
Ann. Henri Poincaré 17 (2016), 2103–2171
c© 2015 Springer Basel
1424-0637/16/082103-69
published online October 8, 2015
DOI 10.1007/s00023-015-0430-0 Annales Henri Poincaré

Spectral Properties of Schrödinger
Operators on Perturbed Lattices

Kazunori Ando, Hiroshi Isozaki and Hisashi Morioka

Abstract. We study the spectral properties of Schrödinger operators on
perturbed lattices. We shall prove the non-existence or the discreteness of
embedded eigenvalues, the limiting absorption principle for the resolvent,
construct a spectral representation, and define the S-matrix. Our theory
covers the square, triangular, diamond, Kagome lattices, as well as the
ladder, the graphite and the subdivision of square lattice.

1. Introduction

In this and the forthcoming articles, we shall investigate the spectral properties
of Schrödinger operators on perturbed periodic lattices of dimension d ≥ 2. The
physical background is the scattering phenomenon. Sending waves from the
infinity of a perturbed periodic structure, we observe the behavior of scattered
waves at infinity. The mapping from the free wave in the remote past to the
scattered wave in the remote future is the scattering matrix (S-matrix). Our
goal is the inverse scattering, in particular, we aim at the reconstruction of the
perturbed periodic structure from the S-matrix of a fixed energy. In the present
paper, we devote ourselves to the forward problem, i.e. that of the continuous
spectrum of the Schrödinger operator describing the scattering process, more
precisely, the limiting absorption principle for the resolvent, construction of
spectral representations and S-matrix are the main ingredients. The inverse
problem will be discussed in the second part [5].

We start from the Laplacian ̂H0 on a lattice in Rd, which is a matrix
whose entries are shift operators. Passing to the Fourier series, it is transformed
to an operator of multiplication by an hermitian matrix H0(x) acting on a
vector bundle on the flat torus Td = Rd/(2πZ)d. Then its spectral properties
boil down to the characteristic polynomial p(x, λ) = det(H0(x) − λ).

A lot of remarkable methods have been found in the long history of scat-
tering theory, e.g. [1,9–11,13,21,27,28,31,36–38,49], ranging over a variety
of areas of mathematical analysis. It is worthwhile to recall here the role of
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Fourier transform in the study of the continuous spectrum of a self-adjoint
differential operator H = P (Dx) + V (x,Dx) on Rd. The first important step
is the Rellich type theorem, or Rellich–Vekua theorem, which gives the mini-
mal growth rate for solutions to the equation (P (Dx)+V (x,Dx)−λ)u = 0 as
|x| → ∞ (see [41,48]). When V (x,Dx) = 0, by passing to the Fourier trans-
form, this is reduced to the algebraic properties of the polynomial P (ξ) and
the Paley–Wiener Theorem (see [17,34,35,39,47]). To see the continuous spec-
trum of H, Agmon [2] derived a theorem of division by P (ξ) in some weighted
L2(Rd)-space and proved the existence of the limit limε→0(H − λ ∓ iε)−1.
This is the limiting absorption principle, the key step to clarify the detailed
spectral structure. Agmon–Hörmander [3,18,19] supplemented this approach
by introducing Besov spaces B,B∗, which are optimal for the existence of the
limit (H − λ ∓ i0)−1, and introduced the radiation condition in the form of
pseudo-differential operators (ΨDO) to guarantee the uniqueness of the solu-
tion. Our strategy is to extend this Agmon–Hörmander’s approach to discrete
problems.

Inverse potential scattering for discrete Schrödinger operators have
already been considered in [23] on the square lattice (see also [12]) and in
[4] on the hexagonal lattice, where knowledge of the S-matrix for all ener-
gies is used for the reconstruction of the potential by the method of complex
Born approximation. In [26], inverse potential scattering on the square lattice
from the S-matrix of one fixed energy is studied. The main idea of [26] is to
reduce the issue to an inverse boundary value problem on a bounded domain,
and the reconstruction is done through the Dirichlet–Neumann map. To relate
the scattering matrix with the D–N map for the bounded domain, the dis-
crete analogue of the Rellich type uniqueness theorem plays an important role
([25]). The radiation condition is closely related to the asymptotic behavior
of the Green function as space variables tend to infinity. It requires the strict
convexity of the Fermi surface Mλ = {x ∈ Td ; p(x, λ) = 0} for the Laplacian
on the unperturbed periodic lattice, hence restricts the energy region for the
reconstruction procedure to be valid. In the present work, we introduce the
radiation condition in the form of wavefront set as in [3], and instead of the
behavior of the resolvent near infinity of the lattice space, we consider the
singularity expansion of the resolvent on the torus. This change of view point
makes it possible to remove the above mentioned assumption of strict convex-
ity and the restriction for the energy level. We also mention that [25] relies on
[42] which gives basic ideas from the theory of functions of several complex
variables and algebraic geometry in the proof of Rellich type theorem.

The plan of the paper is as follows. Our final result in this paper is
Theorem 7.15 in Sect. 7 on the characterization of the solution space of the
Helmholtz equation.

In Sect. 2, we introduce the Laplacian on the lattice. Passing to the
Fourier series, it is transferred to a matrix on the torus, whose characteristic
polynomial is crucial for the spectral properties, and we pick up two typical
cases. Section 3 is devoted to the exposition of various examples of lattices,
and basic properties of their Laplacians. The main analytical tool to study the
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spectrum is a division theorem for distributions on the torus, which we discuss
in Sect. 4. The main aim of Sect. 5 is to prove the Rellich type theorem
for the discrete Laplacian on the lattice by using Hilbert Nullstellensatz. In
Sect. 6, we study the spectral properties for the unperturbed lattice. Based on
these preparations, we develop in Sect. 7 the spectral and scattering theory
for the Laplacian on the perturbed lattice. The main results are the resolvent
estimates, spectral representations, unitarity of the S-matrix and the structure
of the solution space for the Helmholtz equation.

The spectral properties for discrete Schrödinger operators, more generally
perturbed Laplacians on non-compact graphs, have been discussed a long time
with an abundance of references, and are nowadays becoming more active
issues. We cite here rather recent articles, [6,8,14–16,29,30,40,45,46], which
are directly related to this paper.

Let us give some remarks on the notation. Td
C denotes the complex torus

Td
C = Cd/(2πZ)d. (1.1)

For f ∈ S ′(Rd), ˜f(ξ) denotes its Fourier transform

˜f(ξ) = (2π)−d/2

∫

Rd

e−ix·ξf(x)dx. (1.2)

On the other hand, for f(x) ∈ S ′(Td), ̂f(n) denotes its Fourier coefficients

̂f(n) = (2π)−d/2

∫

Td

e−ix·nf(x)dx. (1.3)

We also use ̂f =
(

̂f(n)
)

n∈Zd to denote a function on Zd, and by U the mapping

U : S ′(Zd) �
(

̂f(n)
)

n∈Zd → f(x) = (2π)−d/2
∑

n∈Zd

̂f(n)ein·x ∈ S ′(Td). (1.4)

For Banach spaces X and Y,B(X;Y ) denotes the set of all bounded oper-
ators from X to Y . For a self-adjoint operator A, σ(A), σp(A), σd(A), σe(A)
denote its spectrum, point spectrum, discrete spectrum and essential spec-
trum, respectively. Hac(A) is the absolutely continuous subspace for A, and
Hp(A) is the closure of the linear hull of eigenvectors of A. For an inter-
val I ⊂ R and a Hilbert space h, L2(h,dλ) denotes the set of all h-valued
L2-functions on I with respect to the measure dλ. Sm

1,0 denotes the stan-
dard Hörmander class of symbols for pseudo-differential operators (ΨDO),
i.e. |∂α

x ∂β
ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)m−β (see e.g. [20]).

2. Basic Properties of Graph

2.1. Vertices and Edges

We consider an infinite, connected graph {V, E}, where V is a vertex set and E
an edge set. We assume that the graph is simple, i.e. there are neither self-loop,
which is an edge connecting a vertex to itself, nor multiple edges, which are
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two or more edges connecting the same vertices. For an edge e = (v, w) ∈ E ,
we denote

o(e) = v, t(e) = w, e = (w, v), v ∼ w.

In the following, we assume that e ∈ E =⇒ e ∈ E . We put

Nv = {w ∈ V ; v ∼ w}, (2.1)

which will be called the set of points adjacent to v. The degree of v ∈ V is then
defined by

deg (v) = �Nv = � {e ∈ E ; o(e) = v},

which is assumed to be finite for all v ∈ V. A function f : V → C is denoted
as f = (f(v))v∈V . Let 	2(V) be the set of C-valued functions f on V satisfying

‖f‖2
deg :=

∑

v∈V
|f(v)|2 deg (v) < ∞.

Equipped with the inner product

(f, g)deg =
∑

v∈V
f(v)g(v) deg (v),

	2(V) is a Hilbert space.

2.2. Laplacian on the Periodic Graph

A periodic graph in Rd is a triple Γ0 = {L0,V0, E0}, where L0 is a lattice of
rank d ≥ 2 in Rd with basis vj , j = 1, . . . , d, i.e.

L0 =
{

v(n) ; n ∈ Zd
}

, v(n) =
d
∑

j=1

njvj , n = (n1, . . . , nd) ∈ Zd,

and the vertex set is defined by

V0 =
s
∪

j=1

(

pj + L0

)

,

and where pj , j = 1, . . . , s, are the points in Rd satisfying

pi − pj �∈ L0, if i �= j. (2.2)

By (2.2), there exists a bijection V0 � a → (j(a), n(a)) ∈ {1, . . . , s} × Zd such
that

a = pj(a) + v(n(a)).

The group Zd acts on V0 as follows:

Zd × V0 � (m,a) → m · a := pj(a) + v(m + n(a)) ∈ V0.

The edge set E0 ⊂ V0 × V0 is assumed to satisfy

E0 � (a, b) =⇒ (m · a,m · b) ∈ E0, ∀m ∈ Zd.

Then deg (pj + v(n)) depends only on j, and is denoted by deg0(j):

deg0(j) = deg (pj + v(n)). (2.3)
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Any function ̂f on V0 is written as ̂f(n) = ( ̂f1(n), . . . , ̂fs(n)), n ∈ Zd, where
̂fj(n) is identified with a function on pj +L0. Hence 	2(V0) is the Hilbert space
equipped with the inner product

( ̂f, ĝ)�2(V0) =
s
∑

j=1

( ̂fj , ĝj)deg0(j)
.

We then define a unitary operator UL0 : 	2(V0) → L2(Td)s

(

UL0
̂f
)

j
= (2π)−d/2

√

deg0(j)
∑

n∈Zd

̂fj(n)ein·x, (2.4)

where L2(Td)s is equipped with the inner product

(f, g)L2(Td)s =
s
∑

j=1

∫

Td

fj(x)gj(x)dx. (2.5)

Recall that the shift operator ̂Sj acts on a sequence
(

a(n)
)

n∈Zd as follows:

(

̂Sja
)

(n) = a(n + ej),

where e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1). Then we have

U ̂Sj = e−ixj U . (2.6)

The Laplacian ̂ΔΓ0 on the graph Γ0 = {L0,V0, E0} is defined by the following
formula

(̂ΔΓ0
̂f)(n) = (ĝ1(n), . . . , ĝs(n)),

ĝi(n) =
1

deg0(i)

∑

b∼pi+v(n)

̂fj(b)(n(b)), (2.7)

where b = pj(b) + v(n(b)). Passing to the Fourier series, we rewrite it into the
following form:

UL0(−̂ΔΓ0)(UL0)
−1f = H0(x)f(x), f ∈ L2(Td)s,

where H0(x) is an s × s Hermitian matrix whose entries are trigonometric
functions. Let D be the s × s diagonal matrix whose (j, j) entry is

√

deg0(j).
Then UL0 = DU , hence

H0(x) = DH0
0 (x)D−1, H0

0 (x) = U(−̂ΔΓ0)U−1, (2.8)

and H0
0 (x) is computed by (2.6).
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2.3. Preliminary Facts

In this subsection, we consider geometric and algebraic properties of the fol-
lowing functions ad(z) and bd(z):

ad(z) =
d
∑

j=1

cos zj , (2.9)

bd(z) =
d
∑

j=1

cos zj +
∑

1≤j<k≤d

cos(zj − zk), (2.10)

since all the characteristic polynomials of the examples of lattices to be pre-
sented in the next section are reduced to them.

For an analytic function f on Td
C, we put

SC
a (f) =

{

z ∈ Td
C ; f(z) = a

}

,

SC
a,reg(f) =

{

z ∈ SC
a (f); ∇zf(z) �= 0

}

,

SC
a,sng(f) = {z ∈ SC

a (f) ; ∇zf(z) = 0},

SV (f) =

{

f(z) ; z ∈
⋃

a∈C

SC
a,sng(f)

}

,

f(Td) =
{

f(x) ; x ∈ Td
}

.

Lemma 2.1. (1)
⋃

a∈C SC
a,sng(ad) = (πZ)d ∩ Td

C.
(2) SV (ad) = {−d,−d + 2, . . . , d − 2, d}.
(3) ad(Td) = [−d, d].
(4) For −d < a < d, each connected component of SC

a,reg(ad) intersects with
Td, and the intersection is a (d−1)-dimensional real analytic submanifold
of Td.

Proof. Since ∂ad/∂zj = − sin zj , the assertions (1), (2) and (3) are easy to
prove. Let C∗ = C\{(−∞,−1] ∪ [1,∞)}, and recall that cos ζ maps {0 <

Re ζ < π} conformally to C∗. To prove (4), we take z(0) = (z(0)
1 , . . . , z

(0)
d ) ∈

SC
a,reg(ad) arbitrarily. Then, we can construct continuous curves c∗

j (t), (0 ≤ t ≤
1), j = 1, . . . , d − 1, such that c∗

j (0) = cos z
(0)
j , c∗

j (t) ∈ C∗ for 0 < t < 1, and
c∗
j (1) ∈ (0, 1), moreover

c∗
d(t) := a −

d−1
∑

j=1

c∗
j (t) ∈ C∗, 0 < t < 1.

Putting cj(t) = arccos c∗
j (t) and c(t) = (c1(t), . . . , cd(t)) for 0 ≤ t ≤ 1, we have

c(t) ∈ SC
a,reg(ad) and c(1) ∈ SC

a,reg(ad)∩Td. This proves that c(t) is the desired
curve. �

Lemma 2.2. (1) For d = even,

SV (bd) =
{ (	 + 1)2

2
− d + 1

2
; 	 = −d,−d + 2, . . . , d − 2, d

}

∪
{

− d + 1
2
}

,



Vol. 17 (2016) Schrödinger Operators on Perturbed Lattices 2109

and for d = odd,

SV (bd) =
{ (	 + 1)2

2
− d + 1

2
; 	 = −d,−d + 2, . . . , d − 2, d

}

.

(2) For a �= −(d + 1)/2, SC
a,sng(bd) ⊂ (πZ)d ∩ Td

C.
(3) For a = −(d+1)/2, SC

a (bd) is a union of analytic submanifolds of complex
dimension d − 1, d − 2 and a discrete set. If the discrete set appears, it
is in Td. In particular, SC

−(d+1)/2(bd) ∩ Td is a union of real analytic
submanifolds of real dimension ≤ d − 2.

(4) bd(Td) = [−(d + 1)/2, d(d + 1)/2] .
(5) Assume that −(d + 1)/2 < a ≤ d(d + 1)/2, and let

˜Sa,j(bd) = {z ∈ SC
a (bd) ; 1 +

∑

k �=j

e−izk �= 0}, 1 ≤ j ≤ d,

˜Sa,0(bd) = {z ∈ SC
a (bd) ; 1 +

∑

k �=j

e−izk = 0, ∀j}.

(i) For any z(0) ∈ ˜Sa,0(bd), there exist j �= 0, z(j) ∈ ˜Sa,j(bd) and an
SC

a,reg(bd)-valued continuous curve c(t), 0 ≤ t ≤ 1, such that c(0) =
z(0) and c(1) = z(j).

(ii) For any j �= 0, ˜Sa,j(bd) is arcwise connected and ˜Sa,j(bd) ∩ Td �= ∅.
(6) For −(d+1)/2 < a < d(d+1)/2, each connected component of SC

a,reg(bd)
intersects with Td, and the intersection is a (d − 1)-dimensional real
analytic submanifold of Td.

Proof. Letting fd(z) = 1+ eiz1 + · · ·+ eizd , we have the following factorization

bd(z) +
d + 1

2
=

1
2

fd(z)fd(−z). (2.11)

Let us compute SC
a,sng(bd). The above equation implies

∇zbd(z) = 0 ⇐⇒ eizj fd(−z) = e−izj fd(z), 1 ≤ j ≤ d.

Case 1: fd(z) �= 0. In this case, e2iz1 = · · · = e2izd . Letting this value to be
w2, we have eizj = ±w. Using e2izj fd(−z) = fd(z), we then have

w2
(

1 +
	

w

)

= 1 + 	w,

where 	 is an integer satisfying −d ≤ 	 ≤ d. Therefore, w = ±1 = ±eizj ,
hence zj = 0 or π. Since 1 +

∑d
j=1 eizj �= 0, we have the restriction that

�{j ; zj = π} �= (d + 1)/2 when d is odd. Therefore, when d is even,

cos z1 + · · · + cos zd = 	, 	 = d, d − 2, . . . ,−d,

sin z1 + · · · + sin zd = 0. (2.12)

Taking the square and adding them, we have
∑

i<j cos(zi − zj) = (	2 − d)/2.
Hence,

d
∑

i=1

cos zi +
∑

i<j

cos(zi − zj) =
(	 + 1)2

2
− d + 1

2
.
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When d is odd, (2.12) also holds, however, 	 �= d − 2
(d + 1)

2
= −1.

Case 2: fd(z) = 0. In this case, in view of (2.11), bd(z) = −(d + 1)/2.

The assertions (1) and (2) now follow from the above observation.
When a = −(d + 1)/2, by (2.11), SC

a (bd) is a union of two analytic man-
ifolds {fd(z) = 0} and {fd(−z) = 0}. If they intersect, we can assume without
loss of generality that fd−1(−z′) �= 0, z′ = (z1, . . . , zd−1), at the intersection
point. In fact, if fd−1(−z′) = 0 for all d− 1 variables z′, adding them, we have
∑d

j=1 e−izj = d/(1 − d), which is a contradiction.
Then we have e−izd = −fd−1(−z′), hence fd−1(z′) − 1/fd−1(−z′) = 0,

which implies bd−1(z′) = −d/2 + 1
2fd−1(z′)fd−1(−z′) = −(d − 1)/2. By (2), z′

is on an analytic submanifold of dimension d − 2 or a discrete set. Therefore,
(z′, zd) form an analytic submanifold of dimension d − 2 or a discrete set.
This proves the assertion for SC

a (bd) of (3). The assertion for SC
a (bd) ∩ Td

is obtained by applying the implicit function theorem for 1 +
∑d

j=1 cos xj =

−1,
∑d

j=1 sinxj = 0.
By (1), the minimum of bd(x) on Td is −(d + 1)/2. The maximum is

easily seen to be d(d + 1)/2. This proves (4).
Let us prove (i) of (5). Take z(0) = (z(0)

1 , . . . , z
(0)
d ) ∈ ˜Sa,0(bd). Adding

1 +
∑

k �=j e−iz
(0)
k = 0, we obtain d + (d − 1)

∑d
j=1 e−iz

(0)
j = 0, hence

e−iz
(0)
1 = · · · = e−iz

(0)
d =

1
1 − d

.

This implies cos z
(0)
j = (d2 − 2d+2)/(2(1− d)), cos(z(0)

i − z
(0)
j ) = 1. Therefore,

bd(z(0)) = d/(2(1 − d)). Since the elements of SV (bd) are half-integers, we
have bd(z(0)) �∈ SV (bd), which implies ∇zbd(z(0)) �= 0. Near z(0), SC

a (bd) is
represented as, say, zd = g(z1, . . . , zd−1), where g is analytic. Then one can
find z(d) ∈ ˜Sa,d(bd) and a continuous curve in SC

a,reg(bd) with end points z(0)

and z(d).
To prove (ii) for the case j = d, we let w = eizd , and rewrite the equation

bd(z) = a as

⎛

⎝1 +
d−1
∑

j=1

e−izj

⎞

⎠w2 + 2(A − a)w +

⎛

⎝1 +
d−1
∑

j=1

eizj

⎞

⎠ = 0, (2.13)

where A =
∑d−1

j=1 cos zj +
∑

1≤j<k≤d−1 cos(zj − zk) = bd−1(z1, . . . , zd−1). The
discriminant D of (2.13) is given by

D/4 = A2 − 2(a + 1)A + a2 − d.

Then D = 0 when A = a + 1 ±
√

2a + d + 1.
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A simple computation yields

−d − 1
2

< a + 1 +
√

2a + d + 1 ≤ −d

2
+ 2 for − d + 1

2
< a ≤ −d

2
,

−d

2
< a + 1 −

√
2a + d + 1 <

d(d − 1)
2

for − d

2
< a <

d(d + 1)
2

.

By (4), bd−1(x′) (x′ ∈ Td−1) varies over the interval [−d/2, d(d − 1)/2]. Hence
if −(d + 1)/2 < a ≤ −d/2, there exists x′ = (x1, . . . , xd−1) ∈ Td−1 such that

bd−1(x′) = a + 1 +
√

2a + d + 1,

and if −d/2 < a < (d + 1)d/2, there exists x′ = (x1, . . . , xd−1) ∈ Td−1 such
that

bd−1(x′) = a + 1 −
√

2a + d + 1.

For such x′ = (x1, . . . , xd−1), 1+ e−ix1 + · · ·+ e−ixd−1 �= 0. Otherwise, by
(2.11) with d replaced by d − 1, we have bd−1(x′) = −d/2. Therefore, we have
either a + 1 +

√
2a + d + 1 = −d/2 (for the case −(d + 1)/2 < a ≤ −d/2),

or a + 1 −
√

2a + d + 1 = −d/2 (for the case −d/2 < a < d(d + 1)/2). Then
we have a + 1 + d/2 = ±

√
2a + d + 1. Hence a + d/2 = 0, which leads to a

contradiction.
Then, the Eq. (2.13) has a double root w ∈ C such that |w| = 1. There-

fore, w = eixd for some xd ∈ T1, hence x = (x1, . . . , xd) ∈ SC
a (bd) ∩ Td.

Now, take ζ = (ζ1, . . . , ζd) ∈ ˜Sa,d(bd) so that 1 + e−iζ1 + · · · + e−iζd−1 �=
0. Construct continuous curves cj(t), 0 ≤ t ≤ 1, j = 1, . . . , d − 1, such that
cj(t) �= 0, 1+e−ic1(t) + · · ·+e−icd−1(t) �= 0 and cj(0) = e−iζj , cj(1) = e−ixj . We
can then construct a solution w(t) of the Eq. (2.13) with zj replaced by cj(t),
continuous with respect to t ∈ [0, 1], such that w(0) = eiζd , w(1) = eixd . Here,
we use the fact that (2.13) has a double root for t = 1. This proves that there
is a continuous curve in ˜Sa,d(bd) with end points ζ and x, hence the assertion
(ii).

We prove (6). Note that each connected component of SC
a (bd) is a union

of ˜Sa,j(bd), j �= 0, and possibly a part of ˜Sa,0(bd). Take z(0) ∈ SC
a (bd). If

z(0) ∈ ˜Sa,j(bd) for some j �= 0, by (5-ii), there is a continuous curve c(t) such
that c(0) = z(0) and c(1) ∈ ˜Sa,j(bd) ∩ Td. If z(0) ∈ ˜Sa,0(bd), by (5-i), one can
find ζ ∈ ˜Sa,j(bd) and a continuous curve with end points z(0) and ζ. Then we
can apply (5-ii) again. Here, let us note that since a �= −(d + 1)/2, we can
avoid the singular points by (2). �

3. Examples of Periodic Lattices

We list up examples of periodic graphs, and study the algebraic properties of
the matrix H0(x) associated with their Laplacians. We denote by σp(H0(x))



2112 K. Ando et al. Ann. Henri Poincaré

the set of all eigenvalues of H0(x), including the case of s = 1, and let

σ(H0) = ∪
x∈Td

σp(H0(x)), (3.1)

p(x, λ) = det (H0(x) − λ) , (3.2)

Mλ = {x ∈ Td ; p(x, λ) = 0}, (3.3)

MC
λ = {z ∈ Td

C ; p(z, λ) = 0}. (3.4)

MC
λ,reg = {z ∈ MC

λ ; ∇zp(z, λ) �= 0}. (3.5)

MC
λ,sng = {z ∈ MC

λ ; ∇zp(z, λ) = 0}. (3.6)
˜T = {λ ∈ σ(H0) ; MC

λ,sng ∩ Td �= ∅}. (3.7)

In this section, we drop the subscript 0 from V0 and L0 for the notational
convenience.

3.1. Square Lattice

Let (Fig. 1)

V =
{

v(n) ; n ∈ Zd}, v1 =
(

1, 0, . . . , 0
)

, . . . ,vd =
(

0, . . . , 0, 1
)

.

Na = {b ∈ V ; |b − a| = 1} = {a ± v1, . . . , a ± vd}, a ∈ V.

Then, the Laplacian is defined by

(

̂ΔΓ
̂f
)

(n) =
1
2d

(

d
∑

i=1

̂f(n + vi) + ̂f(n − vi)

)

. (3.8)

Figure 1. Square lattice
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Passing to the Fourier series, this Laplacian is transformed into

H0(x)f(x) = −1
d

(

d
∑

i=1

cos xi

)

f(x). (3.9)

Therefore, p(x, λ) = − 1
d

∑d
j=1 cos xj−λ, and Lemma 2.1 is rewritten as follows.

Lemma 3.1. (1) σ(H0) = [−1, 1].
(2) ˜T =

{

n/d ; n = −d,−d + 2, . . . , d − 2, d
}

.

(3) For λ ∈ (−1, 1)\˜T ,Mλ is a real analytic submanifold of Td, and MC
λ is

an analytic submanifold of Td
C.

(4) For −1 < λ < 1,MC
λ,sng ⊂ (πZ)d ∩ Td

C.
(5) For −1 < λ < 1, each connected component of MC

λ,reg intersects with Td

and the intersection is a (d− 1)-dimensional real analytic submanifold of
Td.

3.2. Triangular Lattice

Let (Fig. 2)

V =
{

v(n) ; n ∈ Z2}, v1 =
(

1, 0
)

, v2 =

(

1
2
,

√
3

2

)

,

Na = {b ∈ V ; |b − a| = 1} = {a ± v1, a ± v2, a ± (v1 − v2)}, a ∈ V.

Figure 2. Triangular lattice
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The Laplacian is defined by
(

̂ΔΓ
̂f
)

(n) =
1
6
(

̂f(n1 + 1, n2) + ̂f(n1 − 1, n2) + ̂f(n1, n2 + 1)

+ ̂f(n1, n2 − 1) + ̂f(n1 + 1, n2 − 1) + ̂f(n1 − 1, n2 + 1)
)

.

(3.10)

Passing to the Fourier series, −̂ΔΓ is rewritten as

H0(x)f(x) = −1
3
(

cos x1 + cos x2 + cos(x1 − x2)
)

f(x). (3.11)

Then p(x, λ) = − 1
3

(

cos x1 + cos x2 + cos(x1 − x2)
)

− λ, and by Lemma
2.2, we have the following

Lemma 3.2. (1) σ(H0) = [−1, 1/2].
(2) ˜T =

{

− 1, 1/3, 1/2
}

.

(3) For λ ∈ (−1, 1/2)\˜T ,Mλ is a real analytic submanifold of T2, and MC
λ

is an analytic submanifold of T2
C.

(4) For −1 < λ < 1/2,MC
λ,sng ⊂ (πZ)2 ∩ T2

C.
(5) For −1 < λ < 1/2, each connected components of MC

λ,reg intersects with
T2 and the intersection is a 1-dimensional real analytic submanifold of
T2.

3.3. Hexagonal Lattice

We put

L =
{

v(n) ; n ∈ Z2
}

, v1 =

(

3
2
,

√
3

2

)

, v2 =
(

0,
√

3
)

, (3.12)

p1 =

(

1
2
,−

√
3

2

)

, p2 = (1, 0), (3.13)

and define the vertex set V by

V = V1 ∪ V2, Vi = pi + L. (3.14)

Note that V1 ∩V2 = ∅. The adjacent points of a1 ∈ V1 and a2 ∈ V2 are defined
by (Fig. 3)

Na1 = {y ∈ R2 ; |a1 − y| = 1} ∩ V2

=
{

a1 +
v1 + v2

3
, a1 +

v1 − 2v2

3
, a1 − 2v1 − v2

3

}

, (3.15)

Na2 = {y ∈ R2 ; |a2 − y| = 1} ∩ V1

=
{

a2 +
2v1 − v2

3
, a2 − v1 − 2v2

3
, a2 − v1 + v2

3

}

. (3.16)

For a function ̂f(n) = ( ̂f1(n), ̂f2(n)), the Laplacian is defined by

(

̂ΔΓ
̂f
)

(n) =
1
3

(

̂f2(n1, n2) + ̂f2(n1 − 1, n2) + ̂f2(n1, n2 − 1)

̂f1(n1, n2) + ̂f1(n1 + 1, n2) + ̂f1(n1, n2 + 1)

)

(3.17)
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Figure 3. Hexagonal lattice

Passing to the Fourier series, −̂ΔΓ is transformed to

H0(x) = −1
3

(

0 1 + eix1 + eix2

1 + e−ix1 + e−ix2 0

)

. (3.18)

A direct computation yields

p(x, λ) = det
(

H0(x) − λ
)

= λ2 − α(x)
9

. (3.19)

α(x) = 3 + 2
(

cos x1 + cos x2 + cos(x1 − x2)
)

. (3.20)

Lemma 2.2 implies the following

Lemma 3.3. (1) σ(H0) = [−1, 1].
(2) ˜T = {−1,−1/3, 0, 1/3, 1}.
(3) For λ ∈ (−1, 1)\˜T ,Mλ is a real analytic submanifold of T2 and MC

λ is
an analytic submanifold of T2

C.
(4) For −1 < λ < 0 and 0 < λ < 1,MC

λ,sng ⊂ (πZ)2 ∩ T2
C.

(5) For −1 < λ < 0 and 0 < λ < 1, each connected component of MC
λ

intersects with T2 and the intersection is a 1-dimensional real analytic
submanifold of T2.



2116 K. Ando et al. Ann. Henri Poincaré

3.4. Kagome Lattice

Let

L =
{

v(n) ; n ∈ Z2
}

, v1 =

(

1
2
,

√
3

2

)

, v2 =

(

−1
2
,

√
3

2

)

,

p1 = (0, 0), p2 =
(

1
2
, 0
)

, p3 =

(

1
4
,

√
3

4

)

.

V = V1 ∪ V2 ∪ V3, Vj = pj + L.

For aj ∈ Vj , the adjacent points are (Fig. 4)

Naj
= {y ∈ V ; |aj − y| = 1/2, y �∈ Vj},

i.e.

Na1 =
{

a1 ± v1

2
, a1 ± v1 − v2

2

}

,

Na2 =
{

a2 ± v2

2
, a2 ± v1 − v2

2

}

,

Na3 =
{

a3 ± v1

2
, a3 ± v2

2

}

. (3.21)

For a function ̂f(n) = ( ̂f1(n), ̂f2(n), ̂f3(n)), the Laplacian is defined by
(

̂ΔΓ
̂f
)

(n) =
1
4
(

ĝ1(n), ĝ2(n), ĝ(n)
)

,

ĝ1(n) = ̂f2(n) + ̂f2(n1 − 1, n2 + 1) + ̂f3(n) + ̂f3(n1 − 1, n2),

ĝ2(n) = ̂f1(n) + ̂f1(n1 + 1, n2 − 1) + ̂f3(n) + ̂f3(n1, n2 − 1),

Figure 4. Kagome lattice



Vol. 17 (2016) Schrödinger Operators on Perturbed Lattices 2117

ĝ3(n) = ̂f1(n) + ̂f1(n1 + 1, n2) + ̂f2(n) + ̂f2(n1, n2 + 1). (3.22)

Passing to the Fourier series, −̂ΔΓ becomes

H0(x) = −1
4

⎛

⎜

⎝

0 1 + eix1e−ix2 1 + eix1

1 + e−ix1eix2 0 1 + eix2

1 + e−ix1 1 + e−ix2 0

⎞

⎟

⎠. (3.23)

A direct computation gives

p(x, λ) = det
(

H0(x) − λ
)

= −
(

λ − 1
2

)(

λ2 +
λ

2
− β(x)

8

)

, (3.24)

β(x) = 1 + cos x1 + cos x2 + cos(x1 − x2). (3.25)

Note that the case λ = 1/2 is exceptional in that p(x, 1/2) = 0. Lemma 2.2
and a direct computation imply the following

Lemma 3.4. (1) σ(H0) = [−1, 1/2].
(2) ˜T = {−1,−1/2,−1/4, 0, 1/2}.
(3) For (−1, 1/2)\˜T ,Mλ is a real analytic submanifold of T2 and MC

λ is an
analytic submanifold of T2

C.
(4) For −1 < λ < −1/4 and −1/4 < λ < 1/2,MC

λ,sng ⊂ (πZ)2 ∩ T2
C.

(5) For −1 < λ < −1/4 and −1/4 < λ < 1/2, each connected component
of MC

λ intersects with T2 and the intersection is a 1-dimensional real
analytic submanifold of T2.

(6) H0(x) has an eigenvalue 1/2 with eigenvector s(x)v(x), where s(x) is an
arbitrarily scalar function on T2 and

v(x) =
(

−1
2
(1 − eix1)(1 − e−ix2), 1 − cos x1,−

1
2
(1 − eix1)(1 + e−ix2)

)

.

3.5. Diamond Lattice

We put

V1 = {	 = (	1, 	2, 	3) ∈ Z3 ; 	1 + 	2 + 	3 ∈ 2Z}, (3.26)

V2 = p + V1, p =
(

1
2
,
1
2
,
1
2

)

. (3.27)

V = V1 ∪ V2. (3.28)

We want to define the adjacent points of a ∈ V as the nearest neighboring
points. For this purpose, we prepare the following lemma.

Lemma 3.5. For 	 ∈ V1, p+	′ ∈ V2, we have |	−	′| ≥
√

3/2 and |	− (	′ +p)| =√
3/2 if and only if

	 − 	′ = (0, 0, 0), or (0, 1, 1), or (1, 0, 1), or (1, 1, 0).

Proof. Let a = 	 − 	′ and ρ be the distance of V1 and V2. Then we have

a2
1 − a1 + a2

2 − a2 + a2
3 − a3 ≥ ρ2 − 3/4. (3.29)

For m ∈ Z,m2 ≥ m, and m2 = m if and only if m = 0, 1. Therefore, the
left-hand side of (3.29) is non-negative, and vanishes for a1, a2, a3 = 0 or
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1. The solutions (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) do not satisfy the condition
a1 + a2 + a3 ∈ 2Z. On the other hand, a = (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)
meet the condition. This means that ρ =

√
3/2, and the equality of (3.29) is

attained by these values. �
By this lemma, the adjacent points of a ∈ V1 are

p + a, p + (a1, a2 − 1, a3 − 1), p + (a1 − 1, a2, a3 − 1), p + (a1 − 1, a2 − 1, a3),

and the adjacent points of a′ + p ∈ V2 are

a′, (a′
1, a

′
2 + 1, a′

3 + 1), (a′
1 + 1, a′

2, a
′
3 + 1), (a′

1 + 1, a′
2 + 1, a3).

Lemma 3.6. The vectors v1 = (0, 1, 1), v2 = (1, 0, 1), v3 = (1, 1, 0) form a
basis of the lattice V1.

Proof. We put

n1 =
−	1 + 	2 + 	3

2
, n2 =

	1 − 	2 + 	3
2

, n3 =
	1 + 	2 − 	3

2
. (3.30)

Then, one can see that

	 ∈ Z3, 	1 + 	2 + 	3 ∈ 2Z ⇐⇒ n ∈ Z3.

We also have n1v1+n2v2+n3v3 = 	. Therefore V1 = {n1v1+n2v2+n3v3 ; n ∈
Z3}. �

In view of Lemma 3.6, we have, letting L =
{

v(n) ; n ∈ Z3
}

,

V1 = L, V2 = p + L, p =
v1 + v2 + v3

4
.

The edge set is rewritten as follows : N is the set of points (v(n), p+v(n′)), (p+
v(n′),v(n)) with n, n′ satisfying

n − n′ = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).

The Laplacian is defined by
(

̂ΔΓ
̂f)(n) =

1
4
(ĝ1, ĝ2), (3.31)

ĝ1(n) = ̂f2(n) + ̂f2(n1 − 1, n2, n3)

+ ̂f2(n1, n2 − 1, n3) + ̂f2(n1, n2, n3 − 1),

ĝ2(n) = ̂f1(n) + ̂f1(n1 + 1, n2, n3)

+ ̂f1(n1, n2 + 1, n3) + ̂f1(n1, n2, n3 + 1). (3.32)

Passing to the Fourier series, −̂ΔΓ becomes

H0(x) = −1
4

(

0 1 + eix1 + eix2 + eix3

1 + e−ix1 + e−ix2 + e−ix3 0

)

. (3.33)

We then have

p(x, λ) = det(H0(x) − λ) = λ2 − γ3(x), (3.34)

γ3(x) =
1
4

+
1
8
(

cos x1 + cos x2 + cos x3

+ cos(x1 − x2) + cos(x2 − x3) + cos(x3 − x1)
)

. (3.35)
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Lemma 2.2 implies the following

Lemma 3.7. (1) σ(H0) = [−1, 1].
(2) ˜T = {−1,−1/2, 0, 1/2, 1}.
(3) For λ ∈ (−1, 1)\˜T ,Mλ is a real analytic submanifold of T3 and MC

λ is
an analytic submanifold of T3

C.
(4) For −1 < λ < 0 and 0 < λ < 1,MC

λ,sng ⊂ (πZ)3 ∩ T3
C.

(5) For −1 < λ < 0 and 0 < λ < 1, each connected component of MC
λ inter-

sects with T3 and the intersection is a 2-dimensional analytic submanifold
of T3.

3.6. Higher-Dimensional Diamond Lattice

There is a higher-dimensional analogue of diamond lattice. In fact, the hexag-
onal lattice and the 3-dimensional diamond lattice are just the cases for d = 2
and d = 3 of the lattice Ad defined as follows.

Ad =

{

x = (x1, . . . , xd+1) ∈ Zd+1 ;
d+1
∑

i=1

xi = 0

}

. (3.36)

Let e1 = (1, 0, . . . , 0), . . . , ed+1 = (0, . . . , 0, 1) be the standard basis of Rd+1,
and put

vi = ed+1 − ei, i = 1, . . . , d.

They satisfy

|vi|2 = 2, i = 1, . . . , d,

vi · vj = 1, |vi − vj |2 = 2, if i �= j. (3.37)

Lemma 3.8. Let v(n) =
∑d

i=1 nivi, n ∈ Zd. Then Ad =
{

v(n) ; n ∈ Zd}, and
{

vi

}d

i=1
is a basis of Ad.

Proof. We have an equivalent relation

(x1, . . . , xd+1) =
d
∑

i=1

yivi ⇐⇒ xi = −yi, i = 1, . . . , d, xd+1 =
d
∑

i=1

yi. (3.38)

From this, the lemma follows immediately. �

We put

V = Ad ∪
(

p + Ad), p =
1

d + 1
(

v1 + · · · + vd

)

. (3.39)

This is the vertex set of d-dim. diamond lattice.

Lemma 3.9. For v(n),v(n′) ∈ Ad, |v(n) − (v(n′) + p)| ≥
√

d/(d + 1), and the
equality occurs if and only if

n − n′ = (0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).
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Proof. We put a = v(n) − v(n′). Then

a − p =
(

a1 +
1

d + 1
, . . . , ad +

1
d + 1

,−
d
∑

i=1

ai − d

d + 1

)

.

Then we have

|a − p|2 =
d
∑

i=1

a2
i − 1 +

(

d
∑

i=1

ai + 1

)2

+
d

d + 1
.

This is always greater than or equal to d/(d + 1), and the equality occurs if
and only if all ai = 0, or one of ai = −1 and the others vanish. Taking into
account of (3.38), we obtain the lemma. �

Therefore, for v(n) ∈ Ad, we define its adjacent points by

Nv(n) =
{

p + v(n′) ; n − n′ = (0, . . . , 0),

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)
}

,

and for p + v(n′) ∈ p + Ad,

Np+v(n′) =
{

v(n) ; n − n′ = (0, . . . , 0),

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)
}

.

The Laplacian is defined by
(

̂ΔΓ
̂f
)

(n) =
1

d + 1
(

ĝ1(n), ĝ2(n)
)

, (3.40)

ĝ1(n) = ̂f2(n) + ̂f2(n − e1) + · · · + ̂f2(n − ed), (3.41)

ĝ2(n) = ̂f1(n) + ̂f1(n + e1) + · · · + ̂f1(n + ed), (3.42)

where {ei}d
i=1 is the standard basis of Rd. Passing to the Fourier series, −̂ΔΓ

is transformed to

H0(x) = − 1
d + 1

(

0 1 + eix1 + · · · + eixd

1 + e−ix1 + · · · + e−ixd 0

)

. (3.43)

We have

p(x, λ) = det(H0(x) − λ
)

= λ2 − γd(x), (3.44)

γd(x) =
1

d + 1
+

2
(d + 1)2

⎛

⎝

d
∑

i=1

cos xi +
∑

i<j

cos(xi − xj)

⎞

⎠. (3.45)

Lemma 2.2 implies the following

Lemma 3.10. (1) σ(H0) = [−1, 1].
(2)

˜T =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{

± 	 + 1
d + 1

; 	 = d, d − 2, . . . ,−d
}

∪
{

0
}

, if d = even,

{

± 	 + 1
d + 1

; 	 = d, d − 2, . . . ,−d
}

, if d = odd.
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(3) For (−1, 1)\˜T ,Mλ is a real analytic submanifold of Td and MC
λ is an

analytic submanifold of Td
C.

(4) For −1 < λ < 0 and 0 < λ < 1,MC
λ,sng ⊂ (πZ)d ∩ Td

C.
(5) For −1 < λ < 0 and 0 < λ < 1, each connected component of MC

λ inter-
sects with Td and the intersection is a (d − 1)-dimensional real analytic
submanifold of Td.

3.7. Subdivision of d-Dimensional Square Lattice Zd, d ≥ 2
The next example is obtained by adding new vertices in the middle points of
the edges of the square lattice Zd. Let us put

v1 =
(

1, 0, . . . , 0
)

, . . . , vd =
(

0, . . . , 0, 1
)

, (3.46)

p1 =
(

0, . . . , 0
)

, p2 =
(

1/2, 0, . . . , 0
)

, . . . , pd+1 =
(

0, . . . , 0, 1/2
)

, (3.47)

L = {v(n) ; n ∈ Zd}, (3.48)

V =
d+1
∪

j=1
Vj , Vj = pj + L. (3.49)

The edge relations are defined by

Naj
= {y ∈ V ; |y − aj | = 1/2}, aj ∈ Vj . (3.50)

Then a1 ∈ V1 has 2d adjacent points, while aj ∈ Vj , j = 2, . . . , d + 1, have two
adjacent points (Fig. 5). The Laplacian is then defined by

(

̂ΔΓ
̂f
)

(n) =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
d

d
∑

j=1

(

̂fj+1(n) + ̂fj+1(n − ej)
)

̂f1(n) + ̂f1(n + e1)
...

̂f1(n) + ̂f1(n + ed)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.51)

Passing to the Fourier series, −̂ΔΓ becomes the following matrix

H0(x) = − 1
2
√

d

⎛

⎜

⎜

⎜

⎜

⎝

0 1 + eix1 . . . 1 + eixd

1 + e−ix1 0 . . . 0
...

...
. . .

...
1 + e−ixd 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎠

, (3.52)

whose determinant is computed as

p(x, λ) = det(H0(x) − λ) = (−λ)d−1

⎛

⎝λ2 − 1
2d

⎛

⎝d +
d
∑

j=1

cos xj

⎞

⎠

⎞

⎠ .(3.53)

Similarly to the case of Kagome lattice, the case λ = 0 is exceptional
since p(x, 0) = 0. Lemma 2.1 and a direct computation imply the following

Lemma 3.11. (1) σ(H0) = [−1, 1].
(2) ˜T = {0,±

√

n/2d; n = 1, 2, . . . , 2d}.
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Figure 5. Subdivision of 2-dimensional square lattice

(3) For λ ∈ (−1, 1)\˜T ,Mλ is a real analytic submanifold of Td and MC
λ is

an analytic submanifold of Td
C.

(4) For −1 < λ < 0, 0 < λ < 1,MC
λ,sng ⊂ (πZ)d ∩ Td

C.
(5) For −1 < λ < 0, 0 < λ < 1,MC

λ,reg intersects with Td and the intersection
is a d − 1-dimensional real analytic submanifold of Td.

(5) H0(x) has an eigenvalue 0, whose eigenvector is written as
d−1
∑

j=1

sj(x)vj(x),

where s1(x), . . . , sd−1(x) are arbitrary scalar functions and

v1(x) =
(

0,−(1 + eix2), 1 + eix1 , 0, . . . , 0
)

,

v2(x) =
(

0,−(1 + eix3), 0, 1 + eix1 , . . . , 0
)

,

. . .

vd−1(x) =
(

0,−(1 + eixd), 0, 0, . . . , 1 + eix1
)

.
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3.8. Ladder of d-Dimensional Square Lattice in Rd+1

The term “ladder” is named after the shape of the graph in Fig. 6 (d = 1).
The d-dimensional ladder is defined as follows. Let Ld be the standard

d-dim. square lattice realized in Rd+1, i.e. Ld = {(n1, . . . , nd, 0) ; ni ∈ Z}, and
put

V1 = Ld, V2 = (0, . . . , 0,−1) + Ld, (3.54)
p0 = (0, . . . , 0), p1 = (0, . . . , 0,−1),
V = V1 ∪ V2, Vi = pi + L. (3.55)

The adjacent relation is defined by (Fig. 7)

Na = {y ∈ V ; |y − a| = 1}, a ∈ V. (3.56)

Figure 6. 1-dim. ladder

Figure 7. 2-dim. ladder
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Figure 8. Eigenvalues for the ladder

Then the Laplacian is

(̂ΔΓ
̂f
)

(n) =
1

2d + 1

(

̂f2(n) +
∑d

j=1

(

̂f1(n + ej) + ̂f1(n − ej)

̂f1(n) +
∑d

j=1

(

̂f2(n + ej) + ̂f2(n − ej)

)

. (3.57)

Passing to the Fourier series, −̂ΔΓ is transformed to

H0(x) = − 1
2d + 1

(

2
∑d

j=1 cos xj 1

1 2
∑d

j=1 cos xj

)

. (3.58)

Then we have

p(x, λ) = det(H0(x) − λ) = p+(x, λ)p−(x, λ),

p±(x, λ) = λ +
1

2d + 1

⎛

⎝2
d
∑

j=1

cos xj ± 1

⎞

⎠.

Then, H0(x) has two distinct eigenvalues λ±(x) = (−2
∑d

j=1 cos xj±1)/(2d+1)
with values (Fig. 8)

−1 ≤ λ−(x) ≤ 2d − 1
2d + 1

,
−2d + 1
2d + 1

≤ λ+(x) ≤ 1.

Accordingly, MC
λ is split into 2 parts :

MC
λ = MC

λ,+ ∪ MC
λ,−, MC

λ,± = {z ∈ Td
C ; p±(z, λ) = 0}.

We put

T± = {λ ; p±(x, λ) = 0, ∇p±(x, λ) = 0 for some x ∈ Td}, (3.59)

which is equal to

˜T+ =
{−2d + 1

2d + 1
,
−2d + 5
2d + 1

, . . . , 1
}

,

˜T− =
{

− 1,
−2d + 3
2d + 1

, . . . ,
2d − 1
2d + 1

}

.

In view of Lemma 2.1, we have the following

Lemma 3.12. (1) σ(H0) = [−1, 1].
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(2) For λ ∈
(

− 1, 2d−1
2d+1

)

\˜T−,Mλ,− is a real analytic submanifold of Td and
MC

λ,− is an analytic submanifold of Td
C.

(3) For λ ∈
(−2d+1

2d+1 , 1
)

\˜T+,Mλ,+ is a real analytic submanifold of Td and
MC

λ,+ is an analytic submanifold of Td
C.

(4) For −1 < λ < 2d−1
2d+1 , each connected component of MC

λ,− intersects with
Td and the intersection is a (d−1)-dimensional real analytic submanifold
of Td.

(5) For −2d+1
2d+1 < λ < 1, each connected component of MC

λ,+ intersects with
Td and the intersection is a (d−1)-dimensional real analytic submanifold
of Td.

(6) For −1 < λ < −2d+1
2d+1 ,MC

λ,+ ∩ Td = ∅.
(7) For 2d−1

2d+1 < λ < 1,MC
λ,− ∩ Td = ∅.

3.9. Graphite in R3

The graphite has the same structure as above with the square lattice replaced
by the hexagonal lattice. We put

L2 =
{

v(n) = n1v1 + n2v2 ; n ∈ Z2
}

, (3.60)

v1 =
(3

2
,

√
3

2
, 0
)

, v2 =
(

0,
√

3, 0
)

, (3.61)

p1 =
(1

2
,−

√
3

2
, 0
)

, p2 = (1, 0, 0), (3.62)

p3 = p1 + (0, 0,−1), p4 = p2 + (0, 0,−1), (3.63)

and define the vertex set V by

V =
4
∪

i=1
Vi, Vi = pi + L2. (3.64)

The adjacent relation is defined by (Fig. 9)

Na = {y ∈ V ; |y − a| = 1}, a ∈ V. (3.65)

For a function ̂f(n) = ( ̂f1(n), ̂f2(n), ̂f3(n), ̂f4(n)), the Laplacian is defined by

(

̂ΔΓ
̂f
)

(n) =
1
4

⎛

⎜

⎜

⎜

⎜

⎜

⎝

̂f3(n) + ̂f2(n) + ̂f2(n1 − 1, n2) + ̂f2(n1, n2 − 1)

̂f4(n) + ̂f1(n) + ̂f1(n1 + 1, n2) + ̂f1(n1, n2 + 1)

̂f1(n) + ̂f4(n) + ̂f4(n1 − 1, n2) + ̂f4(n1, n2 − 1)

̂f2(n) + ̂f3(n) + ̂f3(n1 + 1, n2) + ̂f3(n1, n2 + 1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Passing to the Fourier series, −̂ΔΓ is written as H0(x), where

H0(x) = −1
4

⎛

⎜

⎜

⎜

⎝

0 c(x) 1 0
c(x) 0 0 1
1 0 0 c(x)
0 1 c(x) 0

⎞

⎟

⎟

⎟

⎠

, (3.66)

c(x) = 1 + e−ix1 + e−ix2 . (3.67)
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Figure 9. Graphite

Then we have, letting |c|2 = α(x) = 3 + 2
(

cos x1 + cos x2 + cos(x1 − x2)
)

,

p(x, λ) = det(H0(x) − λ) = λ4 − α + 1
8

λ2 +
(α − 1)2

44
. (3.68)

Therefore, H0(x) has 4 eigenvalues ±(
√

α(x) ± 1)/4. We label them as

λ1(x) = −1
4

−
√

α(x)
4

,

λ2(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 1
4

+

√

α(x)
4

, if α(x) ≤ 1,

1
4

−
√

α(x)
4

, if α(x) ≥ 1,

λ3(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
4

−
√

α(x)
4

, if α(x) ≤ 1,

− 1
4

+

√

α(x)
4

, if α(x) ≥ 1,

λ4(x) =
1
4

+

√

α(x)
4

.

(3.69)

Then we have (Fig. 10)

λ1(x) ≤ λ2(x) ≤ λ3(x) ≤ λ4(x),
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Figure 10. Eigenvalues for the graphite

and they are distinct if α(x) �= 0, 1. Furthermore, ∇λj(x) �= 0 if 0 < α(x) <
1, 1 < α(x) < 9. Note that

α = 0, 1 on Mλ ⇐⇒ λ = 0,±1
4
,±1

2
. (3.70)

Letting

M
(j)
λ = {x ∈ T2 ; λj(x) = λ}, (3.71)

we have

Mλ =
4
∪

j=1
M

(j)
λ .

We need another splitting of Mλ. Let

MC
λ,± = {z ∈ T2

C ; cos z1 + cos z2 + cos(z1 − z2) = 8λ2 ± 4λ − 1}, (3.72)

Mλ,± = MC
λ,± ∩ T2. (3.73)

Then p = 0 ⇐⇒ 16λ2 = (
√

α ± 1)2 ⇐⇒ α = 16λ2 ± 8λ + 1. This yields

Mλ = Mλ,+ ∪ Mλ,−, MC
λ = MC

λ,+ ∪ MC
λ,−. (3.74)

Lemma 3.13. (1) σ(H0) = [−1, 1].
(2) ˜T = {0,±1/4,±1/2,±1}.
(3) For λ ∈ (−1, 1)\˜T and 1 ≤ j ≤ 4,M

(j)
λ is a real analytic submanifold of

T2.
(4) For −1 < λ < −1/4,−1/4 < λ < 1/4 and 1/4 < λ < 1,MC

λ,sng ⊂
(πZ)2 ∩ T2

C.
(5) For −1 < λ < −1/4 and −1/4 < λ < 1/2, each connected component

of MC
λ,+ intersects with T2 and the intersection is a 1-dimensional real

analytic submanifold of T2.
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(6) For −1/2 < λ < 1/4 and 1/4 < λ < 1, each connected component
of MC

λ,− intersects with T2 and the intersection is a 1-dimensional real
analytic submanifold of T2.

(7) For −1 < λ < −1/2,MC
λ,− ∩ T2 = ∅.

(8) For 1
2 < λ < 1,MC

λ,+ ∩ T2 = ∅.

Proof. The assertion (1) follows from Lemma 2.2 (3). To prove (2), let

ai =
∂

∂xi
α = −2 sin xi − 2 sin(xi − xj), i �= j.

Then we have

∂

∂xi
p = ai

(

− λ2

8
+

2
42

(α − 1)
)

.

A simple computation shows that

−λ2

8
+

2
44

(α − 1)2 = 0, λ4 − α + 1
8

λ2 +
(α − 1)2

44
= 0

if and only if

α = 1, λ = 0.

Therefore, if p(x, λ) = 0,∇xp(x, λ) = 0, λ �= 0, we have a1 = a2 = 0,
which implies (x1, x2) = (0, 0), (0, π), (π, 0), (π, π), (2π/3, 4π/3), (4π/3, 2π/3).
For these values, α = 0, 1, 9 and λ2 = 0, 1/16, 1/4, 1. This proves (2).

The assertion (3) follows from (3.70).
The assertion (4) follows from Lemma 2.2 (2).
In view of Lemma 2.2 (4) and (5), we have (5), (6), (7), and (8). �

3.10. Graph-Operation and Characteristic Polynomials

Let us observe the above examples from a view point of graph-operation, which
is a method of creating new graphs from the given one. It is worthwhile to note
the general relations (3.75), (3.76), (3.79) between the characteristic polyno-
mial of the Laplacian for the resulting graph and that of the original graph. We
omit the proof of these formulas, although they follow from straightforward
computation, since we do not use them in this paper. The arguments in the
following Sects. 3.10.1, 3.10.2 are based on [45] and [14].

We recall some notions in the graph theory.
A graph Γ is said to be k-regular if deg (v) = k for any v ∈ V(Γ).
A (k1, k2)-semiregular graph Γ is, by definition, a bipartite graph with

two partite sets V1 and V2, i.e. V(Γ) = V1 ∪ V2,V1 ∩ V2 = ∅, and Nv1 ⊂ V2 for
any v1 ∈ V1, Nv2 ⊂ V1 for any v2 ∈ V2. Furthermore, deg (vj) = kj for any
vj ∈ Vj , j = 1, 2.

Any periodic graph Γ can be viewed as an abelian covering graph of a
finite graph Γ0, which is called the fundamental graph of Γ.
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3.10.1. Line Graph. Given a graph Γ = {V(Γ), E(Γ)}, its line graph L(Γ) =
{V(L(Γ)), E(L(Γ))} is defined as follows: (1) The vertex set V(L(Γ)) is E(Γ).
(2) E(L(Γ)) � (e1, e2), where e1, e2 ∈ E(Γ), if and only if o(e1) = o(e2).

The characteristic polynomials of Γ and L(Γ) are then related to each
other. In fact, let Γ be a k-regular abelian covering graph of a finite graph
Γ0, k ≥ 3; μ and ν the numbers of the vertices and edges of Γ0, respectively.
Let κ = ν − μ, which is a positive integer, and pΓ(x, λ) be the characteristic
polynomial of −̂ΔΓ on Γ. Then L(Γ) is a 2(k−1)-regular abelian covering graph
of L(Γ0) whose transformation group is also that of Γ, and the characteristic
polynomial pL(Γ)(x, λ) of −̂ΔL(Γ) is

pL(Γ)(x, λ) =
(

1
k − 1

− λ

)κ(
k

2k − 2

)μ

pΓ

(

x,
2k − 2

k

(

λ +
k − 2
2k − 2

))

. (3.75)

For instance, the Kagome lattice is a line graph of the hexagonal lattice.
We can also compute the characteristic polynomial of the line graph of

a (k1, k2)-semiregular periodic graph, where k1 ≥ k2 ≥ 3 or k1 > k2 = 2.
See [45] and [14] for the details, where they study the spectrum of the discrete
Laplacian on the line graph of k-regular or (k1, k2)-semiregular infinite graphs,
which are not necessarily periodic.

3.10.2. Subdivision. We can define the subdivisions of the triangular lattice,
the hexagonal lattice, the Kagome lattice and the diamond lattice, and derive
similar spectral properties for their Hamiltonians in the same way as in
Sect. 3.7. As in the case of line graph, the characteristic polynomials of a
regular periodic graph and its subdivision are mutually related. In fact, for a
k-regular abelian covering graph Γ of a finite graph Γ0, k ≥ 3, put μ, ν, and
κ in the same way as above, and let pΓ(x, λ) be the characteristic polynomial
of −̂ΔΓ. Then the subdivision S(Γ) of Γ is a (k, 2)-semiregular abelian cov-
ering graph of S(Γ0) whose transformation group is also that of Γ, and the
characteristic polynomial pS(Γ)(x, λ) of −̂ΔS(Γ) is

pS(Γ)(x, λ) = (−λ)κ

(

−1
2

)μ

pΓ(x, 1 − 2λ2). (3.76)

In [45] and [14], they also study the spectrum for the Laplacian on the subdi-
vision of k-regular, k ≥ 3, infinite graphs, which are not necessarily periodic.

3.10.3. Ladder. The ladder structure is defined for any periodic graphs. Let
Γ be a k-regular periodic graph, μ the number of vertices in the fundamental
graph Γ0, and pΓ(x, λ) the characteristic polynomial of ̂HΓ = −̂ΔΓ on Γ. The
ladder Lad(Γ) of Γ is defined as a union of two copies of Γ with additional
edges joining the corresponding vertices, which is a (k + 1)-regular periodic
graph. Then ̂HLad(Γ) = −̂ΔLad(Γ) has the following structure:

̂HLad(Γ) =
k

k + 1

⎛

⎜

⎝

̂HΓ
1
k

I

1
k

I ̂HΓ

⎞

⎟

⎠ : l2(Γ) ⊕ l2(Γ) → l2(Γ) ⊕ l2(Γ). (3.77)
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Passing ̂HLad(Γ) to the Fourier transform, we have a multiplication operator
by a 2μ × 2μ symmetric matrix-valued function

HLad(Γ)(x) =
k

k + 1

⎛

⎜

⎝

HΓ(x)
1
k

I

1
k

I HΓ(x)

⎞

⎟

⎠ on L2(Td) ⊕ L2(Td), (3.78)

where HΓ(x) is a μ × μ symmetric matrix-valued function which is obtained
by passing ̂HΓ to the Fourier transform. The characteristic polynomial
pLad(Γ)(x, λ) of ̂HLad(Γ) is then computed as

pLad(Γ)(x, λ) =
(

k

k + 1

)2μ

pΓ

(

x,
k + 1

k
λ +

1
k

)

pΓ

(

x,
k + 1

k
λ − 1

k

)

. (3.79)

4. Distributions on the Torus

4.1. Sobolev and Besov Spaces on Rd, Lattice and Torus

Let r−1 = 0, rj = 2j , (j ≥ 0), and on Rd, define the Besov space B(Rd) to be
the set of all functions f having the following norm:

‖f‖B(Rd) =
∞
∑

j=0

r
1/2
j

(

∫

Ξj

| ˜f(ξ)|2dξ
)1/2

, (4.1)

where Ξj = {ξ ∈ Rd ; rj−1 ≤ |ξ| < rj}, and ˜f denotes the Fourier transform.
The (equivalent) norm of the dual space B∗(Rd) is

‖u‖B∗(Rd) =
(

sup
R>1

1
R

∫

|ξ|<R

|ũ(ξ)|2dξ
)1/2

. (4.2)

The space B∗
0(Rd) is defined as follows:

B∗
0(Rd) =

{

u ∈ B∗(Rd) ; lim
R→∞

1
R

∫

|ξ|<R

|ũ(ξ)|2dξ = 0
}

. (4.3)

The Sobolev space Hσ(Rd) is defined as usual:

Hσ(Rd) =
{

u ∈ S ′(Rd) ; ‖(1 + |ξ|2)σ/2ũ(ξ)‖L2(Rd) < ∞
}

, σ ∈ R. (4.4)

The Besov spaces B,B∗ are also defined on Td. Take a C∞-partition of
unity {χ�}N

�=1 on Td where the support of χ� is sufficiently small, and define

‖f‖B(Td) =
N
∑

�=1

‖χ�f‖B(Rd), (4.5)

‖u‖B∗(Td) =
N
∑

�=1

‖χ�u‖B∗(Rd). (4.6)

The space B∗
0(Td) is defined to be the set of u ∈ B∗(Td) such that

χ�u ∈ B∗
0(Rd), 1 ≤ 	 ≤ N. (4.7)

The Sobolev space Hσ(Td) is defined similarly.
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The analogues of B and B∗ on the lattice Zd are defined to be the Banach
spaces endowed with norms

‖ ̂f‖
̂B(Zd) =

∞
∑

j=0

r
1/2
j

⎛

⎝

∑

rj−1≤|n|<rj

| ̂f(n)|2
⎞

⎠

1/2

, (4.8)

‖û‖
̂B∗(Zd) =

⎛

⎝sup
R>1

1
R

∑

|n|<R

|û(n)|2
⎞

⎠

1/2

. (4.9)

The space ̂B∗
0(Zd) is then defined by

̂B∗
0(Zd) =

{

û ∈ ̂B∗(Zd) ; lim
R→∞

1
R

∑

|n|<R

|û(n)|2 = 0
}

. (4.10)

For σ ∈ R, the weighted space 	2,σ is the set of all û satisfying

‖û‖2
�2,σ =

∑

n∈Zd

(1 + |n|2)σ|û(n)|2 < ∞.

These Besov spaces B(Td), ̂B(Zd),B∗(Td), ̂B∗(Zd) are related by the
Fourier series. For ̂f ∈ S ′(Zd), let f = U ̂f , where U is defined by (1.4). We
define operators ̂Nj on the lattice Zd and Nj on the torus Td by

(

̂Nj
̂f)(n) = nj

̂f(n), Nj = U ̂NjU∗ = i
∂

∂xj
.

We put N = (N1, . . . , Nd), and let N2 be the self-adjoint operator defined by

N2 =
d
∑

j=1

N2
j = −Δ, on Td,

where Δ is the Laplacian on Td with periodic boundary condition. We put

|N | =
√

N2 =
√

−Δ. (4.11)

For σ ∈ R,Hσ(Td) coincides with the completion of D(|N |σ) with respect to
the norm ‖u‖σ = ‖(1 + N2)σ/2u‖ i.e.

Hσ(Td) =
{

u ∈ S ′(Td) ; ‖u‖σ = ‖(1 − Δ)σ/2u‖ < ∞
}

.

For a self-adjoint operator T , let χ(a ≤ T < b) denote the operator
χI(T ), where χI(λ) is the characteristic function of the interval I = [a, b). The
operators χ(T < a) and χ(T ≥ b) are defined similarly. Then the Besov spaces
B(Td),B∗(Td) are rewritten by the equivalent norms:

B(Td) =
{

f ∈ L2(Td) ; ‖f‖B(Td) =
∞
∑

j=0

r
1/2
j ‖χ(rj−1 ≤ |N | < rj)f‖ < ∞

}

,

B∗(Td) =
{

u ∈ S ′(Td) ; ‖u‖B∗(Td) =
(

sup
R>1

1
R

‖χ(|N | < R)u‖2

)1/2

< ∞
}

,

(4.12)
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and B∗
0(Td) is rewritten as

B∗
0(Td) =

{

u ∈ B∗(Td) ; lim
R→∞

1
R

‖χ(|N | < R)u‖2 = 0
}

. (4.13)

In fact, the equivalence of (4.6) and (4.12), and that of (4.7) and (4.13)
are proved in [25], Lemmas 3.1 and 3.2. The equivalence of (4.5) and (4.12)
follows from this by duality.

Note also the following equivalence:

f ∈ B(Td) ⇐⇒ ̂f ∈ ̂B(Zd),

u ∈ B∗(Td) ⇐⇒ û ∈ ̂B∗(Zd),

u ∈ B∗
0(Td) ⇐⇒ û ∈ ̂B∗

0(Zd).

In the sequel, we often write B, ̂B,B∗, ̂B∗,B∗
0 and ̂B∗

0 , omitting Rd,Td,Zd.

4.2. Basic Lemmas

We use the following properties of Besov spaces. Let Sm
1,0 be the standard

Hörmander class of ΨDO on Rd.

Lemma 4.1. (1) If f ∈ B(Rd), we have
∫ ∞

−∞
‖ ˜f(x1, ·)‖L2(Rd−1)dx1 ≤

√
2‖f‖B(Rd).

(2) If P ∈ S0
1,0, we have

P ∈ B(B;B) ∩ B(B∗;B∗) ∩ B(B∗
0 ;B∗

0).

Proof. The assertion (1) is proven in [19], Theorem 14.1.2. For χ ∈ C∞
0 (Rd),

let χR be the ΨDO with symbol χ(ξ/R). Then we have

u ∈ B∗ ⇐⇒ sup
R>1

1√
R

‖χRu‖L2(Rd) < ∞, ∀χ ∈ C∞
0 (Rd).

This and the symbolic calculus of ΨDO imply P ∈ B(B∗;B∗). Taking the
adjoint, we have P ∈ B(B;B). The fact P ∈ B(B∗

0 ;B∗
0) is proven similarly. �

Lemma 4.2. Suppose u ∈ S ′(Rd) satisfies ũ ∈ L2
loc(R

d) and

lim sup
R→∞

1
R

∫

|ξ|<R

|ũ(ξ)|2dξ < ∞.

If there is a submanifold M of codimension 1 in Rd such that suppu ⊂ M ,
then there exists u0 ∈ L2(M) such that

〈u, ϕ〉 =
∫

M

u0ϕ dM, ∀ϕ ∈ S(Rd), (4.14)
∫

M

|u0|2dM ≤ C lim sup
R→∞

1
R

∫

|ξ|<R

|ũ(ξ)|2dξ < ∞. (4.15)

For the proof, see [18], Theorem 7.1.27.
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4.3. Distribution (x1 ∓ i0)−1 and its Wavefront Set

We need a division theorem and its micro-local consequences. Let us begin
with the case of Rd.

Lemma 4.3. For f ∈ B(Rd) and ε > 0, let uε(x) = f(x)/(x1 − iε). Then,
limε→0 uε = f(x)/(x1 − i0) =: u+ exists in the weak ∗ sense, i.e.

(uε, g) → (u+, g), ∀g ∈ B(Rd), (4.16)

with the following estimate

‖u+‖B∗(Rd) ≤ 2‖f‖B(Rd). (4.17)

Moreover, ũ+(ξ) is an L2(Rd−1)-valued bounded function of ξ1 and

‖ũ+(ξ1, ·)‖L2(Rd−1) → 0, as ξ1 → ∞, (4.18)
∥

∥

∥ũ+(ξ1, ·) − i

∫ ∞

−∞
˜f(η1, ·)dη1

∥

∥

∥

L2(Rd−1)
→ 0, as ξ1 → −∞. (4.19)

Proof. Letting θ be the Heaviside function, we have

(uε, g) = i

∫

Rd+1
θ(η1 − ξ1)eε(ξ1−η1) ˜f(η1, ξ

′)g̃(ξ) dη1dξ. (4.20)

By the Schwarz inequality,
∫

Rd−1
| ˜f(η1, ξ

′)g̃(ξ1, ξ′)|dξ′ ≤ ‖ ˜f(η1, ·)‖L2(Rd−1)‖g̃(ξ1, ·)‖L2(Rd−1).

Using Lemma 4.1 (1), we have

|(uε, g)| ≤ 2‖f‖B‖g‖B, (4.21)

which implies ‖uε‖B∗ ≤ 2‖f‖B. If f, g ∈ C∞
0 (Rd), uε → u+ pointwise, and

(uε, g) → (u+, g). By (4.21), we have |(u+, g)| ≤ 2‖f‖B‖g‖B, hence u+ ∈ B∗.
Approximating f and g by elements of C∞

0 (Rd), we see that (4.16) and (4.17)
hold for f, g ∈ B. The equality (4.20) shows

ũ+(ξ) = i

∫ ∞

ξ1

˜f(η1, ξ
′)dη1. (4.22)

Lemma 4.1 (1) then implies that ũ+(ξ) is an L2(Rd−1)-valued bounded func-
tion of ξ1, and (4.18). Moreover, we have

‖ũ+(ξ1, ·) − i

∫ ∞

−∞
˜f(η1, ·)dη1‖L2(Rd−1) ≤

∫ ξ1

−∞
‖ ˜f(η1, ·)‖L2(Rd−1)dη1,

which yields (4.19). �

Definition 4.4. For u ∈ S ′(Rd), the wave front set WF ∗(u) is defined as
follows. For (x0, ω) ∈ Rd × Sd−1, (x0, ω) �∈ WF ∗(u), if there exist 0 < δ < 1
and χ ∈ C∞

0 (Rd) satisfying χ(x0) = 1 such that

lim
R→∞

1
R

∫

|ξ|<R

∣

∣Cω,δ(ξ)(χ̃u)(ξ)
∣

∣

2dξ = 0, (4.23)

where Cω,δ(ξ) is the characteristic function of the cone
{

ξ ∈ Rd ; ω · ξ > δ|ξ|
}

.
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Lemma 4.5. For u+ in Lemma 4.3, we have

WF ∗(u+) ⊂
{(

(0, x′), (−1, 0)
)

; x′ ∈ Rd−1
}

. (4.24)

u+(x) − 1
x1 − i0

⊗ f(0, x′) ∈ B∗
0(Rd). (4.25)

Proof. Take h ∈ C∞
0 (Rd) and put w(x) = h(x)/(x1 − i0)−1. Then by (4.17),

1
R

∫

|ξ|<R

|Cω,δ(ξ)χ̃u+(ξ)|2dξ ≤ 1
R

∫

|ξ|<R

|Cω,δ(ξ)χ̃w(ξ)|2dξ + C‖f − h‖2
B,

where the constant C is independent of R > 1. Therefore, we have only to
prove the lemma when f ∈ C∞

0 (Rd). Obviously,
(

(y1, y
′), ω
)

�∈ WF ∗(u+) if
y1 �= 0. Take

(

(0, y′), ω
)

such that (−1, 0) �= ω ∈ Sd−1. Take χ(x) ∈ C∞
0 (Rd)

such that χ((0, y′)) = 1, and put v(x) = χ(x)u+(x), g(x) = χ(x)f(x). Then
v(x) = g(x)/(x1 − i0), hence by passing to the Fourier transform,

ṽ(ξ1, ξ
′) = i

∫ ∞

ξ1

g̃(η1, ξ
′)dη1.

This implies

|ṽ(ξ)| ≤ CN

∫ ∞

ξ1

(1 + |η1| + |ξ′|)−Ndη1, ∀N > 0.

Since ω �= (−1, 0, . . . , 0), by taking 0 < δ < 1 sufficiently close to 1, on the
region {ω · ξ > δ|ξ|}, we have either C|ξ1| ≤ |ξ′|, or ξ1 > 0, C|ξ′| ≤ ξ1, where
C > 0. In both case, we obtain |ṽ(ξ)| ≤ CN (1 + |ξ|)−N , which proves (4.24).

Passing to the Fourier transform, u+(x) = f(x)/(x1 − i0) becomes
ũ+(ξ) = i

∫∞
ξ1
˜f(η1, ξ

′)dη1. Letting θ(t) be the Heaviside function, we then
have

ũ+(ξ) − iθ(−ξ1)
∫ ∞

−∞
˜f(η1, ξ

′)dη1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

i

∫ ∞

ξ1

˜f(η1, ξ
′)dη1 if ξ1 > 0,

−i

∫ ξ1

−∞
˜f(η1, ξ

′)dη1 if ξ1 < 0.

We then have

‖ũ+(ξ) − iθ(−ξ1)
∫ ∞

−∞
˜f(η1, ξ

′)dη1‖L2(Rd−1) → 0, as |ξ1| → ∞.

This and the inequality

1
R

∫

|ξ|<R

∣

∣ũ+(ξ) − iθ(−ξ1)
∫ ∞

−∞
˜f(η1, ξ

′)dη1

∣

∣

2dξ

≤ 1
R

∫

|ξ1|<R

‖ũ+(ξ1, ·) − iθ(−ξ1)
∫ ∞

−∞
˜f(η1, ·)dη1‖2

L2(Rd−1)dξ1

yield (4.25). �

Consider the equation

x1u = f, f ∈ B. (4.26)
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A solution u+ ∈ B∗ (u− ∈ B∗, respectively), of the Eq. (4.26) is said to be
outgoing (incoming) if it satisfies

WF ∗(u+) ⊂ {((0, x′), (−1, 0)) ; x′ ∈ Rd−1}, (4.27)

WF ∗(u−) ⊂ {((0, x′), (1, 0)) ; x′ ∈ Rd−1}. (4.28)

Lemma 4.6. Let u ∈ B∗ be a solution to the Eq. (4.26). Then u is outgoing
(incoming) if and only if

u =
f(x)

x1 − i0
,

(

u =
f(x)

x1 + i0

)

.

For outgoing (incoming) solution u+ (u−), we have

Im (u±, f) = ±π‖f(0, ·)‖2
L2(Rd−1). (4.29)

Proof. The “if” part is proven in Lemma 4.5. To prove the “only if” part,
let u be an outgoing solution and v = u − f(x)/(x1 − i0). Then v ∈ B∗

is an outgoing solution to x1v = 0. Passing to the Fourier transform, this
implies that ṽ(ξ) depends only on ξ′ : ṽ(ξ) = w(ξ′). Integrating over the
region ΩR = {(ξ1, ξ

′) 0 < ξ1 < R, |ξ′| < R/2}, we have
∫

|ξ′|<R/2

|w(ξ′)|2dξ ≤ 1
R

∫

ΩR

|ṽ(ξ)|2dξ.

Letting R → ∞, we have v = 0, which shows that u = f(x)/(x1 − i0). The
well-known formula

1
t ∓ i0

= ±iπδ(t) + p.v.
1
t

implies (4.29). �

4.4. Distribution (h(x) ∓ i0)−1 on Td

We now consider the equation
(

h(x) − z
)

u(x) = f(x), on Td, (4.30)

where h(x) is a real-valued C∞-function on Td. We put

M = {x ∈ Td ; h(x) = 0},

and assume that
(C-1) ∇h(x) �= 0 on M .

Take x0 ∈ M,χ ∈ C∞(Td) such that χ(x0) = 1 and the support of χ
is sufficiently small. We make a change of variable x → y around x0, where
y1 = h(x). Letting v(y) = χ(x)u(x), F (y) = χ(x)f(x), we then have

(y1 − z)v(y) = F (y), z �∈ R.

By Tx0(M)⊥, we mean the orthogonal compliment of Tx0(M) in Tx0(R
d).

Applying Lemmas 4.3, 4.5, we obtain the following lemma.
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Lemma 4.7. Let uz = f(x)/(h(x) − z), z �∈ R. Then, there exists a limit
limε→0 u±iε =: u± in the weak ∗ sense, i.e.

(u±iε, g) → (u±, g), ∀g ∈ B. (4.31)

Moreover,

‖u±‖B∗ ≤ C‖f‖B, (4.32)
WF ∗(u±) ⊂ {(x,±ωx) ; x ∈ M}, (4.33)

where ωx ∈ Sd−1 ∩ Tx(M)⊥, and ω · ∇h(x) < 0,

u±(x) − 1
h(x) ∓ i0

⊗
(

f
∣

∣

M

)

∈ B∗
0 , (4.34)

where f
∣

∣

M
means the restriction of f to M .

A solution u ∈ B∗ of the equation

h(x)u = f(x) ∈ B (4.35)

is said to be outgoing (incoming) if it satisfies

WF ∗(u) ⊂ {(x, ωx) ; x ∈ M},
(

WF ∗(u) ⊂ {(x,−ωx) ; x ∈ M}
)

, (4.36)

ωx being as a above. The following lemma is a direct consequence of Lemma 4.6.

Lemma 4.8. Let u ∈ B∗ be a solution to the Eq. (4.35). Then u is outgoing
(incoming) if and only if

u =
f(x)

h(x) − i0
,

(

u =
f(x)

h(x) + i0

)

.

For outgoing (incoming) solution u+ (u−), we have

Im (u±, f) = ±π
∥

∥f
∣

∣

M

∥

∥

2

L2(M)
.

In particular, we have
1

2πi
(u+ − u−, f) =

∥

∥f
∣

∣

M

∥

∥

2

L2(M)
.

5. Rellich Type Theorem on the Torus

5.1. Rellich Type Theorem

Let H0 = L2
(

Td
)s be equipped with the inner product (2.5), and H0(x) an

s×s hermitian matrix whose entries are polynomials of e±ix1 , . . . , e±ixd . Then,
the operator of multiplication by H0(x) is a bounded self-adjoint operator on
H0, which is denoted by H0. The spectrum of H0 is given by (3.1).

We are going to study the following theorem for the Hamiltonian on the
lattice (see [25]). We define ̂H0 = U∗

L0
H0 UL0 = −̂ΔΓ0 , and suppose û satisfies

for some R0 > 0 and λ ∈ σ( ̂H0) except for some exceptional points to be
defined below

( ̂H0 − λ)û = 0 for |n| > R0, lim
R→∞

1
R

∑

R0<|n|<R

|û(n)|2 = 0.
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Then, there exists R > R0 such that û(n) = 0 for |n| > R.
This theorem is proven by passing to the torus Td, and requires the

following property on the regular part of the complex Fermi surface MC
λ =

{z ∈ Td
C ; p(z, λ) = 0}. Recall the notation (3.5), (3.6). We assume

(A-1) There exists a subset T1 ⊂ σ(H0) such that for λ ∈ σ(H0)\T1:

(A-1-1) MC
λ,sngis discrete.

(A-1-2) Each connected component of MC
λ,reg intersects with Td and the

intersection is a (d − 1)-dimensional real analytic submanifold of Td.

We reformulate the Rellich type theorem in the following way. A trigono-
metric polynomial is a vector function, each component of which has the form
∑

|α|≤N cαeiα·x, cα being a constant.

Theorem 5.1. Assume (A-1), and let λ ∈ σ(H0)\T1. Then if u ∈ B∗
0(Td)

satisfies

(H0 − λ)u = f(x) on Td, (5.1)

for some trigonometric polynomial f(x), u(x) is also a trigonometric polyno-
mial.

The 1st step of the proof of Theorem 5.1 is to multiply the Eq. (5.1) by
the cofactor matrix of H0(x) − λ and transform it as

p(x, λ)u(x) = g(x), (5.2)

where g(x) is a trigonometric polynomial. In the following, we pick up one of
the components of u and g, and denote them by u and g again.

Lemma 5.2. Let λ and u be as in Theorem 5.1. Then u ∈ C∞(Td\MC
λ,sng). In

particular, we have

g(x) = 0 on MC
λ,reg ∩ Td. (5.3)

Proof. Take x(0) ∈ MC
λ,reg ∩Td, and let U be a sufficiently small neighborhood

of x(0) in Td such that U∩MC
λ,sng = ∅. Take χ ∈ C∞(Td) satisfying suppχ ⊂ U

and χ(x(0)) = 1. Since ∇p(x0, λ) �= 0, we can make the change of variables on
U : x → y = (y1, y

′) so that y1 = p(x, λ). Let v = χ(x)u(x), h = χ(x)g(x),
Since u ∈ B∗

0 , passing to the Fourier transform,

lim
R→∞

1
R

∫

|η|<R

|ṽ(η)|2dη = 0. (5.4)

By (5.2), ∂
∂η1

ṽ(η) = i˜h(η). Integrating this equation, we have

ṽ(η) = i

∫ η1

0

˜h(s, η′)ds + ṽ(0, η′).

Since ˜h(η) is rapidly decreasing, there exists the limit

lim
η1→∞ ṽ(η) = i

∫ ∞

0

˜h(s, η′)ds + ṽ(0, η′).



2138 K. Ando et al. Ann. Henri Poincaré

We show that this limit vanishes. Let DR be the slab such that

DR =
{

η ; |η′| < δR,
R

3
< η1 <

2R

3

}

.

Then we have DR ⊂ {|η| < R} for a sufficiently small δ > 0. We then see that

1
R

∫

DR

|ṽ(η)|2dη =
1
R

∫

|η′|<δR

∫ 2R/3

R/3

|ṽ(η1, η
′)|2dη1dη′ ≤ 1

R

∫

|η|<R

|ṽ(η)|2dη.

As R → ∞, the right-hand side tends to zero by (5.4), hence so does the
left-hand side, which proves that limη1→∞ ṽ(η) = 0. We have, therefore,

ṽ(η) = −i

∫ ∞

η1

˜h(s, η′)ds.

Then ṽ(η) is rapidly decreasing as η1 → ∞. Similarly, ṽ(η) is rapidly decreasing
as η1 → −∞. Therefore, v = χu ∈ C∞(Td).

It is easy to see that χu is smooth outside Mλ. We have thus proven
u ∈ C∞(MC

λ,reg ∩ Td). In particular, g(x) = 0 on MC
λ,reg ∩ Td. �

Lemma 5.3. g(z) = 0 on MC
λ,reg.

Proof. Near any point in MC
λ,reg∩Td, one can take local coordinates (ζ1, . . . , ζd)

so that MC
λ,reg is represented as ζd = 0. Let ζj = sj + itj . We expand g

∣

∣

MC
λ,reg

into a Taylor series:

g
∣

∣

MC
λ,reg

=
∑

cn1...nd−1ζ
n1
1 . . . ζ

nd−1
d−1 ,

which vanishes for t1 = . . . = td−1 = 0. We then have cn1...nd−1 = 0, hence
g(z) vanishes in a neighborhood of MC

λ,reg ∩ Td. By virtue of (A-1-2) and the
analytic continuation, g(z) vanishes on MC

λ,reg (see e.g. Corollary 7 of [33]). �

Lemma 5.4. The meromorphic function g(z)/p(z, λ) is analytic on Td
C.

Proof. By Lemma 5.3, g(z)/p(z, λ) is analytic near MC
λ,reg. This can be proven

by taking ζd = p(z, λ) as one of local coordinates, and expand g(z) into a
power series. Then the singularities of g(z)/p(z, λ) are on MC

λ,sng. However,
since we have assumed d ≥ 2 and (A-1-1), the singularities are removable (for
the proof, see e.g. Corollary 7.3.2 of [32]). �

We pass to the variables wj = eizj , j = 1, . . . , d, and let C[w1, . . . , wd] be
the ring of polynomials of w1, . . . , wd with coefficients in C. The map

Td
C � z → w ∈ Cd\ d

∪
j=1

Aj , Aj = {w ∈ Cd ; wj = 0}

is biholomorphic, i.e. both of the mappings z → w,w → z are holomorphic.
Let us note that p(z, λ) has the form

p(z, λ) =
∑

α∈Zd,|α|≤N

cα(λ)eiα·z, cα(λ) = c−α(λ).
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Letting γj = max{αj ; cα(λ) �= 0}, we factorize p(z, λ) as

p(z, λ) = P (w, λ)
d
∏

j=1

w
−γj

j , (5.5)

where P (w, λ) ∈ C[w1, . . . , wd]. Note that γj ≥ 0, and this is the minimum
choice of γj for which the factorization (5.5) is possible. Similarly, we factorize
g(z) as

g(z) = G(w)
d
∏

j=1

w
−βj

j ,

where βj is a non-negative integer and G(w) ∈ C[w1, . . . , wd].
Let us recall some basic facts for analytic set (see e.g. [33], or Chapter 1 of

[7]). A subset E ⊂ Cd is called an analytic set if E is, in a neighborhood of each
point ∈ E, the set of common zeros of a certain finite family of holomorphic
functions. An analytic set E = ∩1≤j≤Nf−1

j (0), fj being analytic, splits into
several parts: the set of regular points, which is an analytic submanifold with
complex dimension p =: dimCE ≤ d − 1, and the singular locus, which is a
union of the set of singular points and submanifolds with complex dimension
< p. Note that the set of regular points of E is dense in E, and the singular
locus of E is nowhere dense in E (see Lemma 6 of [33]).

Lemma 5.5. Let Zλ = {w ∈ Cd ; P (w, λ) = 0}. For 1 ≤ j ≤ d, dimC Aj ∩Zλ ≤
d − 2.

Proof. Assume j = 1, and let w′ = (w2, . . . , wd). We rewrite P (w, λ) as

P (w, λ) = P0(w′, λ) + P1(w′, λ)w1 + · · · + Pm(w′, λ)wm
1 ,

where P�(w′, λ) ∈ C[w2, . . . , wd]. If dimC A1 ∩ Zλ = d − 1, P0(w′, λ) = 0 on an
open set in A1, hence it vanishes identically. Therefore, P (w, λ) = w1Q(w, λ)
with Q(w, λ) ∈ C[w1, . . . , wd]. This implies

p(z, λ) = w1Q(w, λ)
d
∏

j=1

w
−γj

j = Q(w, λ)
(

w
−(γ1−1)
1

d
∏

j=2

w
−γj

j

)

.

This contradicts the minimum choice of γ1 in (5.5). �
We now observe

g(z)
p(z, λ)

=
G(w)

P (w, λ)

d
∏

j=1

w
γj−βj

j . (5.6)

Since g(z)/p(z, λ) is analytic, G(w)/P (w, λ) is analytic except possibly on
hyperplanes, Aj , j = 1, . . . , d. In view of Lemma 5.5, we then see that
G(w)/P (w, λ) is analytic except on some set of complex dimension at most
d− 2, which are removable singularities. For the proof, see e.g. Corollary 7.3.2
of [32]. We have, therefore,

• G(w)/P (w, λ) is an entire function.
In particular,
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• G(w) = 0 on the set {w ∈ Cd ; P (w, λ) = 0}.
We factorize P (w, λ) so that

P (w, λ) = P (1)(w, λ) . . . P (N)(w, λ),

where each P (j)(w, λ) is an irreducible polynomial. We prove inductively that

G(w)/
(

P (1)(w, λ) . . . P (n)(w, λ)
)

is a polynomial for 1 ≤ n ≤ N.

Note that, since we know already that G(w)/P (w, λ) is entire,
• G(w)/P (1)(w, λ) . . . P (n)(w, λ) is also entire,
• G(w) = 0 on the zeros of P (1)(w, λ) . . . P (n)(w, λ).

We make use of the Hilbert Nullstellensatz (see e.g [43]).

Lemma 5.6. Suppose f, g ∈ C[w1, . . . , wd] and f is irreducible. If g = 0 on all
zeros of f , there exists h ∈ C[w1, . . . , wd] such that g = fh.

Consider the case n = 1. Since G(w) = 0 on the zeros of P (1)(w, λ),
Lemma 5.6 implies that G(w)/P (1)(w, λ) is a polynomial.

Assuming the case n ≤ 	−1, we consider the case n = 	. By the induction
hypothesis, there exists a polynomial P�−1(w, λ) such that

G(w)
P (1)(w, λ) . . . P (�−1)(w, λ)

= P�−1(w, λ).

Then we have G(w)/(P (1)(w, λ) . . . P (�)(w, λ)) = P�−1(w, λ)/P (�)(w, λ). This
is entire. Therefore, P�−1(w, λ) = 0 on the zeros of P (�)(w, λ). By Lemma 5.6,
there exists a polynomial Q(�)(w, λ) such that

P�−1(w, λ)
P (�)(w, λ)

= Q(�)(w, λ).

Therefore, G(w)/
(

P (1)(w, λ) . . . P (n)(w, λ)
)

is a polynomial for 1 ≤ n ≤ N .
Taking n = N , we have that G(w)/P (w, λ) is a polynomial of w, hence
g(z)/p(z, λ) is a polynomial of eizj by (5.6). This implies that u(z) is a trigono-
metric polynomial. We have thus completed the proof of Theorem 5.1. �

5.2. Thresholds

Let λ1(x) ≤ λ2(x) ≤ · · · ≤ λs(x) be the eigenvalues of H0(x), and

Mλ,j = {x ∈ Td ; λj(x) = λ}. (5.7)

Then we have

p(x, λ) =
s
∏

j=1

(λj(x) − λ), (5.8)

Mλ =
s
∪

j=1
Mλ,j . (5.9)

To study the spectral properties of H0, we need another series of assumptions:
There is a finite set T0 ⊂ σ(H0) such that

(A-2) Mλ,i ∩ Mλ,j = ∅, if i �= j, λ ∈ σ(H0)\T0.
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(A-3) ∇xp(x, λ) �= 0, on Mλ, λ ∈ σ(H0)\T0.

The assumption (A-2) implies that the eigenvalues are distinct in a neigh-
borhood of Mλ if λ ∈ σ(H0)\T0, and moreover H0(x) is smoothly diagonaliz-
able. By (A-2), (5.8) and (5.9), the assumption (A-3) is equivalent to

∇xλj(x) �= 0, on Mλ,j , λ ∈ σ(H0)\T0.

We use (A-2) and (A-3) in the proof of limiting absorption principle for the
resolvent (see Sect. 6).

Let us examine the assumptions (A-1), (A-2), (A-3) for the examples in
Sect. 3. Let ad(x), bd(x) be defined by (2.9) and (2.10). In view of Lemma 2.1,
for H0(x) = ad(x), we can take

T0 = SV (ad), T1 = {−d, d}.

By Lemma 2.2, for H0(x) = bd(x), we can take

T0 = SV (bd), T1 = {−(d + 1)/2, d(d + 1)/2}.

Therefore, we have
• for the d-dim. square lattice

T0 = {n/d ; −d ≤ n ≤ d}, T1 = {−1, 1},

• for the triangular lattice

T0 = {−1, 1/3, 1/2}, T1 = {−1, 1/2},

• for the hexagonal lattice

T0 = {−1,−1/3, 0, 1/3, 1}, T1 = {−1, 0, 1},

• for the Kagome lattice

T0 = {−1,−1/4,−1/2, 0, 1/2}, T1 = {−1,−1/4, 1/2},

• for the d-dim. diamond lattice,

T0 =

{

{±(	 + 1)/(d + 1) ; 	 = d, d − 2, . . . ,−d} ∪ {0}, if d = even,

{±(	 + 1)/(d + 1) ; 	 = d, d − 2, . . . ,−d}, if d = odd,

T1 = {−1, 0, 1},

• for the subdivision of d-dim. square lattice Zd,

T0 = {0,±n/d; n = 1, 2, . . . , d}, T1 = {0,±1}.

Attention must be payed to the ladder of the square lattice Zd in Rd+1

and the graphite. For both the cases, some connected component of MC
λ has

no intersection with Td. We have
• for the ladder of the square lattice Zd in Rd+1,

T0 =
{

− 1,
−2d + 1
2d + 1

,
−2d + 3
2d + 1

, . . . ,
2d − 1
2d + 1

, 1
}

, T1 =
{2d − 1

2d + 1
≤ |λ| ≤ 1

}

,

• for the graphite

T0 = {0,±1/4,±1/2,±1}, T1 = {1/2 ≤ |λ| ≤ 1}.
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5.3. Unique Continuation Property

As in the case of differential operators, the unique continuation property is
a delicate issue for Laplacians on periodic lattices. In this paper, we do not
pursue the general condition for it, but assume it in the following form.
(A-4) Suppose û satisfies ( ̂H0 − λ)û = 0 on V0 for some constant λ ∈ C. If
there exists R0 > 0 such that û = 0 for |n| > R0, then û = 0 on V0.

Theorem 5.1 then implies the following theorem.

Theorem 5.7. Assume (A-1) and (A-4). Suppose û(n) satisfies ( ̂H0 − λ)û = 0
on V0 for some λ ∈ σ( ̂H0)\T1. If

lim
R→∞

1
R

∑

|n|<R

|û(n)|2 = 0,

then, û = 0 identically on V0. In particular, ̂H0 has no eigenvalue in σ( ̂H0)\T1.

The validity of the unique continuation property (A-4) depends largely on
the geometry of the lattice. We give here an algebraic condition to guarantee
(A-4).

Lemma 5.8. Suppose there exists a polynomial f(z, λ) such that p(x, λ) is writ-
ten as p(x, λ) = f(ad(x), λ) or p(x, λ) = f(bd(x), λ). If p(x, λ) is a non-zero
polynomial, ̂H0 − λ has the unique continuation property (A-4).

Proof. Passing to the torus, and multiplying the cofactor matrix of H0(x)−λ,
we obtain the equation p(x, λ)u = 0. Returning to the lattice, û satisfies

̂P (λ)û = 0, (5.10)

where ̂P (λ) is defined by p(x, λ) with e−ixj , eixj replaced by shift operators
̂Sj , ̂S

∗
j , respectively.
We let

̂S =
d
∑

j=1

(

̂Sj + ̂S∗
j

)

, ̂T =
∑

1≤j<k≤d

(

̂Sj
̂S∗

k + ̂Sk
̂S∗

j

)

.

Then 2ad(x) and 2bd(x) correspond to ̂S and −d − 1 + ̂S + ̂T , respectively. By
the assumption of Lemma 5.8, the Eq. (5.10) is rewritten as either

N
∑

p=0

cp
̂Sp û = 0, (5.11)

or

N
∑

p=0

cp

(

̂S + ̂T
)p

û = 0, (5.12)
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Figure 11. Dn and Ωn

where cp is a constant and cN = 1.

The case (5.11). For n ∈ Zd, we put

Dn = {n − e1, ̂Sj(n − e1), ̂S∗
j (n − e1) ; j = 1, . . . , d}

= {n − e1 ± ej ; j = 1, . . . , d}, (5.13)

Ωn =

⎧

⎨

⎩

	 ∈ Zd ;
d
∑

j=2

|nj − 	j | ≤ n1 − 	1

⎫

⎬

⎭

. (5.14)

Geometrically, Ωn is a cone with vertex n, and related with Dn as follows. We
define

Dk ≺ D� ⇐⇒ 	 ∈ Dk\{k}.

Then starting from Dn, one can construct a chain of Dk’s satisfying

Dn ≺ Dk ≺ Dk′ ≺ . . . .

Ωn is the union of such chains (Fig. 11).
Note that, although û(n) is defined on the multiple lattice V0, each com-

ponent ûi(n) is a function on a single lattice Zd. Evaluating the Eq. (5.11) at
k ∈ Zd, we see that ûi(k + Ne1) is written by a linear combination of ûi(	)
for 	 ∈ Ωk+Ne1 , and ûi(	) is written as a linear combination of ûi(m), where
m ∈ Ω�. This procedure can be repeated as long as possible. Now suppose
ûi(k) = 0 near infinity. By the above procedure, we then see that ûi(n) = 0.
Hence û = 0 identically.

The case (5.12). We define (Fig. 12)

Dn =
{

̂Sj(n − e1), ̂S∗
j (n − e1), ̂Si

̂S∗
j (n − e1), ̂S∗

i
̂Sj(n − e1) ; 1 ≤ i, j ≤ d

}

,

Ωn = {	 ∈ Zd ; 	1 ≤ n1, 	i + 	j ≤ ni + nj , 1 ≤ i, j ≤ d
}

.
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Figure 12. Dn and Ωn

Then, the same argument works also for this case. �

As has been computed in Sect. 3, all of our examples satisfy the assump-
tion of Lemma 5.8, hence have the unique continuation property. Note that
p(x, 1/2) = 0 for the Kagome lattice by (3.24), and p(x, 0) = 0 for the subdi-
vision by (3.53). Later, we show that σp( ̂H0) = {1/2} for the Kagome lattice,
and σp( ̂H0) = {0} for the subdivision. See (5.17) and (5.18).

We can also add perturbations by scalar potentials. Here, by a scalar
potential on a graph Γ = {V, E}, we mean an operator ̂V such that

(̂V ̂f)(v) = ̂V (v) ̂f(v), ∀v ∈ V,

where ̂V (v) ∈ C. First let us consider the diamond lattice.

Lemma 5.9. Let ̂H0 be the Laplacian on the d-dimensional diamond lattice,
where d ≥ 2, and ̂V a compactly supported scalar potential. Then ̂H = ̂H0 + ̂V
has the unique continuation property (A-4).

Proof. Suppose ( ̂H0 − λ)û = −̂V û. Taking account of (3.44) and multiplying
this equation by the matrix

̂C0 =

(

0 1 + ̂S∗
1 + · · · + ̂S∗

d

1 + ̂S1 + · · · + ̂Sd 0

)

,

we have
∑

i

(

û(n + ei) + û(n − ei)
)

+
∑

i<j

(

û(n + ei − ej) + û(n + ej − ei)
)

= c1û(n) + c2

(

̂C0
̂V û
)

(n), (5.15)
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where ci is a constant. The right-hand side is rewritten as

c1

(

û1(n)

û2(n)

)

+ c2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

û2(n) +
d
∑

j=1

b(n + ej)û2(n + ej)

û1(n) +
d
∑

j=1

a(n − ej)û1(n − ej)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (5.16)

where a(n), b(n) ∈ C. To prove the lemma, we have only to show that if
û(n) = 0 for all n = (n1, n

′) such that n1 < k1, then û(k1, n
′) = 0 for all

n′ ∈ Zd−1. Let n1 = k1 − 1 in (5.15), and take the lower component. Since the
right-hand side vanishes, we have

û2(k1, n
′) +

d
∑

j=2

û2(k1, n
′ − ej) = 0, ∀n′.

In Zd−1, consider a cone with vertex n′:

C(n′) = {m′ = (m′
2, . . . ,m

′
d) ; m′

i ≤ n′
i, 2 ≤ i ≤ d}.

Since û2(k1,m
′) = 0 near infinity of C(n′), one can show inductively that

û2(k1, n
′) = 0. Taking the upper component, we then have

û1(k1, n
′) +

d
∑

j=2

û1(k1, n
′ − ej) = 0, ∀n′.

Arguing as above, we have û1(k1, n
′) = 0. This proves the lemma. �

We consider the other examples.

Theorem 5.10. Let ̂H0 be the Laplacian of one of the following lattices: square
lattice, triangular lattice, d-dimensional diamond lattice (d ≥ 2), ladder of
d-dimensional square lattice, graphite in R3. Let ̂V be a complex-valued com-
pactly supported scalar potential. Then ̂H = ̂H0 + ̂V has the unique continua-
tion property (A-4). In particular, ̂H has no eigenvalue in σ( ̂H0)\T1.

This theorem is proven by observing the figure of the graph, and the
idea of the proof is similar to the case of square lattice given in [25]. (See the
Fig. 13.) We enlarge the region on which û = 0 step by step by using the
equation ( ̂H − λ)û = 0. Let us illustrate it for the hexagonal lattice, although
this is the case of d = 2 in Lemma 5.9. From the equation −̂ΔΓû+(̂V −λ)û = 0,
one obtains

û2(n1, n2 − 1) = −û2(n1 − 1, n2) − û2(n1, n2) + 3
(

̂V (n1, n2) − λ
)

û1(n1, n2),

û1(n1 + 1, n2) = −û1(n1, n2 + 1) − û1(n1, n2) + 3
(

̂V (n1, n2) − λ
)

û2(n1, n2).

The left-hand side vanishes, if so does each term of the right-hand side, and
this occurs by the assumption that û(n) = 0 near infinity and the induction
procedure (see the Fig. 14).
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Figure 13. The unique continuation on the square lattice

Figure 14. The unique continuation on the hexagonal lattice

Figure 15. The unique continuation on the triangular lattice

In the case of the triangular lattice and the square ladder, the unique
continuation procedure is illustrated in Figs. 15 and 16, respectively. We omit
the proof for the graphite, which can be easily imagined by comparing Figs. 9
and 14.

The Fig. 17 shows the reason why this procedure does not work for the
case of the Kagome lattice. In fact, for the potential

̂V (n) =

{

v, if n = xj , j = 1, 2, . . . , 6,

0, otherwise,
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Figure 16. The unique continuation on the square ladder

Figure 17. The unique continuation fails on the Kagome lattice

v being an arbitrary constant, we have an eigenvalue λv = v + 1/2 with the
compactly supported eigenvector

û(n) =

{

(−1)j , if n = xj , j = 1, 2, . . . , 6
0, otherwise.

Letting v = 0, we get that

σp( ̂H0) = {1/2} (5.17)

for the Kagome lattice. Note that if −3/2 < v < 0, λv = v+1/2 is an embedded
eigenvalue for the non-zero potential ̂V . See [45] for the case of ̂V ≡ 0.

The unique continuation also fails for the subdivision, which is illustrated
in the Fig. 18 for the 2-dimensional square lattice case. In fact, the potential

̂V (n) =

{

v, if n = xj , j = 1, 2, 3, 4,

0, otherwise,

v being an arbitrary constant, has an eigenvalue λv = v with the compactly
supported eigenvector

û(n) =

{

(−1)j , if n = xj , j = 1, 2, 3, 4,

0, otherwise.
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Figure 18. The unique continuation fails on the subdivision
of 2-dimensional square lattice

Letting v = 0, we have

σp( ̂H0) = {0} (5.18)

for the subdivision.

5.4. A Counter Example

The assumption (A-1-2) is characteristic in its topological feature. For the case
of differential operators, Hörmander [17] imposed a similar assumption and also
proved that it is necessary for the Rellich type theorem. In the discrete case,
we can construct examples showing the necessity of excluding the set T1.

Consider the Hamiltonian ̂H0 for the ladder of the square lattice in Rd+1

(Sect. 3.8). We add a scalar potential ̂V to ̂H0, where ̂V (0) = c, ̂V (n) = 0
for n �= 0, c being a real constant yet to be determined. Then the eigenvalue
problem is rewritten as

(

̂H0(n) − λ
)

û(n) = −cû(0)δn0, where δn0 = 1 for
n = 0, δn0 = 0 for n �= 0, i.e.

⎛

⎝− 2
2d + 1

d
∑

j=1

cos xj − λ

⎞

⎠u1(x) − 1
2d + 1

u2(x) = − c

2π
û1(0),

⎛

⎝− 2
2d + 1

d
∑

j=1

cos xj − λ

⎞

⎠u2(x) − 1
2d + 1

u1(x) = − c

2π
û2(0).

We seek the solution in the form u1(x) = ±u2(x) =: v±(x), and obtain

v±(x) = c
v̂±(0)

2π

1
1

2d + 1
(±1 + 2

∑d
j=1 cos xj) + λ

.
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If ±λ > (2d− 1)/(2d+1), we take v±(x) =
(

1
2d+1 (±1+2

∑d
j=1 cos xj)+λ

)−1,
and c = 2π/v̂±(0) to get the desired potential and eigenvector. Note that the
associated eigenvector v̂±(n) is not compactly supported.

In the case of graphite, we consider the eigenvalue problem
(

̂H0 + ̂V
)

û =
λû, where the scalar potential is ̂V (0) = (c1, c2, c1, c2), ̂V (n) = 0 for n �= 0. We
rewrite it as

{

−1
4

(

0 c(x)
c(x) 0

)

− λ

}

(

u1(x)
u2(x)

)

− 1
4

(

u3(x)
u4(x)

)

=
1
2π

(

c1û1(0)
c2û2(0)

)

,

{

−1
4

(

0 c(x)
c(x) 0

)

− λ

}

(

u3(x)
u4(x)

)

− 1
4

(

u1(x)
u2(x)

)

=
1
2π

(

c1û3(0)
c2û4(0)

)

,

where c(x) is defined by (3.67). Putting u1(x) = ±u3(x) = v±,1(x) and u2(x) =
±u4(x) = v±,2(x), we obtain

−1
4

(

4λ ± 1 c(x)
c(x) 4λ ± 1

)

(

v±,1(x)
v±,2(x)

)

=
1
2π

(

c1v±,1(0)
c2v±,2(0)

)

,

which is solved as
(

v±,1(x)
v±,2(x)

)

=
1

(

3
4

)2
{

(

4
3λ ± 1

3

)2 − α(x)
9

}

(

− 1
8π

)

(

4λ ± 1 −c(x)
−c(x) 4λ ± 1

)

(

c1v±,1(0)
c2v±,2(0)

)

,

where α(x) is defined by (3.20). Note that the characteristic polynomial of the
Hamiltonian on the hexagonal lattice (3.19) appears in the dominator with λ
replaced by 4λ/3 ± 1/3. If ±λ > 1/2, choosing cj = −8π/v±,j(0), j = 1, 2, we
have the desired potential and eigenvectors which are not compactly supported.

Due to the formula (3.78), the same argument as above works for the
ladder Lad(Γ) of k-regular periodic graph Γ. The characteristic polynomial of
the associated Hamiltonian is given by (3.79) using that on Γ.

Summing up the arguments in this subsection, we have

Theorem 5.11. Let Γ be a k-regular periodic graph, and Lad(Γ) the ladder of
Γ. Then we have
(1) For any λ ∈

(

− 1,−k−1
k+1

)

∩ σ( ̂H0), there exists 0 �= v̂ ∈ L2(Td) ⊂ B∗
0

satisfying ( ̂H0 − λ)v̂ = 0 in |n| > R0 for sufficiently large R0.
(2) For any λ ∈

(

− 1,−k−1
k+1

)

∩ σ( ̂H0), there exists a compactly supported
potential ̂V such that λ is an eigenvalue of ̂H0 + ̂V .

(3) Let σmax := max
(

σ( ̂H0)\σp( ̂H0)
)

. Then, the assertions (1) and (2) hold

with
(

− 1,−k−1
k+1

)

replaced by
(

kσmax−1
k+1 , σmax

)

.

Remark 5.12. Let λ1(x) ≤ λ2(x) ≤ · · · ≤ λs(x) be the eigenvalues of H0(x) as
in Sect. 5.2. Then λ1(x) attains its minimum at x = 0 ∈ Td and λ1(0) = −1,
which is a simple eigenvalue of H0(0) with a constant eigenfunction. Moreover,
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the Hessian of λ1(x) at x = 0 ∈ Td is positive definite. Therefore, inf σ( ̂H0) =
−1 and [−1,−1 + ε] ⊂ σ( ̂H0) for some ε > 0. See e.g. [30].

Remark 5.13. We cannot take σmax as max σ( ̂H0), since it could be an isolated
eigenvalue with ∞-multiplicity and the interval in (3) might be empty. Such
an example of periodic graph is L(L(Γ)), i.e. the line graph of the line graph
of a k-regular periodic graph Γ with k ≥ 3. See [45].

Let us further remark here that [44] obtains the eigenfunctions for embed-
ded eigenvalues with unbounded support in a way very similar to above on
periodic combinatorial graphs. Note also the construction of eigenfunctions
with such properties on periodic metric graphs given there.

6. Spectral Properties of the Free Hamiltonian

6.1. Resolvent Estimates

We now study H0 in
(

L2(Td)
)s under the assumptions (A-1), (A-2), (A-3). The

eigenvalues of H0(x) are arranged so that λ1(x) ≤ . . . ≤ λs(x), and assumed
to be distinct on Mλ. Let Pj(x) be the eigen projection associated with λj(x).
Take a compact interval J ⊂ σ(H0)\T0 and let U ε0 be an ε0-neighborhood
of ∪λ∈JMλ. Then Pj(x) ∈ C∞(U ε0) for a sufficiently small ε0 > 0. We fix
λ ∈ J , and take x0 ∈ Mλ. Let χ ∈ C∞

0 (U ε0) such that χ(x) = 1 on a small
neighborhood of x0. Then, letting u = R0(z)f , we have

(λj(x) − z)χ(x)Pju(x) = χ(x)Pjf(x).

We can then apply Lemma 4.7 to obtain the following theorem.

Theorem 6.1. (1) For f ∈ B and λ ∈ σ(H0)\T0, there exists a weak ∗ limit,
limε→0 R0(λ ± iε)f =: R0(λ ± i0)f , i.e.

(R0(λ ± iε)f, g) → (R0(λ ± i0)f, g), ∀g ∈ B.

(2) Moreover,

‖R0(λ ± i0)f‖B∗ ≤ C‖f‖B,

where the constant C is independent of λ when λ varies over a compact
set in σ(H0)\T0.

(3) R0(λ ± i0)f is weakly ∗ continuous in the sense that

σ(H0)\T0 � λ → (R0(λ ± i0)f, g)

is continuous for f, g ∈ B.
(4) Letting u± = R0(λ ± i0)f , we have

WF ∗(Pju±) ⊂ {(x,±ωx) ; x ∈ Mλ,j},

where ωx ∈ Sd−1 ∩ Tx(Mλ,j)⊥, and ωx · ∇λj(x) < 0,

Pju± ∓ 1
λj(x) − λ ∓ i0

⊗
(

(Pjf)
∣

∣

Mλ,j

)

∈ B∗
0 .
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Proof. We take h(x) = λj(x) − λ in Lemma 4.7. The independence of the
constant C in (2) can be seen by examining the proof. The local uniformity of
the convergence with respect to λ as ε → 0 implies the continuity in (3). The
other assertions are direct consequences of Lemma 4.7. �

A solution u ∈ B∗ of the equation

(H0(x) − λ)u = f ∈ B (6.1)

is outgoing (incoming) if it satisfies

WF ∗(Pju) ⊂ {(x, ωx) ; x ∈ Mλ,j},
(

WF ∗(Pju) ⊂ {(x,−ωx) ; x ∈ Mλ,j}
)

(6.2)

with ωx satisfying ωx ∈ Sd−1 ∩ Tx(Mλ,j)⊥, and ωx · ∇λj(x) < 0.
The next lemma follows from Lemma 4.8.

Lemma 6.2. Let u ∈ B∗ be a solution to (6.1). Then u is outgoing (incoming)
if and only if

Pj(x)u(x) =
Pj(x)f(x)

λj(x) − λ − i0
,
(

Pj(x)u(x) =
Pj(x)f(x)

λj(x) − λ + i0

)

. (6.3)

For the outgoing (incoming) solution u+ (u−), we have

Im (u±, f) = ±π
∥

∥f
∣

∣

Mλ

∥

∥

2

L2(Mλ)
.

Lemma 6.3. Suppose u ∈ B∗ satisfies (H0 − λ)u = f ∈ B and one of the
radiation conditions. If Im(u, f) = 0, then u ∈ B∗

0.

This lemma follows from Theorem 6.1 (4) and Lemma 6.2. The following
lemma is a direct consequence of Theorem 5.1 and Lemma 6.3.

Lemma 6.4. Let λ ∈ σ(H0)\T1, and suppose u ∈ B∗ satisfies (H0 − λ)u = 0 in
Td. Then, u = 0 if u satisfies the outgoing or incoming radiation condition.

6.2. Spectral Representation

We define a spectral representation of H0, which is essentially a diagonalization
of H0. Let

hλ,j = L2
(

Mλ,j ,C,dMλ,j/|∇λj(x)|
)

be the Hilbert space of C-valued functions on Mλ,j equipped with the inner
product

(φ, ψ) =
∫

Mλ,j

φ(x)ψ(x)
dMλ,j

|∇λj(x)| .

We let
˜Hj =

{

Pj(x)f(x) ; f(x) ∈ L2(Td,Cs,dx)
}

.

By using an eigenvector aj(x) ∈ Cs satisfying H0(x)aj(x) = λj(x)aj(x),
|aj(x)| = 1, we can rewrite

Pj(x)f(x) =
(

f(x) · aj(x)
)

aj(x),
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hence ˜Hj = {α(x)aj(x) ; α(x) ∈ L2(Td,C, dx)}. One must note, however,
that the eigenvector cannot be chosen uniquely. Therefore, we introduce
an equivalent relation ∼ for (α(x), aj(x)), (β(x), bj(x)), where α(x), β(x) ∈
L2(Td,C, dx) and aj(x), bj(x) are normalized eigenvectors for H0(x) associ-
ated with eigenvalue λj(x),

(α(x), aj(x)) ∼ (β(x), bj(x)) ⇐⇒ (α(x) · aj(x))aj(x) = (β(x) · bj(x))bj(x).

Then ˜Hj is the resulting equivalence class. Noting that

dx =
dMλ,jdλ

|∇λj(x)| ,

we identify ˜Hj with

H(0)
j = L2(I(0)

j ,hλ,jaj ,dλ),

I
(0)
j = λj(Td)\T0, (6.4)

where hλ,jaj = {αaj

∣

∣

Mλ,j
; α ∈ hλ,j}, aj(x) being the normalized eigenvector

of H0(x). Finally, letting

I(0) =
s
∪

j=1
I
(0)
j = σ(H0)\T0,

we define hλ,j and H(0)
j to be {0} for λ ∈ I(0)\I

(0)
j , and put

hλ = hλ,1a1 ⊕ . . . ⊕ hλ,sas, (6.5)

H(0) = H(0)
1 ⊕ . . . ⊕ H(0)

s = L2(I(0),hλ,dλ). (6.6)

In the above definition of H(0)
j ,hλ,j depends also on λ. Since Mλ,j is defined

by λj(x) = λ, by splitting the interval I
(0)
j into subintervals I

(0)
j,� so that on

each I
(0)
j,� ,Mλ,j is diffeomorphic to a fixed manifold Nj,�, then H(0)

j should be

written as a direct sum ⊕�L
2(I(0)

j,� , L2(Nj,�),dμj,�(λ)) for a suitable measure
dμj,�(λ). For the sake of simplicity, however, we use the Definition (6.4).

By Lemma 6.2, we have

Pj

(

R0(λ + i0) − R0(λ − i0)
)

=
(

(λj(x) − λ − i0)−1 − (λj(x) − λ + i0)−1
)

Pj .

In particular, we have the following Parseval formula :

1
2πi

(

(R0(λ + i0) − R0(λ − i0))f, g
)

=
s
∑

j=1

∫

Mλ,j

(Pjf)(x) · (Pjg)(x)
dMλ,j

|∇λj(x)| . (6.7)

Using the distribution

E ′(Rd) � δMλ,j
: ϕ → 〈δMλ,j

, ϕ〉 =
∫

Mλ,j

ϕ(x)
dMλ,j

|∇λj(x)| , (6.8)
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we can rewrite (6.7) as

1
2πi

(R0(λ + i0) − R0(λ − i0)) =
s
∑

j=1

δMλ,j
Pj . (6.9)

With the above formulas in mind, we define

F0 : H0 � f → (P1f, . . . , Psf) ∈ H(0). (6.10)

Theorem 6.5. (1) F0 is a unitary operator from (L2(Td))s to H(0).
(2) For any f ∈ H0, (F0H0f)(λ) = λ(F0f)(λ).

Let us further study

F0(λ)f = (F0f) (λ) =
(

F0,1(λ)f, . . . ,F0,s(λ)f
)

∈ hλ. (6.11)

More precisely,

F0,j(λ)f =

{

Pj(x)f(x)
∣

∣

∣

Mλ,j

, if λ ∈ I
(0)
j ,

0, otherwise,
(6.12)

F0,j(λ)∗φ =
{

Pj(x)φ(x) ⊗ δMλ,j
, if λ ∈ I

(0)
j ,

0, otherwise.
(6.13)

Then, by (6.7)
1

2πi
((R0(λ + i0) − R0(λ − i0))f, g) = (F0(λ)f,F0(λ)g)hλ

. (6.14)

This implies

‖F0(λ)f‖2
hλ

= ‖f‖2
L2(Mλ) =

s
∑

j=1

‖Pjf‖2
L2(Mλ,j)

. (6.15)

Lemma 6.6. For any compact set J ⊂ σ(H0)\T0, there exists a constant C > 0
such that

‖F0(λ)f‖hλ
≤ C‖f‖B, λ ∈ J.

Proof. This follows from (6.7) and Theorem 6.1. �

As a direct consequence of this lemma, we have

F0(λ)∗ ∈ B(hλ ; B∗).

By Theorem 6.5 (2), we have F0(λ)(H0 − λ)f = 0,∀f ∈ B. Therefore

(H0 − λ)F0(λ)∗ = 0. (6.16)

Multiplying the cofactor matrix from the left, we then obtain

p(x, λ)F0(λ)∗ = 0,

which implies that suppF0(λ)∗φ ⊂ Mλ for any φ ∈ hλ.

Lemma 6.7. For any compact set J ⊂ σ(H0)\T0, there exists a constant C > 0
such that

C−1‖φ‖hλ
≤ ‖F0(λ)∗φ‖B∗ ≤ C‖φ‖hλ

, λ ∈ J.
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Proof. The estimate from above follows from Lemma 6.6. To prove the estimate
from below, we have only to take φ in a dense set of hλ. Therefore, without
loss of generality, we can assume that T (x)−1φ is continuous where T (x) :=
⊕s

j=1|∇λj(x)|. We take a partition of unity {χj} on Mλ so that φj = χjφ has
a small support. Let uj = F0(λ)∗φj on the fundamental domain, and extend
it to be 0 outside. Then, uj ∈ B∗(Rd) and one can apply Lemma 4.2 to get
the estimate

‖φj‖hλ
≤ C‖F0(λ)∗φj‖B∗ .

We can take a smooth extension χ̃j ∈ C∞
0 (Rd) of χj so that F0(λ)∗φj =

χ̃jF0(λ)∗φ. Then we have

‖χ̃jF0(λ)∗φ‖B∗ ≤ C‖F0(λ)∗φ‖B∗ ,

hence

‖φ‖hλ
≤
∑

j

‖φj‖hλ
≤
∑

j

C‖χ̃jF0(λ)∗φ‖B∗ ≤ C‖F0(λ)∗φ‖B∗ ,

which completes the proof of the lemma. �

Lemma 6.8. For λ ∈ σ(H0)\T0,F0(λ)B = hλ.

Proof. We use the following Banach’s closed range theorem (see [50], p. 205).

Theorem 6.9. Let X,Y be Banach spaces, and T a bounded operator from X
to Y . Let R(T ) = {Rx ; x ∈ X}, N(T ) = {x ∈ X ; Tx = 0}, and denote
the pairing between X and its dual space X∗ by 〈 , 〉. Then the following four
assertions are equivalent.

(1) R(T ) is closed.
(2) R(T ∗) is closed.
(3) R(T ) = N(T ∗)⊥ = {y ∈ Y ; 〈y, y∗〉 = 0, ∀y∗ ∈ N(T ∗)}.
(4) R(T ∗) = N(T )⊥ = {x∗ ∈ X∗ ; 〈x, x∗〉 = 0, ∀x ∈ N(T )}.

We take X = B, Y = hλ and T = F0(λ). Then by Lemma 6.7, T ∗ is 1
to 1, and R(T ∗) is closed. Theorem 6.9 then implies that R(T ) is dense and
closed. �

Lemma 6.10. For λ ∈ σ(H0)\T0, {u ∈ B∗ ; (H0 − λ)u = 0} = F0(λ)∗hλ.

Proof. The inclusion relation {u ∈ B∗ ; (H0 − λ)u = 0} ⊃ F0(λ)∗hλ is proven
in (6.16). To prove the converse relation, in view of (4) of Theorem 6.9, we
have only to prove

u ∈ B∗, f ∈ B, (H0 − λ)u = 0, F0(λ)f = 0 =⇒ (u, f) = 0.

However, as has been seen before Lemma 6.7, (H0 − λ)u = 0 implies suppu ⊂
Mλ. By Lemma 4.2, u is an L2-density on Mλ. Then (u, f) is an integral of
u(x)f(x) on Mλ, However, the restriction of f(x) to Mλ is 0. This proves the
lemma. �
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Let us also mention the singularity expansion of the solution of the
Helmholtz equation (H0 − λ)u = 0. Let

A±(λ) =
1

2πi

s
∑

j=1

1
λj(x) − λ ∓ i0

⊗ Pj(x)
∣

∣

∣

x∈Mλ,j

. (6.17)

Then by (6.13),

F0(λ)∗ = A+(λ) − A−(λ). (6.18)

In view of Lemma 6.10, we obtain the following lemma.

Lemma 6.11. Let λ ∈ σ(H0)\T0. Then for any solution u ∈ B∗ of the equation
(H0 − λ)u = 0, there exists φ ∈ hλ such that

u = A+(λ)φ − A−(λ)φ.

7. Hamiltonian on the Perturbed Lattice

7.1. Perturbed Lattice

Let Γ0 = {L0,V0, E0} be the periodic graph given in Sect. 2.2. To remove an
edge e from Γ0, we mean to remove e from the edge set E0, but not to remove
end points o(e) and t(e) of e from the vertex set V0. To remove a vertex v from
V0, we mean to remove v from V0 as well as all edges having v as an end point.
We can also perturb a lattice by adding vertices and edges.

Now let us perturb a finite part of Γ0, and denote the resulting graph by
Γ = {V, E}. Take a large integer a > 0, and put

Zd
ext = Zd\{n ; |ni| ≤ a, 1 ≤ i ≤ d}, (7.1)

∂Zd
ext =

d
∪

i=1
{n ∈ Zd

ext ; |ni| = a}, (7.2)

Vext =
s
∪

j=1
{pj + v(n) ; n ∈ Zd

ext}, (7.3)

∂Vext =
s
∪

j=1
{pj + v(n) ; n ∈ ∂Zd

ext}, (7.4)

◦
Vext = Vext\∂Vext, (7.5)

Vint = V\
◦

Vext, (7.6)

∂Vint = ∂Vext, (7.7)
◦

Vint = Vint\∂Vint. (7.8)

Then, V consists of a disjoint union of two parts :

V =
◦

Vext ∪Vint, �Vint < ∞.

Accordingly, the Hilbert space 	2(V) admits an orthogonal decomposition

	2(V) = 	2(
◦

Vext) ⊕ 	2(Vint).
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The elements û of 	2(
◦

Vext) are written as vectors of s-components : û(n) =
(û1(n), . . . , ûs(n)), ûi(n) ∈ 	2(Zd

ext), while ŵ ∈ 	2(Vint) is simply a finite-
dimensional vector.

Let

̂Pext : 	2(V) → 	2(
◦

Vext), ̂Pint : 	2(V) → 	2(Vint)

be the associated orthogonal projections, which are naturally extended to
	2loc(V). Let ̂ΔΓ be the Laplacian on the graph Γ, which is self-adjoint on
	2(V).

7.2. Spectral Properties for ̂H

We put
̂H = −̂ΔΓ + ̂V , (7.9)

and study its spectral properties. Let us repeat our assumptions (A-1) ∼ (A-4)
on the unperturbed lattice and add new assumptions (A-5), (A-6) on pertur-
bations.

(A-1) There exists a subset T1 ⊂ σ(H0) such that for λ ∈ σ(H0)\T1:
(A-1-1) MC

λ,sng is discrete.
(A-1-2) Each connected component of MC

λ,reg intersects with Td and the
intersection is a (d − 1)-dimensional real analytic submanifold of
Td.

(A-2) There exists a finite set T0 ⊂ σ(H0) such that

Mλ,i ∩ Mλ,j = ∅, if i �= j, λ ∈ σ(H0)\T0.

(A-3) ∇xp(x, λ) �= 0, on Mλ, λ ∈ σ(H0)\T0.

(A-4) The unique continuation property holds for ̂H0 in V0.
(A-5) ̂V is bounded self-adjoint on 	2(V) and has support in Vint, i.e. ̂V û = 0

on Vext,∀û ∈ 	2(V).
(A-6) The unique continuation property holds for ̂H0 in Vext.

Here, (A-6) is defined in the same way as in (A-4) with V0 replaced by
Vext.

The spaces ̂B, ̂B∗, ̂B∗
0 , 	2,t are naturally defined on V. For z �∈ R, let

̂R(z) = ( ̂H − z)−1, (7.10)
̂R0(z) = ( ̂H0 − z)−1, (7.11)

where ̂H0 is the Hamiltonian on V0 defined in Sect. 4. Given a subset S ⊂ Zd

and its characteristic function χ̂S , we use χ̂S to denote either the operator of
restriction to S : 	2loc(Z

d) � û → û
∣

∣

S
∈ 	2loc(S), or the operator of extension:

	2loc(S) � û → v̂ ∈ 	2loc(Z
d), where v̂ = û on S, v̂ = 0 on Zd\S. This will not

confuse our arguments. The spaces 	2(V) and 	2(V0), on which ̂H and ̂H0 live,
differ only by a finite dimensional space. Therefore, by the well-known theorem
on the compact perturbation of self-adjoint operators, we have the following
theorem.
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Theorem 7.1. σe( ̂H) = σ( ̂H0).

Lemma 7.2. (1) The eigenvalues of ̂H in σe( ̂H)\T1 is finite with finite mul-
tiplicities.

(2) There is no eigenvalue in σe( ̂H)\T1, provided Vint has the unique contin-
uation property.

Here, the unique continuation property on Vint is the following assertion.
Suppose for some λ ∈ C, (−̂ΔΓ + ̂V − λ)û = 0 holds on V and û(n) = 0 on

◦
Vext. Then û = 0 on whole V.

Proof. Let û be the eigenvector of ̂H with eigenvalue in σ( ̂H0)\T1. Then, by
Theorem 5.1, it vanishes near infinity. By (A-6), we then have û = 0 on Vext.
Therefore, all eigenvectors are supported in Vint, hence are finite-dimensional.
The assertion (2) is obvious. �

So far, we have studied the operator ̂H under the assumptions (A-1) ∼
(A-6). It is because we are interested in the Rellich–Vekua theorem and the
absence of embedded eigenvalues, both of which play important roles in the
application to the inverse problem. However, by adopting the already estab-
lished perturbation method in scattering theory, we can study the spectral
properties of ̂H, including T1, under the assumptions (A-2), (A-3) and (A-5)
only. The trade-off is the weaker result for embedded eigenvalues.

For û ∈ ̂B∗, its wave front set is defined by

WF ∗(û) = WF ∗(UL0
̂Pextû).

A solution û ∈ ̂B∗ of the equation

( ̂H − λ)û = ̂f ∈ B

is said to be outgoing (or incoming), if U ̂Pextû satisfies the condition (6.2).
Recall the following lemma.

Lemma 7.3. For f(x) ∈ L1(0,∞), put

u(x) =
∫ ∞

x

f(t)dt.

Then, for any s > 1/2, we have
∫ ∞

0

x2(s−1)|u(x)|2dx ≤ 4
(2s − 1)2

∫ ∞

0

x2s|f(x)|2dx.

This is well known, and can be proven by using Hardy’s inequality. For
the proof see e.g. [24], Chapter 3, Lemma 3.3.

Lemma 7.4. Assume (A-2), (A-3), (A-5). Then, for any compact interval I ⊂
σ( ̂H0)\T0 and s > 0, there exists a constant Cs,I > 0 such that if û ∈ B∗

satisfies ( ̂H−λ)û = 0 on V and the outgoing (or incoming) radiation condition,

‖û‖�2,s ≤ Cs,I‖û‖B∗ , ∀λ ∈ I.
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Proof. We put ûe = ̂Pextû, ûi = ̂Pintû. First we show that

Im(( ̂H − λ)ûe, ûe)) = 0. (7.12)

In fact, using the equation, we have

(( ̂H − λ)ûe, ûe))

= −(( ̂H − λ) ̂Pintû, ̂Pintû))−(( ̂H − λ) ̂Pextû, ̂Pintû)−(( ̂H − λ) ̂Pintû, ̂Pextû).

By the computation

(( ̂H − λ) ̂Pintû, ̂Pextû)) − ( ̂Pextû, ( ̂H − λ) ̂Pintû)

= (( ̂H − λ) ̂Pintû, û − ̂Pintû)) − (û − ̂Pintû, ( ̂H − λ) ̂Pintû)

= (( ̂H − λ) ̂Pintû, ̂Pintû)) − ( ̂Pintû, ( ̂H − λ) ̂Pint
̂Pintû)

= ( ̂Pint( ̂H − λ) ̂Pintû, ̂Pintû)) − ( ̂Pintû, ̂Pint( ̂H − λ) ̂Pint
̂Pintû)

= 0,

we prove (7.12).
We put ̂fe = ( ̂H − λ)ûe = [ ̂H, ̂Pext]û, which is compactly supported.

Letting UL0 ûe = ue and UL0
̂fe = fe, we then have (H0 −λ)ue = fe, and (7.12)

implies Im(ue, fe) = 0. Lemma 6.2 then yields fe

∣

∣

Mλ
= 0. By Lemma 6.3, it

follows that ue ∈ B∗
0 .

Now, we argue as in the proof of Lemma 4.3. We take y1 = p(x, λ) as a
new variable and pass to the Fourier transform. Then taking account of (4.22),
since ue satisfies the outgoing radiation condition, we have

‖ũe(ξ1, ·)‖t ≤ Ct

∫ ∞

ξ1

‖ ˜fe(η1, ·)‖tdη1, ∀t > 0.

Here, ‖ · ‖t denotes the L2(Rd−1)-norm with weight (1 + |ξ′|2)t/2. By Lemma
7.3, we have
∫ ∞

0

ξ
2(s−1)
1 ‖ũe(ξ1, ·)‖2

t dξ1 ≤ Cs

∫ ∞

0

ξ2s
1 ‖ ˜fe(ξ1, ·)‖2

t dξ1, ∀s > 1/2, ∀t > 0.

Since ue ∈ B∗
0 , ũe also satisfies the incoming radiation condition. Therefore we

have, similarly
∫ 0

−∞
|ξ1|2(s−1)‖ũe(ξ1, ·)‖2

t dξ1

≤ Cs

∫

−∞
|ξ1|2s‖ ˜fe(ξ1, ·)‖2

t dξ1, ∀s > 1/2, ∀t > 0.

Define the norm ‖ · ‖s,t by

‖u‖s,t = ‖(1 + |ξ1|2)s/2(1 + |ξ′|2)t/2ũ(ξ1, ξ
′)‖L2 .

Then, the above two inequalities imply

‖ue‖s−1,t ≤ Cs,t‖fe‖s,t, ∀s > 1/2, ∀t > 0.
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Since ̂fe is compactly supported, we have

‖fe‖s,t ≤ Cs,t‖u‖B∗ ,

and the lemma follows. �

Let σrad( ̂H) be the set of λ ∈ σ( ̂H0)\T0 for which there exists 0 �= û ∈ ̂B∗

satisfying ( ̂H −λ)û = 0 on V and the outgoing radiation condition or incoming
radiation condition.

Lemma 7.5. Assume (A-2), (A-3), (A-5).

(1) σrad( ̂H) = σp( ̂H) ∩
(

σ( ̂H0)\T0

)

.
(2) σp( ̂H) ∩

(

σ( ̂H0)\T0

)

is discrete in σ( ̂H0)\T0 with possible accumula-
tion points in T0, and the multiplicity of each eigenvalue in σp( ̂H) ∩
(

σ( ̂H0)\T0

)

is finite. Moreover, the associated eigenvector belongs to
	2,s,∀s > 0.

Proof. The assertion (1) follows from Lemma 7.4. If (2) is not true, there
exists an infinite number of eigenvalues λn ∈ σ( ̂H0)\T0, counting multi-
plicity, converging to an interior point λ ∈ σ( ̂H0)\T0. Let {ûn}∞

n=1 be the
associated orthonormal system of eigenvectors. Lemma 7.4 then implies that
supn ‖ûn‖s < ∞ for all s > 0. One can then select a subsequence {û′

n} con-
verging strongly in 	2(V), which leads to a contradiction. The last assertion is
proven in Lemma 7.4. �

As a consequence, we have obtained the following uniqueness theorem.

Lemma 7.6. Let λ ∈ σe( ̂H)\
(

T0 ∪ σp( ̂H)
)

, and suppose û ∈ ̂B∗ satisfies
( ̂H − λ)û = 0. Then û = 0, if û satisfies the outgoing or incoming radia-
tion condition. In particular, if we assume (A-1) and λ �∈ T0 ∪T1, the solution
of ( ̂H − λ)û = ̂f satisfying the outgoing or incoming radiation condition is
unique provided ̂H has the unique continuation property.

Proof. The 1st assertion follows from Lemma 7.5 (1). To prove the 2nd asser-
tion, we assume that ̂f = 0. Then, λ ∈ σrad( ̂H), hence λ ∈ σp( ̂H), and û ∈ 	2.
By Theorem 5.1, û vanishes near infinity, hence in V by the unique continuation
property. �

We put

T = T0 ∪ σp( ̂H). (7.13)

Let us introduce

̂Q1(z) = ( ̂H0 − z) ̂Pext
̂R(z) = ̂Pext + ̂K1

̂R(z), (7.14)
̂K1 = ̂H0

̂Pext − ̂Pext
̂H, (7.15)

̂Q2(z) = ( ̂H − z) ̂Pext
̂R0(z) = ̂Pext + ̂K2

̂R0(z), (7.16)
̂K2 = ̂H ̂Pext − ̂Pext

̂H0. (7.17)
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Then, we have

̂Pext
̂R(z) = ̂R0(z) ̂Q1(z), (7.18)

̂Pext
̂R0(z) = ̂R(z) ̂Q2(z). (7.19)

We shall now derive the limiting absorption principle for ̂H.

Theorem 7.7. Assume (A-2), (A-3) and (A-5).

(1) For any compact set J ⊂ σe( ̂H)\T , there is a constant C > 0 such that

‖ ̂R(z) ̂f‖
̂B∗ ≤ C‖ ̂f‖

̂B, Re z ∈ J, Im z �= 0.

(2) For any t > 1/2, there exists a strong limit limε→0
̂R(λ ± iε) ̂f ∈ 	2,−t for

̂f ∈ ̂B and λ ∈ J . Moreover, ̂R(λ ± i0) ̂f ∈ ̂B∗, limε→0( ̂R(λ ± iε) ̂f, ĝ) =
( ̂R(λ ± 0) ̂f, ĝ) for any ̂f, ĝ ∈ ̂B, and the inequality

‖ ̂R(λ ± i0) ̂f‖
̂B∗ ≤ C‖ ̂f‖

̂B, λ ∈ J

holds.
(3) For any ̂f, ĝ ∈ ̂B,

σe( ̂H)\T � λ → ̂R(λ ± i0) ̂f ∈ 	2,−t, t > 1/2,

σe( ̂H)\T � λ → ( ̂R(λ ± i0) ̂f, ĝ)

is continuous.
(4) For ̂f ∈ ̂B, ̂R(λ ± i0) ̂f satisfies the radiation condition. Moreover, letting

u± = UL0
̂Pext
̂R(λ ± i0) ̂f , and

Q1(λ ± i0) = UL0
̂Q1(λ ± i0), (7.20)

we have

Pju± ∓ 1
λj(x) − λ ∓ i0

⊗
(

PjQ1(λ ± i0) ̂f
)

∣

∣

∣

Mλ,j

∈ B∗
0 , (7.21)

where Pj = Pj(x) is the eigen projection associated with the eigenvalue
λj(x) of H0(x).

Proof. Letting û(z) = ̂R(z) ̂f , we have the following inequality

‖û(z)‖
̂B∗ ≤ C

(

‖ ̂Pext
̂f‖
̂B + ‖ ̂K1û(z)‖

̂B + ‖ ̂Pintû(z)‖
̂B
)

. (7.22)

Note that ̂K1 and ̂Pint are finite rank operators. Moreover, we have

̂R(z) = ̂Pext
̂R0(z) ̂Pext + ̂Pext

̂R0(z) ̂K1
̂R(z) + ̂Pint

̂R(z). (7.23)

Suppose (1) does not hold. Then, there exist ̂fj ∈ ̂B, zj such that, letting
ûj = ̂R(zj) ̂fj , we have, Re zj ∈ J ,

‖ ̂fj‖ ̂B → 0, ‖ûj‖ ̂B∗ = 1.

We can assume without loss of generality that zj → λ + i0 ∈ J . Take t >

1/2. Then the embedding ̂B∗ ⊂ 	2,−t is compact. Therefore, there exists a
subsequence of {ûj}, which is again denoted by {ûj}, such that ûj → û in
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	2,−t. In view of (7.22), we have ûj → û in ̂B∗, hence ‖û‖
̂B∗ = 1. Since

( ̂H − zj)ûj = ̂fj , we have ( ̂H − λ)û = 0. Moreover, by (7.23),

û = ̂Pext
̂R0(λ + i0) ̂K1û + ̂Pintû.

Therefore, û is outgoing. By Lemma 7.6, we have û = 0, which is a contradic-
tion.

Next, let εj → 0 and ̂f ∈ ̂B. Then (1) and the compact embedding
̂B∗ ⊂ 	2,−t imply that there exists a subsequence εjp

→ 0 and v̂ ∈ 	2,−t

such that v̂p := ̂R(λ + iεjp
) ̂f → v̂ in 	2,−t as p → ∞. Therefore, v̂ satisfies

( ̂H0 + ̂V − λ)v̂ = ̂f . In view of (7.22), we have

v̂ = ̂Pext
̂R0(λ + i0) ̂Pext

̂f + ̂Pext
̂R0(λ + i0) ̂K1v̂ + ̂Pintv̂. (7.24)

The third term on the right-hand side is in ̂B∗, since ̂Pint is a finite rank
operator. ̂K1 is also a finite rank operator, which implies ̂K1v̂ ∈ ̂B; ̂f ∈ ̂B
by the hypothesis. Therefore, the first and the second terms in the right-hand
side are also in ̂B∗, which means that the left-hand side v̂ ∈ ̂B∗.

Let us show the sequence { ̂R(λ ± iεj) ̂f}∞
j=1 itself converges to v̂ in 	2,−t.

Assuming the contrary, we have another subsequence v̂jq
:= ̂R(λ+iεjq

) ̂f which
satisfies

‖v̂ − v̂jq
‖�2,−t ≥ γ, (q = 1, 2, . . .),

for some γ > 0. Then we can find a subsequence which is again denoted by
{v̂jq

}∞
q=1 and v̂′ ∈ 	2,−t such that v̂jq

→ v̂′ in 	2,−t as q → ∞, ( ̂H0 + ̂V −λ)v̂′ =
̂f , and

‖v̂ − v̂′‖�2,−t ≥ γ > 0. (7.25)

In the same way as above, we have

v̂′ = ̂Pext
̂R0(λ + i0) ̂Pext

̂f + ̂Pext
̂R0(λ + i0) ̂K1v̂

′ + ̂Pintv̂
′, (7.26)

and v̂′ ∈ ̂B∗.
Subtracting (7.26) from (7.24), we have

v̂ − v̂′ = ̂Pext
̂R0(λ + i0) ̂K1(v̂ − v̂′) + ̂Pint(v̂ − v̂′),

which means v̂− v̂′ is outgoing, and ( ̂H −λ)(v̂− v̂′) = 0. By Lemma 7.6, v̂ = v̂′,
which contradicts (7.25).

We define ̂R(λ + i0) ̂f := v̂. Let ̂f, ĝ ∈ l2,t ⊂ ̂B. Then ̂R(λ + iε) ̂f →
̂R(λ + i0) ̂f in 	2,−t implies ( ̂R(λ + iε) ̂f, ĝ) → ( ̂R(λ + i0) ̂f, ĝ) as ε → 0, and

|( ̂R(λ + i0) ̂f, ĝ)| = lim
ε→0

|( ̂R(λ + iε) ̂f, ĝ)| ≤ C‖ ̂f‖B ‖ĝ‖B

where C > is a constant in (1). Such a weak ∗ limit also exists for any ̂f, ĝ ∈ ̂B
and the inequality in (2) holds, since 	2,t is dense in ̂B. We have thus proven
(2).
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As for (3), we can show the continuity of both mappings using the inequal-
ity in (2) instead of that in (1), the compact embedding ̂B∗ ⊂ 	2,−t, and the
denseness of 	2,t in ̂B in the same way as in (2).

By (7.18), we have for ̂f ∈ ̂B

UL0
̂Pext
̂R(λ ± i0) ̂f = UL0

̂R0(λ ± i0) ̂Q1(λ ± i0) ̂f.

Applying Theorem 6.1 (4), we have the assertion (4). �

7.3. Spectral Representation

We keep assuming (A-2), (A-3), (A-5). It is convenient to put for λ ∈ σe( ̂H)\T

̂E′(λ) =
1

2πi

(

̂R(λ + i0) − ̂R(λ − i0)
)

, (7.27)

̂E′
0(λ) =

1
2πi

(

̂R0(λ + i0) − ̂R0(λ − i0)
)

. (7.28)

Lemma 7.8. We have for λ ∈ σe( ̂H)\T

( ̂E′
0(λ) ̂Q1(λ ± i0) ̂f, ̂Q1(λ ± i0) ̂f) = ( ̂E′(λ) ̂f, ̂f), (7.29)

( ̂E′(λ) ̂Q2(λ ± i0) ̂f, ̂Q2(λ ± i0) ̂f) = ( ̂E′
0(λ) ̂f, ̂f). (7.30)

Proof. Recalling (7.14) and letting z = λ + iε, we have
(

( ̂R0(z) − ̂R0(z)) ̂Q1(z) ̂f, ̂Q1(z) ̂f
)

= 2iε
(

̂R0(z) ̂Q1(z) ̂f, ̂R0(z) ̂Q1(z) ̂f
)

= 2iε
(

̂Pext
̂R(z) ̂f, ̂Pext

̂R(z) ̂f
)

= 2iε
(

̂R(z) ̂f, ̂R(z) ̂f
)

− 2iε
(

̂Pint
̂R(z) ̂f, ̂R(z) ̂f

)

=
(

( ̂R(z) − ̂R(z)) ̂f, ̂f
)

− 2iε
(

̂Pint
̂R(z) ̂f, ̂R(z) ̂f

)

.

Letting ε → 0, we obtain

( ̂E′
0(λ) ̂Q1(λ ± i0) ̂f, ̂Q1(λ ± i0) ̂f) = ( ̂E′(λ) ̂f, ̂f).

Similarly, we obtain (7.30). �

We define
̂F0(λ) = F0(λ)UL0 , (7.31)
̂F±(λ) = ̂F0(λ) ̂Q1(λ ± i0). (7.32)

The formula (6.14) implies E′
0(λ) = F0(λ)∗F0(λ). Then in view of (7.29) and

(7.32), we have the following lemma.

Lemma 7.9. For λ ∈ σe( ̂H)\T , and ̂f, ĝ ∈ ̂B,
(

̂E′(λ) ̂f, ĝ
)

=
(

̂F±(λ) ̂f, ̂F±(λ)ĝ
)

hλ
. (7.29′)

Theorem 7.7 (2) then yields
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Lemma 7.10. For any compact set J ⊂ σe( ̂H)\T , there exists a constant C > 0
such that

‖ ̂F±(λ) ̂f‖hλ
≤ C‖ ̂f‖

̂B, λ ∈ J.

We are now in a position to apply the stationary scattering theory for
Schrödinger operators (see e.g. [22], and also the recent articles [24,49]). By
following this abstract framework, one can derive the spectral representation
(Theorem 7.11), the asymptotic completeness of wave operators (Theorem
7.12) and the unitarity of the S-matrix (Theorem 7.13). Since this is a well
known already established argument, we only give the outline of the proof. Let

I = σe(H)\T . (7.33)

Take any borel set e ∈ I, and integrate (7.29′) on e. Then letting ̂E(λ) be the
spectral decomposition of ̂H, we have

( ̂E(e) ̂f, ĝ) =
∫

e

(

̂F±(λ) ̂f, ̂F±(λ)ĝ
)

hλ
dλ. (7.34)

We put

Ij = λj(Td)\T ,

I =
s
∪

j=1
Ij = σ(H0)\T ,

Hj = L2(Ij ,hλ,jaj ,dλ),

H = H1 ⊕ . . . ⊕ Hs = L2(I,hλ,dλ).

Note that H = H(0), since H is absolutely continuous on I by virtue of The-
orem 7.7. We define ̂F± ̂f ∈ H by

(

̂F± ̂f
)

(λ) = ̂F±(λ) ̂f.

Then, by (7.34), ̂F± is uniquely extended to an isometry from initial set
̂E(I)	2(V) and the final set contained in H. Theorem 7.7 implies ̂E(I)	2(V) =
Hac( ̂H). By (7.30), one derives

( ̂F±(λ) ̂Q2(λ ± i0) ̂f, ̂F±(λ) ̂Q2(λ ± i0)ĝ) = ( ̂E′
0(λ) ̂f, ĝ).

Making use of this formula, one can construct a similar partial isometry ̂A±
satisfying ̂F± ̂A± = ̂F0. Therefore, the final set of ̂F± is equal to H. By (7.14)
and (7.32), one can show

̂F±(λ)( ̂H − λ) ̂f = 0, ̂f ∈ ̂B,

which implies ̂F± ̂H = λ ̂F±. In summary, one has

Theorem 7.11. (1) ̂F± is a partial isometry with initial set ̂E(I)	2(V) and
final set H.

(2)
(

̂F± ̂H ̂f
)

(λ) = λ
(

̂F± ̂f
)

(λ), λ ∈ σe( ̂H)\T , ̂f ∈ H.
(3) For λ ∈ σe( ̂H)\T and φ ∈ hλ,

(

̂H − λ
)

̂F±(λ)∗φ = 0.

Let us consider the time-dependent wave operators. The following theo-
rem is well known. See, e.g. [28] and [31].
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Theorem 7.12. (1) There exists a strong limit

s − lim
t→±∞

eit̂H
̂Pexte

−it̂H0 ̂Pac( ̂H0) := ̂W±,

where ̂Pac( ̂H0) is the projection onto the absolutely continuous subspace
for ̂H0.

(2) For any bounded Borel function ψ on R, we have

ψ( ̂H)̂W± = ̂W±ψ( ̂H0).

(3) ̂W± is a partial isometry with initial set Hac( ̂H0) and final set Hac( ̂H).

The scattering operator ̂S is defined by

̂S =
(

̂W+

)∗
̂W−. (7.35)

By Theorem 7.12 (3), ̂S is unitary on H. We derive an expression of S =
̂F0
̂S( ̂F0)∗, where ̂F0 = F0 UL0 . Since this is a well-known fact, we explain the

procedure formally. Assume that ̂f, ĝ ∈ E0(I)(L2(Td))s. Then, we have

((̂S − 1) ̂f, ĝ) = ((̂W− −̂W+) ̂f,̂W+ĝ)

= −i

∫ ∞

−∞
(eit̂H

̂K2e
−it̂H0 ̂f,̂W+ĝ)dt

= −i

∫ ∞

−∞
( ̂K2e

−it̂H0 ̂f, e−it̂H
̂W+ĝ)dt

= −i

∫ ∞

−∞
( ̂K2e

−it̂H0 ̂f, ̂Pexte
−it̂H0 ĝ)dt

−
∫ ∞

0

ds

∫ ∞

−∞
( ̂K2e

−it̂H0 ̂f, eiŝH
̂K2e

−i(s+t)̂H0 ĝ)dt, (7.36)

where in the 3rd line, we have used e−it̂H
̂W+ = ̂W+e−it̂H0 which follows from

Theorem 7.12 (2), and also

̂W+ = ̂Pext
̂Pac( ̂H0) + i

∫ ∞

0

eiŝH0 ̂K2e
−iŝH0ds ̂Pac( ̂H0).

Letting I = σ( ̂H0), and passing to the spectral representation, we have
∫ ∞

−∞
( ̂K2e

−it̂H0 ̂f, eiŝH
̂K2e

−i(s+t)̂H0 ĝ)dt

=
∫ ∞

−∞

∫

I

( ̂F0(λ) ̂K∗
2e−iŝH

̂K2e
−it̂H0 ̂f, e−i(s+t)λ

̂F0(λ)ĝ)dλdt. (7.37)

Using Theorem 7.12 (2), inserting e−ε|t| and letting ε → 0, we see that this is
equal to

2π

∫

I

( ̂F0(λ) ̂K∗
2e−i(̂H−λ)s

̂K2
̂E′
0(λ) ̂f, ̂F0(λ)ĝ)dλ

= 2π

∫

I

( ̂F0(λ) ̂K∗
2e−i(̂H−λ)s

̂K2
̂F0(λ)∗

̂F0(λ) ̂f, ̂F0(λ)ĝ)dλ. (7.38)
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Therefore, the 2nd term of the most right-hand side of (7.36) is equal to

−2π

∫ ∞

0

ds

∫

I

( ̂F0(λ) ̂K∗
2e−i(̂H−λ)s

̂K2
̂F0(λ)∗

̂F0(λ) ̂f, ̂F0(λ)ĝ)dλ.

Inserting e−εs, and letting ε → 0, this is equal to

2πi

∫

I

( ̂F0(λ) ̂K∗
2
̂R(λ + i0) ̂K2

̂F0(λ)∗
̂F0(λ) ̂f, ̂F0(λ)ĝ)dλ. (7.39)

Similarly, the 1st term of the most right-hand side of (7.36) is equal to

− 2πi

∫

I

( ̂F0(λ) ̂Pext
̂K2
̂F0(λ)∗

̂F0(λ) ̂f, ̂F0(λ)ĝ)dλ. (7.40)

Summing up, we obtain

((̂S − 1) ̂f, ĝ) = −2πi

∫

I

(A(λ) ̂F0(λ) ̂f, ̂F0(λ)ĝ)dλ,

where

A(λ) = ̂F0(λ) ̂Pext
̂K2
̂F0(λ)∗ − ̂F0(λ) ̂K∗

2
̂R(λ + i0) ̂K2

̂F0(λ)∗.

Using (7.14), (7.17) and (7.32), we arrive at

A(λ) = ̂F0(λ) ̂Q1(λ + i0) ̂K2
̂F0(λ)∗ = ̂F+(λ) ̂K2

̂F0(λ)∗. (7.41)

The S-matrix is now defined by

S(λ) = 1 − 2πiA(λ), λ ∈ σe( ̂H)\T , (7.42)

Theorem 7.13. (1) For f ∈ H, we have

(Sf)(λ) = S(λ)f(λ), λ ∈ σe( ̂H)\T , (7.43)

(2) S(λ) is unitary on hλ, λ ∈ σ( ̂H0)\T .

Proof. The assertion (1) is proven above. Since S is unitary on H, S(λ) is
unitary for a.e. λ ∈ σe( ̂H)\T . However, S(λ) is strongly continuous for λ ∈
σe( ̂H)\T . Hence S(λ) unitary for λ ∈ σe( ̂H)\T . �
7.4. Helmholtz Equation

The last topic is the characterization of the solution space of the Helmholtz
equation {û ∈ ̂B∗ ; ( ̂H − λ)û = 0} in terms of spectral representation. Letting

ϕj =
(

Pjφ
)∣

∣

Mλ,j
, (7.44)

we have using (6.13) and (7.32),

̂F−(λ)∗φ = ̂PextU∗
L0

s
∑

j=1

δMλ,j
⊗ ϕj + ̂R(λ + i0) ̂K∗

1
̂F0(λ)∗φ. (7.45)

Noting that
̂R(λ + i0) ≡ ̂Pext

̂R0(λ + i0) ̂Q1(λ + i0)

modulo a regular term, and also

δMλ,j
=

1
2πi

( 1
λj(x) − λ − i0

− 1
λj(x) − λ + i0

)

,



2166 K. Ando et al. Ann. Henri Poincaré

we then have

UL0
̂Pext

̂F−(λ)∗φ ≡
s
∑

j=1

1
2πi

( 1
λj(x) − λ − i0

− 1
λj(x) − λ + i0

)

⊗ ϕj

+
s
∑

j=1

1
λj(x) − λ − i0

Pj UL0
̂Q1(λ + i0) ̂K∗

1
̂F0(λ)∗φ.

(7.46)

This is rewritten as

UL0
̂Pext

̂F−(λ)∗φ

≡ − 1
2πi

s
∑

j=1

(

1
λj(x) − λ + i0

⊗ ϕj − 1
λj(x) − λ − i0

⊗ ϕout
j

)

,

ϕout
j = Pjφ + PjUL0

̂Q1(λ + i0) ̂K∗
1
̂F0(λ)∗φ. (7.47)

We let

ϕin = φ, ϕout = φ + UL0
̂Q1(λ + i0) ̂K∗

1
̂F0(λ)∗φ. (7.48)

A direct computation using (7.32), (7.15), (7.16) and (7.48) entails

ϕout = S(λ)ϕin. (7.49)

Lemma 7.14. For λ ∈ σe( ̂H)\T , ̂F±(λ) ̂B = hλ.

Proof. We prove this lemma for ̂F−(λ). Let u = UL0
̂Pext

̂F−(λ)∗φ and uj =
Pju. Take x0 ∈ Mλ,j . Without loss of generality we can make a change of
variables x → y = (y1, y

′) around x0 such that y1 = λj(x)−λ. Let χ ∈ C∞(Td)
of the form χ(y) = χ1(y1)χ2(y′) such that χ = 1 on a small neighborhood of
x0 and the support of χ is sufficiently small. Then the Fourier transform of
χ(y)uj(y) becomes

(2π)−d/2χ̃uj(ξ) ≡
∫ ∞

ξ1

χ̃1(η1)dη1a(ξ′) −
∫ ξ1

−∞
χ̃1(η1)dη1b(ξ′)

modulo a sufficiently regular term, where a(ξ′), b(ξ′) are Fourier transforms of
χ2(y′)ϕout

j (y′), χ2(y′)ϕj(y′), respectively. Then, we have

lim
R→∞

1
R

∫

|ξ|<R

|χ̃uj(ξ)|2dξ ≥ C(‖χ2(y′)ϕout
j (y′)‖2

L2 + ‖χ2(y′)ϕj(y′)‖2
L2).

We take a finite number of such x0 and sum up the above inequality. Then, the
right-hand side is estimated from below by C(‖ϕout

j ‖2+‖ϕj‖2) = C‖φ‖2
Mλ,j

. On

the other hand, the left-hand side is estimated from above by C‖ ̂F−(λ)∗φ‖2
̂B∗ .

We have thus proven

‖φ‖Mλ
≤ C‖ ̂F−(λ)∗φ‖

̂B∗ ,

hence the range of ̂F−(λ)∗ is closed. We can then argue as in Lemma 6.8 to
complete the proof. �
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We have now arrived at the main theorem of this paper. Recall the defi-
nition of A±(λ) in (6.17).

Theorem 7.15. Assume (A-2), (A-3) and (A-5). Let λ ∈ σe( ̂H)\T .

(1) {û ∈ ̂B∗ ; ( ̂H − λ)û = 0} = ̂F−(λ)∗hλ.

(2) For any φin ∈ hλ, there exist unique φout ∈ hλ and û ∈ ̂B∗ satisfying

( ̂H − λ)û = 0, (7.50)

UL0
̂Pextû + A−(λ)φin − A+(λ)φout ∈ B∗

0 . (7.51)

Moreover, S(λ)φin = φout.

Proof. To prove (1), as in Lemma 6.10, we have only to show

û ∈ ̂B∗, ̂f ∈ ̂B, ( ̂H − λ)û = 0, ̂F−(λ) ̂f = 0 =⇒ (û, ̂f) = 0.

Let v̂ = ̂R(λ − i0) ̂f . Then ( ̂H − λ)v̂ = ̂f , hence (û, ̂f) = (û, ( ̂H − λ)v̂).
Take χ∞ ∈ C∞(R1) such that χ∞(t) = 1 for t > R0, where R0 > 0 is

sufficiently large, and χ∞(t) = 0 for t < R0 − 1. We put for large r > 0

̂P∞,r = U−1
L0

χ∞(|N |/r)UL0
̂Pext, ̂P0,r = (1 − U−1

L0
χ∞(|N |/r)UL0) ̂Pext + ̂Pint,

where |N | is defined by (4.11).
First note

(û, ( ̂H − λ) ̂P0,rv̂) = (( ̂H − λ)û, ̂P0,r v̂) = 0. (7.52)

Take χ ∈ C∞
0 (R) such that χ(t) = 1 for t = 1. Then using ( ̂H − λ)û = 0, we

have

(û,U−1
L0

χ(|N |/R)UL0( ̂H − λ) ̂P∞,rv̂) = ([ ̂H, (U−1
L0

χ(|N |/R)UL0)
∗]û, ̂P∞,r v̂).(7.53)

Now, let u = UL0 û, v = UL0 v̂. By virtue of Theorem 7.7 (4) and the assumption
that ̂F−(λ) ̂f = 0, we have v ∈ B∗

0 . Moreover, as is well known, one can
apply the standard micro-local calculus, or semi-classical calculus using R−1

as Plank’s constant, for the commutator [ ̂H, (U−1
L0

χ(|N |/R)UL0)
∗] (see e.g.

Chap. 14 of [51]). Therefore, the right-hand side of (7.53) is dominated from
above by

C

R

(

∫

|ξ|<CR

|ũ(ξ)|2dξ

)1/2(
∫

|ξ|<CR

|ṽ(ξ)|2dξ

)1/2

,

which tends to 0 as R → ∞. Therefore, we have

(û, ( ̂H − λ) ̂P∞,rv̂) = 0. (7.54)

The equalities (7.52), (7.54) prove (1).
The uniqueness assertion of (2) follows from Theorem 7.4. Because if

û1, û2 are such solutions, û1 − û2 satisfies the outgoing radiation condition.
To show the existence, let

ûin = ̂PextU−1
L0

F0(λ)∗φin, v̂ = − ̂R(λ + i0)( ̂H − λ)ûin.



2168 K. Ando et al. Ann. Henri Poincaré

Since (H0 − λ)F0(λ)∗φin = 0, we have

v̂ = − ̂R(λ + i0) ̂K2U−1
L0

F0(λ)∗φin.

Then we have by Theorem 7.7 (4)

PjUL0 v̂ � − 1
λj(x) − λ − i0)

⊗ (PjQ1(λ + i0) ̂K2U−1
L0

F0(λ)∗φin
∣

∣

Mλ,j
). (7.55)

We now let û = ûin + v̂. It is easy to see that û ∈ ̂B∗ and ( ̂H − λ)û = 0.
Moreover,

PjUL0 û

� 1
2πi

( 1
λj(x) − λ − i0

⊗ (Pjφ
in
∣

∣

Mλ,j
) − 1

λj(x) − λ + i0
⊗ (Pjφ

in
∣

∣

Mλ,j
)
)

− 1
λj(x) − λ + i0

⊗
(

PjQ1(λ + i0) ̂K2U−1
L0

F0(λ)∗φin
∣

∣

Mλ,j

)

= − 1
2πi

1
λj(x) − λ + i0

⊗ (Pjφ
in
∣

∣

Mλ,j
) +

1
2πi

1
λj(x) − λ − i0

⊗
(

Pjφ
in
∣

∣

Mλ,j
− 2πiPjQ1(λ + i0) ̂K2U−1

L0
F0(λ)∗φin

∣

∣

Mλ,j

)

.

The assertion (2) then follows from this formula and (7.41), (7.14), (7.16). �
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