where cv depends on v alone.

Proof. Define xv := supx{x : v(x) �= 0}.

||L0v||22 =
∞∑

x=0

| − (x + 1)v(x + 1) + (2x + 1)v(x) − xv(x − 1)|2

≤
∞∑

x=0

[(x + 1)|v(x + 1)| + (2x + 1)|v(x)| + x|v(x − 1)|]2

≤
∞∑

x=0

{[(xv − 1) + 1]|v(x + 1)|+(2xv + 1)|v(x)| + (xv + 1)|v(x − 1)|}2

=
∞∑

x=0

{
[xv|v(x + 1)|]2 + 2xv(2xv + 1)|v(x + 1)||v(x)|

+ 2xv(xv + 1)|v(x)||v(x − 1)| + [(2xv + 1)|v(x)|]2

+ 2(2xv + 1)(xv + 1)|v(x)||v(x − 1)| + [(xv + 1)|v(x − 1)|]2
}

≤
∞∑

x=0

{
[xv|v(x)|]2 + 2xv(2xv + 1)|v(x + 1)||v(x)|

+ 2xv(xv + 1)|v(x + 1)||v(x)| + [(2xv + 1)|v(x)|]2

+ 2(2xv + 1)(xv + 1)|v(x + 1)||v(x)| + [(xv + 1)|v(x)|]2
}

≤ 16(xv + 1)2||v||21

||L0v||1 =
∞∑

x=0

| − (x + 1)v(x + 1) + (2x + 1)v(x) − xv(x − 1)|

≤
∞∑

x=0

|(x + 1)v(x + 1) + (2x + 1)v(x) + xv(x − 1)|

≤
∞∑

x=0

[(x + 1)|v(x + 1)| + (2x + 1)|v(x)| + x|v(x − 1)|]

≤
∞∑

x=0

{[(xv − 1) + 1]|v(x + 1)| + (2xv + 1)|v(x)| + (xv + 1)|v(x − 1)|}
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≤
∞∑

x=0

[xv|v(x + 1)| + (2xv + 1)|v(x)| + (xv + 1)|v(x − 1)|]

≤ 4(xv + 1)||v||1.

Let av := 4(xv +1). We have then ||L0v||21, ||L0v||22 ≤ av||v||1. One may observe
that xL0v = xv + 1 ⇒ aL0v = av + 4. One then has that

||Lk
0v||2 ≤ aLk−1

0 v||L
k−1
0 v||1 ≤ aLk−1

0 vaLk−2
0 v||L

k−2
0 v||1 ≤ · · ·

≤
k∏

j=1

aLk−j
0 v||v||1 = 4k

k∏

j=1

(j + xv)||v||1 = 4k(xv!)−1(k + xv)!||v||1.

Since 4k(xv!)−1(k + xv)!||v||1 is monotonically increasing in k ∈ Z+ we may,
without loss of generality, take that k > xv and k > 4 to bound this expression.
One may show through the monotonicity in k of

(
x
k

)
for 0 ≤ k ≤ �x/2� that(

x
k

)
≤ (�x/2�!)−2(x!), where �a� = supa≥n∈Z

n, for all a ∈ R, is the floor
function. One then has

4k(xv!)−1(k + xv)!||v||1 = 4kk!
(

k + xv

k

)

||v||1 ≤ 4kk!
(

2k

k

)

||v||1

= 4k(k!)−1(2k)!||v||1 ≤ 44(4!)−1(2k)!||v||1
< cv(2k)!,

where cv = 11||v||1. �

Proof of Proposition 1 Part (1). The set of vectors, v, with finitely many
nonzero components is dense in H . This dense set is semi-analytic for L0.
By semi-analytic vector theorem, see e.g., the appendix or [36], it is, therefore,
the case that L0 is essentially self-adjoint. �

Proof of Proposition 1 Part (2). One has that L0v(x) = λv(x), v ∈ T , spec-
ifies a countable family of coupled elementary algebraic equations. A unique
solution may be found for each λ by specifying v0 and solving inductively in
increasing x ∈ Z+. A choice of normalization will fix v(0). Therefore, each
solution is, up to normalization, uniquely specified by λ. �

Proof of Proposition 1 Part (3). L0 is an essentially self-adjoint, second-order,
finite difference operator or Jacobi operator. It is well known that the theory of
Jacobi operators is intimately connected with that of orthogonal polynomials.
In particular spectral equations for operators extended to formal sequence
spaces may be viewed as recursion formulas for families, indexed by lattice
site, of orthogonal polynomials defined on the spectrum of the operator in
question, see e.g., [35]. For L0 ∈ L(T ) it is the case that L0v(x) = λv(x) takes
the form of the recursion formula for the Laguerre polynomials. By part (2)
of the proposition, these solutions are unique. �
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The Laguerre polynomials, φλ(x), have known completeness and orthog-
onality relations whose roles will be reversed here:

δx1,x2 =
∫ ∞

0

dλ e−λφλ(x1)φλ(x2),

δ(λ1 − λ2) = e−(λ1+λ2)/2
∞∑

x=0

φλ1(x)φλ2(x),

where δ(·) is Dirac’s delta distribution supported on σ(L0). The RHS of these
equations converge in the distributional sense, respectively, on �2(Z+) and
L2(R+). The former equation expresses components of the spectral measure
of L0 and in particular wλ = e−λ.

5. Spectral Properties of L

Definition 5.1. Let T ∈ L(T ) be the binomial transform, see e.g., [25], defined
by

T v(k) =
∞∑

x=0

T (k, x)v(x) =
∞∑

x=0

(−1)x

(
k

x

)

v(x), ∀v ∈ T .

T is involutive in the sense that T 2 = I. One has that T v(0) = v(0) and
the useful representation χ0(x) =

∑∞
k=0(−1)k

(
x
k

)
. We take the conventions

that x! =
(
x
k

)
=

∑k
x=0 v(x) = 0 for k, x < 0 and k < x for all v ∈ T .

Lemma 5.1. It is the case that

T L0v(k) = (k + 1)T v(k + 1), ∀v ∈ T .

Proof. One may write T v(k) = (uT
k , v) where uT

k (x) = (−1)x
(
k
x

)
. By the

symmetry of L0 one has T L0v(k) = (uT
k , L0v) = (L0u

T
k , v) and it is, there-

fore, sufficient to analyze L0u
T
k alone. We will utilize the formulas

(
k−1
x−1

)
=

(
k
x

)
−

(
k−1

x

)
= x

k

(
k
x

)
.

For x = 0:

L0u
T
k (x) = −(−1)x+1

(
k

x + 1

)

+ (−1)x

(
k

x

)

= (k + 1) = (k + 1)uT
k+1(0).

For x > 0:

L0u
T
k (x)=−(x + 1)(−1)x+1

(
k

x + 1

)

+(2x + 1)(−1)x

(
k

x

)

−x(−1)x−1

(
k

x − 1

)

= (−1)x

[

(x + 1)
(

k

x + 1

)

+ (2x + 1)
(

x

k

)

+ x

(
k

x − 1

)]

= (−1)x

[

(x + 1)
(

k + 1
x + 1

)

− (x + 1)
(

k

x

)

+ (2x + 1)
(

x

k

)

+x

(
k + 1

x

)

− x

(
k

x

)]
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= (−1)x

[

(x + 1)
(

k + 1
x + 1

)

+ x

(
k + 1

x

)]

= (k + 1)(−1)x

(
k + 1

x

)

.

�

One may then use the binomial transform to arrive at the standard power
series representation of the Laguerre polynomials. Consider

L0φλ(x) = λφλ(x) ⇒ (k + 1)T φλ(k + 1) = λT φλ(k).

Choosing T φλ(0) = φλ(0) = 1 one has by induction that T φλ(k) = λk

k! . One
may then apply the binomial transform again to arrive at

φλ(x) =
x∑

k=0

(−1)k

(
x

k

)
(λ)k

k!
.

Lemma 5.2. One has the representation

ψz(x) = e−z
x∑

k=0

(−1)k

(
x

k

)

Ek+1(−z),

where

Ep(z) := zp−1

∫ ∞

z

dt e−tt−p, p ∈ C, z ∈ C\(−∞, 0]

are the generalized exponential integrals for which we take the principal branch
with standard branch cut Σ = (−∞, 0].

Proof. Consider the (L0 − z)ψz = χ0, where ψz, χ0 ∈ T , L0 ∈ L(T ). By
binomial transform of this equation one finds

(k + 1)T ψz(k + 1) = zT ψz(k) + 1.

T ψz(k) = e−zEk+1(−z) satisfies this recursion formula. �

The generalized exponential integrals have many other integral represen-
tations; however, most are defined only on a restricted set of p, z.

Definition 5.2. For any single-valued or multi-valued function f : C → C, an
element of a set of linear functionals on some suitable Banach space with norm
given through integration over λ, and with poles, branch points, and branch
cuts found in the subset Σ ⊆ R let PVf : Σ → C be the principal value of f
defined by the weak limit

PVf(λ) :=
1
2

w-lim
ε↘0

[f(λ + iε) + f(λ − iε)] , λ ∈ Σ,

which converges in the distributional sense. We analogously define the δ-part
of f to be

δf(λ) :=
1

2πi
w-lim
ε↘0

[f(λ + iε) − f(λ − iε)] , λ ∈ Σ.
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We have kept vague the specification of the sense in which the above
definitions converge weakly for the purposes of generality. The details of such
convergence in our work will be clear from context. One may extend the domain
of PVf to the complex plane and produce a single-valued function, which we
will also denote f , through

PVf(z) :=
{

f(z), z ∈ C\Σ
PVf(z), z ∈ Σ.

One may observe that the analogous extension of δf(λ) vanishes away from
Σ ⊆ R. This prescription extends to weak limits in z ∈ C of complex sequences
vz ∈ T whose components depend upon z.

The generalized exponential integrals have the convergent series expan-
sion [11]

En+1(z) = − (−z)n

n!
log(z) +

e−z

n!

n∑

k=1

(−z)k−1(n − k)!

+
e−z(−z)n

n!

∞∑

k=0

zk

k!
�(k + 1),

where �(z) := dz log Γ(z) is the digamma function. One may, therefore, ob-
serve that

w-lim
ε↘0

En+1(−z ± iε) = PVEn+1(−z) ∓ iπ
(x)n

n!
, z > 0,

where for the sake of generality the limit is weak with respect to L2([a,∞), C),
a > 0. One may write PVE1(−z) = −Ei(z) where

Ei(x) := −
∫ ∞

−z

du u−1e−u, z > 0

is the exponential integral.

Proof of Theorem 1 Part (1). Let u ∈ H satisfy u(0) �= 0, then

Lu = zu ⇒ 1 = qfL0
z .

L will then have as many eigenvalues as qfL0
z −1 has zeroes. The corresponding

eigenfunctions are given by

Lu = λu ⇒ u = qu(0)RL0
λ χ0.

Here fz = e−zE1(−z), so eigenvalues are be given by zeros of qe−zE1(−z)−1.
L is essentially self-adjoint so σ(L) ⊆ R. Analytic continuation of E1(−z) to
z > 0 from above or below will result in the sum of a real function and an
imaginary constant

lim
ε↘0

E1(−x ± iε) = −Ei(x) ∓ iπ, x > 0
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so there can be no positive eigenvalues. qe−zE1(−z) diverges for z → 0 so z = 0
cannot be an eigenvalue. All eigenvalues must be negative. Let z = −a < 0. It
is the case that eaE1(a) is monotonically decreasing for increasing a ∈ (0,∞]

da[eaE1(a)] = −
∫ ∞

0

dx e−x(x + a)−2 < 0,

where we have used an alternative integral representation of E1(z) and mani-
fest dominated convergence of the integral to pass the derivative through the
integral. Furthermore, since

lim
a↘0

∫ ∞

0

dt e−t(t + a)−1 = ∞, lim
a↗∞

∫ ∞

0

dt e−t(t + a)−1 = 0,

it follows that eaE1(a) takes each on the interval [0,∞) exactly once, where
we have used manifest uniform convergence of the integrand to pass the limit
through the integral. Therefore, qe−zE1(−z) − 1 has exactly one root for each
fixed q > 0. �
Proof of Theorem 1 Part (2). By the argument of the Proof of Theorem 1 Part
(1), there can be no embedded eigenvalues. By Weyl’s criterion the perturba-
tion of L0 �→ L leaves the essential spectrum unchanged. The argument for the
proof of σ(L0) = σac(L0) follows without change for the spectrum of L. �
Definition 5.3. Let A be an operator on H which is self-adjoint on its domain
D(A) and λ an element of the discrete spectrum of A. Define PVA

λ ≡ PV(A −
λ)−1, λ ∈ σ(A) to be the principal value of the resolvent of A given by the
strong limit

PVA
λ :=

1
2

s-lim
ε↘0

[
RA

λ+iε + RA
λ−iε

]
.

Denote by δA
λ ≡ δ(A − λ) ≡ PA

λ , λ ∈ σ(A) the spectral projection defined by
the strong limit

δA
λ :=

1
2πi

s-lim
ε↘0

[
RA

λ+iε − RA
λ−iε

]
.

If λ is instead an element of the essential spectrum of A one has that PVA
λ , δA

λ

are defined by weak limits. If and only if the essential spectrum of A is ab-
solutely continuous then it is the case that dμA

e (λ) = δA
λ dλ, where dμA

e (λ) is
the essential spectral measure of A and dλ is the Lebesgue measure on σe(A).

The above definition permits the useful representation δA
λ = wA

λ φA
λ ⊗φA,∗

λ

for A of generalized multiplicity 1. One may observe through the spectral
representation of RL0

z that PVψL0
λ = PVL0

λ χ0 and that PVξL0
λ = PVψL0

λ −
PVψL0

λ (0)φL0
λ = ξL0

λ ,∀λ ∈ σ(L0), and analogously so for other operators.
We recall the method of spectral shifts as applied to rank-1 perturbations,

see e.g., [37], for operators of the form specified by the A0, P,A = A0 − qP
considered above. Through the resolvent formula it follows that

RA
z = RA0

z + RA0
z qPRA

z ⇒ PRA
z = PRA0

z + fA0
z qPRA

z

⇒ PRA
z = (1 − qfA0

z )−1PRA0
z ⇒ RA

z = RA0
z + (1 − qfA0

z )−1RA0
z qPRA0

z .
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For A essentially self-adjoint one may apply the definitions of PVA
λ and δA

λ

and find the corresponding shifts to PVA0
λ and δA0

λ . For λ ∈ σ(A) it follows
that

PVA
λ = PVA0

λ + gA0
λ [(1 − qPVfA0

λ )(PVA0
λ qPPVA0

λ − π2δA0
λ qPδA0

λ )

− π2qδfA0
λ (PVA0

λ qPδA0
λ + δA0

λ qPPVA0
λ )]

δA
λ = δA0

λ + gA0
λ [(1 − qPVfA0

λ )(PVA0
λ qPδA0

λ + δA0
λ qPPVA0

λ )

+ qδfA0
λ (PVA0

λ qPPVA0
λ − π2δA0

λ qPδA0
λ )],

where

gA0
λ := [(1 − qPVfA0

λ )2 + (qπδfA0
λ )2]−1.

Proof of Theorem 1 Part (3). Here χ0 is both involved in the definition of im-
portant components of the normalization of the φλ as well as the perturba-
tion of L0 to L. This will greatly simplify the expressions produced by the
perturbation. By the definition of the resolvent function it is the case that
PVfL0

λ = PVψL0
λ (0) and δfL0

λ = wL0
λ . One may find that

RL
z χ0 = ψL

z = (1 − qfz)−1ψz ⇒ fL
z = (1 − qfz)−1fz,

PVfL
z = gλ[PVfλ − q(PVfλ)2 − q(πwλ)2], δfL

λ = wL
λ = gλwλ,

PVψL
λ = gλ[PVfλφλ − qPVfλξλ + ξλ − q(PVfλ)2φλ − q(πwλ)2φλ],

δψL
λ = wL

λ φL
λ = gλwλ(φλ + qξλ) ⇒ φL

λ = φλ + qξλ

δL
λ = wL

λ φL
λ ⊗ φL,∗

λ = gλwλ(φλ + qξλ) ⊗ (φ∗
λ + qξ∗

λ)

gλ := [(1 − qPVfλ)2 + (qπwλ)2]−1

�

Since δL0
λ is regular at the threshold of σ(L0) it is the case that the

analysis of the threshold behavior of δL
λ is strongly controlled by the threshold

behavior of

gλ = {[1 − qe−λPVE1(−λ)]2 + [πqe−λ]2}−1,

which satisfies wL
λ = gλwλ. In particular, gλ exhibits dominating behavior near

the threshold due to the logarithmic divergence of PVE1(−λ) near λ = 0.

6. Decay Estimates for L0 and L

The Mourre estimate, see e.g., [31], has been proven for L0 by Chen et al. [7],
to prove its the spectrum is absolutely continuous and equal to [0,∞). We
want to study pointwise decay estimates in time, which requires knowledge of
the asymptotic properties of the resolvent at thresholds. The Mourre estimates
do not apply at thresholds so we will need to use alternative methods.

Local decay estimates for L0 have been found by Durhuus and Gayral [13]
in the context of more general noncommutative solitons (where L0 corresponds
to their “diagonal case with two noncommuting spatial coordinates”). They
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found an unweighted estimate of the form ||e−itL0v||∞ ≤ c|t|−1(1+log |t|)||v||1
for |t| ≥ 1. We present an alternative approach, in the context of Jacobi opera-
tors, which enhances the local decay estimate for the free Schrödinger operator
and provides integrable decay for rank one boundary perturbations thereof for
the restricted class of radial systems with two noncommutative spatial coor-
dinates. We find weighted estimates

||Wκ,τe−itL0Wκ,τv||∞ < ct−1||v||1,
||Wκ,τe−itLPL

e Wκ,τv||∞ = O(t−1 log−2 t)

for t ↗ ∞.

6.1. Weighted Estimates for Spectral Vectors

Definition 6.1. Let Sr, Dr ⊂ C be, respectively, the circle and the disc of
radius r > 0 centered at the origin and u ∈ T a formal sequence for which
there exist constants r, c > 0 for which |u(x)|r−x < c for all x ∈ Z+. The
generating function of u is the function ζ(u, ·) : Sr′ → C defined by ζ(u, s) :=∑∞

x=0 u(x)sx, where r′ < r. This permits the presentation of u via

u(x) =
∮

γ

ds (2πis)−1s−xζ(u, s),

where γ is any positively oriented simple closed curve in Dr which encloses
and does not pass through the origin.

The Laguerre polynomials have the well-known generating function [12]

ζ(φλ, s) :=
∞∑

x=0

φλ(x)sx = (1 − s)−1 exp[−(1 − s)−1sλ], |s| < 1.

We will also employ the notion of a reduced generating function.

Definition 6.2. For a given generating function ζ(v, s) of a vector v let the
reduced generating function be the function ζ̂(v, s) := (1 − s)ζ(v, s).

For example, we have that ζ̂(φλ, s) = exp[−(1 − s)−1sλ].

Definition 6.3. For s ∈ C we let

s = reiθ, ŝ := (1 − s)−1s, ε := (x + κ)−1, ε̂ := −2−1 + 4−1ε, κ > 0.

Should many variables sj be present we will use rj , θj , εj correspondingly.

We are primarily concerned with estimates of operators in generating
function presentation. In such forms one finds line integrations over dummy
complex variables, sj , with a priori separate sums for each xj ∈ Z+. One is,
therefore, permitted to make the associated contours dependent on xj . We
then hereafter take

r
set= 1 − ε.

One may observe that

|(1 − s)−1| ≤ x + κ, |ŝ| ≤ x + κ − 1 < x + κ
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as well as the crucial estimate

|s−x| < e.

One is then permitted to work with polynomially weighted spaces instead of
exponentially weighted ones.

Lemma 6.1. One has that | exp(−ŝλ)| ≤ exp(−ε̂λ) for sufficiently large κ > 0.

Proof. Let r = 1 − ε. For s ∈ Sr it must be the case that �ŝ = |(1 −
s)−1|2(|s| cos θ − |s|2) attains its maximum value for �s ≤ 0.

|1 − s|2 = 1 − 2(1 − ε) cos θ + (1 + ε)2 = m − mε + ε2,

where m := 2(1 − cos θ). For �s ≤ 0 one has that 2 ≤ m ≤ 4 so m is O(1).
Then for �s ≤ 0 one has

�s = (m − mε + ε2)−1[−2−1m + (1 + 2−1m)ε + ε2]

= [1 + ε + (1 − m−1)ε2 + O(ε3)][−2−1 + (m−1 + 2−1)ε + ε2]

= −2−1 + m−1ε + (3 · 2−1 + m−1)ε2 + O(ε)

and thereby

| exp(−ŝλ)| = exp(−�ŝλ) ≤ exp(2−1λ − m−1ελ) ≤ exp(−ε̂λ).

�

Lemma 6.2. One has that (ε1 + ε2)−1 < 4−1(x1 + κ)(x2 + κ) for κ > 1.

Proof.

(ε1 + ε2)−1 = [(x1 + κ)−1 + (x2 + κ)−1]−1

= [(x1 + κ) + (x2 + κ)]−1(x1 + κ)(x2 + κ)

< 4−1(x1 + κ)(x2 + κ),

for sufficiently large κ > 1. �

Lemma 6.3. One has the representation

ξz(x) =
∫ ∞

0

dη e−η(η − z)−1[φη(x) − φz(x)].

Proof. By the spectral representation of RL0
z it is the case that ψz(x) =∫ ∞

0
dλ e−λ(λ − z)−1φλ(x), where we have used the normalization condition

φλ(0) = 1,∀λ ∈ σ(L0). �

Lemma 6.4. One has the generating function representation

ξz(x) =
∮

Sr

ds (2πis)−1s−xζ(ξz, s), ∀z ∈ C

where

ζ(ξz, s) = (1 − s)−1

∫ ∞

0

dη e−ηK(η, z, s)
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and

K(η, z, s) := (η − z)−1 [exp(−ŝη) − exp(−ŝz)]

for η ∈ R+, z ∈ C, s ∈ Sr.

Proof. First, consider z ∈ C\R+ =: Σ. Since, |s| < 1 there exists a c > 0 such
that |ŝ| < c. It follows that

|K(η, z, s)| ≤
∣
∣(η − z)−1

∣
∣ [|exp(−ŝη)| + |exp(−ŝz)|]

≤ [dist(Σ, z)]−1 [exp(−�ŝη) + exp(−c|z|)] < ∞.

Second, let z ≡ λ ∈ R+. By mean value theorem one has

K(η, λ, s) = (η − λ)−1 [� exp(−ŝη) − � exp(−ŝz)]

+ i(η − λ)−1 [� exp(−ŝη) − � exp(−ŝz)]

= dη� exp(−ŝη)�η=μ1+idη� exp(−ŝη)�η=μ2

=
1
2

[
(−ŝ) exp(−ŝμ1) + (−ŝ) exp(−ŝμ1)

+(−ŝ) exp(−ŝμ2) − (−ŝ) exp(−ŝμ2)
]
,

where μj ≡ μj(r, θ, η, λ) ∈ [min(η, λ),max(η, λ)]. Then

|K(η, λ, s)| ≤ 1
2

[|ŝ|| exp(−ŝμ1)| + |ŝ|| exp(−ŝμ1)|

+|ŝ|| exp(−ŝμ2)| + |ŝ|| exp(−ŝμ2)|]
= |ŝ| [exp(−�ŝμ1) + exp(−�ŝμ2)]

≤ 2|ŝ| exp[−ε̂(η + λ)] < ∞.

One may observe that
∫ ∞

0

dη e−η|K(η, z, s)| ≤
∫ ∞

0

dη e−η2|ŝ| exp[−ε̂(η + λ)]

= 2|ŝ| exp(−ε̂λ)
∫ ∞

0

dη exp[−(1 + ε̂)η]

= 2|ŝ| exp(−ε̂λ)(1 + ε̂)−1 < ∞

The multi-integral of the generating function representation of ξz(x) converges
absolutely and thereby Fubini’s theorem permits

ξz(x) =
∫ ∞

0

dη e−η(η − z)−1[φη(x) − φz(x)]

=
∫ ∞

0

dη e−η

∮

Sr

ds (2πis)−1s−x(1 − s)−1K(η, z, s)

=
∮

Sr

ds (2πis)−1s−x(1 − s)−1

∫ ∞

0

dη e−ηK(η, z, s)

for all z ∈ C. �
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Lemma 6.5. For sufficiently large κ > 0, it is the case that

|dn
λ ζ̂(φλ, s)| < ĉ(φλ, n) exp(−ε̂λ), n ∈ Z+,

where ĉ(φλ, n) := (x + κ)n and

|dn
λ ζ̂(ξλ, s)| < ĉ(ξλ, n) exp(−ε̂λ), n = 0, 1, 2,

where

ĉ(ξλ, 0) := 2(x + κ), ĉ(ξλ, 1) := 4(x + κ), ĉ(ξλ, 2) := 4(x + κ)2.

Proof. For φλ:

|dn
λ ζ̂(φλ, s)| = |dn

λ exp(−ŝλ)| = |ŝn exp(−ŝλ)| = |ŝ|n| exp(−ŝλ)|
≤ |ŝ|n exp(−ε̂λ) < (x + κ)n exp(−ε̂λ)

For ξλ: One may observe that K(η, λ, s) = K(λ, η, s). Then, by integration by
parts, one has

dλζ̂(ξλ, s) =
∫ ∞

0

dη e−ηdλK(η, λ, s) =
∫ ∞

0

dη e−ηdηK(η, λ, s)

= −K(0, λ, s) + ζ̂(ξλ, s)

and thereby

dn
λ ζ̂(ξλ, s) = −

n−1∑

k=0

dλK(0, λ, s) + ζ̂(ξλ, s),

where the sum is defined to vanish when the upper bound is negative. It follows
that

|K(η, λ, s)| ≤ 2|ŝ| exp[−ε̂(η + λ)], |ζ̂(ξλ, s)| ≤ 2|ŝ|(1 + ε̂)−1 exp(−ε̂λ).

Consider an arbitrary f ∈ C2(R, R) and let f∗ be its Newton quotient so that

f∗(a0, a) := (a0 − a)−1[f(a0) − f(a)].

One has by mean value theorem

daf∗(a0, a) = (a0 − a)−2[f(a0) − f(a) − (a0 − a)daf(a)]

= (a0 − a)−1[da1f(a1) − daf(a)], a1 ∈ [min(a0, a),max(a0, a)]

= (a0 − a)−1(a1 − a)d2
a2

f(a2), a2 ∈ [min(a1, a),max(a1, a)]

⇒ |daf∗(a0, a)| ≤ |(a0 − a)−1||a1 − a||d2
a2

f(a2)| ≤ |d2
a2

f(a2)|.
Let (�,�)z be a presentation for the real and imaginary parts of z ∈ C

whose ordering in compatible with the respective ordering of ±. Let i+ :=
1, i− := i and μ± ∈ [min(η, λ),max(η, λ)]. It follows that

|dλ(�,�)K(η, λ, s)| ≤ |d2
λ(�,�) exp(−ŝλ)|�λ=μ±

= |d2
λ(2i±)−1[exp(−ŝλ) ± exp(−ŝλ)]|�λ=μ±

≤ |ŝ|2 exp[−ε̂(η + λ)]

⇒ |dλK(η, λ, s)| ≤ 2|ŝ|2 exp[−ε̂(η + λ)].
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Then

|ζ̂(ξλ, s)| ≤ 2|ŝ|(1 + ε̂)−1 exp(−ε̂λ) < 2(x + κ) exp(−ε̂λ)

|dλζ̂(ξλ, s)| ≤ 2|ŝ|[(1 + ε̂)−1 + 1] exp(−ε̂λ) < 4(x + κ) exp(−ε̂λ)

|d2
λζ̂(ξλ, s)| ≤ 2|ŝ|[(1 + ε̂)−1 + 1 + |ŝ|] exp(−ε̂λ) < 4(x + κ)2 exp(−ε̂λ).

�

Remark. If estimates of dn
λ ζ̂(ξλ, s) for 2 < n ∈ Z were required the above

method would not follow so straightforwardly due to the inapplicability of the
mean value theorem for yet higher derivatives.

Corollary 6.1. For sufficiently large κ > 0, one has that
∣
∣
∣dn

λ

[
w

1/2
λ φλ(x)

]∣
∣
∣ < c(φλ, n) exp(−4−1ελ), n = 0, 1, 2,

where c(φλ, n) := 3n+1(x + κ)n+1 and
∣
∣
∣dn

λ

[
w

1/2
λ ξλ(x)

]∣
∣
∣ < c(ξλ, n) exp(−4−1ελ), n = 0, 1, 2,

where

c(ξλ, 0) := 6(x + κ)2, c(ξλ, 1) := 15(x + κ)2, c(ξλ, 2) := 21(x + κ)3

Proof. For φλ:
∣
∣
∣dn

λ

[
w

1/2
λ φλ(x)

]∣
∣
∣ =

∣
∣
∣
∣

∮

Sr

ds (2πis)−1s−x(1 − s)−1dn
λ

[
w

1/2
λ ζ̂(φλ, s)

]∣∣
∣
∣ ,

=
∣
∣
∣
∣

∮

Sr

ds (2πis)−1s−x(1 − s)−1

×
n∑

k=0

(
n

k

)

dn−k
λ w

1/2
λ dk

λζ̂(φλ, s)

∣
∣
∣
∣
∣
,

≤
∮

Sr

∣
∣ds (2πis)−1

∣
∣
∣
∣s−x

∣
∣
∣
∣(1 − s)−1

∣
∣

×
n∑

k=0

(
n

k

) ∣
∣
∣dn−k

λ w
1/2
λ

∣
∣
∣
∣
∣
∣dk

λζ̂(φλ, s)
∣
∣
∣ ,

< (1)(3)(x + κ)
n∑

k=0

(
n

k

)

2−(n−k)w
1/2
λ ĉ(φλ, k) exp(−ε̂λ)

= 3(x + κ)
n∑

k=0

(
n

k

)

2−(n−k)ĉ(φλ, k) exp(−4−1ελ).

For n = 0:
∣
∣
∣w

1/2
λ φλ(x)

∣
∣
∣ < 3(x + κ)ĉ(φλ, 0) exp(−4−1ελ) = 3(x + κ) exp(−4−1ελ).
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For n = 1:
∣
∣
∣dλ

[
w

1/2
λ φλ(x)

]∣
∣
∣ < 3(x + κ)

[
2−1ĉ(φλ, 0) + ĉ(φλ, 1)

]
exp(−4−1ελ)

= 3(x + κ)
[
2−1 + (x + κ)

]
exp(−4−1ελ)

< 6(x + κ)2 exp(−4−1ελ).

For n = 2:
∣
∣
∣d2

λ

[
w

1/2
λ φλ(x)

]∣
∣
∣ < 3(x + κ)

[
2−2ĉ(φλ, 0) + 2−1ĉ(φλ, 1) + ĉ(φλ, 2)

]

× exp(−4−1ελ)

= 3(x + κ)
[
2−2 + 2−1(x + κ) + (x + κ)2

]

× exp(−4−1ελ)

< 9(x + κ)3 exp(−4−1ελ).

For ξλ:

∣
∣
∣w

1/2
λ ξλ(x)

∣
∣
∣ < 3(x + κ)

n∑

k=0

(
n

k

)

2−(n−k)ĉ(ξλ, k) exp(−4−1ελ)

For n = 0:
∣
∣
∣w

1/2
λ ξλ(x)

∣
∣
∣ < 3(x + κ)ĉ(ξλ, 0) exp(−4−1ελ) = 6(x + κ)2 exp(−4−1ελ).

For n = 1:
∣
∣
∣dλ

[
w

1/2
λ ξλ(x)

]∣
∣
∣ < 3(x + κ)

[
2−1ĉ(ξλ, 0) + ĉ(ξλ, 1)

]
exp(−4−1ελ)

= 3(x + κ) [(x + κ) + 4(x + κ)] exp(−4−1ελ)

= 15(x + κ)2 exp(−4−1ελ).

For n = 2:
∣
∣
∣d2

λ

[
w

1/2
λ ξλ(x)

]∣
∣
∣ < 3(x + κ)

[
2−2ĉ(ξλ, 0) + 2−1ĉ(ξλ, 1) + ĉ(ξλ, 2)

]

× exp(−4−1ελ)

= 3(x + κ)
[
2−1(x + κ) + 2(x + κ) + 4(x + κ)2

]

× exp(−4−1ελ)

< 21(x + κ)3 exp(−4−1ελ).

�
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6.2. Local Time Decay for L0

Proof of Theorem 2. Let t > 0, |sj | = rj = 1 − (xj + κ)−1, j = 1, 2, and
1 < κ ∈ R be a sufficiently large constant. It is the case that
∣
∣e−itL0(x1, x2)

∣
∣ =

∣
∣
∣
∣

∫ ∞

0

dλ e−itλwλφλ(x1)φλ(x2)
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ ∞

0

dλ (−it)−1dλe−itλ
[
w

1/2
λ φλ(x1)

] [
w

1/2
λ φλ(x2)

]∣∣
∣
∣

≤
∣
∣
∣
∣−(−it)−1 −

∫ ∞

0

dλ (−it)−1e−itλ
{

dλ

[
w

1/2
λ φλ(x1)

]

×
[
w

1/2
λ φλ(x2)

]
+

[
w

1/2
λ φλ(x1)

]
dλ

[
w

1/2
λ φλ(x2)

]}∣
∣
∣

≤ t−1

(

1 +
∫ ∞

0

dλ
{∣

∣
∣dλ

[
w

1/2
λ φλ(x1)

]∣
∣
∣

∣
∣
∣w

1/2
λ φλ(x2)

∣
∣
∣

+
∣
∣
∣w

1/2
λ φλ(x1)

∣
∣
∣

∣
∣
∣dλ

[
w

1/2
λ φλ(x2)

]∣
∣
∣
})

< t−1
(
1 +

∫ ∞

0

dλ
{

(6)(x1 + κ)2 exp(−4−1ε1λ)

× (3)(x2 + κ) exp(−4−1ε2λ) + (3)(x1 + κ) exp(−4−1ε1λ)

× (6)(x2 + κ) exp(−4−1ε2λ)
})

≤ t−1

{

1+18(x1+κ)2(x2 + κ)2
∫ ∞

0

dλ exp[−4−1(ε1 + ε2)λ]
}

= t−1
[
1 + 288(x1 + κ)2(x2 + κ)2(ε1 + ε2)−1

]

< t−1
[
1 + 72(x1 + κ)3(x2 + κ)3

]

≤ 73(x1 + κ)3(x2 + κ)3t−1.

�

6.3. Local Time Decay for L

We recall without proof Lemma 3.12 from [27]:

Lemma. Let B be a Banach space and λ+ > λ− be real constants. If F (λ) has
the properties

1. F ∈ C(λ−, λ+;B)
2. F (λ−) = F (λ) = 0, λ > λ+

3. dλF ∈ L1(λ− + δ, λ+;B), ∀δ > 0
4. dλF (λ) = O([λ − λ−]−1 log−3[λ − λ−]), λ ↘ λ−
5. d2

λF (λ) = O([λ − λ−]−2 log−2[λ − λ−]), λ ↘ λ−

then
∫ ∞

λ−
dλ e−itλF (λ) = O(t−1 log−2 t), t ↗ ∞

in the norm of B.
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The proof of Theorem 3 requires the spectral representation e−itLPeL =∫
σe(L)

dλ e−itλλδL
λ and in turn the weighted estimates of the essential spectral

measure found previously. These methods follow from the principle of asymp-
totics extended from the scalar Laplace transform to the context of spectral
calculus: the long time behavior of solutions is given by the threshold behavior
of the resolvent of the Schrödinger operator which specifies the dynamics. The
role of the Banach space defined above is to transfer the problem back to the
more tractable realm of the scalar Laplace transform.

Proof of Theorem 3. Let B = {A ∈ L(T ) : ||A||B < ∞} be the Banach space
complete in the norm

||A||B := sup
v∈�1

||Wκ,τAWκ,τv||∞
||v||1

.

Let F (λ) = δL
λ . We will verify the appropriate properties of F (λ) for λ− = 0

and λ+ = ∞.
We recall that

F (λ, x1, x2) = wL
λ φL

λ (x1)φL
λ (x2)

= gλwλ[φλ(x1) + qξλ(x1)][φλ(x2) + qξλ(x2)].

One may observe that

|dn
λ[w1/2

λ φL
λ (x)]| ≤ |dn

λ[w1/2
λ φλ(x)]| + q|dn

λ[w1/2
λ ξλ(x)]|

< [c(φλ, n) + qc(ξλ, n)] exp(−4−1ελ),

< c(φL
λ , n) exp(−4−1ελ), n = 0, 1, 2

where here we choose

c(φL
λ , 0) := 3(1 + 3q)(x + κ)2,

c(φL
λ , 1) := 6(1 + 3q)(x + κ)2,

c(φL
λ , 2) := 9(1 + 3q)(x + κ)3.

The logarithmic behavior of PVE1(−λ) near λ = 0 is very important for
many estimates. One may see by inspection that gλ := {[1− qe−λPVE1(−λ)]2

+ [πqe−λ]2}−1 has the properties:

gλ = |gλ| ≤ ĝ0(q) < ∞, ∀λ ∈ [0,∞)

|dλgλ| ≤ ĝ0(q)ĝ1(q, δ) < ∞, ∀λ ∈ [δ,∞)
g0 = g∞ = 0,

gλ = O(log−2 λ), λ ↘ 0

dλgλ = O(λ−1 log−3 λ), λ ↘ 0

d2
λgλ = O(λ−2 log−3 λ), λ ↘ 0

= O(λ−2 log−2 λ)

where 0 < ĝ0(q), ĝ1(q, δ) < ∞ are constants whose other properties are not
needed here. gλ is the only function of λ involved in the definition of F (λ)
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whose derivatives are unbounded in the neighborhood of the threshold λ = 0
and thereby the derivatives of gλ are dominant in determining the properties
of the derivatives of F (λ).
Properties (1), (2): One may observe that the properties follow by inspection.
Property (3): For λ ∈ [δ,∞) one has

|dλF (λ, x1, x2)| = |dλ{gλ[w1/2
λ φL

λ (x1)][w
1/2
λ φL

λ (x2)]}|

≤ |dλgλ||[w1/2
λ φL

λ (x1)]||[w1/2
λ φL

λ (x2)]|

+ |gλ||dλ[w1/2
λ φL

λ (x1)]||[w1/2
λ φL

λ (x2)]|

+ |gλ||[w1/2
λ φL

λ (x1)]||dλ[w1/2
λ φL

λ (x2)]|
< ĝ0(q)ĝ1(q, δ)(3)(1 + 3q)(x1 + κ)2 exp(−4−1ε1λ)

× (3)(1 + 3q)(x2 + κ)2 exp(−4−1ε1λ)

+ ĝ0(q)(6)(1 + 3q)(x1 + κ)2 exp(−4−1ε1λ)

× (3)(1 + 3q)(x2 + κ)2 exp(−4−1ε2λ)

+ ĝ0(q)(3)(1 + 3q)(x1 + κ)2 exp(−4−1ε1λ)

× (6)(1 + 3q)(x2 + κ)2 exp(−4−1ε2λ)

= c0(q, δ)(x1 + κ)2(x2 + κ)2 exp[−4−1(ε1 + ε2)λ],

where c0(q, δ) is a constant.
Property (4): For λ ↘ 0 one has

|dλF (λ, x1, x2)| = |dλ{gλ[w1/2
λ φL

λ (x1)][w
1/2
λ φL

λ (x2)]}|
< |dλgλ|(3)(1 + 3q)(x1 + κ)2 exp(−4−1ε1λ)

× (3)(1 + 3q)(x2 + κ)2 exp(−4−1ε1λ)

+ ĝ0(q)(6)(1 + 3q)(x1 + κ)2 exp(−4−1ε1λ)

× (3)(1 + 3q)(x2 + κ)2 exp(−4−1ε2λ)

+ ĝ0(q)(3)(1 + 3q)(x1 + κ)2 exp(−4−1ε1λ)

× (6)(1 + 3q)(x2 + κ)2 exp(−4−1ε2λ)

≤ c1(q, δ)(x1 + κ)2(x2 + κ)2 exp[−4−1(ε1 + ε2)λ]|dλgλ|
= O(λ−1 log−3 λ)

in the norm of B, where c1(q, δ) is a constant.
Property (5): For λ ↘ 0 one has

|d2
λF (λ, x1, x2)| = |d2

λ{gλ[w1/2
λ φL

λ (x1)][w
1/2
λ φL

λ (x2)]}|
≤ c2(q, δ)(x1 + κ)3(x2 + κ)3 exp[−4−1(ε1 + ε2)λ]|d2

λgλ|
= O(λ−2 log−2 λ)

in the norm of B, where c2(q, δ) is a constant. �
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Appendix A. Semi-Analytic Vector Theorem

We will review the statement and proof of the semi-analytic vector theorem
as is presented in [36].

Definition A.1. Consider that A is a symmetric operator on a Hilbert space,
H . If v ∈ D(An) for all n, then we say that v ∈ C∞(A). A vector v is called
a semi-analytic vector for A if and only if

∞∑

n=0

||Anv||
(2n)!

tn < ∞

for some t > 0.

The title is intended to denote similarity to the stronger condition of a v
an analytic vector of A as given by Nelson [33]:

∞∑

n=0

||Anv||
n!

tn < ∞

for some t > 0. The theorem in question is as follows.

Theorem (Semi-Analytic Vector Theorem). If A is a symmetric operator of
H which is bounded below so that D(A) contains a set of semi-analytic vectors
of A which are dense in H , then A is essentially self-adjoint.

Lemma A.1. If A > 0 and A has deficiency indices [m,m] (m < ∞) then every
self-adjoint extension of A is semibounded.

Proof. One may follow the arguments of [1, p. 115–116]. If Ã is any self-adjoint
extension of A, then D(Ã)/D(A) has dimension m so that Ã has a spectral
projection on (−∞, 0) of dimension at most m. �

Theorem A.1. If A > 0 and has a unique semibounded self-adjoint extension,
then A is essentially self-adjoint.

Proof. Suppose that the premise of the theorem is false and let A have de-
ficiency indices [m,m]. We must be aware of the case m = ∞. Let AF be
the Friedrichs extension of A [18–20]. If m �= 0, then we can find a symmet-
ric operator Ã with deficiency indices [1, 1] so A ⊂ Ã ⊂ AF . One has that
AF >, Ã > 0. Therefore, by Lemma A.1 one has that all other self-adjoint
extensions of Ã are semibounded. It must then be the case that A has more
than one semibounded extension if m �= 0. One may then conclude that m = 0,
which is to say that A is essentially self-adjoint. �
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Proof of Semi-Analytic Vector Theorem. Since A is semibounded it has self-
adjoint extensions by [40]. For this case the Friedrichs extension exists. By
Theorem A.1 we need only show that A has a unique semibounded self-adjoint
extension. If A has a dense set of semi-analytic vectors, then A has at most
one self-adjoint Ã > 0. Let v ∈ D(A) be a semi-analytic vector of A and let
dμλ,k be the scalar spectral measure for A, where 0 ≤ k ≤ n is a multiplicity
index for σ(A). One has that

n∑

k=0

∫ ∞

0

λ2m|v(λ, k)|2dμλ,k = ||Amv||2 < (c1cm
2 (2m!))2 < c3c

m(4m)!

⇒
∞∑

m=0

n∑

k=1

∫ ∞

0

λm/2 tm

m!
|v(λ, k)|dμλ,k < ∞ for |t| < c−1/4,

where {cj}3j=1 and c are constants. By the dominated convergence Theorem
one has that

∑n
k=1

∫ ∞
0

exp(x1/2t)|v(λ, k)|dμλ,k < ∞ for |t| < c−1/4. Since
| cos y1/2| < exp |�y1/2| one has that

∑n
k=1

∫ ∞
0

cos(x1/2t)|v(λ, k)|dμλ,k < ∞
for |�t| < c−1/4 and is, therefore, analytic in t, for t in the strip |�t| < c−1/4,
and is given by the power series

∑∞
n=0(2n!)−1tn(v, (−A)nv) if |t| < c−1/4. One

in turn has that (v, cos(tÃ1/2)v) is specified uniquely by (v,Anv) for real t if v

is semi-analytic and Ã is a positive self-adjoint extension. If A has a dense set
of semi-analytic vectors, then cos(tÃ1/2) is uniquely determined independently
of the choice of self-adjoint extension. By spectral theorem one has

(Ã + 1)−1 =
∫ ∞

0

e−t cos(tÃ1/2)dt

and, therefore, Ã is uniquely determined.
If v is a semi-analytic vector for A, then it is also a semi-analytic vector

for A + x, where x is any positive real number. If ||Amv|| < c1c
m
2 (2m)!, then

one has

||(A + x)mv|| ≤
m∑

n=0

(
m

n

)

xm−n||Anv|| ≤ c1(2m)!
m∑

n=0

(
m

n

)

xm−ncn
2

≤ c1(c2 + x)m(2m)!.

Therefore, the argument for uniqueness of Ã implies that an operator A with
a dense set of semi-analytic vectors has at most one extension Ã with Ã >
−x. �
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