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A TQFT of Turaev–Viro Type on Shaped
Triangulations

Rinat Kashaev, Feng Luo and Grigory Vartanov

Abstract. A shaped triangulation is a finite triangulation of an oriented
pseudo-three-manifold where each tetrahedron carries dihedral angles of
an ideal hyperbolic tetrahedron. To each shaped triangulation, we asso-
ciate a quantum partition function in the form of an absolutely convergent
state integral which is invariant under shaped 3–2 Pachner moves and
invariant with respect to shape gauge transformations generated by total
dihedral angles around internal edges through the Neumann–Zagier Pois-
son bracket. Similarly to Turaev–Viro theory, the state variables live on
edges of the triangulation but take their values on the whole real axis. The
tetrahedral weight functions are composed of three hyperbolic gamma
functions in a way that they enjoy a manifest tetrahedral symmetry. We
conjecture that for shaped triangulations of closed three-manifolds, our
partition function is twice the absolute value squared of the partition
function of Techmüller TQFT defined by Andersen and Kashaev. This
is similar to the known relationship between the Turaev–Viro and the
Witten–Reshetikhin–Turaev invariants of three-manifolds. We also dis-
cuss interpretations of our construction in terms of three-dimensional
supersymmetric field theories related to triangulated three-dimensional
manifolds.

1. Introduction

Topological quantum field theories were discovered and axiomatized by
Atiyah [2], Segal [42] and Witten [56]. First examples in 2 + 1 dimensions
were constructed by Reshetikhin and Turaev [39,40,52] using the combina-
torial framework of Kirby calculus, and by Turaev and Viro [53] using the
framework of triangulations and Pachner moves. The algebraic ingredients of
both constructions come from the finite-dimensional representation category of
the quantum group Uq(sl(2)) at roots of unity. For example, the basic building
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elements in Turaev–Viro construction are tetrahedral weight functions given
by 6j symbols. These theories have been the subject of much subsequent inves-
tigation in the works of Blanchet, Habegger, Masbaum, Vogel, Barrett, West-
bury, Turaev, Virelizier, Balsam, Kirillov and others [6–8,30,54]. A related
but somewhat different line of development was initiated by Kashaev in [29]
where a state sum invariant of links in three-manifolds was defined using the
combinatorics of charged triangulations where the charges are algebraic ver-
sions of dihedral angles of ideal hyperbolic tetrahedra in finite cyclic groups.
This approach has been subsequently developed by Baseilhac, Benedetti, Geer,
Kashaev, Turaev [3,21]. The common feature of all these theories is that the
partition functions are always given by finite state sums.

On the other hand, the idea of partition functions of Turaev–Viro type
originates from the work of Ponzano and Regge [37] where, based on SU(2)
6j symbols, a lattice version of quantum 2 + 1 gravity was suggested, but this
theory was not complete and remained of restricted use because of problems
of convergence of infinite sums. Similar problems of convergence appear when
one tries to construct combinatorial versions of quantum Chern–Simons the-
ories with non-compact gauge groups. For example, a connected component
of PSL(2, R) Chern–Simons theory is identified with Teichmüller space, and
its quantum theory corresponds to a specific class of unitary mapping class
group representations in infinite dimensional Hilbert spaces [9,28]. Based on
quantum Teichmüller theory, formal state-integral partition functions of tri-
angulated three-manifolds were defined by Hikami, Dimofte, Gukov, Lenells,
Zagier, Dijkgraaf, Fuji, Manabe [10,11,14,24,25], mostly for the purposes of
quasi-classical expansions, but the question of convergence remained largely
open until a mathematically rigorous version of Teichmüller TQFT was sug-
gested in [1]. The convergence property of Teichmüller TQFT is due to its spe-
cific underlying combinatorial setting: it is not just triangulations but shaped
triangulations where each tetrahedron carries dihedral angles of an ideal hyper-
bolic tetrahedron. Moreover, the role of dihedral angles is twofold: they not
only provide absolute convergence of state integrals but they also implement
the complete symmetry with respect to change of edge orientations. Although,
shaped triangulations are similar to charged triangulations of [29], the positiv-
ity condition of dihedral angles imposes important restrictions on construction
of topologically invariant partition functions.

The purpose of this paper is to suggest yet another TQFT based on
combinatorics of shaped triangulations. As its basic building block is defined
in terms of Faddeev’s quantum dilogarithm [17] and the absolute convergence
of partition functions relies on the positivity of dihedral angles, it is similar
to the Teichmüller TQFT. As a consequence, we are still restricted in our
abilities of constructing topologically invariant partition functions in the sense
that the 2-3 shaped Pachner move is not always applicable. On the other hand,
unlike the Teichmüller TQFT, our tetrahedral weight functions enjoy manifest
tetrahedral symmetry and the partition function is well defined on any shaped
triangulation without any extra topological restrictions.

We now describe our construction in precise terms.
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1.1. States, State Potentials, and State Gauge Invariance

Let Y be a CW complex. Denote by Δi(Y ) the set of i-dimensional cells of Y . A
state of Y is a map s : Δ1(Y ) → R. A state potential is a map g : Δ0(Y ) → R.
Define a linear state gauge map

b : R
Δ0(Y ) → R

Δ1(Y ), bg(e) = g(∂0e) + g(∂1e), (1)

where ∂ie, i ∈ {0, 1}, are the two end points of e (they coincide if the edge is
a loop). A state is called pure gauge if it finds itself in the image of the state
gauge map. The pure gauge states constitute a vector subspace of the state
space.

Let S be a set. A function f : R
Δ1(Y ) → S is called state gauge invariant

at state s if f(s + bg) = f(s) for any state potential g.
A (state) gauge fixing at vertex v ∈ Δ0(Y ) is a linear form λ on the

vector space of states R
Δ1(Y ) such that

〈λ, bg〉 = g(v), ∀g ∈ R
Δ0(Y ). (2)

Note that a gauge fixing at a vertex may not exist if the state gauge map is
not injective.

In what follows, a real-valued function defined on only a subset of vertices
will always be thought of as a state potential having zero values on the vertices
where initially it was not defined.

1.2. Shaped Tetrahedra and Their Boltzmann Weights

Let T be an oriented tetrahedron embedded into R
3 together with its standard

CW complex structure. Let �(T ) be the set of normal quadrilateral types (to
be called quads) in T which is in bijection with the set of pairs of opposite
edges of T . We fix the action of Z/3Z = {1, τ, τ2} on �(T ) so that the images
of a quad q under the action are q, q′ = τ(q) and q′′ = τ2(q) corresponding
to the clockwise cyclic order of three edges around a vertex (as seen from the
outside of the tetrahedron). We say T is shaped tetrahedron if it is provided
with a dihedral angle map α : �(T ) →]0, π[, such that α(q)+α(q′)+α(q′′) = π.
Associated to α, the complex shape variables entering Thurston’s hyperbolicity
equations are given by a map zα : �(T ) → C\{0, 1} defined by the formula

zα(q) = eiα(q) sinα(q′′)/ sin α(q′). (3)

Any state s : Δ1(T ) → R induces a map s̃ : �(T ) → R defined by the formula
s̃(q) = s(e) + s(e′), where the e and e′ are the opposite edges separated by q.
To each pair (T, s) consisting of a shaped tetrahedron T and a state s of T ,
we associate the following Boltzmann weight

B(T, s) :=
∏

q∈�(T )

γ(2)

(
ω1 + ω2

π
α(q) +

√
−ω1ω2(s̃(q′) − s̃(q′′));ω1, ω2

)
(4)

where function γ(2)(z;ω1, ω2) is defined below in (30) with ω1, ω2 ∈ C and
ω1/ω2 /∈ (−∞, 0]. It is easily verified that this Boltzmann weight is state
gauge invariant at any state.
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1.3. Shaped Triangulations and Their Boltzmann Weights

A triangulation is an oriented pseudo-three-manifold obtained from finitely
many tetrahedra in R

3 by gluing them along triangular faces through orienta-
tion reversing affine CW homeomorphisms. Any triangulation X is naturally
a CW complex and its boundary ∂X is the CW subcomplex composed of
unglued triangular faces. We will use the following notation:

Δi(X̊) := Δi(X)\Δi(∂X). (5)

A shaped triangulation is a triangulation where all tetrahedra are shaped.
Similarly to the case of one shaped tetrahedron, to each pair (X, s) consisting
of a shaped triangulation X and a state s of X, we associate a Boltzmann
weight

B(X, s) :=
∏

T∈Δ3(X)

B
(
T, s|Δ1(T )

)
. (6)

Again, this Boltzmann weight is state gauge invariant at any state.

1.4. The Partition Function of Shaped Triangulations

A boundary state of a triangulation X is a state of its boundary. We have
the natural linear restriction map from the vector space of states of X to the
vector space of its boundary states

∂ : R
Δ1(X) → R

Δ1(∂X), (7)

and for any boundary state s, we have a canonical identification of the preimage
∂−1(s) with the vector space R

Δ1(X̊) of real-valued functions on the interior
edges of X.

A state gauge fixing in the interior of a triangulation X is a collection

λ = {λv}v∈Δ0(X̊) (8)

of gauge fixings at all interior vertices. Notice that for any triangulation the
state gauge map is injective and state gauge fixings exist at any vertex.

To any triple (X, t, λ), where X is a shaped triangulation, t is a boundary
state of X, and λ is a state gauge fixing in the interior of X, we associate a
partition function

Wb(X, t, λ) :=
∫

∂−1(t)

B(X, s)δ (〈λ, s〉) ds, (9)

where

δ(〈λ, s〉) :=
∏

v∈Δ0(X̊)

δ (〈λv, s〉) , ds :=
∏

v∈Δ1(X̊)

ds(e) (10)

and b :=
√

ω1
ω2

. The main result of this paper is the following theorem where we
use the notions of shaped 3-2 Pachner moves and shape gauge transformations
considered in [1].
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Theorem 1. The partition function Wb(X, t, λ) is an absolutely convergent inte-
gral independent of the choice of the state gauge fixing λ, invariant under
shaped 3-2 Pachner moves, and invariant under the shape gauge transforma-
tions induced by interior edges.

Several examples of explicit calculations make us to believe that for
shaped triangulations of closed three-manifolds, when the Teichmüller TQFT
is defined as well, our partition function is twice the absolute value squared of
the partition function of the Techmüller TQFT. This is similar to the known
relationship between the Turaev–Viro and the Witten–Reshetikhin–Turaev
invariants of three-manifolds.

Conjecture 1. Let (X, 
X) be an admissible shaped leveled branched triangula-
tion of a closed oriented compact three-manifold in the sense of [1]. Then the
following equality holds true

2 |F�(X, 
X)|2 = Wb(X,λ) (11)

where � = (b+b−1)−2 ∈ R>0 and F�(X, 
X) is the Teichmüller TQFT partition
function of (X, 
X).

Following [1,29], we can construct an invariant of pairs (a compact
closed oriented three-manifold M , a knot K in M). The corresponding com-
binatorial framework is that of one-vertex Hamiltonian triangulations (or
H-triangulations). These are one vertex shaped Δ-triangulations of M where
the knot K is represented by a distinguished edge, the shape structures being
degenerate in the sense that the total dihedral angle on the knot is zero and
all other edges are balanced. As these are not shape structures in the strict
sense of the word, one cannot be sure that the state integrals in the parti-
tion function will not diverge. For that reason, one should approach them by
true shape structures, provided one deals with triangulations which allow such
approach. As in the case of Teichmüller TQFT of [1], after analytic contin-
uation to complex angles, the partition functions can have poles in the total
angle ε around the knot. That means that it makes sense to consider ratios
of partition functions, before taking the limit ε → 0 and balancing all other
edges. Let ωX ∈ R

Δ1(X) be the assignment of total dihedral angles around the
edges of X, and let τ ∈ R

Δ1(X) assign the zero value to the distinguished edge
representing the knot and 2π to any other edge. We define the renormalized
partition function (RPF) by the formula

W̌b(X,λ) :=
Wb(X,λ)

2 |Φb(cb − cbε/π)|2
, (12)

where ε is the value of ωX on the knot (see also Appendix for notation), and
the balanced renormalized partition function (BRPF)

W̃b(X,λ) := lim
ωX→τ

W̌b(X,λ). (13)

Theorem 1 implies that BRPF is a function on the set of equivalence classes
of pairs (M,K) with respect to the equivalence relation generated by shaped
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3-2 Pachner moves along the non-distinguished edges. In the case where X is
admissible in the sense of [1], Conjecture 1 implies the equality

W̃b(X,λ) =
∣∣∣F̃�(X, 
X)

∣∣∣
2

, (14)

where

F̃�(X, 
X) := lim
ωX→τ

F�(X, 
X)
Φb(cb − cbε/π)

(15)

is the (balanced) renormalized partition function of the Teichmüller TQFT.
In the case of M = S3, by explicit calculations we prove equality (14) for the
knots 31, 41, 52. We also calculate the BRPF for the knot 61.

The rest of this paper is organized as follows. Section 2 contains the proof
of the main Theorem 1. In Sect. 3, using the elliptic beta integral, we derive
the pentagon identity which underlies the invariance of our partition function
with respect to shaped 3-2 Pachner moves. In Sect. 4, we provide examples
of concrete calculations and verify Conjecture 1. In particular, we verify the
equality (14) between knot invariants. Section 5 is devoted to some considera-
tions from the perspective of 3d supersymmetric field theories. Namely, based
on our construction, we get a class of 3d supersymmetric field theories defined
on a squashed three-sphere S3

b related to triangulated three-manifolds. The
latter relation is known as 3d/3d correspondence which is the topic of recent
study [12,13,49,50]. In Sect. 6, we discuss a bit more the gauge equivalence
relation on the shape structures and the relationship of our theory to repre-
sentations of three-manifold fundamental groups into PSL(2, C) and simplicial
PSL(2, R) Chern–Simons theory. Appendices contain some technical informa-
tion on the special functions used.

2. Proof of Theorem 1

Lemma 1. Let X be a shaped triangulation, and let s and s′ be states of X
such that B(X, s′ + ts) = B(X, s′) for any t ∈ R. Then the state s is in the
image of the state gauge map.

Proof. By a straightforward verification, the statement of the lemma is true
if X is a disjoint union of unglued tetrahedra. Thus, it suffices to prove that
if triangulation X is obtained from a triangulation Y by identification of two
triangular faces f and f ′, and the statement of the lemma is true for Y , then
it is also true for X.

Denote by p : Y → X the identification projection, and by p∗ : R
Δi(X) →

R
Δi(Y ) the corresponding pull-back maps. Let s and s′ be states of X such

that

B(X, s′ + ts) = B(X, s′), ∀t ∈ R. (16)

Using the fact that B(X, r) = B(Y, p∗(r)) for any state r of X, equation (16)
is equivalent to

B(Y, p∗(s′) + tp∗(s)) = B(Y, p∗(s′)), ∀t ∈ R. (17)
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As we assume that the statement of the lemma is true for Y , there exists
g ∈ R

Δ0(Y ) such that p∗(s) = bg. Let us show that there exists g′ ∈ R
Δ0(X)

such that g = p∗(g′). Indeed, let triangles f and f ′ have respective vertices vi

and v′
i and edges ei and e′

i for i ∈ {1, 2, 3} such that

∂ei = {vj , vk}, ∂e′
i = {v′

j , v
′
k}, {i, j, k} = {1, 2, 3}, (18)

and

p(ei) = p(e′
i), p(vi) = p(v′

i), i ∈ {1, 2, 3}. (19)

That means that when applied to edges ei and e′
i, the equality p∗(s) = bg gives

g(vj) + g(vk) = g(v′
j) + g(v′

k) ⇔ g(vi) − g(v′
i) = ξ :=

3∑

m=1

(g(vm) − g(v′
m)).

(20)

Taking sum over i in the last equation, we obtain ξ = 3ξ ⇔ ξ = 0 which
implies that g(vi) = g(v′

i) for any i ∈ {1, 2, 3}, i.e., g = p∗(g′). Thus, we have
the equality p∗(s) = bp∗(g′) = p∗(bg′), and as p∗ is injective, we conclude that
s = bg′. �

Proof of Theorem 1. By injectivity of the state gauge map in the case of trian-
gulations and Lemma 1, the state gauge map image of the group R

Δ0(X̊) is the
maximal translation subgroup of the state space of X which leaves invariant
the boundary state t and the Boltzmann weight B(X, s). On the other hand,
the product of delta functions δ(〈λ, s〉) restricts the integral to a hyperplane
in the space R

Δ1(X̊) 
 b−1(t) which intersects any orbit of this group action
in a unique point, while the Boltzmann weight exponentially decays along any
direction in this hyperplane. This implies that the integral in (9) is absolutely
convergent.

Independence on the choice of the state gauge fixing λ easily follows
through the use of a simplest finite-dimensional version of the Faddeev–Popov
trick in path integrals for gauge invariant systems1 [33]. Indeed, if s is a state
of X and λ′ a state gauge fixing in the interior of X, then we have the identity

1 =
∫

RΔ0(X̊)
δ (〈λ′, s + bg〉) dg, (21)

where

dg :=
∏

v∈Δ0(X̊)

dg(v). (22)

Inserting (21) into (9), exchanging the order of integrations, shifting the inte-
gration state variables, using the gauge invariance of the Boltzmann weight,
again exchanging the order of integrations, and again using identity (21) with
λ′ replaced by λ, we obtain

1 Similarly to QED, our system is linear and the Faddeev–Popov determinant is trivial so
that no ghosts are needed.
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Wb(X, t, λ) =
∫

∂−1(t)

B(X, s)δ (〈λ, s〉) ds

=
∫

∂−1(t)

B(X, s)δ (〈λ, s〉)
(∫

RΔ0(X̊)
δ (〈λ′, s + bg〉) dg

)
ds

=
∫

RΔ0(X̊)

(∫

∂−1(t)

B(X, s)δ (〈λ, s〉) δ (〈λ′, s + bg〉) ds

)
dg

=
∫

RΔ0(X̊)

(∫

∂−1(t)

B(X, s − bg)δ (〈λ, s − bg〉) δ (〈λ′, s〉) ds

)
dg

=
∫

RΔ0(X̊)

(∫

∂−1(t)

B(X, s)δ (〈λ, s − bg〉) δ (〈λ′, s〉) ds

)
dg

=
∫

∂−1(t)

B(X, s)δ (〈λ′, s〉)
(∫

RΔ0(X̊)
δ (〈λ, s − bg〉) dg

)
ds

=
∫

∂−1(t)

B(X, s)δ (〈λ′, s〉) ds = Wb(X, t, λ′). (23)

Invariance under 3-2 shaped Pachner moves is a consequence of the shaped
pentagon identity for the tetrahedral Boltzmann weights, which in its turn is
equivalent to identity (47), provided the relevant integration variable does not
enter the product of delta functions δ (〈λ, s〉). This condition can always be
satisfied by appropriate choice of λ.

Finally, the gauge transformation in the space of dihedral angles induced
by an edge e, see [1], is equivalent to an imaginary shift of the integration
variable s(e), which, using the holomorphicity of the Boltzmann weights, can
be compensated by an imaginary shift of the integration path in the complex
s(e)-plane. �

3. Pentagon Identities from Elliptic Beta Integral

Let p and q be two fixed complex numbers inside the unit disk, i.e., |p|, |q| < 1
which will be called basis parameters. The elliptic gamma function is a mero-
morphic function on the complex plane defined by the formula [20]

Γ(z; p, q) :=
∞∏

k,l=0

1 − z−1pk+1ql+1

1 − zpkql
(24)

known to satisfy (Spiridonov’s) elliptic beta integral identity [43,44]

κ

∫

T

∏6
j=1 Γ(sjz

±1; p, q)
Γ(z±2; p, q)

dz

2πiz
=

∏

1≤k<l≤6

Γ(skslp, q), (25)

where

κ :=
(p; p)∞(q; q)∞

2
, (x; y)∞ :=

∞∏

k=0

(1 − xyk), (26)
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the parameters s1, . . . , s6 being constrained by the balancing condition
6∏

j=1

sj = pq, (27)

and we use the notation

Γ(a, b; p, q) := Γ(a; p, q)Γ(b; p, q), Γ(az±1; p, q) := Γ(az; p, q)Γ(az−1; p, q).
(28)

The elliptic gamma function has the following limiting value [41]:

lim
r→0

exp
(

πi
2z − ω1 − ω2

12r

)
Γ(e2πirz; e2πirω1 , e2πirω2) = γ(2)(z;ω1, ω2), (29)

with the hyperbolic gamma function defined by

γ(2)(z;ω1, ω2) :=
exp (−πiB2,2(z;ω1, ω2)/2)

Φ√
ω1
ω2

(
ω1+ω2−2z
2i

√
ω1ω2

) (30)

where

B2,2(z;ω1, ω2) :=
z2

ω1ω2
− z

ω1
− z

ω2
+

ω1

6ω2
+

ω2

6ω1
+

1
2

(31)

is the second-order Bernoulli polynomial and

Φb(z) := exp
(∫

R+i0

e−2izwdw

4 sinh(wb) sinh(w/b)w

)
(32)

is Faddeev’s quantum dilogarithm. As it follows from (29) and explicitly seen
from (30) and (31), γ(2)(z;ω1, ω2) is invariant under simultaneous rescalings of
its three arguments so that it depends on only two independent homogeneous
combinations, for example, z

ω2
and b2 := ω1

ω2
. Notice, that b2 is an element

of the set C\R≤0, and, using the symmetry of the elliptic gamma function
with respect to exchange of p and q, without loss of generality, we can assume
that it has a non-negative imaginary part. Moreover, we choose b with strictly
positive real part.

Among the properties of the hyperbolic gamma function is the inversion
relation

γ(2)(z, ω1 + ω2 − z;ω1, ω2) = 1 (33)

and the asymptotic formulae

lim
|u|→∞

e
πi
2 B2,2(u;ω1,ω2)γ(2)(u;ω1, ω2) =1, if arg ω1 < arg u < arg ω2 + π,

lim
|u|→∞

e− πi
2 B2,2(u;ω1,ω2)γ(2)(u;ω1, ω2) =1, if arg ω1 − π < arg u < arg ω2.

(34)

The inversion relation (33) is equivalent to the relation

Φb(z)Φb(−z) = Φb(0)2eπiz2
(35)
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which can be proved using (32) and Cauchy’s residue theorem. The asymptotic
formulae can be easily proved in the case of complex b using the inversion
relation and the formula

Φb(z) =

(
−e2πbz+πib2 ; e2πib2

)

∞(
−e2πb−1z−πib−2 ; e−2πib−2

)
∞

. (36)

Some of other properties of the hyperbolic gamma function and Faddeev’s
quantum dilogarithm are collected in the Appendix.

The hyperbolic gamma function can further be reduced to the usual
gamma function in the limit [41]:

lim
ω2→∞

(
ω2

2πω1

) z
ω1

− 1
2

γ(2)(z;ω1, ω2) =
Γ(z/ω1)√

2π
. (37)

3.1. The First Pentagon Identity

In what follows, we will use the notation

γ(2)(a, b;ω1, ω2) := γ(2)(a;ω1, ω2)γ(2)(b;ω1, ω2) (38)

and

γ(2)(a ± u;ω1, ω2) := γ(2)(a + u;ω1, ω2)γ(2)(a − u;ω1, ω2). (39)

In the elliptic beta integral (25), we introduce a new parameterization

z = e2πiru, p = e2πirω1 , q = e2πirω2 , sj = e2πirαj , j ∈ {1, . . . , 6},

(40)

and use the limit (29) to get

1
2

∫ i∞

−i∞

∏6
j=1 γ(2)(αj ± u;ω1, ω2)

γ(2)(±2u;ω1, ω2)
du

i
√

ω1ω2
=

∏

1≤k<l≤6

γ(2)(αk + αl;ω1, ω2),

(41)

where the contour of integration is the imaginary axis directed upwards and
in addition to the equality

6∑

j=1

αj = ω1 + ω2 (42)

coming from the balancing condition (27), the variables αj should also be
restricted by the conditions that the contour of integration separates the zeros
and poles of each of the hyperbolic gamma functions entering the integrand.

Now, following [46], we introduce yet another parameterization

αj = μ + aj , αj+3 = −μ + bj , j ∈ {1, 2, 3}, (43)

which transforms the balancing condition (42) into the equality
3∑

j=1

(aj + bj) = ω1 + ω2. (44)



Vol. 17 (2016) A TQFT of Turaev–Viro Type on Shaped Triangulations 1119

In equality (41), shifting the integration variable u → u + μ and taking the
limit μ → ∞, we get

∫ i∞

−i∞

3∏

j=1

γ(2)(aj − u, bj + u;ω1, ω2)
du

i
√

ω1ω2
=

3∏

k,l=1

γ(2)(ak + bl;ω1, ω2).

(45)

Using the following function

B(x, y) :=
γ(2)(x, y;ω1, ω2)

γ(2)(x + y;ω1, ω2)
, (46)

we rewrite (45) in the form of pentagon (five term) identity
∫ i∞

−i∞

3∏

j=1

B(aj − u, bj + u)
du

i
√

ω1ω2
= B(a2 + b1, a3 + b2)B(a1 + b2, a3 + b1),

(47)

where we used the inversion relation for the hyperbolic gamma function. Recall
that in (47) the contour of integration is the imaginary axis directed upwards
and the parameters aj and bj , apart from satisfying (44), are such that the
contour of integration separates the zeros and poles of each hyperbolic gamma
function entering the integrand. The pentagon relation (47) can be interpreted
in geometrical terms as is seen in Fig. 1. Note that by the inversion formula
(33), we have

B(x, y) = γ(2)(x;ω1, ω2)γ(2)(y;ω1, ω2)γ(2)(ω1 + ω2 − x − y;ω1, ω2) (48)

so that the right-hand side of (47) corresponds to the union of two tetrahe-
dra while the left-hand side to three tetrahedra. One also has the following
orthogonality relations for the B function:

ai +1 + bi

a i+ b i +1 

a i-u

a i +1 b i +1 
a i +2 b i +2 -u

a i

b i

a i +1 

b i +1 

a i +2 

b i +2 

-u -u
-u

-u

-u

-u

-u

-u

-u

b i -u

Figure 1. 2-3 moves
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∫

R

B(a − iu, b + iu)B(−a − iu,−b + iu)
du√
ω1ω2

= 2i
√

ω1ω2δ(a − b),
∫

R

B(a − iu, a + iu)B(−a − i(u + b),−a + i(u + b))
du√
ω1ω2

= 2
√

ω1ω2δ(b).

(49)

It would be natural to ask if one could give also a geometrical interpretation
to the original elliptic beta integral, but to the best of our knowledge it is not
known yet. However, recently in papers [5], it was realized that the elliptic
beta integral can be interpreted as a star–triangle relation (see also [46]) with
the Boltzmann weight

Wα(x, y) = Γ(eαx±1y±1; p, q). (50)

Taking into account the fact that the elliptic hypergeometric integrals describe
specific partition functions of 4d N = 1 SYM theories known as superconformal
indices [15,47], one possibly could try to interpret Spiridonov’s identity (25) in
terms of 3-3 Pachner moves of triangulated four-manifolds, see, for example,
[31,32].

3.2. The Second Pentagon Identity

Let us rewrite (47) in the form

∫ i∞

−i∞

∏3
j=1 γ(2)(aj − u;ω1, ω2)

∏2
k=1 γ(2)(bk + u;ω1, ω2)

γ(2)(
∑3

l=1 al + b1 + b2 − u;ω1, ω2)
du

i
√

ω1ω2

=
3∏

k,l=1

γ(2)(ak + bl;ω1, ω2), (51)

Applying the limit ω2 → ∞ to (51) and using (37) we get

∫ i∞

−i∞
B(a1 + u, b1 − u)B(a2 + u, b2 − u)B(a3 + u, a1 + a2 + b1 + b2)

du

2πi

= B(a2 + b1, a3 + b2)B(a1 + b2, a3 + b1), (52)

where B(x, y) is the usual beta function

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

. (53)

It is interesting to note that written in terms of fifteen gamma functions, iden-
tity (52) is known as Barnes’ second lemma [4], see also [20, formula (4.1.3)],
but to the best of our knowledge, it was not noticed that it can be written as
a pentagon relation for the beta function.

Taking the limit ω2 → ∞ in (49) one also gets analogous orthogonality
relations for the beta function.
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(a) (b) (c) (d)

Figure 2. Construction of a one-vertex cell decomposition of
the pair (S3, 41): a a knot diagram with a cellular structure; b
the induced cellular decomposition of S3 with crossings con-
tained in shaded tetrahedral cells; c each shaded tetrahedron
is collapsed to a segment represented by four oriented edges
of the tetrahedron; d the result of gluing of the cells c± along
the 2-cell corresponding to the outer region of the knot dia-
gram

4. Examples of Calculations

4.1. One-Vertex H-Triangulations

Let (M,K) be a pair consisting of a closed oriented three-manifold M and
a knot K ⊂ M . A one-vertex H-triangulation of (M,K) is, by definition, a
delta triangulation of M with one vertex and a distinguished edge representing
the knot K. A one-vertex H-triangulation of a knot in S3 can be constructed
starting from a non-trivial knot diagram D as follows.2

First, take S3 as the standard one point compactification of R
3 and fix

an embedding S2 ⊂ S3 as the closure of the standard embedding R
2 ⊂ R

3,
(x, y) �→ (x, y, 0). Next, we choose D as the image of a polygonal knot K ⊂
R

2 × [−ε, ε] ⊂ R
3 under the orthogonal projection of R

3 → R
2, with a small

positive real ε, so that the vertices of K project to mid-points of the edges of
D, except for one distinguished edge, to which we assume two vertices of K
are projected. We consider K together with its natural cellular decomposition.
In the case of the figure-eight knot, the diagram in Fig. 2a satisfies all these
conditions where the images of the vertices of the cellular decomposition of K
are represented by small filled circles and the distinguished edge of D is the
one containing the uppermost horizontal segment.

The cellular decomposition of K extends to that of S3 by keeping the
same vertex set and adding new edges so that each crossing point of D is sur-
rounded by images of four new edges as in Fig. 2b where the higher dimensional
cells are given by tetrahedral cells contained in R

2 × [−ε, ε], together with their
own natural cellular structure and which are projected to shaded quadrilaterals
containing the crossings of D, and also by two 3-cells c̃± given by intersections

2 We will think of a knot diagram as a four valent planar graph with vertices at the crossing
points.
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→ → → →

Figure 3. An isotopy which collapses a tetrahedron to a segment

of the complements of the tetrahedral cells in S3 with two balls B+ and B−
obtained as closures in S3 of the upper and lower half spaces respectively, i.e.,
B± = {(x, y, z) | ± z ≥ 0} so that S3 = B+ ∪ B− and S2 = B+ ∩ B−.

From the constructed cellular decomposition of S3, we produce a new
cellular complex by an isotopy which starts from the identity map and ends
with a projection to a topological quotient space (still homeomorphic to S3)
with respect to an equivalence relation under which all points of K, except
the segment which projects to the distinguished edge of D, are equivalent to
each other, and each tetrahedral cell is collapsed to a single edge as in Fig. 3.
The resulting cellular complex is composed of two 3-cells c±, the images of
c̃±, while the 2-skeleton is given by the complementary regions of the (shaded)
quadrilaterals containing the crossings of the diagram D as in Fig. 2c where
the non-collapsed part of K is the uppermost horizontal segment, and the
2-cells are given by non-shaded regions, namely four triangular cells and one
quadrilateral cell corresponding to the outer region. The orientations on the
edges with different types of arrows allow to keep track the information on
their identifications, namely, one type of arrow corresponds to one and the
same (geometrical) edge, the image of the corresponding tetrahedra.

By gluing two 3-cells c± together along the 2-cell corresponding to the
outer region in the knot diagram, we obtain a cellular complex given by one 3-
cell whose boundary is composed of the remaining 2-cells, each 2-cell appearing
twice with opposite orientations as in Fig. 2d where the boundary 2-sphere of
the 3-cell is identified with the coordinate plane compactified to a 2-sphere by
adding a point at infinity. The obtained complex is (non-canonically) trans-
formed into a Δ-triangulation by cutting the 3-cell into tetrahedra. In our
example, this is achieved easily by cutting along two new triangular 2-cells,
see Fig. 4b, where a linear order of vertices of each tetrahedron is induced by
the directions of arrows on the edges.

In the rest of this section, we present few examples of calculations of
partition functions for one-vertex H-triangulations of knots in S3.

4.2. Notation and Some Useful Formulae

For a tetrahedron T , we will denote ijT the edge ij of T for {i, j} ⊂ {0, 1, 2, 3}.
If α ∈ R

�(T ) is an arrangement of dihedral angles, then we denote αi := α(qT,i)
with qT,i ∈ �(T ) being the quad separating the opposite edge pair (0i, jk) of
T . For a shaped Δ-triangulation X, we will let denote ωX ∈ R

Δ1(X) the weight
function which assigns the total dihedral angles around the edges of X. We will
work only with H-triangulations where the distinguished edge belongs to only
one tetrahedron which will always be denoted H, and we choose the orientation
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(a) (b)

Figure 4. A one-vertex H-triangulation of the pair (S3, 41)
with three tetrahedra

on the distinguished edge so that H will always be a positive tetrahedron
(provided this is possible).

We will use the following notation

Δ := (ω1 + ω2)/π, ∇ :=
√

ω1ω2, (54)

and also

w(x) := cb

(
1 − x

π

)
(55)

with the property

w(x) − w(y) = w(x − y) − cb = −cb
x − y

π
. (56)

Further, we will use the ψ function defined as

ψ(x, y) := Ψ(x,−x, y) =
∫

R

Φb(t + x)
Φb(t − x)

e2πiytdt, (57)

see also (147). We have the equality

B (Δμ + i∇x,Δν + i∇y) = ψ
(
w(μ) +

x

2
, y − 2cb

ν

π

)
(58)

which is equivalent to (146). We can also write

B (Δμ + i∇x,Δν + i∇y) =
∫

R2
K(x, y, s, t)Mν,π−μ−ν(s, t)dsdt (59)

with a tempered distribution

K(x, y, s, t) := eπi(s+t)yδ(x − s + t) ∈ S ′(R4), (60)

and a test function

Mμ,ν(s, t) := ϕ̄μ,ν(s)ϕμ,ν(t) (61)

where

ϕμ,ν(z) :=
e−2icbμz

Φb

(
z − cb

μ+ν
π

) ∈ S(R) (62)

accumulates all the dependence of the model on the quantum parameter b and
the shape structure given by the dihedral angle variables μ and ν. Notice that
equality (59) easily follows from (57), while the function ϕμ,ν(z), up to a phase
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independent of z, is the function ψ μ
2π , ν

2π
(z) of [1, Section 4]. In particular, it has

the following important symmetry properties: one with respect to the complex
conjugation

ϕ̄μ,ν(z) 
 eπiz2
ϕν,μ(−z) (63)

and another with respect to the Fourier transformation

ϕ̃μ,ν(z) :=
∫

R

e−2πiyzϕμ,ν(y)dy 
 eπiz2
ϕν,π−μ−ν(z), (64)

where 
 means an equality up to a phase factor independent of z.
Formula (59) allows us to separate the state and shape variables in the

sense that the Boltzmann weight (6) of a shaped Δ-triangulation X in state
s ∈ R

Δ1(X) can be written in the form

B(X, s) =
∫

R2Δ3(X)
K(X, s, u)M(X,u)du (65)

where K(X, s, u) is a tempered distribution in S ′ (
R

Δ1(X)	2Δ3(X)
)

indepen-
dent of the shape structure of X. Substituting (65) in (9), one can exchange
the order of integrations and get the formula

Wb(X, t, λ) =
∫

R2Δ3(X)
L(X, t, u, λ)M(X,u)du (66)

where

L(X, t, u, λ) =
∫

∂−1(t)

K(X, s, u)δ (〈λ, s〉) ds (67)

is another tempered distribution in S ′ (
R

Δ1(∂X)	2Δ3(X)
)

still independent of
the shape structure of X. This way of calculating the partition function is very
convenient in practice as we will see below.

4.3. One-Vertex H-Triangulation of (S3, 31)
We construct a one-vertex one-tetrahedron H-triangulation X of the pair
(S3, 31) according to Fig. 5. Namely, as explained in Sect. 4.1, the diagram
(a) of the trefoil knot induces a cellular decomposition (b) of S3 which, upon
removing the 2-cell corresponding to the outer region of (b), immediately gives
rise to H-triangulation (c). Thus, we have one tetrahedron H with the face
identifications

∂iH ∼ ∂3−iH, i ∈ {0, 1}. (68)

The quotient space X is a triangulation of S3 with only one vertex v and two
edges: e1, the edge in Fig. 5c, which is knotted like trefoil and has
as pre-image the only edge 03 and e2, the edge in Fig. 5c, having as
pre-images all other five edges of H. The Boltzmann weight reads

B(X, s) = B (Δα3,Δα1 + i∇(s2 − s1)) (69)

where αi := α(qi) with qi ∈ �(H) being the quad separating the opposite edge
pair (0i, jk) of H, and si := s(ei). Formula (59) implies a decomposition of
the form (65) with
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(a) (b) (c)

Figure 5. Construction of a one-vertex H-triangulation of
the pair (S3, 31)

K(X, s, u) = K(0, s2 − s1, u1, u2) = e2πiu1(s2−s1)δ(u2 − u1) (70)

and

M(X,u) = Mα1,α2(u1, u2) (71)

where (u1, u2) := u(H).
Choosing the gauge fixing map λ so that 〈λv, s〉 = s1/2, we first calculate

the integral in (67):

L(X,u, λ) =
∫

R2
K(X, s, u)δ(s1/2)ds1ds2

= 2δ(u2 − u1)
∫

R2
e2πiu1s2ds2 = 2δ(u1)δ(u2) (72)

which, upon substitution into (66), immediately gives the following result for
the partition function:

Wb(X,λ) = 2Mα1,α2(0, 0) = 2|ϕα1,α2(0)|2 = 2 |Φb(w(α3))|2 . (73)

Using the definitions of the RPF and BRPF in (12) and (13), respectively, we
conclude that W̃b(X,λ) = W̌b(X,λ) = 1.

4.4. One-Vertex H-Triangulation of (S3, 41)
Let H-triangulation X be given by Fig. 4. It consists of two positive tetra-
hedra, H and R (the central and the right tetrahedra in Fig. 4b), and one
negative tetrahedron L (the left tetrahedron in Fig. 4b). One has the following
identification of the faces

∂0H ∼ ∂1H, ∂2H ∼ ∂1R, ∂3H ∼ ∂3L, ∂0R ∼ ∂2L, ∂2R ∼ ∂0L, ∂3R ∼ ∂1L.

(74)

For s ∈ R
Δ1(X), we get four edge variables

t := s( ) = s(23H),

x := s( ) = s(13H) = s(03H) = s(23R) = s(03R) = s(13L),

y := s( ) = s(12H) = s(02H) = s(01R) = s(02L) = s(12L),

z := s( ) = s(01H) = s(02R) = s(12R) = s(13R) = s(01L)

= s(03L) = s(23L).

(75)
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Denoting by α ∈ R
�(H), β ∈ R

�(R), γ ∈ R
�(L) the dihedral angle assignments,

we have the following weights (total angles) on the edges of X:

:=ωX( ) = α1,

1 :=ωX( ) = 2π − α1 − β2 + γ2,

2 :=ωX( ) = 2π − α1 + β1 − γ1,

3 :=ωX( ) = 6π − − 1 − 2.

(76)

The Boltzmann weight function reads as follows:

B(X, s) = B (Δα1,Δα2 + i∇(x + y − z − t))
×B (Δβ1 + i∇(z − x),Δβ2 + i∇(z − y))
×B (Δγ1 + i∇(z − x),Δγ2 + i∇(z − y)) (77)

so that using (59) we obtain decomposition (65) with

K(X, s, u) = K(0, x+y − z−t, h1, h2)K(z−x, z−y, r1, r2)K(z−x, z−y, l1, l2)
(78)

and

M(X,u) = Mα2,α3(h1, h2)Mβ2,β3(r1, r2)Mγ2,γ3(l1, l2) (79)

where (h1, h2) := u(H), (r1, r2) := u(R), (l1, l2) := u(L). Choosing the gauge
fixing map λ so that 〈λv, s〉 = z/2, we calculate

L(X,u, λ) =
∫

R4
K(X, s, u)δ(z/2)dtdxdydz = 2δ(h1)δ(h2)Ľ(X,u, λ) (80)

with

Ľ(X,u, λ) =
∫

R2
K(x, y, r1, r2)K(x, y, l1, l2)dxdx

=
∫

R2
eπi(r1+r2+l1+l2)yδ(x − r1 + r2)δ(z − l1 + l2)dxdy

= δ(r1 + l2)δ(l1 + r2). (81)

Corresponding to the factorization in the second equality of (80), the partition
function also factorizes

Wb(X,λ) = 2 |Φb(w(α1))|2 W̌b(X,λ) (82)

with the RPF

W̌b(X,λ) =
∫

R2
Mβ2,β3(x, y)Mγ2,γ3(−y,−x)dxdy

=
∣∣∣∣
∫

R

ϕ̄β2,β3(−x)ϕγ2,γ3(x)dx

∣∣∣∣
2
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=
∣∣∣∣
∫

R

e2icbx(β2−γ2)
Φb (−x + w(β1))
Φb (x − w(γ1))

dx

∣∣∣∣
2

=

∣∣∣∣∣

∫

R−i0

e2icbz(2π−ε−ε1)
Φb (−z)

Φb

(
z − cb

ε+ε2−2π
π

)dz

∣∣∣∣∣

2

(83)

where in the last equality, we used the formulae (76) for the weights on the
edges of X. In the limit ε → 0 and εi → 2π, i ∈ {1, 2}, the totally balanced
renormalized case corresponds to the equality β = γ with the BRPF

W̃b(X,λ) =
∣∣∣∣
∫

R−i0

Φb (−z)
Φb (z)

dz

∣∣∣∣
2

(84)

which corresponds to the figure-eight state integral in the Teichmüller TQFT,
see [1, formula (38) and subsection 11.5] thus proving formula (14) for this
example.

4.5. One-Vertex H-Triangulation of (S3, 52)
Following the procedure described in Sect. 4.1, we construct a one-vertex H-
triangulation X of the pair (S3, 52) according to Fig. 6, where in (d) one can
easily identify four tetrahedra piled up from bottom to top. All tetrahedra
are positive. Apart from the distinguished tetrahedron H (the bottom one
containing the distinguished edge), we denote the others as T1, T2, T3 in the
order from bottom to top. We have the following face identifications:

∂2H ∼ ∂3H, ∂0H ∼ ∂3T2, ∂1H ∼ ∂0T1, ∂1T1 ∼ ∂0T2,

∂2T1 ∼ ∂1T3, ∂3T1 ∼ ∂0T3, ∂1T2 ∼ ∂2T3, ∂2T2 ∼ ∂3T3. (85)

For a state s ∈ R
Δ1(X), denote s

(i)
kl ≡ s(klTi

) and skl ≡ s(klH), i.e., the variable
s
(i)
kl is the value of s on the edge kl of the tetrahedron Ti while the variable skl

is the value on the edge kl of the tetrahedron H. We have five edge variables

x0 := s( ) = s01,

x1 := s( ) = s12 = s13 = s
(2)
01 = s

(2)
02 = s

(3)
01 ,

x2 := s( ) = s02 = s03 = s
(1)
12 = s

(1)
13 = s

(3)
23 ,

x3 := s( ) = s23 = s
(1)
02 = s

(1)
23 = s

(2)
12 = s

(2)
23 = s

(3)
13 ,

x4 := s( ) = s
(1)
01 = s

(1)
03 = s

(2)
03 = s

(2)
13 = s

(3)
02 = s

(3)
03 = s

(3)
12 ,

(86)

Denoting by α ∈ R
�(H), βi ∈ R

�(Ti), i ∈ {1, 2, 3}, the dihedral angle arrange-
ments, we have the following weights on the edges of X:

:=ωX( ) = α1,

1 :=ωX( ) = 2π − α1 − β23 + β31,

2 :=ωX( ) = 2π − α1 − β11 + β31,

3 :=ωX( ) = 2π + α1 − β13 − β22 + β32,

4 :=ωX( ) = 8π − − 1 − 2 − 3,

(87)
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(a) (b) (c) (d)

Figure 6. Construction of a one-vertex H-triangulation of
the pair (S3, 52)

where αj = α(qH,j), βij := (βi)j := βi(qTi,j). The Boltzmann weight function
reads as follows:

B(X, s) = B (Δα1,Δα2 + i∇(x1 + x2 − x3 − x0))
×B (Δβ11 + i∇(x3 − x4),Δβ13 + i∇(x4 − x2))
×B (Δβ23 + i∇(x3 − x4),Δβ22 + i∇(x4 − x1))
×B (Δβ31 + i∇(x3 − x4),Δβ32 + i∇(2x4 − x1 − x2)) (88)

so that we have a decomposition (65) with

K(X, s, u) = K(0, x1 + x2 − x3 − x0, h1, h2)K(x3 − x4, x4 − x2, u11, u12)
×K(x3 − x4, x4 − x1, u21, u22)K(x3 − x4, 2x4 − x1−x2, u31, u32)

(89)

and

M(X,u)
= Mα2,α3(h1, h2)Mβ13,β12(u11, u12)Mβ22,β21(u21, u22)Mβ32,β33(u31, u32)

(90)

where (h1, h2) := u(H), (ui1, ui2) := u(Ti). Choosing the gauge fixing map λ
so that 〈λv, s〉 = x4/2, we calculate

L(X,u, λ) =
∫

R5
K(X, s, u)δ(x4/2)dx0 . . . dx4 = 2δ(h1)δ(h2)Ľ(X,u, λ)

(91)

with

Ľ(X,u, λ)=
∫

R3
K(x3,−x2, u11, u12)K(x3,−x1, u21, u22)

×K(x3,−x1 − x2, u31, u32)dx1dx2dx3

= δ(u11 − u21)δ(u11 + u32)δ(u12 − u22)δ(u12 + u31). (92)

Now, corresponding to the factorization in the second equality of (91), the
partition function also straightforwardly factorizes as in (82) with the RPF of
the form
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W̌b(X,λ) =
∣∣∣∣
∫

R

ϕβ13,β12(x)ϕβ22,β21(x)ϕ̄β32,β33(−x)dx

∣∣∣∣
2

=
∣∣∣∣
∫

R

e2icbx(β32−β22−β13)Φb (w(β31) − x)
Φb (x − w(β11)) Φb (x − w(β23))

dx

∣∣∣∣
2

=

∣∣∣∣∣

∫

R−i0

e2icbz(ε3−ε−2π)Φb (−z)
Φb

(
z − cb

ε2+ε−2π
π

)
Φb

(
z − cb

ε1+ε−2π
π

)dz

∣∣∣∣∣

2

. (93)

Thus, in the fully balanced limit ε → 0 and εi → 2π, i ∈ {1, 2, 3}, we obtain
the BRPF

W̃b(X,λ) =

∣∣∣∣∣

∫

R−i0

Φb (−z)
Φb (z)2

dz

∣∣∣∣∣

2

(94)

which is consistent with the equality (14), see for the Teichmüller TQFT result
in [1, formula (39) and subsection 11.7].

4.6. One-Vertex H-Triangulation of (S3, 61)
Starting from a knot diagram, we construct an H-triangulation X of (S3, 61)
following the procedure described in Sect. 4.1. The result is given in Fig. 7d
where one can easily identify five tetrahedra piled up from bottom to top.
Apart from the distinguished tetrahedron H (the bottom one containing the
distinguished edge), we denote the others as T1, T2, T3 and T4 in the order
from bottom to top. We have the following face identifications:

∂2H ∼ ∂3H, ∂0H ∼ ∂0T1, ∂1H ∼ ∂3T3, ∂1T1 ∼ ∂2T2, ∂2T1 ∼ ∂0T4,

∂3T1 ∼ ∂0T2, ∂1T2 ∼ ∂1T4, ∂3T2 ∼ ∂0T3, ∂1T3 ∼ ∂3T4, ∂2T3 ∼ ∂2T4.

(95)

As in the previous example, for a state s ∈ R
Δ1(X), we denote s

(i)
kl ≡

s(klTi
) and skl ≡ s(klH). We have six edge variables

(a) (b) (c) (d)

Figure 7. Construction of a one-vertex H-triangulation of
the pair (S3, 61)
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x0 := s( ) = s01,

x1 := s( ) = s
(1)
01 = s

(2)
12 = s

(3)
23 = s

(4)
12 ,

x2 := s( ) = s02 = s03 = s
(3)
01 = s

(3)
02 = s

(4)
01 ,

x3 := s( ) = s12 = s13 = s
(1)
12 = s

(1)
13 = s

(2)
23 = s

(4)
23 ,

x4 := s( ) = s23 = s
(1)
02 = s

(1)
23 = s

(2)
01 = s

(2)
13 = s

(3)
12 ,

x5 := s( ) = s
(1)
03 = s

(2)
02 = s

(2)
03 = s

(3)
03 = s

(3)
13 = s

(4)
02 = s

(4)
03 = s

(4)
13 .

(96)

Denoting by α ∈ R
�(H), βi ∈ R

�(Ti), i ∈ {1, 2, 3, 4}, the dihedral angle
arrangements, we have the following total angles around the edges of X:

:=ωX( ) = α1,

1 :=ωX( ) = β11 + β23 + β31 + β43,

2 :=ωX( ) = 2π − α1 − β33 + β41,

3 :=ωX( ) = 2π − α1 − β11 + β21 + β41,

4 :=ωX( ) = 2π + α1 − β13 − β23 + β33,

5 :=ωX( ) = 10π − − 1 − 2 − 3 − 4,

(97)

where αj = α(qH,j), βij := (βi)j := βi(qTi,j). The Boltzmann weight function
reads as follows:

B(X, s) = B(Δβ41 + i∇(x5 − x1),Δβ43 + i∇(x2 + x3 − 2x5))
×B(Δβ33 + i∇(x5 − x1),Δβ32 + i∇(x1 + x2 − x4 − x5))
×B(Δβ23 + i∇(x5 − x3),Δβ22 + i∇(x3 + x4 − x1 − x5))
×B(Δβ13 + i∇(x3 − x1),Δβ11 + i∇(x5 − x4))
×B(Δα1,Δα2 + i∇(x2 + x3 − x4 − x0)) (98)

so that we have a decomposition (65) with

K(X, s, u) = K(x5 − x1, x2 + x3 − 2x5, u41, u42)
×K(x5 − x1, x1 + x2 − x4 − x5, u31, u32)
×K(x5 − x3, x3 + x4 − x1 − x5, u21, u22)
×K(x3 − x1, x5 − x4, u11, u12)
×K(0, x2 + x3 − x4 − x0, h1, h2) (99)

and

M(X,u) = Mβ43,β42(u41, u42)Mβ32,β31(u31, u32)
×Mβ22,β21(u21, u22)Mβ11,β12(u11, u12)Mα2,α3(h1, h2) (100)

where (h1, h2) := u(H), (ui1, ui2) := u(Ti). Choosing the gauge fixing map λ
so that 〈λv, s〉 = x5/2, we calculate

L(X,u, λ)=
∫

R5
K(X, s, u)δ(x5/2)dx0 . . . dx5 =2δ(h1)δ(h2)Ľ(X,u, λ) (101)
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with

Ľ(X,u, λ) =
∫

R3
K(−x1, x2 + x3, u41, u42)K(−x1, x1 + x2 − x4, u31, u32)

×K(−x3, x3 + x4 − x1, u21, u22)
×K(x3 − x1,−x4, u11, u12)dx1dx2dx3dx4

= D(u11, u22, u32, u41)D̄(u12, u21, u31, u42) (102)

where

D(x1, x2, x3, x4) = eπix2
1δ(x1 − x2 + x3)δ(x3 + x4). (103)

Now, corresponding to the factorization in the second equality of (101), the
partition function also straightforwardly factorizes as in (82) with the RPF of
the form

W̌b(X, λ)

=

∣∣∣∣
∫

R2
eπix2

ϕ̄β11,β12(x)ϕβ22,β21(x − y)ϕβ32,β31(−y)ϕ̄β43,β42(y)dxdy

∣∣∣∣
2

=

∣∣∣∣∣

∫

R2

eπix2−2icb(x(β11+β22)−y(β22+β32−β43))Φb (w(β13) + x) Φb (y + w(β41))

Φb (x − y − w(β23)) Φb (−y − w(β33))
dxdy

∣∣∣∣∣

2

=

∣∣∣∣∣∣

∫

(R+i0)2

eπix2−2πixw(β13−β11−β22)+2icby(β22+β32−β43)Φb (x) Φb (y)

Φb (x − y − w(β23 + β13 − β41)) Φb

(
−y − cb

β41−β33
π

) dxdy

∣∣∣∣∣∣

2

=

∣∣∣∣∣

∫

(R+i0)2

eπix2−2πixw(π+ε+ε3−ε2−ε4)+2icby(2π+ε2−ε1−ε3)Φb (x) Φb (y)

Φb (x − y − w(4π − ε2 − ε4)) Φb

(−y + cb
2π−ε−ε2

π

) dxdy

∣∣∣∣∣

2

(104)

Thus, in the fully balanced limit ε → 0 and εi → 2π, i ∈ {1, 2, 3}, we obtain
the BRPF

W̃b(X,λ) =

∣∣∣∣∣

∫

(R+i0)2

eπix2−4πicbxΦb (x) Φb (y)
Φb (x − y − cb) Φb (−y)

dxdy

∣∣∣∣∣

2

. (105)

5. Application to 3d Supersymmetric Field Theories

5.1. 3d Supersymmetric Theories Living on a Squashed Three-Sphere

Following the work of Pestun [36], the partition functions of 3d N = 2 super-
symmetric theories, defined on a squashed three-sphere S3

b , were calculated
in the papers [22,23,26,27] using the localization method. These partition
functions are given in the form of integrals with the integrands composed of
hyperbolic gamma functions [16,55]. For any 3d N = 2 supersymmetric theory
defined on S3

b with a gauge group G and a flavor group F , the corresponding
partition function has the following structure

Z(f) =
∫ i∞

−i∞

rankG∏

j=1

duj J(u)Zvec(u)
∏

I

Zchir
ΦI

(f, u). (106)
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Here, the integral is taken over uj variables which are associated with the Weyl
weights for the Cartan subalgebra of the gauge group G and the fks denote
the chemical potentials for the flavor symmetry group F .3 For CS theory, one
has J(u)= e−πik

∑rankG
j=1 u2

j , where k is the level of the CS term, while for SYM
theories one has J(u) = e2πiλ

∑rankG
j=1 uj , where λ is the Fayet–Illiopoulos term.

The terms Zvec(u) and Zchir
ΦI

(f, u) in (106) come from the vector superfield
and the matter fields, respectively, and are given in terms of the hyperbolic
gamma function.

The result of localization allows us to relate the physical theory with
some matrix integral of the form (106). Also, we can invert the logic: having
some matrix integral of the type (106) one can find a 3d N = 2 supersym-
metric field theory whose partition function is given by this matrix integral
[16]. Thus, all the partition functions which we get by considering (9) can be
interpreted as partition functions for some 3d N = 2 supersymmetric field
theories. Moreover, as the expression (9) corresponds to some triangulation
of a three-dimensional manifold M , we obtain a link between three-manifolds
and 3d N = 2 supersymmetric field theories defined on S3

b . This is known
as a 3d/3d duality considered recently in [12,13,49,50] (see also [48] for the
relation of the objects to four-dimensional supersymmetric field theories).

In [13], the state variables live in the faces, while in our case the state
variables live on the edges. To get a 3d theory from 3d manifold M , one has
to triangulate this manifold and calculate its partition function (9) and then
interpret this expression as a partition function (106). One should notice that
every common edge corresponds to abelian gauge group.

Let us start from our building block: the tetrahedral Boltzmann weight
composed of three hyperbolic gamma functions, each corresponding to the
contribution coming from the 3d N = 2 chiral hypermultiplet. Namely,

B(T, x) =
3∏

j=1

γ(2)
(
Δαj + i∇(xj+1 + x′

j+1 − xj−1 − x′
j−1);ω1, ω2

)
, (107)

corresponds to three chiral superfields Qj , j = 1, 2, 3, with SU(3) global sym-
metry group (since

∑3
j=1(xj+1+x′

j+1−xj−1−x′
j−1) = 0) and a superpotential

W ∼ Q1Q2Q3,

which has a correct R charge. This can be easily seen from the fact that
the dihedral angles αj , j = 1, 2, 3, correspond to R charges of three chiral
superfields. And since

∑3
j=1 αj = π then the RW charge of the superpotential

W is given as

RW =
3∑

j=1

RQj
=

3∑

j=1

2αj/π = 2.

3 From physical point of view, fk’s are linear combinations of the R-charge, the masses of
the hypermultiplets, and the Fayet–Illiopoulos terms associated to the additional Abelian
global symmetries.
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The first non-trivial case of a 3d theory with a non-trivial gauge group is
the pentagon identity (47) (which realizes the 2-3 Pachner move) when we
take two positive tetrahedra and glue them together over the common face.
The partition function of two glued tetrahedra having vertices (0, 1, 2, 4) and
(0, 2, 3, 4) is

Wb,A = B(Δα1+i∇(x02+x34−x03−x24),Δα2+i∇(x03+x24−x04 − x23))
×B(Δβ1+i∇(x01+x24−x02−x14),Δβ2+i∇(x02+x14−x04 − x12))

(108)

where

α1 = a2 + b1, α2 = a3 + b2, β1 = a1 + b2, β2 = a3 + b1, (109)

and
∑3

j=1(aj + bj) = ω1 + ω2. This is the partition function for a theory A

which consists of six 3d N = 2 free chiral hypermultiplets with F = SU(3) ×
SU(3) × U(1) global symmetry group. Each group SU(3) corresponds to a
separate tetrahedron and U(1) group distinguishes the two tetrahedra.

On the other hand, using 2 − 3 Pachner move, two glued tetrahedra can
be considered as three tetrahedra with the vertices (0, 1, 2, 3), (0, 1, 3, 4) and
(1, 2, 3, 4) having a common edge x04 whose partition function is

Wb,B

=
∫

R

B(Δa1+i∇(x01+x23−x02−x13),Δb1+i∇(x02+x13−x03−x12))

×B(Δa2+i∇(x12+x34−x13−x24),Δb2+i∇(x13+x24−x14−x23))
×B(Δa3+i∇(x01+x34−x03−x14),Δb3+i∇(x03+x14−x04−x13))dx13.

(110)

It gives the partition function for a 3d N = 2 SQED theory B (which has
U(1) gauge group) with 3 flavors and overall F = SU(3) × SU(3) × U(1)
global symmetry group and 2 singlet baryons. There are three tetrahedra in
this picture so one can think of SU(3)3 global symmetry group but a part
of this, namely, U(1) becomes a gauge group leaving SU(3) × SU(3) × U(1)
global symmetry group.

Since the partition functions in (108) and (110) are equal, one can say that
the theories A and B are the same or dual to each other. Generally, different
triangulations of three-manifolds produce different phases of the same theory,
in other words, we get dual descriptions for 3d supersymmetric field theories
related to a given three-dimensional manifold.

As a next example, we consider four tetrahedra T1, T2, T3, T4 built,
respectively, from vertices (0, 1, 2, 5), (0, 2, 3, 5), (0, 3, 4, 5), (0, 1, 4, 5). They
are glued together to form an octahedron and share a common edge x05. From
the face identification

∂1T1 ∼ ∂3T2, ∂2T2 ∼ ∂4T3, ∂3T3 ∼ ∂1T4, ∂2T1 ∼ ∂4T4, (111)

we get the state variables
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x
(1)
05 = x

(2)
05 = x

(3)
05 = x

(4)
05 , x

(1)
25 = x

(2)
25 , x

(1)
02 = x

(2)
02 , x

(2)
35 = x

(3)
35 ,

x
(2)
03 = x

(3)
03 , x

(3)
45 = x

(4)
45 , x

(3)
04 = x

(4)
04 , x

(1)
15 = x

(4)
15 , x

(1)
01 = x

(4)
01 , (112)

so that the partition function is equal to

Wb,Octahedron =
∫

dx
(1)
05

×B(Δα1 + i∇(x(1)
02 + x

(1)
15 − x

(1)
12 − x

(1)
05 ),

Δα2 + i∇(x(1)
12 − x

(1)
01 − x

(1)
25 + x

(1)
05 ))

×B(Δβ1 + i∇(x(2)
03 + x

(1)
25 − x

(2)
23 − x

(1)
05 ),

Δβ2 + i∇(x(2)
23 − x

(1)
02 − x

(2)
35 + x

(1)
05 ))

×B(Δγ1 + i∇(x(3)
04 + x

(2)
35 − x

(3)
34 − x

(1)
05 ),

Δγ2 + i∇(x(3)
34 − x

(2)
03 − x

(3)
45 + x

(1)
05 ))

×B(Δδ1 − i∇(x(4)
14 − x

(1)
01 − x

(3)
45 + x

(1)
05 ),

Δδ2 − i∇(x(3)
04 + x

(1)
15 − x

(4)
14 − x

(1)
05 )), (113)

which corresponds to the partition function of a 3d N = 2 SQED theory with
4 flavors and four singlet baryons with the overall global symmetry SU(3)3 ×
U(1). Octahedron can be also represented by gluing five tetrahedra, and in
the next subsection we interpret that move using the Bailey tree technique. As
we will show, the triangulation with five tetrahedra gives a dual description of
the starting theory in terms of a quiver gauge theory with U(1) × U(1) gauge
group.

In a similar manner, gluing F tetrahedra sharing one common edge, one
gets the partition function for a 3d N = 2 SQED theory with F flavors and F
additional singlet baryons which has SU(3)F−1 ×U(1) global symmetry group
(since U(1) becomes a gauge group).

5.2. Bailey Tree Technique

There is an alternative way to see the constructions of the previous subsection
based on the application of Bailey tree technique for hyperbolic integrals (very
much in the spirit of [45]). This approach gives an algebraic way of getting the
partition functions and relates the triangulated three-dimensional manifolds
from one side, and 3d supersymmetric field theories defined on a squashed
three-sphere, from the other. The Bailey tree technique is useful for tracking
different triangulations related to each other by 2-3 Pachner move from the
algebraic viewpoint.

Definition 1. We say that two functions α(z) and β(z), z ∈ C, form an integral
hyperbolic Bailey pair (the hyperbolic level) with respect to a parameter t ∈ C

if

β(w) =
∫

B(t + w − z, t − w + z)α(z)dz. (114)
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To indicate explicitly the parameter t, we will write α(z, t) and β(z, t)
though the functions can also depend on other parameters.

Theorem 2. (Follows from Theorem 1 [45]) Whenever two functions α(z, t)
and β(z, t) form an integral hyperbolic Bailey pair with respect to t, the new
functions

α′(w, s + t) = B(t + u + w, 2s)α(w, t) (115)

and

β′(w, s + t) =
∫

B(s + w − x, u + x)B(s + 2t + u + w, s − w + x)β(x, t)dx,

(116)

form an integral hyperbolic Bailey pair with respect to parameter s + t.

Proof. The proof is similar to the proof in the elliptic case [45]. We start from
the definition for β′(w, s + t):

β′(w, s + t) =
∫

B(s + w − x, u + x)B(s + 2t + u + w, s − w + x)β(x, t)dx,

where we substitute β(x, t) from equation (114):

β′(w, s + t) =
∫

B(s + w − x, u + x)B(s + 2t + u + w, s − w + x)

×B(t + x − y, t − x + y)α(y, t)dydx. (117)

In the latter expression, we can apply formula
∫ 3∏

j=1

γ(2)(aj − u;ω1, ω2)γ(2)(bj + u;ω1, ω2)du =
3∏

k,l=1

γ(2)(ak + bl;ω1, ω2),

(118)

where
∑3

j=1(aj + bj) = ω1 + ω2, so that we get

β′(w, s + t) =
∫

B(s + t + w − x, s + t − w + x)α′(x, s + t)dx. (119)

�

From identity (118), one gets the following Bailey pair

α(z, t) =
2∏

j=1

B(αj − z, βj + z), (120)

where 2t +
∑2

j=1(αj + βj) = ω1 + ω2, and

β(w, t) =
2∏

j=1

B(t + w + αj , t − w + β3−j). (121)

The pentagon identity permits us to define a particular Bailey pair thus giving
to Bailey pairs a topological interpretation in terms of the 2-3 Pachner moves.
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In other words, the construction of new Bailey pairs through Theorem 2 cor-
responds to changing a triangulation by the 2-3 Pachner move.

In the case of an octahedron triangulated into four tetrahedra which
we considered in the previous subsection, the partition function (119) can be
written as

Z4Δ′s =
∫

B(s + t + w − x, s + t − w + x)B(t + u + x, 2s)

×
2∏

j=1

B(αj − x, βj + x)dx, (122)

where 2t +
∑2

j=1(αj + βj) = ω1 + ω2. On the other hand, this expression is
equal to (117)

Z5Δ′s =
∫

B(s + w − x, u + x)B(s − w + x, 2t + s + u + w)

×B(t + x − y, t − x + y)
2∏

j=1

B(αj − y, βj + y)dydx, (123)

which corresponds to triangulation of the octahedron in terms of five tetrahe-
dra. Repeating this procedure, one can further increase the number of tetra-
hedra thus obtaining new equalities for dual 3d supersymmetric field theories
related to these triangulations.

6. Relationship to Representations to PSL(2,C)

In this section, we briefly discuss the relationship between the invariant
Wb(X, t, λ) and representations of the corresponding fundamental group into
PSL(2, C) and simplicial Chern–Simons theory.

6.1. Angle Structures and Representations of Fundamental Groups
to PSL(2,C)

For simplicity, let us assume that X = (M, T ) is an oriented triangulated
closed pseudo-three-manifold, i.e., ∂X = ∅, where M is the underlying pseudo-
three-manifold and T is the triangulation. Let �(T ) be the set of all quads
in T . Recall that Z/3Z = {1, τ, τ2} acts on �(T ) corresponding to the cyclic
order of three edges around each vertex. For q ∈ �(T ), we will use q′ and q′′

to denote τ(q) and τ2(q) below. A shaped structure on X (or T ) is a function
α : �(T ) → (0, π) so that α(q)+α(q′)+α(q′′) = π for all q ∈ �(T ). The weight
of a shape structure α is the function f : Δ1(T ) → R sending each edge e to
f(e) =

∑
q∼e α(q) where q ∼ e means the quad q faces the edge e. In particular,

an angle structure is a shaped structure whose weight at each edge is 2π.
The invariant Wb(X) in Theorem 1 is defined for each shaped triangu-

lation, i.e., Wb(X) =Wb(M ; T , α). Theorem 1 implies that Wb(M ; T3, α) =
Wb(M ; T2, β) if T3 is obtained from T2 by a 2-3 Pachner move so that β is the
angle structure on T2 induced by the angle structure α on T3. (The equation
for defining β from α is indicated in Fig. 1). In general, there are many differ-
ent (or may be none) angle structures on T3 inducing the same angle structure
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qi
q i'

q i''
q i+1

q' i+1q'' i+1

Figure 8. Edge loop in a vertex link

on T2. These different angles structures are related by a gauge transformation
induced by the degree 3 edge in T3. Theorem 1 says that Wb(M ; T , α) depends
only on the (edge type) gauge equivalence class of the shaped structure α.

We will describe briefly the edge type gauge equivalence class now. Recall
that a tangential angle structure on T (see [35]) is a map x : �(T ) → R so
that for each q ∈ �(T ), x(q)+x(q′)+x(q′′) = 0 and for each edge e ∈ Δ1(T ),∑

q∼e x(q) = 0. Thus the space of all tangential angle structures is a vector
space, denoted by TAS(T ). For any shape structure α, v ∈ TAS(T ) and small
t, β = α + tv is still a shape structure so that β and α have the same weight.
A generating set of vectors for TAS(T ) was well known and can be described
as follows. Consider the vertex link lk(v) of a vertex v ∈ Δ0(T ). Let s be
an edge loop in the dual CW decomposition of the triangulated surface lk(v).
The loop s can be described as a sequence of triangles {t1, ..., tn} and edges
{ε1, ..., εn} in lk(v) so that εi is adjacent to ti and ti+1 (tn+1 = t1). Since each
ti corresponds to a tetrahedron Ti and each εi corresponds to a co-dimension-1
face Fi in T , each Ti contains a unique quad qi facing the edge Fi−1 ∩Fi in Ti

(Fig. 8).
Define a map gs : �(T ) → R by gs(q′

i) = 1, gs(q′′
i ) = −1 and gs(q) = 0

for all other qs. One checks easily that gs ∈ TAS(T ). In particular, if s is the
loop around a vertex u in lk(v), then gs is the gauge transformation associated
to the edge e corresponding to u. Two shaped structures α and β on T are
edge type gauge equivalent if their difference α − β is a linear combinations of
gss for edge loops s which are around vertices in vertex links. Theorem 1 says
that Wb(M ; T , α) depends only on the edge type gauge equivalence classes.
A theorem in [51] shows TAS(T ) is generated by vectors gs. Define the angle
holonomy α(s) of a shaped structure α along an edge loop s in lk(v) to be∑n

i=1 α(qi). The works of [1,51] show that two shaped structures are edge
type gauge equivalent if and only if they have the same angle holonomy along
any edge loop s in vertex links. This suggests a way to represent the edge
type gauge equivalence class of shaped structures using volume optimization.
Namely, given a shaped structure α, let Aα be the set of all shaped structures
on T edge type gauge equivalent to α. The volume of a shape structure is the
sum of the volume of the hyperbolic tetrahedra determined by the shape. It
is well known that volume is a strictly concave function of shape structure
α. In particular, there is at most one shape structure β ∈ Aα which has the
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maximum volume. Note that it may not exist in Aα, i.e., the maximum volume
point may appear in the boundary of the closure of Aα. Suppose now that α
is an angle structure and the maximum volume β exists in Aα. Then by the
standard volume optimization method (see [19,38], or [35]), one sees that the
complex shape parameter zβ given by (3) associated to β satisfies Thurston’s
gluing equation. Therefore, it produces a representation ρ of π1(M − Δ0(T ))
to PSL(2, C) so that for any edge loop s in lk(v), the eigenvalues of ρ(s) are
of the form re±√−1β(s)/2 for r ∈ R>0. This shows if there exists an angle
structure of the maximum volume edge type gauge equivalent to α, one can
assign the invariant Wb(M ; T , α) to the representation ρ, i.e., the invariant
Wb(M ; T , α) may be an invariant of a pair (M,ρ). The precise conjectural pic-
ture of Wb(M ; T , α) is: if two angle structures (Ti, αi) (i = 1, 2) are associated
to the same representation ρ, then Wb(M ; T1, α1) = Wb(M ; T2, α2).

6.2. Relationship with Simplicial PSL(2,R) Chern–Simons Theory

In [34], we proposed a variational principle for finding real-valued solutions of
Thurston’s equation on a triangulated oriented closed pseudo-three-manifold
(M ; T ). Given (M ; T ), we introduce the homogeneous Thurston’s equation
(HTE) as follows. A map x : �(T ) → R is said to solve HTE if for each
q ∈ �(T ), x(q) + x(q′) + x(q′′) = 0 and for each edge e in T ,

∏

q∼e

x(q′) =
∏

q∼e

(−x(q′′)).

It can be proved that solutions to Thurston’s equation over the real numbers
on (M, T ) correspond to nowhere zero solutions to HTE. The main observation
in [34] is that critical points of an entropy function of the form

∑n
i=1 xi ln(|xi|)

are nowhere zero solutions to HTE. The converse also holds if M is a closed
three-manifold.

Our pentagon relation (52) implies the following pentagon relation for
the entropy. Namely, given five positive numbers a1, a2, b1, b2, b3 so that∑2

i=1 ai +
∑3

j=1 bi = 1 and a1a2 = b1b2b3, then

∑

i,j

(ai + bj) ln(ai + bj) =
2∑

i=1

(ai ln(ai) + (1 − ai) ln(1 − ai)) +
3∑

j=1

bj ln(bj).

(124)

Identity (124) suggests there should exist a non-quantum topological invariant
for three-manifold from simplicial SL(2, R) Chern–Simons theory. Further-
more, this invariant should be the semi-classical limit of Wb(M ; T , α) when b
degenerates.
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Appendix A. Special Functions

A.1. Faddeev’s Quantum Dilogarithm

Faddeev’s quantum dilogarithm Φb(z) is defined by the integral

Φb(z) ≡ exp
(∫

R+i0

e−2izwdw

4 sinh(wb) sinh(w/b)w

)
, (125)

in the strip |Imz| < |Imcb|, where

cb := i(b + b−1)/2. (126)

It is usefull to define

ζinv := eπi(1+2c2
b)/6 = eπic2

bζ2
o , ζo := eπi(1−4c2

b)/12. (127)

symmetry Φb(z) = Φ−b(z) = Φ1/b(z), (128)

functional equations Φb(z − ib±1/2) = (1 + e2πb±1z)Φb(z + ib±1/2) , (129)

inversion property Φb(z)Φb(−z) = ζ−1
inveπiz2

, (130)

zeros z ∈
{
cb + mib + nib−1;m,n ∈ Z

≥0
}
, (131)

poles z ∈
{

− cb − mib − nib−1;m,n ∈ Z
≥0

}
, (132)

unitarity Φb(z) = 1/Φb(z). (133)

A.2. The Elliptic Gamma Function

The elliptic gamma function is defined by the formula

Γ(z; p, q) =
∞∏

i,j=0

1 − z−1pi+1qj+1

1 − zpiqj
(134)

and which has the following properties:

symmetry Γ(z; p, q) = Γ(z; q, p) , (135)

functional equations Γ(qz; p, q) = θ(z; p)Γ(z; p, q), (136)

Γ(pz; p, q) = θ(z; q)Γ(z; p, q) , (137)

reflection property Γ(z; p, q) Γ
(

pq

z
; p, q

)
= 1 , (138)

zeros z ∈
{
pi+1qj+1; i, j ∈ Z

≥0
}

, (139)
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poles z ∈
{
p−iq−j ; i, j ∈ Z

≥0
}

, (140)

residue Res
z=1

Γ(z; p, q) = − 1
(p; p)∞(q; q)∞

. (141)

Here θ(z; p) is a theta-function θ(z; p) = (z; p)∞(pz−1; p)∞.

A.3. Some Useful Formulas

Faddeev’s quantum dilogarithm and the hyperbolic gamma functions are
related via the formula

γ(2)(−i
√

ω1ω2(x + cb);ω1, ω2) =
eiπx2/2

√
ζinvΦb(x)

, (142)

where b :=
√

ω1
ω2

.

Recall that the inversion relation (33) for γ(2)(x) is of the form

γ(2)(x;ω1, ω2)γ(2)(ω1 + ω2 − x;ω1, ω2) = 1 (143)

and the complex conjugation property

γ(2)(z) = γ(2)(z̄). (144)

If we define

B(u, v) :=
γ(2)(u;ω1, ω2)γ(2)(v;ω1, ω2)

γ(2)(u + v;ω1, ω2)
(145)

then it is easy to see that

B
(√

−ω1ω2x,
√

−ω1ω2y
)

= Ψ
(x

2
+ cb,−

x

2
− cb, y

)
(146)

where

Ψ(u, v, w) :=
∫

R

Φb(u + x)
Φb(v + x)

e2πiwxdx, (147)

which is calculated as follows [18]

Ψ(u, v, w) = ζo
Φb(u − v − cb)Φb(w + cb)

Φb(u − v + w − cb)
e−2πiw(v+cb). (148)
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