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Abstract. In this paper, we develop a new renormalization group method,
which is based on conditional expectations and harmonic extensions, to
study functional integrals of small perturbations of Gaussian fields. In this
new method, one integrates Gaussian fields inside domains at all scales
conditioning on the fields outside these domains, and by the variation
principle solves local elliptic problems. It does not rely on an a priori
decomposition of the Gaussian covariance. We apply this method to the
model of classical dipole gas on the lattice, and show that the scaling limit
of the generating function with smooth test functions is the generating
function of the renormalized Gaussian free field.

1. Introduction

In this paper, we develop a renormalization group (RG) method to estimate
functional integrals, based on the ideas of conditional expectations and har-
monic extensions. We demonstrate this method with the model of classical di-
pole gas, which has always been considered as a simple model to start with for
this type of problems. For the classical dipole model, earlier important works
are [29,32]. The renormalization group approach to this model originated from
the works by Gawedzki and Kupiainen [34,35], based on Kadanoff spin block-
ings. A different method that uses the idea of decomposition of the covariance
of the Gaussian field was initiated from [17], and was simplified and pedagog-
ically presented in the lecture notes [18], see also [24]. The latter method has
achieved several important applications in other problems such as the two-
dimensional Coulomb gas model [26–28], φ4-type field theories [7,9,10,21] and
self-avoiding walks [8,11,20] (see also the recent works [5,6,12–15]). The φ4

field theory problems are also studied in the p-adics setting by [1] which yields
some strong consequences.
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Our method is different from the above two methods, and may be as well
regarded as a variation of the method by Brydges et al. Their decomposition
of covariance scheme, which was also used by other people such as [33], could
be implemented by Fourier analysis. In [19], a decomposition of Gaussian co-
variance with every piece of covariance having finite range was constructed
using elliptic partial differential equation techniques, which also depends to
some extent on Fourier analysis, and this decomposition is the foundation of
the simplified version of their RG method (see also [2,4,16] for alternative
constructions of such decompositions). We do not perform such a decomposi-
tion of covariance. Instead, we directly take harmonic extensions as our basic
scheme and use the Poisson kernel to smooth the Gaussian field. We do not
need Fourier analysis; instead, real space decay rates of Poisson kernels and
(derivatives of) Green’s functions are essential. Some complexities in [19] such
as proof of elliptic regularity theorem on lattice are avoided. Many elements
of this method such as the polymer expansions and so on are very close to
the method by Brydges et al, especially to [18], while we also have many new
features, such as simpler norms and regulators. We keep notations as close as
possible to [18] for convenience of the readers who are familiar with [18].

Very roughly speaking, our method is aimed to study functional integrals
of the form

Z = E
[
eV (φ)],

where φ is a Gaussian field and E is an expectation with respect to a Gauss-
ian measure. Similarly with [18], we will rewrite the integrand into a local
expansion over subsets X of an explicit part and an implicit remainder. For
instance in the model considered in this paper, the above quantity Z will be
rewritten into an expression of roughly the following form (more precisely, see
Proposition 2):

E

[
∑

X

eσ
∑

x/∈X(∂φ(x))2K(X,φ)

]

,

where K(X,φ) depends only on φ(x) with x in (a neighborhood of) X. We
will then take a family of conditional expectations at a sequence of scales
parametrized by integer j—so our approach is a multi-scale analysis. To give
a quick glance of the main idea, at a scale j we will have expressions, which
up to several subtleties look as follows:

E

[
∑

Y

eσj
∑

x/∈Y E [ ∂φ(x) | Bc
x ]2

E
[
K′

j(Y, φ)|Y c]
]

.

The actual expressions will be slightly different and more complicated and we
refer to Sect. 2.4 for the exact expressions, but at this stage we point out that
some conditional expectations have appeared inside the overall expectation.
Indeed, for any function of the field F (φ), the notation E [F (φ)|Xc] means
integrating all the variables {φ(x) : x ∈ X} with {φ(x) : x ∈ Xc} fixed (Xc is
the complement of X). Also, Bx is a block containing x, and σj is the most
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important dynamical parameter (which corresponds to renormalization of the
dielectric constant in the dipole model). This idea of conditional expectation is
close to Frohlich and Spencer’s work on Kosterlitz–Thouless transition [30,31]
where the authors take inside an expectation conditional integrations, each
over all variables {φ(x) : x ∈ Ω} where Ω is a bounded region around a charge
density ρ with diameter ∼2j at a scale j.

Such conditional expectations can be carried out by minimizing the qua-
dratic form in the Gaussian measure with conditioning variables fixed. Since
the Gaussian is associated with a Laplacian, these minimizers are harmonic
extensions of φ from Xc into X. These harmonic extensions result in smoother
dependence of the integrand of the expectation on the field. Some elliptic PDE
methods along with random walk estimates will be used. We remark that this
variational viewpoint also shows up in Balaban’s RG method (see for instance
[3] or Sects. 2.2–2.3 of [25]).

2. Outline of the Paper

2.1. Settings, Notations and Conventions

Let Z
d be the d dimensional lattice with d ≥ 2. Denote the sets of lat-

tice directions as E+ = {e1, . . . , ed} and E− = {−e1, . . . ,−ed} where ek =
(0, . . . , 1, . . . , 0) with only the kth element being 1. Let E = E+ ∪ E−. For
e ∈ E , ∂ef(x) = f(x + e) − f(x) is the lattice derivative. For x, y ∈ Z

d, we say
that (x, y) is a nearest neighbor pair and write x ∼ y if there exists an e ∈ E
such that x = y + e. Denote E(Zd) to be the set of all nearest neighbor pairs
of Z

d. For X ⊂ Z
d, we define E(X) := {(x, y) ∈ E(Zd) : x, y ∈ X}.

Let L be a positive odd integer, and N ∈ N. Let

Λ =
[
−LN/2, LN/2

]d ∩ Z
d,

and we will consider functions on Λ with periodic boundary condition. In other
words, we view Λ as a torus by identifying the boundary points of Λ in the
usual way.

For x, y ∈ Λ, define d(x, y) to be the length of a shortest path of near-
est neighbor sites in the torus Λ connecting x and y. Also define ∂X to be
the “outer boundary”: ∂X = {x ∈ Λ : d(x,X) = 1}. Write Xc to be the
complement of X.

For a function φ on Z
d, when it does not cause confusions, we write for

short
∑

X

(∂φ)2 =
∑

x∈X

(∂φ(x))2 :=
1
2

∑

x∈X

∑

e∈E
(∂eφ(x))2

and similarly for other such type of summations. If E is the expectation over
φ, we will use a short-hand notation for conditional expectation

E
[−∣

∣X
]

:= E
[−∣

∣{φ(x)
∣
∣x ∈ X}] ,

namely, the expectation with φ|X fixed.
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Unless we specify otherwise, Poisson kernels and Green’s functions will be
associated with the operator −Δ+m2 where m is a small mass regularization.
For any set X, PX or PX(x, y) (x ∈ X, y ∈ ∂X) is the Poisson kernel for X.
If x /∈ X then PXf(x) = f(x) is always understood. In other words, PXf is
the harmonic extension of f from Xc into X with f

∣
∣
Xc unchanged.

2.2. The Dipole Gas Model and the Scaling Limit

Let μ be the Gaussian measure on the space of functions {φ(x) : x ∈ Λ}
with mean zero and covariance Cm = (−Δ + m2)−1 where m > 0. In other
words, φ is the Gaussian free field on the Λ with covariance Cm. Let E be
the expectation over φ. Then, the classical dipole gas model is defined by the
following probability measure:

ν(dφ) =
ezW (φ)μ(dφ)

E
(
ezW (φ)

) ,

where the denominator is the normalization constant and

W (φ) :=
∑

x∈Λ

∑

e∈E
cos

(√
β∂eφ(x)

)
.

Such a measure is obtained by a definition of the model via the great
canonical ensemble followed by a Sine–Gordon transformation, for instance,
see [17].

We would like to study the problem of scaling limit. More precisely, let
Λ̃ := [−1

2 , 1
2 ]d ⊂ R

d. Given a mean zero function f̃ ∈ C∞(Λ̃),
∫
Λ̃

f̃ = 0 with
periodic boundary condition, we study the (real) generating function

ZN (f) := lim
m→0

E

[
e
∑

x∈Λ f(x)φ(x)ezW (φ)
]

E
[
ezW (φ)

] , (2.1)

where

f(x) = fN (x) := L−(d+2)N/2f̃(L−Nx).

The main question is the scaling limit of ZN (f) as N → ∞.

Remark 1. Our notion of scaling limit here is that we send the volume of Λ and
the scaling factor in the definition of fN (x) to infinity together. This is easier
than the stronger (and more commonly used) notion of scaling limit where
one first takes the infinite volume limit and then sends the scaling factor in
fN (x) to infinity. We also remark that since we take the limit m2 → 0 before
the limit N → ∞, in the sequel we will assume that m2 is sufficiently small
depending on N .

2.3. Some Preparative Steps Before RG

As the start of our strategy to study this problem, we perform an a priori
tuning of the Gaussian measure. This tuning anticipates the fact that the best
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Gaussian approximation to ν is not the Gaussian measure currently defined
on φ. For any X ⊆ Λ, define

V (X,φ) :=
1
4

∑

x∈X,e∈E
(∂eφ(x))2 . (2.2)

The tuning is to split part of the quadratic form of the Gaussian measure
into the integrand, so that the resulting Gaussian field has covariance [ε(−Δ+
m2)]−1, with the associated expectation called E

ε:

ZN (f) = lim
m→0

E
ε
[
e
∑

x∈Λ f(x)φ(x)e(ε−1)V (Λ,φ)+zW (Λ,φ)
]

Eε
[
e(ε−1)V (Λ,φ)+zW (Λ,φ)

] . (2.3)

Note that normalization factors caused by re-definition of Gaussian:

E
ε [exp ((ε − 1)V (Λ, φ))]

appear in both numerator and denominator and are thus cancelled.
We would like to make the expectation (and thus the RG maps which we

will define later) independent of ε. So we rescale φ → φ/
√

ε and let σ = ε−1−1
and obtain

ZN (f) = lim
m→0

E

[
e
∑

x∈Λ f(x)φ(x)/
√

ε · e−σV (φ)+zW (
√

1+σφ)
]

E

[
e−σV (φ)+zW (

√
1+σφ)

] . (2.4)

We also shift the Gaussian field to get rid of the linear term
∑

fφ/
√

ε.
Write −Δm = −Δ + m2 and make a translation φ → φ + ξm where ξm =
(−√

εΔm)−1f in the numerator in (2.4). Since the function ξm appears fre-
quently below, we will simply write ξ = ξm without explicitly referring to its
dependence on m. Then, one has

ZN (f) = lim
m→0

e
1
2

∑
x∈Λ f(x)(−εΔm)−1f(x)Z′

N (ξ)
/
Z′

N (0), (2.5)

where
Z′

N (ξ) = E

[
e−σV (Λ,φ+ξ)+zW ((φ+ξ)/

√
ε)
]
. (2.6)

Let −Δ̃m = −Δ̃ + m2, where Δ̃ is the Laplacian acting on the functions
on Λ̃, and C̃m := (−Δ̃m)−1 and ξ̃m := (−√

εΔ̃m)−1f̃ . We can verify that

L2N C̃LNm(L−Nx)=Cm(x)+eN and L−d−2
2 N ξ̃LNm(L−Nx)=ξm(x)+ēN ,

where eN and ēN are error terms due to lattice / continuum discrepancy which
converge to zero as N → ∞. Let q < d

d−1 and define

R := sup
m>0

max
(
‖C̃m‖Lq , ‖∂C̃m‖Lq

)

Note that R < ∞ since the worst local singularity is O(|x|1−d) which is Lq

integrable for any q < d
d−1 . We will assume that ‖f̃‖Lp ≤ h/R (p > d), for a

constant h to be specified later, so that for α = 0, 1
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‖∂αξ‖L∞ ≤ hL
−
(

d−2
2 +α

)
N

(2.7)

by Young’s inequality.
Before the RG steps, we write both Z′

N (ξ) and Z′
N (0) into a form of

“polymer expansion”. For any set X ⊆ Λ, write

W (X,φ) :=
∑

x∈X

∑

e∈E
cos

(√
β∂eφ(x)

)
.

Proposition 2. With W defined above and Z′
N (ξ) given by (2.6), we have

Z′
N (ξ) = E

⎡

⎣
∑

X⊆Λ

I0(Λ\X,φ + ξ)K0(X,φ + ξ)

⎤

⎦ , (2.8)

where I0(X) =
∏

x∈X I0({x}) and

I0({x}, φ + ξ) = e−1
4σ

∑
e∈E(∂eφ(x)+∂eξ(x))2 ,

K0(X,φ + ξ) =
∏

x∈X

e−1
4σ

∑
e∈E(∂eφ(x)+∂eξ(x))2

(
ezW ({x},(φ+ξ)/

√
ε) − 1

)
.

The subscript 0 indicates that we are at the 0th RG step, and we will
write σ0 = σ. The quantity Z′

N (0) has the same expansion with ξ = 0.

Proof. Consider Eq. (2.6): following Mayer expansion,

Z′
N (ξ) = E

[
ezW (Λ)−σV (Λ)

]

= E

⎡

⎣
∏

x∈Λ

(
e−σV ({x}) +

(
ezW ({x}) − 1

)
e−σV ({x})

)
⎤

⎦ .

Expanding the product amounts to associating a set X ⊆ Λ to the second
term and the complement Λ\X to the first term. This proves the statement
(2.8). �

2.4. Outline of Main Ideas

Our renormalization group method is based on the idea of rewriting the expec-
tation into an expectation of an expression involving many conditional expec-
tations. We will carry out a multiscale analysis; an RG map will be iterated
from one scale to the next one, during which we will re-arrange the conditional
expectations. A basic algebraic structure and analytical bound will be prop-
agated to every scale. To describe these structures and bounds, we first give
some definitions.
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2.4.1. Basics of Polymers.

1. We call blocks of size Lj j-blocks. These are translations of {x ∈ Z
d : |x| <

1
2 (Lj − 1)} by vectors in

(
Lj

Z

)d
. In particular, a 0-block is a single site

in Z
d. A j-polymer X is a union of j-blocks. In particular, the empty set is

also a j-polymer. The number of lattice sites in X ⊂ Z
d is denoted by |X|.

The number of j-blocks in a j-polymer X is denoted by |X|j .
2. X ⊂ Z

d is said to be connected if for any two points x, y ∈ X there exists
a path (xi : i = 0, . . . , n) with

∣
∣xi+1 − xi

∣
∣∞ = 1 connecting x and y.

Here, |x|∞ is the maximum of all coordinates of x; note that for instance
{(0, 0), (1, 1)} is connected if d = 2. Connected sets are not empty. Two
sets X,Y are said to be strictly disjoint if there is no path from x to y
when x ∈ X and y ∈ Y ; otherwise we say that they touch.

3. For any X ⊂ Z
d, we let C(X) be the set of connected components of X.

4. For a j-polymer X, we have the following notations. Bj(X) is the set of all
j-blocks in X. Pj(X) is the set of all j-polymers in X. Pj,c(X) is the set
of all connected j-polymers in X. We sometimes just write Bj ,Pj ,Pj,c and
so on when X = Λ.

5. Let X ∈ Pj . Define for j ≥ 1

X̂ := ∪{B ∈ Bj : B touches X},

X+ := ∪
{

x ∈ Λ : d(x,X) ≤ 1
3
Lj

}
,

Ẍ := ∪
{

x ∈ Λ : d(x,X) ≤ 1
6
Lj

}
,

Ẋ := ∪
{

x ∈ Λ : d(x,X) ≤ 1
12

Lj
}

.

Note that we have X ⊂ Ẋ ⊂ Ẍ ⊂ X+ ⊂ X̂. Only X, X̂ belong to Pj .
6. When j = 0 and X ∈ P0, we define Ẋ = Ẍ = X+ = X̂ = X, and the

Poisson kernel at scale 0 is understood as PX+ := id.

We also have the following notations for functions of the fields.

1. Define N to be the set of functions of φ and ξ. Define N (X) ⊆ N to be the
set of functions of {φ(x), ξ(x)

∣
∣x ∈ X}. NPj is the set of maps K : Pj → N

such that K(X) ∈ N (X̂). We define NBj , NPj,c similarly.
2. For I ∈ NBj , we write

I(X) = IX :=
∏

B∈Bj(X)

I(B) for X ∈ Pj .

For K ∈ NPj , we say that K factorizes over connected components if

K(X) =
∏

Y ∈C(X)

K(Y ). (2.9)
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In this case, K is determined by its value on connected polymers, so we
can write K ∈ NPj,c .

The basic structure that we want to propagate to every scale of the RG
iterations is, for j ≥ 0

Z′
N (ξ) = eEj E

⎡

⎣
∑

X∈Pj(Λ)

Ij(Λ\X̂, φ, ξ)Kj(X,φ, ξ)

⎤

⎦ . (2.10)

Here, eEj is a φ, ξ independent constant factor. This constant will be shown to
be the same for Z′

N (ξ) and Z′
N (0) and thus cancels. Kj(X,φ, ξ) only depends

on the values of φ, ξ in a small neighborhood of X. Note that there is a “cor-
ridor” between each X and Λ\X̂ (namely, the union of X and Λ\X̂ is not the
entire Λ, and we call this “missing part” X̂\X heuristically as a “corridor”).
These “corridors” will be important in our conditional expectation method.

Furthermore, for j < N , the function Ij will have a local form in the
sense that it factorizes over j-blocks Ij(X,φ, ξ) =

∏
B∈Bj(X) Ij(B,φ, ξ) and

Ij(B,φ, ξ) = e−1
4σj

∑
x∈B,e∈E(∂ePB+φ(x)+∂eξ(x))2

. (2.11)

Ij(B) is essentially determined by the dynamical parameter σj . On the other
hand, Kj will only factorize over “connected components of polymer”.

The basic bounds that hold on every scale about Kj , whose form will not
be explicit, are as follows. For X connected,

4∑

n=0

1
n!

∥
∥
∥K

(n)
j (X,φ, ξ)

∥
∥
∥ ≤ ‖K‖j A−|X|jG

(
Ẍ,X+

)
. (2.12)

Here, K
(n)
j is an nth derivative of Kj ; the precise definition of it and the

norm will be given later. For any two sets X ⊂ Y , G(X,Y ) is a normalized
conditional expectation called the “regulator”

G(X,Y ) = E

[
e

κ
2

∑
X(∂φ)2∣∣φY c

] /
N(X,Y ) (2.13)

and the normalization factor is

N(X,Y ) = E

[
e

κ
2

∑
X(∂φ)2∣∣φY c = 0

]
. (2.14)

This form of regulator is different from the one defined in [18]; in particular,
it is itself a conditional expectation. It will be shown to have some interesting
properties.

Now, we outline the steps to go from scale j to scale j + 1 while the
structure (2.10) is preserved.

(1) Extraction and Reblocking. Reblocking is a procedure which rewrites (2.10)
into an expansion over “j +1 scale polymers”, and we extract the components
that grow too fast under this reblocking.
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Proposition 3. Suppose that L is sufficiently large. If at the scale j one has

Z′
N (ξ) = eEj E

⎡

⎣
∑

X∈Pj

I
Λ\X̂
j (φ, ξ)Kj(X,φ, ξ)

⎤

⎦ (2.15)

with Ij ∈ NBj given by (2.11), then there exist Ej+1, Ij+1 ∈ NBj+1 and

K
�
j ∈ NPj+1,c(namely K

�
j factorizes over connected components in the sense

of (2.9)), so that the following expansion at the scale j + 1 holds

Z′
N (ξ) = eEj+1 E

⎡

⎣
∑

U∈Pj+1

I
Λ\Û
j+1 (φ, ξ)K

�
j(U, φ, ξ)

⎤

⎦ (2.16)

where Ej+1 is a constant independent of φ, ξ, and for every D ∈ Bj+1,

Ij+1(D) = e−1
4σj+1

∑
x∈D,e∈E(∂ePD+φ(x)+∂eξ(x))2

for some constant σj+1.

We will prove this Lemma in Sect. 3.

(2) Conditional Expectation. This step is the main difference between this new
method and [18]. First of all, we observe that in (2.16), the sets Λ\Û and U do
not touch. In other words, there exists a corridor Û\U around the set U where
K

�
j evaluates on, and this corridor has width Lj+1. We then take conditional

expectation and thus re-write the expectation in (2.16) as follows:

E

⎡

⎣
∑

U∈Pj+1

I
Λ\Û
j+1 (φ, ξ) E

[
K

�
j(U, φ, ξ)

∣
∣(U+)c

]
⎤

⎦ (2.17)

where U ⊂ U+ ⊂ Û . For notation conventions, see Sect. 2.1. To obtain (2.17),
one switches the expectation and the sum in (2.16), then take the conditional

expectation right inside the expectation. Since I
Λ\Û
j+1 only depends on the val-

ues of φ being fixed, the conditional expectation can be taken only on the K
�
j

factor. One then switches back the expectation and the sum.
This followed by factoring out φ, ξ independent constant gives Kj+1 and

we are back to the form (2.10) with all j replaced by j + 1. In case U = Λ, we
just integrate (unconditionally): E

[
K

�
j(Λ, φ)

]
, but to streamline expressions

we still write (2.17) keeping in mind the special treatment for the U = Λ term.

Remark 4. Our discussion below will frequently involve Laplacian operators
(with a tiny mass m) acting on functions on a set U with zero Dirichlet bound-
ary condition on ∂U , so we simply refer to them as Dirichlet Laplacian for U .
Similarly, for the Green’s function of the (massive) Laplacian on ∂U with zero
Dirichlet boundary condition on ∂U , we simply call it Dirichlet Green’s func-
tion for U . Finally, if ζ is a Gaussian field on U with Dirichlet Green’s function
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for U as its covariance, then we simply say that ζ is the Dirichlet Gaussian
field on U .

We point out two important facts about the conditional expectation step.
The first one is that we can write the Gaussian field φ into a sum of two
decoupled parts. Let PU be the Poisson kernel for U and recall our convention
that PUφ(x) = φ(x) for x /∈ U as in Sect. 2.1.

Proposition 5. Let U ⊂ V ⊂ Λ. Define ζ via φ(x) = PUφ(x)+ ζ(x). Then, the
quadratic form

−
∑

x∈V

φ(x)Δmφ(x) = −
∑

x∈U

ζ(x)ΔD
U,mζ(x)−

∑

x∈V

PUφ(x)ΔmPUφ(x), (2.18)

where −ΔD
U,m = −ΔD

U + m2 and ΔD
U is the Dirichlet Laplacian for U .

Notice that x ∈ U does not contribute to the last summation since
ΔmPUφ(x) = 0 in U . By this proposition, taking expectation of a function
K(φ) conditioned on {φ(x)

∣
∣x ∈ Uc} is simply integrating out a Gaussian field

ζ:
E
[
K(φ, ξ)

∣
∣Uc] = Eζ [K(PUφ + ζ, ξ)] , (2.19)

where the covariance of ζ is the CD
U - the Dirichlet Green’s function for U . In

particular, we observe that Ij defined in (2.11) has an alternative representa-
tion

Ij(B,φ, ξ) = e
−1

4σj
∑

x∈B,e∈E E

[
∂eφ(x)+∂eξ(x)

∣
∣(B+)c

]2

.

(Note that the conditional expectation is taken before the square.) It is con-
ceptually helpful to keep in mind that we are just re-arranging the following
structure [comparing with (2.8)]

E

⎡

⎣
∑

X∈Pj

e
−1

4σj
∑

x/∈X̂,e∈E E

[
∂eφ(x)+∂eξ(x)

∣
∣(B+)c

]2

E
[ · · · ∣∣(X+)c

]
⎤

⎦ , (2.20)

namely an outmost (unconditional) expectation of a simple combination of
many conditional expectations.

Remark 6. In the paper, PUφ will always be well-defined: by Prop 1.11 of [37],
if the probability that the random walk starting from any point in U exits U
in finite time is 1, then the harmonic extension exists and is unique. Domains
U � Λ will always satisfy this condition because the random walk (with a tiny
killing rate) hits any point in Λ in finite time with probability one.

The next fact is as follows:

Proposition 7. Let d ≥ 2, x ∈ X ⊂ U ⊂ Λ. If d(x, ∂X) ≥ cLj , then

|(∂xPX)CD
U (∂xPX)
(x, x)| ≤ O(1)L−dj , (2.21)

where O(1) depends on c, and CD
U is the Dirichlet Green’s function for U , and

(∂xPX)
 is the adjoint of ∂xPX .
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For the proof, see Proposition 16. This result gives the scaling for the
covariance of ∂PXζ where PX is a Poisson kernel obtained from the previous
RG step. We take a heuristic test to see the necessity of this proposition: setting
ξ = 0, for X ⊂ U , if we perform an expectation conditioned on {φ(x)

∣
∣x ∈ Xc},

followed by another expectation conditioned on {φ(x)
∣
∣x ∈ Uc}, by (2.19),

EζU
EζX

[
K
(
PX(PUφ + ζU ) + ζX

)]
= EζU

EζX

[
K
(
PUφ + PXζU + ζX

)]
,

(2.22)
then we need this proposition to deal with PXζU when integrating over ζU .

Proofs of the above two results are in the following sections.

Linearization and Stable Manifold Theorem. We have just outlined a single
RG map

(σj , σj+1, Ej+1,Kj) → Kj+1.

We will show smoothness of this map in Sect. 5. Note that two issues have
not been discussed: (1) choice of σj+1, Ej+1, which should be a function of
(σj ,Kj), so that the RG map becomes (σj ,Kj) → (σj+1,Kj+1) (notice that
we will not regard Ej+1 as dynamical parameter and we will factorize it out);
(2) choice of σ in the a priori tuning step. We will outline how to treat these
two issues now.

Clearly, (σ,K) = (0, 0) is a fixed point of the RG map. In Sect. 6, we
show that the linearization of the map (σj , σj+1, Ej+1,Kj) → Kj+1 around
(0, 0, 0, 0) has a form L = L1+L2+L3 where L1 captures the “large polymers”
contributions to Kj+1, and L2 involves the remainder of second order Taylor
expansion of conditionally expected Kj on “small polymers”, both of which
will be shown contractive with arbitrarily small norm by suitable choices of
constants L and A introduced above. Furthermore, L3(D) will roughly have a
form

LdEj+1 + σj+1

∑

x∈D

(∂PD+φ(x))2 − σj

⎛

⎝
∑

x∈D

(∂PD+φ(x))2 + δEj

⎞

⎠+ Tay

(2.23)
where Tay is the second-order Taylor expansion of conditionally expected Kj
on small polymers, which consists of constant and quadratic terms, and D is a
j +1 block. Now, it is easy to see that there is a way to choose Ej+1 and σj+1
so that L3 is almost 0, up to a localization procedure for “Tay”. For proofs,
see Sect. 6.

Once we have shown a way to choose the constants σj+1, Ej+1 to ensure
contractivity of the above linear map, a stable manifold theorem can be applied
to prove that there exists a suitable tuning of σ so that

∣
∣σj

∣
∣ � 2−j

∥
∥Kj

∥
∥
j

� 2−j . (2.24)
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Main Result: the Scaling Limit.

Theorem 8. For any p > d, there exist constants M > 0 and z0 > 0 so that:
for all ‖f̃‖Lp ≤ M and all |z| ≤ z0 there exists a constant ε depending on z
and

lim
N→∞

ZN (f) = exp
(

1
2

∫

Λ̃
f̃(x)(−εΔ̃)−1f̃(x)ddx

)
, (2.25)

where Δ̃ is the Laplacian in continuum, and ZN (f) is defined in (2.5).

The main ingredient of the proof is that with j = N − 1, by Eqs. (2.10)
and (2.24), one can bound Z′

N (ξ) essentially by

eEN−1
∑

X∈PN−1

(
1 + 2−N

)Λ\X̂
2−N . (2.26)

Bounding the number of terms by 2Ld
, we see that it is almost eEN−1 as N

becomes large. The constant eEN−1 will be the same for Z′
N (ξ) and Z′

N (0).
So only the exponential factor in Eq. (2.5) survives in the N → ∞ limit and
it goes to the right-hand side of (2.25). The details are given in Sect. 7. We
remark that the assumption on f̃ , which makes f smooth at the scale N , is
for simplicity of the demonstration of the method.

3. The Renormalization Group Steps

3.1. Some Additional Definitions

1. A j-polymer X is called a small set or small polymer if it is connected and
|X|j ≤ 2d. Otherwise, it is called large. We denote by Sj(X) the set of all
small j-polymers in X.

2. Define Ŝj to be the set of pairs (B,X) so that X ∈ Sj and B ∈ Bj(X).
3. We also introduce a notation Y ∈X Pj which means Y ∈ Pj and that if

X = ∅ then Y = ∅.
4. Let X ∈ Pj . Define its closure X̄ ∈ Pj+1 to be the smallest (j+1)-polymer

that contains X.
5. We define a notation χ

j
A where A is a set of polymers: χ

j
A = 1 if any two

polymers in A are strictly disjoint as j-polymers and χ
j
A = 0 otherwise.

Also, if A is a set of polymers, we write XA to be the union of all elements
of A.

3.2. Renormalization Group Steps

Now we focus on a single RG map from scale j to j +1. For simpler notations,
we omit the subscript j and objects at scale j + 1 will be labelled by a prime,
e.g. K′, P ′. The guidance principle will be that for all kinds of I’s below, I −1
and their difference δI and K will be small, so their products will be higher
order small quantities. These remarks will make more sense after we discuss
the linearization of the smooth RG map in Sect. 6.
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Extraction and Reblocking. We start to prove Proposition 3. Before the proof,
we describe here the main ideas in the strategies we use below, and a reader
may find helpful to read the proof along with these descriptions. The way
to construct I ′,K� is certainly not unique. However, our construction [see
(3.9) below] must have the foresight that K� will be smooth in its arguments
(which will be shown in Sect. 5), with respect to certain norms defined in
Sect. 4. Due to the nature of these norms, the proof of smoothness in Sect. 5
will reply on some separation properties of different factors appeared in the K�

finally constructed in (3.9). Ensuring these separation properties complicates
the proof.

The proof of Proposition 3 then consists of two steps. The first step is
called an extraction step, in which we extract δI(B) from I(B), see the third
line of (3.2), resulting in a new quantity Ĩ(B) defined as (3.1). The extracted
quantities δI(B) will show up as factors multiplying with K in (3.3).

The second step is called a reblocking step. In this step, summations over
various sets in (3.3) will eventually become one single sum over next scale
polymers U ∈ P ′ as in (3.8). During this reblocking, some Ĩ factors will also
become factors multiplying with K [see (3.9)].

There are two subtleties which one has to take care and thus complicates
the proof. The first subtlety is that δI(B) and Ĩ(B) involve a Poisson kernel
for (B̄)+ which is a set of length size O(Lj+1). When these factors δI and Ĩ
show up as factors multiplying with K(X) as discussed above, the factor K(X)
actually only has a corridor X̂\X of width Lj (formed from the previous RG
step), so the sets (B̄)+ may intersect with X. This intersection would be
disastrous when we estimate the norm of the product of these δI, Ĩ and K
factors. Therefore, in the proof we actually only extract δI(B) for those B
far enough from X, that is, outside the set 〈X〉 defined below. Inside 〈X〉, we
do different extractions as in the second line of (3.2), so that the Lj width
corridor of K(X) is sufficient to ensure separation.

The other subtlety is that according to the conclusion of Proposition 3,
one has to ensure existence of a corridor around U in (3.8). This is not ensured
in the “naive reblocking” (3.4) below (though in (3.4) we do obtain one single
sum over next scale polymers V ∈ P ′). Therefore, as an intermediate step
between extraction and reblocking, we will perform another expansion by Ĩ =
(Ĩ − eE′

) + eE′
right after (3.5), and arrange such that some of the Ĩ − eE′

also show up as multiplying factors in (3.9), and the other Ĩ will be separated
away by a corridor (between Λ\Û and U in the last line of the proof).

Remark 9. We also have a remark on notations. The hats in the notation for a
set of pairs such as the Ŝj defined above in Sect. 3.1 and the Ŷ in the following
proof are simply symbols, which have nothing to do with the hat operation ˆ
on a single polymer defined in Sect. 2.4.1.

Proof of Proposition 3. Define Ĩ ∈ NBj as

Ĩ(B) = e
E′−1

4σ′ ∑
x∈B,e∈E

(
∂eP(B̄)+φ(x)+∂eξ(x)

)2

, (3.1)
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where E′ and σ′ will be chosen later. Note that the above quantity Ĩ(B) differs
from the quantity I(B) defined in (2.11) by the new constants E′, σ′ and the
Poisson kernel PB+ is replaced by the Poisson kernel P(B̄)+ . For a j-polymer
X, denote

〈X〉 := ∪{B ∈ Bj : (B̄)+ ∩ X̂ �= ∅},
where the + operation is on the scale j +1 and the hat is on the scale j. Then,
we let ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1(B) = (1 − eE′
) + eE′

if B ⊆ X̂\X

I(B) = (I(B) − eE′
) + eE′

if B ⊆ 〈X〉 \X̂
I(B) = δI(B) + Ĩ(B) if B ⊆ 〈X〉c
K(X) =

∑
B∈B(X)

1
|X|j K(B,X) if X ∈ S,

(3.2)

where δI is defined implicitly, and K(B,X) := K(X). Insert these summations
into the product factors in (2.15), and expand. We obtain

Z′
N (ξ) = eE

E

[∑

X

IΛ\X̂1X̂\X
∏

Y ∈C(X)\S
K(Y )

∏

Y ∈C(X)∩S
K(Y )

]

= eE
E

⎡

⎢
⎣
∑

X ,Ŷ
χX∪Y

∑

P,Q,Z

(1 − eE′
)P (I − eE′

)Q(eE′
)(〈X〉\X)\(P∪Q)

·δIZ Ĩ〈X〉c\Z
∏

Y ∈X
K(Y )

∏

(B,Y )∈Ŷ

1
|Y |j

K(B, Y )

⎤

⎥
⎦ , (3.3)

where the first summation is over X which is a family of connected large
polymers, and Ŷ which is a family of elements in Ŝ, i.e. Ŷ = {(Bi, Yi) ∈
Ŝj}1≤i≤n for some n ≥ 0, and we have defined Y := {Yi}1≤i≤n. In the above
equation and in the sequel of this proof,

X := XX∪Y
and the second summation above is over P ∈ P(X̂\X), Q ∈ P(〈X〉 \X̂), and
Z ∈ P(〈X〉c).

Now observe that one can re-arrange the above summations in the fol-
lowing way: ∑

X ,Ŷ
χX∪Y

∑

P,Q,Z

=
∑

V ∈P′

∑

(P,Q,Z,X ,Ŷ)→V

, (3.4)

where the second summation on the right-hand side means
∑

(P,Q,Z,X ,Ŷ)→V

:=
∑

X ,Ŷ
χX∪Y

∑

P∈P(X̂\X)

Q∈P(〈X〉\X̂)

∑

Z∈P(〈X〉c)

1
P∪Q∪Z∪(∪n

i=1Bi)∪XX =V
.
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We would like to write the factors Ĩ and eE′
into parts in V and outside V :

Ĩ 〈X〉c\Z = Ĩ V c ∩ 〈X〉c
Ĩ V ∩ (〈X〉c\Z),

(eE′
)(〈X〉\X)\(P∪Q) = (eE′

)V
c ∩ (〈X〉\X) (eE′

)V ∩ (〈X〉\X)\(P∪Q).
(3.5)

Note that V c ∩ 〈X〉c (where some Ĩ live on) could possibly touch V , so
our next step is to make a corridor so that such touchings will be avoided.
Write Ĩ = (Ĩ − eE′

) + eE′
and expand,

ĨV c∩〈X〉c
=

∑

W∈P′(V c)

(Ĩ − eE′
)W∩〈X〉c

(eE′
)(V

c\W )∩〈X〉c
.

For each V and W , define U to be the smallest union of connected components
of V ∪ W that contains V :

U = UW,V := ∩{T ∣∣T ∈ UC(V ∪ W ), T ⊇ V } ∈ P ′,
where UC(V ∪ W ) is the set of unions of (j + 1 scale) connected components
of V ∪ W . Observe that if L is sufficiently large, one has 〈X〉 ⊆ V̂ ⊆ Û . So

Ĩ V c ∩ 〈X〉c
=

∑

W∈P′(V c)

(Ĩ − eE′
)W\Û (Ĩ − eE′

)W ∩ U ∩ 〈X〉c

×(eE′
)(V

c\W )\Û (eE′
)(V

c\W ) ∩ Û ∩ 〈X〉c
.

Let R := W\U = W\Û . Note that one has the following identities for the sets
appearing in the above equation: W ∩ U = U\V and

(V c\W )\Û = (Û)c\R,

(V c\W ) ∩ Û = Û\U.

The summation over W amounts to a summation over U and R:

Ĩ V c ∩ 〈X〉c
=

∑

U∈V P′,U⊇V

∑

R∈P′(Λ\Û)

(Ĩ − eE′
)R(Ĩ − eE′

)(U\V ) ∩ 〈X〉c

× (eE′
)(Û)c\R(eE′

)(Û\U) ∩ 〈X〉c

=
∑

U∈V P′,U⊇V

ĨΛ\Û (Ĩ − eE′
)(U\V ) ∩ 〈X〉c

(eE′
)(Û\U) ∩ 〈X〉c

.

(3.6)

The factor (eE′
)V

c ∩ (〈X〉\X) appearing in (3.5) is treated as follows.
Since 〈X〉 ⊆ Û

(eE′
)V

c ∩ (〈X〉\X) = (eE′
)V

c ∩ 〈X〉(e−E′
)V

c ∩ X

= (eE′
)(Û\U) ∩ 〈X〉(eE′

)V
c ∩ 〈X〉 ∩ U (e−E′

)V
c ∩ X . (3.7)

Combine (3.3–3.7),

Z′
N (ξ) = eE

E

[ ∑

U∈P′
ĨΛ\Û (eE′

)ÛK�(U)
]
, (3.8)
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where for U �= ∅
K�(U) :=

∑

V ⊆U,V �=∅

∑

(P,Q,Z,X ,Ŷ)→V

(1 − eE′
)P (I − eE′

)QδIZ(Ĩ − eE′
)(U\V ) ∩ 〈X〉c

× (eE′
)(〈X〉\X) ∩ U\(P∪Q) (e−E′

)U ∪ X Ĩ V ∩ (〈X〉c\Z)

×
∏

Y ∈X
K(Y )

∏

(B,Y )∈Ŷ

1
|Y |j

K(B, Y ). (3.9)

Factorizing the constant eE′
by letting

E ′ = E + E′|Λ|j
I ′(D) = e−LdE′ ∏

B∈B(D)

Ĩ(B) = e−1
4σj+1

∑
x∈D,e∈E(∂ePD+φ(x)+∂eξ(x))2

for D ∈ B′, we obtain

Z′
N (ξ) = eE′

E

[ ∑

U∈P′

(
I ′)Λ\Û

K�(U)
]
.

This is precisely the statement (2.16). �
Conditional Expectation.

Lemma 10. K� factorizes over j + 1 scale connected components, namely

K�(U) =
∏

V ∈Cj+1(U)

K�(V ), (3.10)

where Cj+1(U) is the set of connected components of U as a j + 1 polymer.

Proof. Let V1, . . . , V|C(U)| be all the connected components of U . For any E

which may stand for U,Z, P,Q, elements of X∪Y, one of the Bi, or X = XX∪Y ,
let E(p) = E\ ∪q �=p Vq. It is easy to check that for i �= j, E(i) and E(j) are
strictly disjoint on scale j. Then, the lemma is proved by the factorization
property of I,K on scale j. �

We are now ready to take the expectation of K�(V ) conditioned on φ

outside V + for each V ∈ C(U)\{Λ}, because Λ\V̂ and V + do not touch. In
the case V = Λ, we just take expectation of K�(V ) without conditioning, but
write E

[
K�(Λ)

∣
∣(Λ+)c

]
:= E

[
K�(Λ)

]
to shorten the notations. So we obtain

the following structure as announced in (2.17):

Z′
N (ξ) = eEj+1E

[ ∑

U∈Pj+1

I
Λ\Û
j+1 Kj+1(U)

]
,

Kj+1(U) :=
∏

V ∈C(U)

E

[
K

�
j(V )

∣
∣(V +)c

]
.

(3.11)

Now, we have come back to the basic structure (2.10) with j replaced by
j + 1. Obviously, Kj+1(U) ∈ Pj+1,c. In Sect. 4, we give precise definitions for
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norms and spaces of the Kj above, and in Sect. 5 we prove smoothness of the
above map (σj , Ej+1, σj+1,Kj) �→ Kj+1.

3.3. Properties of the Conditional Expectation

The variation principle. One of our main ideas is to write the Gaussian field
φ into a sum of two decoupled parts. This is important for the conditional
expectation.

Fact. Given any positive definite quadratic form Q(v) for vector v, if v = (x, y),
one can write Q(v) = Q1(x)+L(x, y)+Q2(y) where Q1,2 are positive definite
quadratic forms and L(x, y) is the cross term. Let x̃(y) be the minimizer of
Q(v) = Q(x, y) with y fixed. Then, one can cancel L(x, y) by shifting x by x̃:

Q(v) = Q1(x − x̃) + Q ((x̃, y)) . (3.12)

Before introducing the next proposition, let us recall our convention that
PUφ(x) = φ(x) for x /∈ U as in Sect. 2.1.

Proposition 11. Let U ⊂ V ⊂ Z
d be two finite sets. Let φU and φUc be the

restriction of φ to U and Uc. Let PU be the Poisson kernel for U and write
φ(x) = PUφ(x) + ζ(x). Then,

−
∑

x∈V

φ(x)Δmφ(x) = −
∑

x∈U

ζ(x)ΔD
U,mζ(x) −

∑

x∈V

PUφ(x)ΔmPUφ(x),

(3.13)
where ΔD

U,m is the Dirichlet Laplacian for U .

Proof. We can apply the Fact (3.12) for φ = (φU , φUc), and

Q(φ) = −
∑

x∈V

φ(x)Δmφ(x)

= −
∑

x∈U

φU (x)ΔD
U,mφU (x) + L(φU , φUc) −

∑

x∈Uc

φUc(x)ΔD
Uc,mφUc(x),

where L is the cross term, and ΔD
Uc,m is the Dirichlet Laplacian for Uc. Since

the minimizer of Q(φ) with φUc fixed is the harmonic extension of φ from Uc

into U , and the harmonic field is equal to PUφ, one has

Q(φ) = −
∑

x∈U

(φU − PUφ) (x)ΔD
U,m (φU − PUφ) (x) − Q ((PUφ, φUc))

= −
∑

x∈U

ζ(x)ΔD
U,mζ(x) −

∑

x∈V

PUφ(x)ΔmPUφ(x).

This completes the proof. We remark that in the last term, the points x ∈ U
do not actually contribute to the sum since ΔmPUφ = 0 in U . �

By this proposition, taking expectation of a function K(φ) conditioned
on {φ(x)

∣
∣x ∈ Uc} is equivalent to simply integrating out ζ:

E
[
K(φ)

∣
∣Uc] = Eζ [K(PUφ + ζ)] , (3.14)

where the covariance of ζ is the Dirichlet Green’s function for U .
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As another important fact, we note that K(X,φ, ξ) constructed above
[see (3.11)] has a “special structure”: it only depends on φ, ξ via PX+φ+ ξ; in
other words, there exists a function K̃(X,ψ) so that

K(X,φ, ξ) = K̃(X,PX+φ + ξ). (3.15)

In fact, we have the following lemma.

Lemma 12. Let U ⊂ Λ be a given set. For every k = 1, . . . , m, let Yk ⊂ U , and
Hk(φ, ξ) be a given function of φ and ξ. Suppose that there exist functions H̃k
such that

Hk(φ, ξ) = H̃k(PYk
φ + ξ),

namely Hk only depends on φ, ξ via PYk
φ + ξ. Then, the function

E
[∏

k Hk(φ, ξ)
∣
∣Uc

]
only depends on φ, ξ via PUφ + ξ.

Proof. We write the expectation conditioned on φ
∣
∣
Uc as expectation over the

Dirichlet Gaussian field ζ on U , and then exploit the assumption on Hk:

E

[∏

k

Hk(φ, ξ)
∣
∣Uc

]
= Eζ

[∏

k

Hk(PUφ + ζ, ξ)
]

= Eζ

[∏

k

H̃k

(
PYk

(PUφ + ζ) + ξ
)]

. (3.16)

The last quantity depends on φ, ξ via PUφ+ξ by noting that PYk
PU = PU . �

Note that K0(X,φ, ξ) is actually a function of φ + ξ. By our convention,
when j = 0, PX+ is understood as the identity operator, so we do start from
functions with this special structure [(3.15)]. Together with the above lemma
and (3.9), (3.11), we see that for every j ≥ 0, the fact (3.15) holds:

Corollary 13. Let Kj(X,φ, ξ) be the functions constructed in (3.11). Then
for every j ≥ 0, there exists a function K̃j(X) such that Kj(X,φ, ξ) =
K̃j(X,PX+φ + ξ).

In the following, it will be helpful to have this point of view in mind.

The Important Scaling. Our main result in this subsection is Proposition 16.
We first collect some general results about harmonic functions on the lattice.
These will include derivative estimates and “mean value” type bounds.

Lemma 14. Let BR be the discrete ball of radius R centered on the origin,
namely BR = {x ∈ Z

d : |x| < R}. There exists a constant c > 0 such that the
following holds for every R sufficiently large.
• If g is harmonic in BR, then for every e ∈ S,

|∂eg(0)| ≤ cR−1 sup
x∈B

|g(x)|. (3.17)

• If f is harmonic and non-negative in BR, then for every e ∈ S,

|∂ef(0)| ≤ cR−1f(0). (3.18)



Vol. 17 (2016) An RG Method by Harmonic Extensions 879

Proof. This is [38, Theorem 6.3.8 of Sect. 6.3]. The statement of that theorem
is about harmonic functions related with general “Pd class” (i.e. symmetric,
finite range) random walks. In particular, it is true for harmonic functions
associated with standard Laplacian related with simple random walks. The
large R requirement was used to deal with the lattice effect on the boundary
of the ball in their proof. �

Note that the constant c in the above lemma does not depend on the
function g or f . In the second statement, non-negativity condition is necessary:
the linear function f(x) = x on [−1, 1] would violate the bound (3.18).

The next result is a mean value type bound. For R > 0 and a ∈ Z
d, we

define a cube of size R centered at a by

KR :=
{

y ∈ Z
d
∣
∣ |y − a|∞ ≤ R

}
. (3.19)

Lemma 15. Given real numbers s, t such that 0 < 3s < r < 1. Let KR and
KrR be cubes of sizes R and rR, respectively, centered at the same point.
Assume that u is harmonic in the cube KR. Let X = KR\KrR, x ∈ KrR and
d(x, ∂KrR) > sR. Then

|u(x)| ≤ O(R−d)
∑

y∈X

|u(y)|, (3.20)

u(x)2 ≤ O(R−d)
∑

y∈X

u(y)2. (3.21)

Here, the constants in the big-O notation depend on s, t.

Proof. For any integer b such that rR ≤ b < R, let Kb be cubes of sizes
b co-centered with KR. Then, since u is harmonic, and the Poisson kernel
0 ≤ PKb

(x, y) ≤ c b−(d−1) for some constant c > 0 by the assumption on x,
one has

|u(x)| =
∣
∣
∣

∑

y∈∂Kb

PKb
(x, y)u(y)

∣
∣
∣ ≤ c b−(d−1)

∑

y∈∂Kb

|u(y)|.

Multiply both sides by bd−1 and sum over rR ≤ b ≤ R, we have

Rd|u(x)| ≤ c′
∑

y∈X

|u(y)| (3.22)

for some constant c′ > 0 which proves (3.20). By Cauchy-Schwartz inequality,

|u(x)| ≤ O(R−d)

⎛

⎝
∑

y∈X

u(y)2

⎞

⎠

1/2

|X|1/2.

This together with |X| = O(Rd) proves (3.21). �

The next Proposition plays an important role in controlling the funda-
mental scaling. See the paragraph below Proposition 7 for a motivation.



880 H. Shen Ann. Henri Poincaré

Proposition 16. Let x ∈ X ⊂ U ⊂ Λ. If d(x, ∂X) ≥ cLj , then
∑

y1,y2∈∂X

(∂x,ePX)(x, y1)CU (y1, y2) (∂x,ePX)(x, y2) ≤ O(1)L−dj (3.23)

for all e ∈ E where the constant O(1) only depends on the constant c. Here,
∂x,e is the discrete derivative w.r.t. the argument x to the direction e.

Proof. Notice that CU ≤ CΛ as quadratic forms, so it is enough to prove
the statement with CU replaced by CΛ. Since y2 ∈ ∂X and CΛ(x − y2) is
−Δm-harmonic in x ∈ X, one has

∑

y1∈∂X

PX(x, y1)CΛ(y1, y2) = CΛ(x, y2).

Taking derivative w.r.t. x on the above equation, we obtain that the left-hand
side of Eq. (3.23) is equal to

∑

y2∈∂X

∂x,eCΛ(x, y2) ∂x,ePX(x, y2). (3.24)

By Corollary 43 (for decay rate of ∇CΛ) and the assumption d(x, ∂X) ≥
cLj , one has

|∂x,eCΛ(x, y2)| ≤ O(L−(d−1)j).

Using again the same assumption, there exists a discrete ball BR(x) ⊂ X

centered on x with radius R = c
2Lj (and R is independent of x). For every

y2 ∈ ∂X, PX(x, y2) is harmonic and non-negative in BR(x). Applying (3.18),
∣
∣∂x,ePX(x, y2)

∣
∣ ≤ c1R−1PX(x, y2)

with c1 depending on c but independent of x and y2 (since it is independent of

the harmonic function). (The above bound holds for P
(0)
X , the Poisson kernel

with mass regularization m = 0, and as long as m > 0 is sufficiently small
so that |(PX − P

(0)
X )(x, y2)| ≤ R−1PX(x, y2) it is still valid.) So (3.24) is

bounded by

O(L−(d−1)j)O(L−j)
∑

y2∈∂X

PX(x, y2).

Since
∑

y2∈∂X PX(x, y2) ≤ 1 for all m > 0, the above quantity is bounded by
O(L−dj). �

Remark 17. One may find that our method also resembles Gawedzki and
Kupiainen’s approach [34,35] because the Poisson kernel here plays a similar
role as their spin blocking operator. However, there are many differences. For
example, our fluctuation fields ζ have finite range covariances; the integrands
at different scales do not have to be in Gibbsian forms; and our polymer
arrangements are closer to Brydges [18].
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4. Norms

Before we define the norms, we have a remark about the choices of four im-
portant constants: L, A, κ and h where L has already appeared above and A,
κ and h will appear in the definitions of norms below.

We will first fix L > L0(d) large enough which satisfies all the largeness
requirements in Lemma 25 (a geometric result), Lemma 32 and Proposition 37.
These results establish contractivity of the three linear maps defined in Propo-
sition 28, and L has to be large to overwhelm some O(1) constants appearing
in the estimates of the norms of these linear maps.

We then choose A > A0(d, L) large enough which satisfies all the large-
ness requirements in Proposition 26 (smoothness of RG) and Proposition 29
(contractivity of the linear map L1 defined in Proposition 28).

After this, we choose 0 < κ < κ0(d, L,A) small enough which satisfies all
the smallness requirements in Lemma 24 [integrating “regulators” defined in
(4.4)] and Lemma 31. Finally, we choose h > h0(d, L,A, κ) large enough for
the arguments in the proof of Lemma 31.

4.1. Definitions of Norms

We now define the norm of the fields, the norm of a function of the fields (i.e.
elements in N ) at a fixed field, and the norm of a function in NPj . For j > 0,
the definitions are as follows:
1. Define hj = hL−(d−2)j/2 for constant h > 0. We first define the semi-

norm for the fields. Let us recall that ξ is the field introduced in Sect. 2.
For X ⊂ Y and λ ∈ R, we define

‖(f, λξ)‖Φj(X,Y ) := h−1
j sup

x∈X,e

∣
∣
∣Lj∂e(PY f(x) + λξ(x))

∣
∣
∣ . (4.1)

The notation ‖f‖Φj(X,Y ) where ξ part is dropped will be understood as
‖(f, 0)‖Φj(X,Y ). As a special case, if X ∈ Pj then we simply write

‖(f, λξ)‖Φj(X) := ‖(f, λξ)‖
Φj(Ẋ,X+)

. (4.2)

The space Φj(X,Y ) is then defined as:

Φj(X,Y ) := (RΛ × R)/{‖(f, λξ)‖Φj(X,Y ) = 0},

and this normed vector space is complete (i.e. Banach space), and
Φj(X) := Φj(Ẋ,X+).

2. We then define differentials for functions of the fields, and their norm. Let
K(φ, ξ) be a function of φ, ξ. For test functions

(f, λ)×n := (f1, λ1ξ, . . . , fn, λnξ),

the nth differential of K(φ, ξ) is

K(n)(φ, ξ; (f, λ)×n) :=
∂n

∂t1 . . . ∂tn
K(φ +

n∑

i=1

tifi, ξ +
n∑

i=1

tiλiξ)
∣
∣
∣
∣
ti=0

.
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It is normed with a space of test functions Φ by

‖K(n)(φ, ξ)‖Tn
φ (Φ) := sup

‖(fi,λiξ)‖Φ≤1

∣
∣K(n)(φ, ξ; (f, λ)×n)

∣
∣.

We then measure the amplitude of K(φ, ξ) at a fixed field φ by incorporating
all its derivatives at φ that we want to control:

‖K(φ, ξ)‖Tφ(Φ) :=
4∑

n=0

1
n!

‖K(n)(φ, ξ)‖Tn
φ (Φ) (4.3)

In most of the discussions, we actually have a function K(X,φ, ξ) which is
element in NPj . Then, the above Tφ(Φ) norm is taken for every X ∈ Pj ,
and Φ will be chosen to be Φj(X) defined in (4.2).

3. For κ > 0, we define “regulators”:

G(X,Y ) := E

[
e

κ
2

∑
x∈X,e∈E(∂eφ(x))2∣∣Y c

] /
N(X,Y ) (4.4)

for X ⊂ Y where the normalization factor is defined by

N(X,Y ) := E

[
e

κ
2

∑
x∈X,e∈E(∂eφ(x))2∣∣φY c = 0

]
.

For K ∈ NPj , define

‖K(X)‖j := sup
φ

‖K(X,φ, ξ)‖Tφ(Φj(X))G(Ẍ,X+)−1. (4.5)

Finally, for A > 0,

‖K‖j := sup
X∈Pj

‖K(X)‖jA
|X|j . (4.6)

The space (NPj , ‖ · ‖j) is then a Banach space.

For the case j = 0: (4.1)–(4.3) are still defined for j = 0 with PY = id

and Ẋ = X (recall these conventions made in Sect. 2). (4.5) is defined with G
replaced by

G0(X) := e
κ
2

∑
x∈X,e∈E(∂eφ(x))2

.

4.2. Properties

Lemma 18. Let F be function of φ, ξ, and X ⊂ Y ⊂ U . We have the following
property for the Tφ(Φ) norms:

‖F (n)(φ, ξ)‖Tn
φ (Φj(Y,U)) ≤ ‖F (n)(φ, ξ)‖Tn

φ (Φj(X,U)) (4.7)

which also holds without n.

Proof. The proof is immediate because ‖f‖Φj(Y,U) ≥ ‖f‖Φj(X,U). �

Before the discussion on further properties, we recall that our functions
of the fields have the special structure (3.15). It turns out that in view of this
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structure, it is sometimes more convenient to consider a type of function spaces
Φ̃j(X,Y ) for X ⊂ Y defined as follows:

Φ̃j(X,Y ) := {g : Δmg = 0 on Y } ⊕ Rξ

equipped with semi-norm

‖g ⊕ λξ‖
Φ̃j(X,Y )

:= h−1
j sup

x∈X,e

∣
∣
∣Lj∂e(g(x) + λξ(x))

∣
∣
∣ .

Note that the above sum is really a direct sum since the test function f in
(2.1) is not identically zero and, therefore, ξ is not Δm-harmonic. Now if a
function F (φ, ξ) = F̃ (ψ) with ψ = PY φ + ξ, one actually has

‖F (n)(φ, ξ)‖Tn
φ (Φj(X,Y )) = sup

‖gi⊕λiξ‖
Φ̃j(X,Y )

≤1

∣
∣
∣∂n

ti

∣
∣
ti=0F̃ (ψ +

n∑

i=1

ti(gi + λiξ))
∣
∣
∣

for any subset X ⊂ Y since in this situation, varying φ by tifi for generic
functions fi is equivalent with varying PY φ by harmonic functions on Y .

Lemma 19. Assume the setting of Lemma 12. For every k = 1, . . . ,m, let
Xk ⊂ Yk ⊂ U . Define X := ∪m

k=1Xk. Then, one has

∥
∥
∥E

[ m∏

k=1

Hk(φ, ξ)
∣
∣Uc

]∥∥
∥
Tφ(Φj(X,U))

≤ E

[ m∏

k=1

‖Hk(φ, ξ)‖Tφ(Φj(Xk,Yk))

∣
∣Uc

]
.

(4.8)

Remark 20. Lemma 19 is stated in terms of generic functions Hk. The typical
situation in which we apply this lemma is that Yk = X+

k , and Hk(φ, ξ) =
Kk(Xk, φ, ξ) with each Kk(Xk, φ, ξ) satisfying (3.15).

Remark 21. Lemma 19 is analogous with [18, Lemma 6.7] (the norm of a
product bounded by product of norms) and [18, Lemma 6.9] (the norm of an
expectation bounded by expectation of the norm). The difference is that in
our approach we combine the two results; in fact, here both sides of (4.8) have
the conditional expectation with the same conditioning, so that the two sides
are comparable.

Proof of Lemma 19. Let ζ = φ − PUφ and define

F (φ, ξ) := Eζ

[∏

k

Hk(PUφ + ζ, ξ)
]
.

Lemma 12 states that there exists F̃ such that F (φ, ξ) = F̃ (PUφ + ξ). Write
〈t, f〉n :=

∑n
i=1 tifi. By the discussion before this lemma, the Tn

φ (Φj(X,U))

norm of F (n)(φ, ξ) is equal to

sup
‖gi⊕λiξ‖

Φ̃j(X,U)
≤1

∣
∣
∣
∣∂

n
ti

∣
∣
ti=0Eζ

[∏

k

Hk

(
PUφ + 〈t, g〉n + ζ, ξ + 〈t, λξ〉n

)]∣∣
∣
∣.
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This is bounded by taking the Eζ outside the supremum, and we apply the
product rule of derivatives. We then obtain factors of the form

sup
gi⊕λiξ

∣
∣
∣∂r

ti

∣
∣
ti=0Hk

(
φ + 〈t, g〉r, ξ + 〈t, λξ〉r

)∣∣
∣

with the sup over the same set as above. Since gi are harmonic on Yk and by
Lemma 18, the supremum can be replaced by one taken over all gi ⊕ λiξ such
that gi are harmonic on Yk and ‖gi ⊕ λiξ‖Φ̃j(Xk,Yk)

≤ 1. By the assumption

on Hk, and PYk
g = g, the above function Hk is equal to H̃k

(
PYk

φ + 〈t, g〉r +
ξ + 〈t, λξ〉r

)
. Again by the discussion before this lemma, the above quantity

is actually bounded by ‖Hk(φ, ξ)‖T r
φ(Φj(Xk,Yk)). Summing over multi-indices

(r1, . . . , rm) with |r| = n, followed by summing over n, one obtains the desired
bound. �

Before the next lemma, we introduce a short notation

(∂mf)2 := (∂f)2 + m2f2 (4.9)

Lemma 22. We have the following properties for the regulator.

1. G(X,Y, φ = 0) = 1.
2. If X1 ⊂ Y1, X2 ⊂ Y2, and Y1 ∪ ∂Y1, Y2 ∪ ∂Y2 are disjoint, then

G(X1, Y1)G(X2, Y2) = G(X1 ∪ X2, Y1 ∪ Y2). (4.10)

3. We have an alternative representation of G(X,Y )

G(X,Y )=exp

(
κ

2

∑

X

(∂ψ1)2− 1
2

∑

Y

(∂mψ1)2 +
1
2

∑

Y

(∂mψ2)2
)

, (4.11)

where ψ1 is the minimizer of
∑

Y (∂mφ)2−κ
∑

X(∂φ)2 with φY c fixed, and
ψ2 is the minimizer of

∑
Y (∂mφ)2 with φY c fixed.

4. Fixing Y , G(X,Y ) is monotonically increasing in X for all X ⊂ Y .
5. With ψ1,2 defined in (3),

exp

(
κ

2

∑

X

(∂ψ2)2
)

≤ G(X,Y ) ≤ exp

(
κ

2

∑

X

(∂ψ1)2
)

. (4.12)

Proof. (1)(2) hold by definition and the fact that G(X,Y ) is a function of φ
on ∂Y . For (3),

G(X,Y ) =

∫
e

κ
2

∑
X(∂φ)2−1

2

∑
Λ(∂mφ)2dY φ

/
∫

e−1
2

∑
Λ(∂mφ)2dY φ

∫
e

κ
2

∑
X(∂φ)2−1

2

∑
Y (∂D

mφ)2dY φ

/
∫

e−1
2

∑
Y (∂D

mφ)2dY φ

, (4.13)

where dY φ is the Lebesgue measure on {φ(x) : x ∈ Y } ∼= R
Y , ∂D takes

Dirichlet boundary condition on ∂Y . Using Fact (3.12) for both quadratic
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forms −κ
2

∑
X(∂φ)2 + 1

2

∑
Λ(∂mφ)2 and 1

2

∑
Λ(∂mφ)2, we obtain (3), where

the quantity
∫

e
κ
2

∑
X(∂φ)2−1

2

∑
Y (∂D

mφ)2dY φ

appears in both numerator and denominator and thus cancels, and so does the
quantity

∫
e−1

2

∑
Y (∂D

mφ)2dY φ.

(4) holds because of (3) and that

inf
φ

{
∑

Y

(∂mφ)2 − κ
∑

X

(∂φ)2
∣
∣Y c

}

(4.14)

is monotonically decreasing in X. The two inequalities in (5) hold by replacing
ψ1 by ψ2 or replacing ψ2 by ψ1, and using definitions of ψ1, ψ2. �

Remark 23. The regulator in [18] has the form eκ
∑

(∂φ′)2+the other terms;
since the smoothed field φ′ there is analogous to our ψ, the last property above
implies that our regulator has about the same amplitude as the one in [18],
except that we no longer need the other terms.

Before proving a further property, we recall a formula. If U is a finite set
and ψ = {ψ(x) : x ∈ U} is a family of centered Gaussian random variables
with covariance identity, and T : l2(U) → l2(U) satisfies ‖T‖ < 1 then

E

[
exp

(1
2

(ψ, Tψ)l2(U)

)]
= det (1 − T )−1/2 = exp

(
1
2

∞∑

n=1

1
n

Tr(Tn)

)

(4.15)
The next lemma shows that the conditional expectations almost auto-

matically do the work when one wants to see how the regulators undergo
integrations, except that we need to manually control a ratio of normaliza-
tions.

Lemma 24. Suppose that κ > 0 is sufficiently small. For X ⊂ Y ⊂ U , and
d(X,Y c) = c0Lj , one has the bound

E
[
G(X,Y )

∣
∣Uc] ≤ cL

−dj |X|G(X,U) (4.16)

if U �= Λ, for some constant c only depending on c0. One also has, as the
special case, the short-hand notation and bound

E

[
G(X,Y )

∣
∣(Λ+)c

]
:= E [G(X,Y )] ≤ cL

−dj |X|.

In particular, if X = Ẍ0 for some X0 ∈ Pj , then the factor cL
−dj |X| can

be written as c̄|X0|j for some constant c̄. Furthermore, G0 also satisfies the
same bound.
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Proof. By definition, one has

E
[
G(X,Y )

∣
∣Uc] = E

[
e

κ
2

∑
x∈X,e∈E(∂eφ(x))2 ∣∣Uc

] /
N(X,Y )

= G(X,U)
N(X,U)
N(X,Y )

.

So it remains to estimate the last ratio. Recall that the factor N(X,Y ) is
an expectation of the exponential weight over the Dirichlet Gaussian field φ.
For this Dirichlet Gaussian field φ, define φ = C

1/2
Y ψ so that ψ has covari-

ance identity, where CY is the Dirichlet Green’s function for Y . Then, define

TY = 1
2

∑
e∈E (∂eC

1/2
Y )
1X(∂eC

1/2
Y ) as an operator on l2 = l2(Λ). We define

similar operators CU , TU in the same way for U . Let ∂D
e , −ΔY take Dirichlet

boundary condition on ∂Y . Because CY is the inverse of −ΔY + m2,

(f, TY f)l2 =
1
2

∑

x∈X,e∈E
(∂eC

1/2
Y f(x))2

≤ 1
2

∑

x∈Y,e

(∂D
e C

1/2
Y f(x))2 +

m2

2

∑

x∈Y,e

(C1/2
Y f(x))2

≤
∑

x∈Y

C
1/2
Y f(x)(−ΔY + m2)C1/2

Y f(x)

≤ (f, f)l2 . (4.17)

So ‖TY ‖ ≤ 1. Similarly, ‖TU‖ ≤ 1. By (4.15)

N(X,U)
N(X,Y )

=
E

[
e

κ
2 (ψ,TUψ)

]

E

[
e

κ
2 (ψ,TY ψ)

] =
(

det(1 − κTU )
det(1 − κTY )

)−1/2

(4.18)

Taking logarithm, we need to compute

Tr (log(1 − κTU ) − log(1 − κTY )) ≤ O(1)Tr (κTU − κTY ) ,

where we have used ‖TY ‖ ≤ 1, ‖TU‖ ≤ 1, κ is small, and log(1−x) is Lipschitz
on x ∈ [−1

2 , 1
2 ]. Since CU − CY = PY CU ,

Tr (TU − TY ) =
1
2

∑

e∈E,x∈X

∂e(CU − CY )∂

e (x, x)

=
1
2

∑

e∈E,x∈X

∑

y∈∂Y

∂x,ePY (x, y)∂x,eCU (y, x) (4.19)

By Lemma 15 and proceed similarly as Eq. (3.24) in proof of Proposition 16,
making use of the O(Lj) distance between x and y, the above expression is
bounded by O(L−jd) |X| which concludes the proof.
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The bound on E
[
G(X,Y )

∣
∣(Λ+)c

]
is similar. The only modification is

to replace CU by CΛ which satisfies periodic instead of Dirichlet bound-

ary condition. For G0, we can directly bound E

[
e

κ
2

∑
x∈X,e∈E(∂eφ(x))2 ∣∣Uc

]

by c|X|. �

5. Smoothness of RG

In this section, we prove that the RG map constructed in Sect. 3 is smooth.
First of all, we need some geometric results from [18].

Lemma 25 (Brydges [18]). There exists an η = η(d) > 1 such that for all
L ≥ 2d + 1 and for all large connected sets X ∈ Pj , |X|j ≥ η|X̄|j+1. In
addition, for all X ∈ Pj , |X|j ≥ |X̄|j+1, and

|X|j ≥ 1
2
(1 + η)|X̄|j+1 − 1

2
(1 + η)2d+1|C(X)| (5.1)

Proof. The lemma is the same with [18] (Lemma 6.15 and 6.16), so we omit
the proof. �

In the following result, assuming j ≥ 0, we omit subscript j for objects
at scale j and write a prime for objects at scale j +1, as in Sect. 3. Recall that
the spaces NPc , NP′

c are defined in Sect. 2.4.1, and they are equipped with
norms defined in Sect. 4.6.

Proposition 26. Let B′(NP′
c) be a ball centered on the origin in NP′

c . There ex-
ists A(d, L,B′) and A
(d,A) such that for A > A(d, L,B′) and A
 > A
(d,A),
the map (σj , Ej+1, σj+1,Kj) �→ Kj+1 defined in Sect. 3.2 is smooth from
(−A
−1, A
−1)3 × BA�−1(NPc) to B′(NP′

c) where BA�−1(NPc) is a ball
centered on the origin in NPc with radius A
−1.

Proof. Let A
−1 � κ. For U ∈ P ′
c, by definition of K�,

K′(U) =
∑

V ⊆U,V �=∅

∑

(P,Q,Z,X ,Ŷ)→V

EU+

× (1 − eE′
)P (eE′

)(〈X〉\X) ∩ U\(P∪Q) (e−E′
)U ∪ X

︸ ︷︷ ︸
≤(A�/2)

−|P |j 2
|(〈X〉\X) ∩ U\(P∪Q)|j 2

|U∪X|j

, (5.2)

where, with
∏

K :=
∏

Y ∈X K(Y )
∏

(B,Y )∈Ŷ
1

|Y |j K(B, Y ) as a short-hand
notation,

EU+
:= E

[
(Ĩ − eE′

)(U\V )∩〈X〉c

ĨV ∩(〈X〉c\Z)δIZ(I − eE′
)Q

∏
K
∣
∣(U+)c

]

= E

[
E

[
(Ĩ − eE′

)(U\V )∩〈X〉c

ĨV ∩(〈X〉c\Z)δIZ(I − eE′
)Q
∣∣(W+)c

]

︸ ︷︷ ︸
=:EW+

∏
K
∣∣(U+)c

]
,

(5.3)
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where W = U\X̂ (recall that X := XX∪Y ) and the last step used the corridors
around K(Y ) to make sense of the (W+)c conditional expectation. In the above
W+ is a + operation at scale j and U+ is a + operation at scale j + 1.

We first control EW+
. With φ = PW+φ+ζ and the inequality (a+b)2 ≤

2a2 + 2b2, and using assumption A
−1 � κ, Lemma 44, we list the estimates
for each factor.

‖(I − eE′
)(B)‖Tφ(Φj(B)) ≤ 5(κA
)−1e

κ
2

∑
B(∂PW+φ)2+κ

2

∑
B(∂PB+ζ)2

for all B ∈ Q, where B+ ⊆ W+ since Q ⊆ 〈X〉 \X̂; and,

‖(Ĩ − eE′
)(B)‖Tφ(Φj(B)) ≤ 5(κA
)−1e

κ
2

∑
B(∂PW+φ)2+κ

2

∑
B(∂P(B̄)+ζ)2

for all B ∈ Bj((U\V ) ∩ 〈X〉c), where (B̄)+ ⊆ W+ since 〈X〉 is designed to
ensure that; and

‖Ĩ(B)‖Tφ(Φj(B)) ≤ 2e
κ
2

∑
B(∂PW+φ)2+κ

2

∑
B(∂P(B̄)+ζ)2

for all B ∈ Bj(V ∩ (〈X〉c \Z)), where (B̄)+ ⊆ W+ since B ⊆ 〈X〉c; and

‖δI(B)‖Tφ(Φj(B))

≤ ‖I(B) − 1‖Tφ(Φj(B)) + ‖Ĩ(B) − 1‖Tφ(Φj(B))

≤ 8(κA
)−1e
κ
2

∑
B(∂PW+φ)2e

κ
2

∑
B(∂PB+ζ)2+κ

2

∑
B(∂P(B̄)+ζ)2

by ea + eb ≤ 2ea+b (a, b > 0) for all B ∈ Bj(Z), where (B̄)+ ⊆ W+ since
Z ⊆ 〈X〉c. Combining all the above estimates, together with Lemma 19, we
have

‖EW+‖Tφ(Φj(W )) ≤ (κA
/8)−|Q∪Z∪((U\V )\〈X〉)|j e
κ
2

∑
W (∂PW+φ)2M,

(5.4)
where

M ≤ Eζ

[
e

κ
2

∑
B∈Bj(W )

∑
B(∂PB+ζ)2

e
κ
2

∑
B∈Bj(W )

∑
B(∂P(B̄)+ζ)2

]
. (5.5)

In the next Lemma, we show that M ≤ c|U |j .
Now we proceed to control EU+

. Instead of (a + b)2 ≤ 2a2 + 2b2 we use
properties of the regulator established in Sect. 4. Since for all X ∈ Pj,c

‖Kj(X)‖Tφ(Φj(X)) ≤ A
−1G(Ẍ,X+)A−|X|j .

By Lemma 19, Lemma 22 (2)(4)(5) and Lemma 24,

‖EU+‖Tφ(Φj(U)) ≤ c|U|j (κA�/8)−|Z ∪ Q ∪
(
(U\V )\〈X〉

)
|j−|X|−|Y|A−|XX∪Y |j

× E

[
e

κ
2
∑

W (∂P
W+φ)2

∏

Y ∈X
G(Ÿk, Y +

k )
∏

Y ∈Y
G(Ÿi, Y

+
i )

∣∣(U+)c
]

≤ c|U|j · (κA�/8)−|Z∪Q∪((U\V )\〈X〉)|j−|X|−|Y|G(Ü , U+)c′|W |j (A/c′)−|XX∪Y |j .

(5.6)
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We can bound the number of terms in the summation in (5.2) by k|U |j
with k = 27, because every j-block in U either belongs to V or V c, and the
same statement is true if V is replaced by P,Q,Z,XX , YY , and if it is in Y ∈ Y
it is either the B of (B, Y ) ∈ Ŷ or not. By Lemma 25, for a = 1

2 (1 + η), with
X = {Xk}, Ŷ = {(Bi, Yi)}, the quantity a|U |j+1 can be bounded by

a|Z̄|j+1 + a| ∪i B̄i|j+1 + a| ∪k X̄k|j+1 + a|Q̄|j+1 + a|(U\V ) ∩ 〈X〉c |j+1

≤ (|Z|j + a2d+1|C(Z)|) + a|Ŷ| +

(
∑

k

|Xk|j + a2d+1|X |
)

+
(|Q|j + a2d+1|C(Q)|) + aLd|(U\V ) ∩ 〈X〉c |j

≤ (1 + a2d+1) (|Z|j + |Q|j) + a|Ŷ|
+ (|XX |j + a2d+1|X |) + aLd|(U\V ) ∩ 〈X〉c |j .

Then, we can easily check that with A,A
 sufficiently large as assumed in the
proposition

∥
∥K′∥∥

j+1 = sup
U∈P′

∥
∥K′(U)

∥
∥
j+1 Aa|U |j+1A(1−a)|U |j+1 < r,

where r is the radius of B′(NPj+1

j+1 ), because A|XX |j is cancelled by its inverse
in (5.6), and

lim
A→∞

A(1−a)|U |j+1 · A−|XY |j · k|U |j · c|U |j · c′ |W |j+|XX∪Y |j

×2|(〈X〉\X) ∩ U\(P∪Q)|j · 2|U∪X|j = 0 (5.7)

lim
A�→∞

(κA
/8)−|Q∪Z∪((U\V )\〈X〉)|j−|X |−|Y|

·A(1+a2d+1)|Q∪Z|j+a|Ŷ|+a2d+1|X |+aLd|(U\V )∩〈X〉c|j = 0. (5.8)

The derivatives of the map (σj , Ej+1, σj+1,Kj) �→ Kj+1 with respect to σj ,
Ej+1, σj+1 and Kj are bounded similarly. �

Lemma 27. Let M be the quantity introduced in the proof of Proposition 26.
There exists a constant c independent of L,A,A
 such that

M ≤ c|U |j . (5.9)

Proof. Defining ζ = C
1/2
W+ψ where CW+ is the Dirichlet Green’s function for

W+ and ψ ∈ L2(W+), M is bounded by

Eψ exp

⎧
⎨

⎩
4κ

∑

x∈W

ψ(x)Tψ(x)

⎫
⎬

⎭
, (5.10)
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where ψ has identity covariance and

T =
1
4

∑

B∈Bj(W ),e∈E

(
C

1/2
U+P 


B+∂

e1B∂ePB+C

1/2
U+

+C
1/2
U+P 


(B̄)+
∂

e1B∂eP(B̄)+C

1/2
U+

)

=: T1 + T2 (5.11)

is a linear map from L2(W+) to itself. T1, T2 are defined to be the two terms,
respectively. We have by Proposition 16,

Tr(T ) =
1
4

∑

B∈Bj(W ),e∈E

( ∑

x∈B

∂ePB+CU+

(
∂ePB+

)
 (x, x)

+
∑

x∈B

∂eP(B̄)+CU+

(
∂eP(B̄)+

)
(x, x)
)

≤ O(1)(L−dj + L−d(j+1))|W |
≤ O(1)|W |j . (5.12)

For the next step, we bound ‖T‖. In fact,

(f, T1f)l2 =
1
4

∑

B∈Bj(W )

∑

x∈B,e

(
∂ePB+C

1
2
U+f(x)

)2

≤ 1
4

∑

B∈Bj(W )

∑

x∈B+,e

(
∂eC

1
2
U+f(x)

)2

≤ cd
∑

x∈W,e

(
∂eC

1
2
U+f(x)

)2
, (5.13)

where we used the fact that the harmonic extension minimizes the Dirichlet
form to get rid of the Poisson kernels. The constant cd comes from overlapping
of B+’s. Then, we can proceed as (4.17) to bound the above expression by
cd(f, f)l2 . T2 is bounded in the same way. Now by |Tr(Tn)| ≤ |Tr(T )| ‖T‖n−1,
and formula (4.15) the proof of the lemma is completed. �

6. Linearized RG

Having established smoothness, in this section we study the linearization of
the RG map in σj ,Kj , Ej+1 and σj+1.

In view of Lemma 19, we can show, by induction along all the RG steps,
that Kj(X) depends on φ, ξ via PX+φ + ξ (at scale 0, I0,K0 depend on φ, ξ
via φ + ξ). We write

Tay E

[
Kj(X)|(U+)c

]

to be the second-order Taylor expansion of E
[
Kj(X)|(U+)c

]
in PU+φ + ξ.
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Proposition 28. The linearization of the map (σj , Ej+1, σj+1,Kj) → Kj+1
around (0, 0, 0, 0) is L1 + L2 + L3 where

L1Kj(U) =
∑

X∈Pj,c\Sj ,X̄=U

E

[
Kj(X)

∣
∣(U+)c

]
, (6.1)

L2Kj(U) =
∑

B∈Bj ,B̄=U

∑

X∈Sj ,X⊇B

1
|X|j

(1 − Tay)E
[
Kj(X)

∣
∣(U+)c

]
, (6.2)

L3
(
σj , Ej+1, σj+1,Kj

)
(U)

=
∑

B∈Bj ,B̄=U

(
σj+1

4

∑

x∈B,e

(
∂eP(B̄)+φ(x) + ξ(x)

)2

+Ej+1(B) − σj

4

∑

x∈B

E

[(
∂PB+φ(x) + ξ(x)

)2 ∣∣(U+)c
]

+
∑

X∈Sj ,X⊇B

1
|X|j

Tay E

[
Kj(X)|(U+)c

])
. (6.3)

Proof. In Proposition 26, we proved that the map (σj , Ej+1, σj+1,Kj) →
Kj+1 is smooth around (0, 0, 0, 0) so that we can linearize the map. In (3.9)
since V �= ∅, the Ĩj − eEj+1 factor does not contribute to the linear order.
Also if X = ∅ then X̂ = 〈X〉 = ∅, so 1 − eEj+1 and Ij − eEj+1 do not
contribute to the linear order either. The terms that contribute to the linear
order correspond to (Z, |X |, |Ŷ|) equal to (∅, 0, 1) or (∅, 1, 0) or (B, 0, 0) where
B ∈ Bj . Grouping these terms into large sets part and small sets part with
Taylor leading terms and remainder, we obtain the above linear operators. �

6.1. Large Sets

Proposition 29. Let L be sufficiently large. Let A be sufficiently large depending
on L. Then, L1 in Proposition 28 is a contraction. Moreover, limA→∞ ‖L1‖ =
0.

Proof. By Lemma 24

‖L1Kj(U)‖j+1 ≤
∑

X∈Pj,c\Sj ,X̄=U

‖Kj‖jc
|X|jA−|X|j , (6.4)

therefore, by Lemma 25,

‖L1Kj‖j+1 = sup
U∈Pj+1

‖L1Kj(U)‖j+1A|U |j+1

≤
[

sup
U∈Pj+1

A|U |j+1
∑

X∈Pj,c\Sj ,X̄=U

c|X|jA−|X|j
]
‖Kj‖j

≤
[

sup
U∈Pj+1

A|U |j+12Ld|U |j+1(A/c)−η|U |j+1

]
‖Kj‖j , (6.5)
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where η > 1 is introduced in Lemma 25. The bracketed expression goes to zero
as A → ∞. �

6.2. Taylor Remainder

We prepare to show contractivity of L2. We first show that the Taylor re-
mainder after the second derivative is bounded by the third derivative. It is a
general result about the Tφ(Φ) norm with no need to specify the test function
space Φ.

Lemma 30. For F a function of φ let Tayn be its n-th order Taylor expansion
about φ = 0, and Φ be a space of test functions, then

‖(1 − Tay2)F (φ)‖Tφ(Φ) ≤ (1 + ‖φ‖Φ)3 sup
t∈[0,1]
k=3,4

∥
∥
∥F (k)(tφ)

∥
∥
∥
Tk

tφ(Φ)
. (6.6)

Proof. By Taylor remainder theorem, with f×n := (f1, . . . , fn),

‖(1 − Tay2)F (φ)‖Tφ(Φ) =
4∑

n=0

1
n!

sup
‖fi‖Φ≤1

∣
∣
∣(F − Tay2F )(n) (φ; f×n)

∣
∣
∣

=
4∑

n=0

1
n!

sup
‖fi‖Φ≤1

∣
∣
∣
(
F (n) − Tay2−n(F (n))

)
(φ; f×n)

∣
∣
∣ (6.7)

where Tay2−n = 0 for n > 2. The absolute valued quantity is equal to
∣
∣
∣
∣1{n<3}

∫ 1

0

(1 − t)2−n

(2 − n)!
∂3−n
t F (n)(tφ; f×n) + 1{n≥3}F (n)(φ; f×n)

∣
∣
∣
∣

=
∣
∣
∣
∣1{n<3}

∫ 1

0

(1 − t)2−n

(2 − n)!
F (3)(tφ;φ×(3−n), f×n) + 1{n≥3}F (n)(φ; f×n)

∣
∣
∣
∣,

(6.8)

where φ×(3−n) means 3 − n test functions φ. Calculating the t integrals,

‖(1 − Tay2)F (φ)‖Tφ(Φ)

≤
3∑

n=0

1
n!

sup
‖fi‖Φ≤1

∣
∣
∣
∣

1
(3 − n)!

sup
t∈[0,1]

F (3)(tφ;φ×(3−n), f×n)
∣
∣
∣
∣+‖F (4)(φ)‖T 4

φ(Φ)

≤ (1 + ‖φ‖Φ)3 sup
t∈(0,1),k=3,4

‖F (k)(tφ)‖Tk
tφ(Φ), (6.9)

where in the last step binomial theorem is applied. �

Lemma 31. Let (B,X) ∈ Ŝj , B̄ = U , if κ is small enough depending on L,
and h is large enough depending on κ and L, then

(
2 + ‖φ‖

Φj+1(Ẋ,U+)

)3
G(Ẍ, U+) ≤ qG(Ü , U+) (6.10)

for a constant q, where the dot(s) operations on X are at scale j, and the dots
and + operations on U are at scale j + 1.
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Proof. Let ψ = PU+φ. For each e ∈ E , ∂eψ is harmonic in U+∩(U+−e). Since
X,U are j and j+1 scale small sets, respectively, and d(X, ∂Ü) = O(Lj+1), we
can find a set Y ⊂ Ü , such that: 1) Y is of the form KR\KrR for some r ∈ (0, 1

2 )
as in Lemma 15; 2) Y ∩ Ẍ = ∅ and d(Ẍ, Y ) = O(Lj); 3) d(Y, ∂Ü) = O(Lj+1);
4) R = diam(Y ) = O(Lj).

Ẍ

Y

X̃

Then by (3.21) of Lemma 15,

sup
e∈E,x∈Ẋ

|∂eψ(x)|2 ≤ O(L−dj)
∑

e∈E(Y )

(∂eψ)2 . (6.11)

By definition of the norm ‖φ‖2
Φj+1(Ẋ,U+)

= h−2Ld(j+1) sup
e,x∈Ẋ

|∂eψ(x)|2,

if we choose h large enough such that h−1O(Ld) ≤ 1, then

‖φ‖2
Φj+1(Ẋ,U+)

≤ h−1
∑

e∈E(Y )

(∂eψ)2 . (6.12)

Since there exists a q ≥ 1 such that for all s ≥ 0, (2 + s)3 ≤ qes2/2, one has

(
2 + ‖φ‖

Φj+1(Ẋ,U+)

)3 ≤ q exp

⎛

⎝h−1

2

∑

e∈E(Y )

(∂eψ)2

⎞

⎠ . (6.13)

Apply (4.11) of Lemma 22 to G(Ẍ, U+), and use the fact that ψ = PU+φ
together with (6.13), then the left-hand side of (6.10) is bounded by

q exp

{
κ

2

∑

e∈E(U+)

(ae∂eψ1)
2 +

h−1

2

∑

e∈E(Y )

(∂eψ)2 − 1

2

∑

U+

(∂mψ1)
2 +

1

2

∑

U+

(∂mψ)2
}

,

where the function ae = 1 if e ∈ E(Ẍ) and decays to zero in a neighborhood of
Ẍ, and the support of ae, that is, X̃ := supp(a) = {x : ∃ē ∈ E s.t. ax,x+ē �= 0},
still satisfies d(X̃, Y ) = O(Lj), and |∇kae| ≤ O(L−kj) for k = 0, . . . , 3, and
finally

ψ1 maximizes κ
∑

e∈E(U+)

(ae∂eφ)2 −
∑

U+

(∂mφ)2 fixing φ
∣
∣
(U+)c . (6.14)
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Notice that applying (4.11) of Lemma 22 to G(Ẍ, U+) results in a term κ
2 times

a Dirichlet form over Ẍ, and we “enlarged” the set Ẍ to X̃ by smoothing out
the coefficient ae, followed by a replacement of that Dirichlet form with that
of the maximizer ψ1 solving the new elliptic problem (6.14)—this only makes
the above exponential larger. In the following, we show that by choosing h
large enough one has

h−1

2

∑

e∈E(Y )

(∂eψ)2 ≤ κ

2

∑

e∈E(Y )

(∂eψ1)2 . (6.15)

Then, the left-hand side of (6.10) is bounded by

q exp

⎧
⎪⎨

⎪⎩

κ

2

∑

e∈E(Ü)

(∂eψ̄)2 − 1
2

∑

U+

(∂mψ̄)2 +
1
2

∑

U+

(∂mψ)2

⎫
⎪⎬

⎪⎭
= qG(Ü , U+)

which holds by replacing ψ1 by ψ̄ which is the maximizer of κ
2

∑
e∈E(Ü)

(∂eφ)2

− 1
2

∑
U+(∂mφ)2 with φ

∣
∣
(U+)c fixed.

To show (6.15), let ā = 1 − κa. We have
{

(−Δ + m2)ψ = 0 in U+

ψ = φ on ∂U+

{
(−Δā + m2)ψ1 = 0 in U+

ψ1 = φ on ∂U+ ,

where Δāf(x) =
∑

e āe(f(x + e) − f(x)). Subtract them and we obtain a
non-constant coefficient elliptic problem for ψ1 − ψ

{
(−Δā + m2)(ψ1 − ψ) = −κΔaψ in U+

ψ1 − ψ0 = 0 on ∂U+

One has the following representation of derivative of the solution to the above
equation (note that the support of a is X̃ so Δaψ = 0 outside X̃)

∂e(ψ1 − ψ)(y) = κ
∑

x∈X̃

∂y,eGā(y, x)Δaψ(x) (6.16)

for y ∈ Y, e ∈ E , where Gā is the Dirichlet Green’s function associated with
−Δā + m2.

Our situation is that for a Laplacian with non-constant coefficient Δā,
although one has desired bound for the Green’s function Gā (i.e. bound with
the decay rate as if the Laplacian was a constant coefficient one), the desired
bound for ∂yGā(y, x) does not hold in general. However, we do have bound
with desired scaling in an averaging sense, i.e. after a summation over y—the
variable w.r.t. which Gā is differentiated. Consider

∑

e∈E(Y )

(
∂e(ψ1 − ψ)

)2
= κ2

∑

e∈E(Y )

( ∑

x∈X̃

∂y,eGā(y, x)Δaψ(x)
)2

= κ2
∑

x1,x2∈X̃

Δaψ(x1)Δaψ(x2)
∑

e∈E(Y )

∂y,eGā(y, x1)∂y,eGā(y, x2)
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≤ κ2

2

∑

x1,x2∈X̃

∣
∣
∣Δaψ(x1)Δaψ(x2)

∣
∣
∣

×
∑

e∈E(Y )

((
∂y,eGā(y, x1)

)2 +
(
∂y,eGā(y, x2)

)2)
.

With this bound at hand, our proof of (6.15) now follows from two claims.
The first claim is that for every x ∈ X̃,

∑

e∈E(Y )

(
∂y,eGā(y, x)

)2 ≤ O(L−2j)
∑

y∈Ỹ

Gā(y, x)2 ≤ O(L−(d−2)j), (6.17)

where Ỹ is such that Y ⊂ Ỹ , d(Y, Ỹ c) = O(Lj) and d(Ỹ , X̃) = O(Lj). Note
that the last inequality follows from Gā(y, x) ≤ O(L−(d−2)j) (this is a stan-
dard bound for Green’s function of non-constant coefficient Laplacian, see for
instance [23]) and |Y | = O(Ldj). Note that the right side of (6.17) does not

depend on x1, x2, so it remains to bound
(∑

x∈X̃
|Δaψ(x)|

)2
.

The second claim is that for every x ∈ X̃,

|Δaψ(x)| ≤ O(L−d+2
2 j)

(∑

Y

|∇ψ|2
)1/2

(6.18)

so that one has
⎛

⎝
∑

x∈X̃

|Δaψ(x)|
⎞

⎠

2

≤ O
(
(Ldj ·L−d+2

2 j)2
)∑

Y

(∇ψ)2 = O(L(d−2)j)
∑

Y

(∇ψ)2

(6.19)
As a consequence of (6.16), (6.17) and (6.19), one has

1
2

∑

Y

(∇ψ)2 ≤
∑

Y

(∇ψ − ∇ψ1)2 +
∑

Y

(∇ψ1)2 ≤O(1)κ2
∑

Y

(∇ψ)2+
∑

Y

(∇ψ1)2

Choosing h large enough such that h−1 ≤ κ(1/2 − O(1)κ2), we obtain (6.15).
The proof to the first inequality of (6.17) is motivated by Cacciopoli’s

inequality in the continuum setting, which roughly states that for a solution u
to an elliptic problem one can bound the L2 norm of u by the L2 norm (over
a larger domain) of ∇u (as a reverse of Poincare inequality), under certain
conditions [see for instance [36, Chapter 3]]. We do not provide the proof of
its discrete counterpart in full generality, but only prove a weak version that
is sufficient for our purpose.

Fixing x ∈ X̃, let u(y) = Gā(y, x), which is (−Δā + m2)-harmonic in
U+ away from the singular point y = x: namely

∑
e∈E āe(u(y + e) − u(y)) −

m2u(y) = 0 for y ∈ U+\{x}. Since κ and m2 are sufficiently small, the function
āe is such that there exist 0 < λ < λ̄ and λ < āe ± m2 < λ̄. Then, for every
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function v on Ỹ , one has
∑

e∈E(Ỹ )

āe ∂eu ∂ev +
∑

Ỹ

m2uv = 0. (6.20)

Let v = uϕ2 for some non-negative function ϕ such that supp(ϕ) ⊂ Ỹ , then
one has (note that the lattice derivative does not exactly satisfy the product
rule)

∂ev(x) = ∂eu(x)ϕ(x + e)2 + (ϕ(x) + ϕ(x + e)) ∂eϕ(x)u(x).

Substituting this into the identity (6.20), one has

λ
∑

y,y+e∈Ỹ

ϕ(y + e)2(∂eu(y))2 + m2
∑

y∈Ỹ

ϕ(y)2u(y)2

≤ −
∑

y,y+e∈Ỹ

(ϕ(y)+ϕ(y+e))u(y)ā(y,y+e)∂eu(x)∂eϕ(y)

≤ λ

2

∑

y,y+e∈Ỹ

(
ϕ(y)+ϕ(y+e)

2
)2(∂eu(y))2+

2
λ

∑

y,y+e∈Ỹ

ā2
(y,y+e)(∂eϕ(y))2u(y)2,

where the first inequality used ā > λ and the second inequality is by Cauchy-
Schwartz. Subtracting both sides by the first term in the last line, as long as
ϕ is chosen to vanish on {y : d(x, ∂Ỹ ) < 3}, we have

λ

2

∑

y,y+e∈Ỹ

ϕ(y)2(∂eu(y))2

≤ 2λ̄2

λ

∑

y,y+e∈Ỹ

(∂eϕ(y))2u(y)2 − m2
∑

y∈Ỹ

ϕ(y)2u(y)2.

Choosing ϕ = 1 on Y , and |∇ϕ| ≤ O(L−j), and m2 small enough such that
m2L2N < λ̄2/λ, we obtain the first inequality of (6.17).

The proof of (6.18) is based on the idea of writing Δaψ in terms of
(derivatives of) a and constant coefficient derivatives of ψ, in a way analogous
to the relation ∇ · (a∇f) = ∇a · ∇f + aΔf in continuum. Note that ae above
is defined on edges e. For a lattice site x, define a(x) = (2d)−1 ∑

e a(x,x+e).
Then

|Δaψ(x)| = |
∑

e∈E
ae(ψ(x + e) − ψ(x))|

≤ |
∑

e∈E
(a(x,x+e) − a(x) + a(x))(ψ(x + e) − ψ(x))|

≤ sup
e∈E

|a(x,x+e) − a(x)||∇ψ(x)| + |a(x)||Δψ(x)|

Note that the last term is zero since Δψ = 0. The term |a(x,x+e) − a(x)| is
bounded by (2d)−1 ∑

e′∈E |a(x,x+e) − a(x,x+e′)| which by the choice of a is

bounded by O(L−j). Lemma 15 allows us to bound
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|∇ψ(x)| ≤ O(L−dj/2)

(
∑

Y

(∇ψ)2
)1/2

.

Therefore, we obtain (6.18). So (6.15) is shown and the proof of the lemma is
completed. �

Before the next Lemma, we define

FX(U, φ, ξ) := E

[
Kj(X,φ, ξ)

∣
∣
(
U+

)c]
. (6.21)

It depends on φ, ξ via ψ := PU+φ+ξ, i.e. there exists a function F̃X such that
FX(U, φ, ξ) = F̃X(U,ψ).

Lemma 32. Let L be sufficiently large. Then, L2 in Proposition 28 is a con-
traction with the norm going to zero as L → ∞.

Proof. Let Tay be the second-order Taylor expansion in ψ = PU+φ + ξ. With
the FX defined in (6.21), we aim to bound

∥
∥(1 − Tay)FX(U, φ, ξ)

∥
∥
Tφ(Φj+1(U)). (6.22)

Recall that Φj+1(U) is short for Φj+1(U̇ , U+) and by Lemma 18 this can be
replaced by Φj+1(Ẋ, U+). Applying Lemma 30 with the test function space
Φ := Φ̃j+1(Ẋ, U+), we can bound (6.22) by

∥
∥(1 − Tay)F̃X(U,ψ)

∥
∥
Tψ(Φ) ≤

(
1 + ‖ψ‖Φ

)3
sup

k=3,4

∥
∥F̃

(k)
X (U,ψ)

∥
∥
Tk

ψ(Φ) (6.23)

Now by linearity of F̃
(k)
X in test functions,

∥
∥F̃

(3)
X (U,ψ)

∥
∥
T 3

ψ(Φ̃j+1(Ẋ,U+))
≤ L−3

2d∥∥F̃
(3)
X (U,ψ)

∥
∥
T 3

ψ(Φ̃j(Ẋ,U+))

≤ L−3
2d · 3! · E

[
‖Kj(X,φ, ξ)‖Tφ,ξ(Φj(X))

∣
∣(U+)c

]

≤ O(L−3
2d) ‖Kj(X)‖j c|X|j G(Ẍ, U+), (6.24)

where in the last step Lemma 24 is applied. We can prove analogously that
F̃

(4)
X (U,ψ) satisfies a similar bound with a factor O(L−2d). Next, we estimate

‖ψ‖Φ ≤ h−1
j sup

x∈Ẋ,e

∣
∣Lj∂ePU+φ(x)

∣
∣ + h−1

j sup
x∈Ẋ,e

∣
∣Lj∂eξ(x)

∣
∣

≤ ‖φ‖
Φj+1(Ẋ,U+)

+ 1 (6.25)

by (2.7). Combining (6.23)–(6.25), and applying Lemma 31, followed by (4) of
Lemma 22, one obtains

‖(1 − Tay)FX(U)‖j+1 ≤ O(L−3d
2 ) c|X|j ‖Kj(X)‖j

≤ O(L−3d
2 )(

A

c
)−|X|j‖Kj‖j . (6.26)
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Note that the sum over B and X in the definition (6.2) of L2 gives a factor
O(Ld). Apply the geometric Lemma 25 to |X|j , one then has

∥
∥L2Kj

∥
∥
j+1

≤ O(L−3d/2)
[

sup
U∈Pj+1

A|U |j+1O(Ld)A−|U |j+1c2
d
]
‖K‖j

= O(L−d/2)‖Kj‖j .

As L → ∞, the factor L−d/2 overwhelms the constants hidden in the big-O
notation and, therefore, L2 has arbitrarily small norm. �

6.3. L3 and Determination of Coupling Constants

We now localize the last term in L3, which is the second order Taylor expansion
of F̃X(U,ψ) in ψ [which are introduced in (6.21)]. To do this, we fix a point
z ∈ B, and replace ψ(x) by x·∂ψ(z) (which according to our convention means
1
2

∑
e∈E xe∂eψ(z)), and then average over z ∈ B. We will show that the error

of this replacement is irrelevant. Then

1
2
F̃

(2)
X (U, 0;ψ,ψ) = LocKj(B,X,U) + (1 − Loc)Kj(B,X,U),

where we have defined
Loc Kj(B,X,U)

:=
1

8|B|
∑

z∈B,μ,ν∈E
∂2
t1t2

∣
∣
∣
∣
ti=0

Eζ
[
Kj(X, t1xμ + t2xν + ζ)

]
∂μψ(z)∂νψ(z)

and

(1 − Loc)Kj(B, X, U) :=
1

2|B|
∑

z∈B

(

∂2
t1t2

∣
∣
∣∣
ti=0

Eζ [Kj(X, t1ψ + t2ψ + ζ)]

−∂2
t1t2

∣
∣
∣∣
ti=0

Eζ [K(X, t1x · ∂ψ(z) + t2x · ∂ψ(z) + ζ)]

)

=
1

2|B|
∑

z∈B

(
F̃

(2)
X (U, 0; ψ − x · ∂ψ(z), ψ) + F̃

(2)
X (U, 0; ψ − x · ∂ψ(z), x · ∂ψ(z))

)
.

(6.27)

We show that ψ −x ·∂ψ(z) gives additional contractive factors as going to the
next scale:

Lemma 33. If ψ = PU+φ + ξ ∈ Φ̃j(Ẋ, U+), then

‖ψ − x · ∂ψ(z)‖
Φ̃j(Ẋ,U+)

≤ O(L−d
2−1)

(
‖φ‖Φj+1(U) + 1

)
. (6.28)

Proof. Since PU+x = x, the left side of (6.28) is equal to

h−1
j sup

x∈Ẋ,e

Lj
∣
∣
∣
∣∂ePU+φ(x) + ∂eξ(x) − ∂ePU+φ(z) − ∂eξ(z)

∣
∣
∣
∣. (6.29)
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We apply Newton–Leibniz formula along a curve connecting x, z, and then
apply (3.17) with R = O(Lj+1) using the distance O(Lj+1) between Ẋ and
∂U̇ ,

h−1
j sup

x∈Ẋ,e
Lj

∣
∣∂ePU+φ(x) − ∂ePU+φ(z)

∣
∣

≤ h−1
j sup

x∈U̇
Lj diam (Ẋ)O(L−j−1)

∣
∣∂PU+φ(x)

∣
∣

≤ O(L−d+2
2 ) ‖φ‖Φj+1(U) ,

where diam(Ẋ) = O(Lj) since X is small. The second term in (6.29) can be
bounded by

h−1
j sup

x∈Ẋ,e

Lj |∂eξ(x) − ∂eξ(z)| ≤ O(L−d
2 (N−j)) ≤ O(L−d+2

2 )

as long as j + 1 < N , and by d ≥ 2 and (2.7). Combining the above bounds
completes the proof. �

Lemma 34. If L be sufficiently large and define

L′
3Kj(U) =

∑

B̄=U

∑

X∈Sj ,X⊇B

(1 − Loc)Kj(B,X,U) (6.30)

then L′
3 is contractive with arbitrarily small norm; namely,

∥
∥L′

3

∥
∥ → 0 as

L → ∞.

Proof. In view of the definition (6.27) of (1 − Loc)Kj , we let

Hz,X(U, φ, ξ) = F̃
(2)
X (U, 0;ψ − x · ∂ψ(z), ψ) (6.31)

then with f̃ := PU+f + λξ,

H
(1)
z,X(U, φ, ξ; (f, λξ))

= F̃
(2)
X (U, 0;ψ − x · ∂ψ(z), f̃) + F̃

(2)
X (U, 0; f̃ − x · ∂f̃(z), ψ) ;

H
(2)
z,X(U, φ, ξ; (f1, λ1ξ), (f2, λ2ξ))

= F̃
(2)
X (U, 0; f̃1 − x · ∂f̃1(z), f̃2) + F̃

(2)
X (U, 0; f̃2 − x · ∂f̃2(z), f̃1)

(6.32)

and H
(3)
z,X = H

(4)
z,X = 0. In the calculations here, though z is fixed, PU+φ(z)

should also participate in the differentiations: PU+φ(z) → PU+(φ + tf)(z).
We now bound the all the test functions appeared in (6.32). The bound

for ψ − x · ∂ψ(z) is given in Lemma 33. Similarly, one can bound f̃ − x · ∂f̃(z)

by O(L−d
2−1)

∥
∥(f, λξ)

∥
∥
Φj+1(U). Since ‖−‖Φj(U) ≤ L−d/2 ‖−‖Φj+1(U) we also

have estimates

‖ψ‖
Φj(Ẋ,U+)

≤ O(L−d/2)
(‖φ‖Φj+1(U) + 1

)
;

‖f̃‖
Φj(Ẋ,U+)

≤ O(L−d/2)‖(f, λξ)‖Φj+1(U). (6.33)
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Therefore, we obtain the bound
∣
∣
∣
∣H

(n)
z,X(U, φ, ξ; (f, λξ)×n)

∣
∣
∣
∣ ≤ O(L−d−1)

∥
∥F̃

(2)
X (U, 0)

∥
∥
T 2
0 (Φ̃j(Ẋ,U+))

·
(
‖φ‖Φj+1(U) + 1

)2−n
n∏

i=1

∥
∥(fi, λiξ)

∥
∥
Φj+1(U). (6.34)

By the same arguments as (6.13) and Lemma 22(5), one can bound
(1 + ‖φ‖Φj+1(U))

2 by G(Ü , U+). Therefore,

∥
∥Hz,X(U, φ, ξ)

∥
∥
Tφ(Φj+1(U)) ≤O(L−d−1)

∥
∥F̃

(2)
X (U, 0)

∥
∥
T 2

φ(Φ̃j(Ẋ,U+))
G(Ü , U+).

(6.35)
By Lemma 24 followed by Lemma 22(1), together with X ∈ Sj

∥
∥F̃

(2)
X (U, 0)

∥
∥
T 2

φ(Φ̃j(Ẋ,U+))

≤ E

[∥
∥Kj(X,φ, ξ = 0)

∥
∥
Tφ(Φj(Ẋ,U+))

∣
∣φ(U+)c = 0

]

≤ E

[∥
∥Kj(X)

∥
∥
j
G(Ẍ,X+)

∣
∣φ(U+)c = 0

]
≤ ∥
∥Kj(X)

∥
∥
j
c|X|j

≤ O(1)A−1
∥
∥Kj

∥
∥
j
. (6.36)

Combining the above inequalities, we obtain
∥
∥Hz,X(U)

∥
∥
j+1

≤ O(L−d−1)A−1 ‖K‖j .

It can be shown analogously that the other term on the right side of (6.27)
satisfies the same bound. Finally, the sum over B and X in (6.30) gives a factor
O(Ld), so one has

∥
∥L′

3K(U)
∥
∥
j+1 ≤ O(L−1)A−1 ‖K‖j . (6.37)

Since L′
3Kj(U) = 0 unless U is a block,

∥
∥L′

3Kj

∥
∥
j+1

≤ O(L−1) ‖K‖j . �

Now we turn to LocKj . We observe that the coefficient of ∂μψ(z)∂νψ(z)
is

αμν(B) :=
1

8|B|
∑

X∈Sj ,X⊇B

∂2
t1t2

∣
∣
∣
∣
ti=0

Eζ
[
Kj(X, t1xμ + t2xν + ζ)

]
. (6.38)

Note that each summand above is just derivative of EζKj(X) at zero field with
test functions xμ and xν . Since ‖xμ‖Φj(X) ≤ h−1Ldj/2 (for this one needs
the fact that the Poisson kernel in the definition of Φj norm acting on xμ still
gives xμ), we have

|αμν(B)| ≤ O(1)h−2‖Kj‖jA
−1. (6.39)

Note that for a fixed D ∈ Bj+1, and for all B̄ = D, αμν(B) depends on
the position of B in D because ζ is not translation invariant. This problem was
not present in the method [18]. We cure this problem by the following lemma.
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Lemma 35. Let D ∈ Bj+1, and let Bct ∈ Bj be the j-block at the center of D.
Then, with definition (6.38),

∣
∣αμν(B) − αμν(Bct)

∣
∣ ≤ O(L−d)h−4‖Kj‖jA

−1 (6.40)

for all B ∈ Bj such that B̄ = D.

Proof. Let T be a translation so that TB = Bct, and ζD+ , ζTD+ be Gaussian
fields on D+, TD+ with Dirichlet Green’s functions CD+ , CTD+ as covari-
ances, respectively. Then, αμν(B) can be rewritten as the right side of (6.38)
with B replaced by Bct and ζ = ζD+ replaced by ζ = ζTD+ , so that
∣
∣αμν(B) − αμν(Bct)

∣
∣

≤ 1
8|Bct|

∑

X∈Sj ,X⊇Bct

∣
∣
∣
∣∂

2
t1t2

∣
∣
ti=0

(
EζTD+

[
Kj(X, t1xμ + t2xν + ζTD+)

]

−EζD+

[
Kj(X, t1xμ + t2xν + ζD+)

] )
∣
∣
∣
∣. (6.41)

To estimate the difference of the two expectations, define

C(t) := tCD+ + (1 − t)CTD+

and recall that Kj depends on ζ via ∇ζ, let

K(∇ζ) := Kj(X, t1xμ + t2xν + ζ).

Then, one has the formula

E∇2C(1)K − E∇2C(0)K =
∫ 1

0

d

dt
E∇2C(t)Kdt =

1
2

∫ 1

0
E∇2C(t)

[
Δ∇2Ċ(t)

K
]
dt,

where for any covariance C (in our case C = ∇2Ċ(t)) the Laplacian is defined
as:

ΔC :=
∑

x,y

C(x, y)
δ

δφ(x)
δ

δφ(y)
.

Now we aim to show a pointwise bound for ∇2Ċ(t) = ∇2CD+−∇2CTD+ .
One has

∇2C
Zd(x, y) − ∇2CD+(x, y) = ∇2PD+C

Zd(x, y)

Observe that x, y have distance of O(Lj+1) from ∂D+, because K only depends
on the field on ∂X+. We can proceed as the arguments following (3.24) in
proof of Lemma 15, or the arguments following (4.19) in proof of Lemma
24, to show that ∇2PD+C

Zd(x, y) is bounded by O(L−d(j+1)). Analogously,
∇2C

Zd − ∇2CTD+ satisfies the same bound. Therefore,

|∇2Ċ(t)| ≤ O(L−d(j+1)). (6.42)

Our situation is that we would like to bound the fourth derivative of
Kj by ‖Kj‖j . This is the reason we incorporated the fourth derivative in the
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definition of ‖Kj‖j , see (4.3). Note that ∂/∂φ(x0) acting on K is equivalent
with

∂s|s=0Kj(X, t1xμ + t2xν + ζ + sδx0),

where δx0 is the Kronecker function at x0. In fact, we have ‖δx0‖Φj(X) ≤
h−1L−dj/2 because the ∂ePX+ in the definition of Φj(X) norm acting on
δx0 gives a factor O(L−dj). Proceeding as in (6.39), we have ‖xμ‖Φj(X) ≤
h−1Ldj/2, and |Bct|−1 = O(L−dj), and the sum

∑
x,y gives a factor O(L2dj).

Combining these with (6.42), we then obtain the desired bound. �

Let D ∈ Bj+1. Define αμν := αμν(Bct) where Bct ∈ Bj is at the center
of D. Clearly, it is well defined (independent of D). By reflection and rotation
symmetries, there exists an α so that αμν = 1

2α(δμν + δμ,−ν).

Lemma 36. Let ψ = PU+φ + ξ and L be sufficiently large. Then,

L′′
3 :=

1
4

∑

B̄=D

( ∑

x∈B,e∈E
α (∂eψ(x))2 −

∑

x∈B,e∈E
αμν (∂eψ(x))2

)
(6.43)

is contractive with norm going to zero as L → ∞.

Proof. This is essentially Lemma 10 of [24], so the proof is omitted. �

Proposition 37. We can choose Ej+1 and σj+1 so that if L be sufficiently
large then L3 in Proposition 28 is contractive, with arbitrarily small norm as
L → ∞.

Proof. As the first step with D = B̄ ∈ Pj+1(Λ), φ = PD+φ + ζ we compute

E

[ ∑

x∈B,e∈E
(∂ePB+φ+∂eξ(x))2

∣
∣(D+)c

]
=

∑

x∈B,e∈E
(∂ePD+φ(x)+∂eξ(x))2+δEj ,

(6.44)
where δEj =

∑
x∈B,e∈E Eζ

[
(∂ePB+ζ)2

]
= O(1) by Proposition 16.

Let ψ = PD+φ + ξ. By Lemmas 34, 35 and 36, it remains to show the
contractivity of

L̃3 =
∑

B̄=U

⎡

⎣Ej+1(B)+
σj+1

4

∑

x∈B,e∈E
(∂eψ(x))2− σj

4

⎛

⎝
∑

x∈B,e∈E
(∂eψ(x))2 + δEj

⎞

⎠

+Eζ
[
Kj(X, ζ)

]
+

α

4

∑

x∈B,e∈E
(∂eψ(x))2

⎤

⎦ , (6.45)

where α is given before Lemma 36. Choose

σj+1 = σj − α

Ej+1 = σjδEj − Eζ
[
Kj(X, ζ)

]
(6.46)

then we actually have L̃3 = 0. �



Vol. 17 (2016) An RG Method by Harmonic Extensions 903

By the above choice of Ej+1, we can easily see that it is the same number
for Z′

N (ξ) and Z′
N (0). Therefore, eEj is the same for Z′

N (ξ) and Z′
N (0), for

all j.

7. Proof of Scaling Limit of the Generating Function

Proposition 38. Let L be sufficiently large; A sufficiently large depending on
L; κ sufficiently small depending on L,A; h sufficiently large depending on
L,A, κ; and r sufficiently small depending on L,A, κ, h. Then, for |z| < r,
there exists a constant σ depending on z so that the dynamic system

σj+1 = σj + α(Kj)

Kj+1 = LKj + f(σj ,Kj)
(7.1)

satisfies
∣
∣σj

∣
∣ ≤ r2−j

∥
∥Kj

∥
∥
j

≤ r2−j (7.2)

Proof. By contractivity of L, we apply Theorem 2.16 in [18] (i.e. the stable
manifold theorem) to obtain a smooth function σ = h(K0) so that (7.2) hold.
Since K0 depends on z and σ, we solve σ from equation σ − h(K0(z, σ)) = 0,
using Lemma 47. Noting that this equation holds with (σ, z) = 0, and that
K0(z = 0, σ) = 0, the derivative of left-hand side w.r.t. σ is 1. So by implicit
function theorem, there exists a σ depending on z so that σ = h(K0(z, σ)).
Therefore, the proposition is proved. �

With the generating function ZN (f) defined in (2.1), we have

Theorem 39. For any p > d, there exist constants M > 0 and z0 > 0 so that
for all ‖f̃‖Lp ≤ M , and all |z| ≤ z0 there exists a constant ε depending on z
so that

lim
N→∞

ZN (f) = exp
(

−1
2

∫

Λ̃
f̃(x)(−εΔ̄)−1f̃(x)ddx

)
,

where Δ̄ is the Laplacian in continuum.

Proof. By (2.5),

ZN (f) = lim
m→0

e
1
2

∑
x∈Λ f(x)(−εΔm)−1f(x)Z′

N (ξ)
/
Z′

N (0). (7.3)

In fact, since
∫
Λ̃

f̃ = 0

e
1
2

∑
x∈Λ f(x)(εΔm)−1f(x) → e−1

2

∫
Λ̃ f̃(x)(−εΔ̄)−1f̃(x)ddx (7.4)

as m → 0 followed by N → ∞.
At scale N − 1 (we do not want to continue all the way to the last step

since it would be not clear how to define ĨN−1 and IN ), by Proposition 38
and Lemma 24
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∣
∣Z′

N (ξ) − eEN−1
∣
∣ = eEN−1

∣
∣E
[
IN−1(Λ\X̂)KN−1(X)

] − 1
∣
∣

≤ eEN−1

×
[∑

X �=∅(1 + 2−N+1)|Λ\X̂|N−1 · 2−N+1
EG(Ẍ,X+)

∣
∣ +

∣
∣EIΛ

N−1 − 1
∣
∣
]

≤ eEN−1

[
2Ld

(1 + 2−N+1)L
d · 2−N+1cL

d
+ 2−N+1

]
. (7.5)

where X ∈ PN−1. Since the constant eEN−1 is identical for Z′
N (ξ) and Z′

N (0),
and Z′

N (0) satisfies the same bound above, one has Z′
N (ξ)

/
Z′

N (0) → 1. There-
fore, the theorem is proved. �
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Appendix A. Decay of the Derivative of Green’s Function

The decay rates of (derivatives of) Green’s functions are essential in our
method. In this section, we aim to show Corollary 43 on the torus. For m > 0,
let Gm be the Green’s function of −Δm = −Δ + m2 on Z

d, and Ḡm be the
Green’s function of −Δ̄m = −Δ̄ + m2 on R

d where Δ̄ is the Laplacian in the
continuum. We start with the following approximation result.

Lemma 40. Let d ≥ 2. For all e ∈ E, as |x| → ∞, one has

∂eGm(x) = ∂eḠm̄(x) + O(|x|−(d+1)) (A.1)

where ∂eḠm̄(x) = Ḡm̄(x + e) − Ḡm̄(x) is the discrete derivative, and m̄2 =
log(m2 + 1), and the big-O term does not depend on m.

Proof. The proof is essentially analogous to the proofs of Corollary 4.3.3 and
Corollary 4.4.5 in Lawler’s book [38], so we only sketch the proof. Writing

∂eGm(x) =
∞∑

n=0

λn∂ep̄n(x) +
∞∑

n=0

λn(∂epn(x) − ∂ep̄n(x)) (A.2)

where p (resp. p̄) are discrete (resp. continuum) heat kernels, and λ−1−1 = m2.
Since m̄2 = log(λ−1), we have

∂eḠm̄(x) =
∫ ∞

0
λt∂ep̄t(x)dt.

The difference between this integral and the discrete sum is bounded by
O(|x|−(d+3)) using standard error estimates of Riemann sums as in the proof
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of [38, Lemma 4.3.2]. The second term on the right-hand side of (A.2) can
be bounded by O(|x|−(d+1)) in the same way as in the proof of [38, The-
orem 4.3.1], except that we apply the gradient estimates of heat kernels as
mentioned in the Remark in the end of that subsection of the book. �
Lemma 41. Let d ≥ 2. For every e ∈ E, every x ∈ Λ where Λ is the torus of
length size LN defined in Sect. 2.2, and every sufficiently small m > 0,

∣
∣
∣
∣

∑

y∈Zd\{0}
∂eGm(x + LNy)

∣
∣
∣
∣ ≤ cdL−(d−1)N (A.3)

where cd only depends on d.

Remark 42. Note that the left-hand side is not absolutely summable uniformly
in m > 0. The bound (A.3) appeared in [22, Eq. (3.5)], but we give our proof
here. In fact by following our proof, one can also show that if m = 0 and we
define the above sum as a symmetric sum, then the bound still holds; however,
we do not need this since we always have a positive mass regularization.

Proof. Denote by Dμ the smooth derivative. Without loss of generality assume
that e = e1. The term O(|x|−(d+1)) in (A.1) is summable, and noting that
the sum avoids the origin y = 0 one has

∣
∣
∣
∣

∑

y∈Zd\{0}
O(|x + LNy|−(d+1))

∣
∣
∣
∣ = O(L−(d+1)N ).

Up to this term, ∂e1Gm(x + LNy) is equal to (with m̄2 = log(m2 + 1)),

Ḡm̄(x + e1 + yLN ) − Ḡm̄(x + yLN )

=
(
Ḡm̄(yLN )+(x + e1) · DḠm̄(yLN )+

1
2
(x + e1)2 · D2Ḡm̄(yLN ) + Err

)

−
(
Ḡm̄(yLN ) + x · DḠm̄(yLN ) +

1
2
x2 · D2Ḡm̄(yLN ) + Err

)

= D1Ḡm̄(yLN ) + (x · DD1Ḡm̄(yLN ) +
1
2
D2

1Ḡm̄(yLN )) + Err (A.4)

where we have performed Taylor expansions around yLN and the error term

Err = O

⎛

⎜
⎝L2N sup

|z−yLN |<LN

2

|D3Ḡm̄(z)|

⎞

⎟
⎠

which comes from Taylor remainder theorem. The reason we do Taylor ex-
pansion up to this order is that D3Ḡm̄ is absolutely summable uniformly in
m > 0, and the sum over y �= 0 of Err gives O(L−(d−1)N ).

Regarding the other terms in (A.4), for m̄ > 0 we note that D1Ḡm̄ and
xiDiD1Ḡm̄ with i �= 1 are odd functions in the first coordinate, so the sum
over y �= 0 yields zero, and we are left with (x1 + 1

2 )D2
1Ḡm̄. Letting p(z) =

(z2, . . . , zd, z1) for z = (z1, . . . , zd), the sum of D2
1Ḡm̄ at z,p(z), . . . ,pd−1(z)

is precisely the Laplacian of Ḡm̄, which is equal to m̄2Ḡm̄(z). The sum over
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y �= 0 of m̄2Ḡm̄(yLN ) can be bounded by m̄2O(L−(d−2)N (m̄LN )−1) if d ≥ 3
and by m̄2O(log(LN )(m̄LN )−1) if d = 2. Choosing m > 0 (and, therefore, m̄)
sufficiently small, we have obtain the desired bound. �

Corollary 43. Let d ≥ 2 and Cm be the Green’s function of −Δ + m2 on the
torus Λ. For all e ∈ E, x ∈ Λ and m > 0,

|∂eCm(x)| ≤ cd‖x‖−(d−1)
Λ (A.5)

where the constant cd only depends on d, and ‖x‖Λ = d(0, x) with d(−,−)
being the distance function on Λ defined in Sect. 2.1.

Note that the distant function d(−,−) is not to be confused with the
dimension d.

Proof. The statement is an immediate consequence of

∂eCm(x) =
∑

y∈Zd

∂eGm(x + LNy)

and Lemmas 40 and 41. �

Appendix B. Estimates

In Sect. 4, we defined norms for functions of the fields. In the Appendix, we
give estimates in terms of these norms of some functions of interest.

Lemma 44. There exists a constant c > 0 so that if σ/κ < c and h2σ < c, then
for every B ∈ Bj , j < N − 1, one has

‖e−σ
2

∑
x∈B,e(∂ePB+φ(x)+∂eξ(x))2‖Tφ(Φj(B)) ≤ 2e

κ
4

∑
B(∂PB+φ)2 , (B.1)

‖e−σ
2

∑
x∈B,e(∂eP(B̄)+φ(x)+∂eξ(x))2‖

Tφ(Φj( ˙̄B,B̄ +))
≤ 2e

κ
4

∑
B(∂P(B̄)+φ)2

,

(B.2)

‖e−σ
2

∑
x∈B,e(∂ePB+φ(x)+∂eξ(x))2−1‖Tφ(Φj(B)) ≤4c−1h2|σ|eκ

4

∑
B(∂PB+φ)2 ,

(B.3)

‖e−σ
2

∑
x∈B,e(∂eP(B̄)+φ(x)+∂eξ(x))2 − 1‖

Tφ(Φj( ˙̄B,B̄ +))

≤ 4c−1h2e
κ
4

∑
B(∂P(B̄)+φ)2

. (B.4)

Remark 45. Note that the prefactors on the exponentials on the right-hand
sides are always κ

4 , whereas the prefactor in our regulator defined in Sect. 4
is κ

2 .

Proof. To prove (B.1), let

V = −1
2

∑

x∈B,e

(∂ePB+φ(x) + ∂eξ(x))2
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and let ‖(f, λξ)×n‖Φj(B) ≤ 1. By |∂ξ|2 ≤ h2L−dN , it is straightforward to
check that if σ/κ is sufficiently small, for n = 0, 1, 2,

∣
∣
∣(σV )(n)(φ, ξ; (f, λξ)×n)

∣
∣
∣ ≤ κ

2n+4

∑

x∈B,e

(∂ePB+φ(x))2 + 2σh2 (B.5)

and for n ≥ 3, V (n) = 0. Therefore, for n = 0, . . . , 4,
1
n!

∣
∣(eσV )(n)(φ, ξ; (f, λξ)×n)

∣
∣ ≤ e|σV |e|σV (1)|+|σV (2)|

≤ e
κ
4

∑
x∈B,e(∂ePB+φ(x))2+8σh2

≤ 2 e
κ
4

∑
x∈B,e(∂ePB+φ(x))2

if h2σ is sufficiently small, where we bounded the polynomials in (σV )(n) by
e|σV (1)|+|σV (2)|. So (B.1) is proved. (B.2) is proved in the same way.

To prove (B.3), note that similarly as above one can show that eσV is
analytic in σ, so

‖eσV − 1‖Tφ(Φj(B)) =
∥
∥
∥

1
2πi

∫

|z|=ch−2

σezV

z(z − σ)
dz
∥
∥
∥
Tφ(Φj(B))

≤ 4c−1h2|σ|eκ
4

∑
B(∂PB+φ)2

and (B.4) is proved in the same way. �

Another example is the estimate of the initial interaction. At step j = 0,
a block B is a single lattice point x. Define

W̃ ({x}, φ, u) =
1
2

∑

e∈E
cos(u ∂eφ(x)).

We also write W ({x}, φ) = W̃ ({x}, φ,
√

β(1 + σ)). Recall that ‖ − ‖0 is the
‖ − ‖j norm defined in 4.5 with j = 0.

Lemma 46. If κ ≥ h−1, then (1) W̃ ({x}, φ, u) satisfies
3∑

n=0

1
n!

sup
|∂f(x)|≤h

∂t1...tn

∣
∣
ti=0

∣
∣
∣∂m

u W ({x}, φ +
n∑

i=1

tifi)
∣
∣
∣

≤ Ch,ue
κ
2

∑
e∈E(∂eφ(x))2 (B.6)

for m = 0, 1, 2, . . ., where Ch,u = d(2h)mehu.
(2) Let ‖ − ‖00 be the ‖ − ‖0 norm with G = 1. For |z| sufficiently small,

‖ezW ({x})‖00 ≤ 2. (B.7)

Proof. (1) The case m = 0 holds even without e
κ
2

∑
e∈E(∂eφ(x))2 by straight-

forward computations and thus is omitted. For m > 0,

∂m
u W = ±1

2

∑

e∈E
sin
cos(u∂eφ(x)) (∂eφ(x))m .
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We then have the bound

4∑

n=0

1
n!

sup
|∂f(x)|≤h

∂t1...tn

∣
∣
ti=0

(
∂e(φ(x) +

n∑

i=1

tifi(x))
)m

≤ (2h)me
κ
2

∑
e∈E(∂eφ(x))2 .

The bound for ∂m
u W follows by the product rule of differentiations and the

case m = 0.
(2) For |z| sufficiently small,

‖ezW (B)‖00 ≤
∞∑

n=0

|z|n
n!

‖W (B)‖n
00 ≤ exp

(
4d|z|eh

)
≤ 2.

This is precisely the claimed bound. �

Lemma 47. Let K0 be the function defined in Proposition 2. Given r > 0, if
|z| and |σ| are sufficiently small, then ‖K0‖0 < r. Furthermore, K0 is smooth
in z and σ.

Proof. As in the proof of (B.7), one has

‖ezW ({x}) − 1‖00 ≤ exp
(
4d|z|eh

)
− 1 ≤ c|z|

for some constant c. Write V0({x}) = −1
2

∑
e(∂eφ(x) + ∂eξ(x))2. By

Lemma 44,

‖(ezW ({x}) − 1)eσV0({x})‖0 ≤ 2c|z|,
therefore,

‖K0‖0 = sup
X∈P0,c

‖K0(X)‖0 A|X|0 ≤ sup
X∈P0,c

(2c|z|A)|X|0 < r.

The derivative of
∏

x∈X (ezW ({x}) − 1) w.r.t. σ is equal to

∑

x∈X

zW ′({x})
1

2
√

1 + σ

∏

y∈X\{x}
(ezW ({y}) − 1),

therefore, its ‖ − ‖0 norm is bounded by c′A|z| for some constant c′. The
derivative of eσV0({x}) and higher derivatives can be bounded similarly. The
derivative of

∏
x∈X(ezW ({x}) − 1) w.r.t. z is equal to

∑

x∈X

W ({x})
∏

y∈X\{x}
(ezW ({y}) − 1)

which can be bounded in the same way. �
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