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Weakly Nonlinear Time-Adiabatic Theory

Christof Sparber

Abstract. We revisit the time-adiabatic theorem of quantum mechanics
and show that it can be extended to weakly nonlinear situations, that is
to nonlinear Schrödinger equations in which either the nonlinear coupling
constant or, equivalently, the solution is asymptotically small. To this end,
a notion of criticality is introduced at which the linear bound states stay
adiabatically stable, but nonlinear effects start to show up at leading order
in the form of a slowly varying nonlinear phase modulation. In addition,
we prove that in the same regime a class of nonlinear bound states also
stays adiabatically stable, at least in terms of spectral projections.

1. Introduction

The time-adiabatic theorem of quantum mechanics is concerned with systems
governed by a slowly varying time-dependent (self-adjoint) Hamiltonian oper-
ator H = H(ετ), where 0 < ε � 1 is a small adiabatic parameter, controlling
the timescales on which H varies. The associated Cauchy problem, governing
the time evolution of the quantum mechanical wave function Ψ = Ψ(τ, x), with
x ∈ R

d, reads
i∂τΨ = H(ετ)Ψ, Ψ|τ=τ0 = Ψin(x). (1.1)

In the following, it will be more convenient to rewrite the system using the
(slow) macroscopic time variable t = ετ . In this case, (1.1) becomes a singularly
perturbed problem of the form

iε∂tΨε = H(t)Ψε, Ψε
|t=t0

= Ψε
in(x), (1.2)

where Ψε(t, x) ≡ Ψ(t/ε, x). A typical example for the time-dependent Hamil-
tonian H(t), and the one we will be concerned with, is given by

H(t) := −1
2
Δ + V (t, x), (1.3)

where V (t, x) describes some time-dependent (real valued) potential.
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It is well known that in the case where V = V (x) is time independent,
the spectral theorem of self-adjoint operators allows for a precise description
of the time evolution associated to (1.2). In particular, it implies that if the
initial data Ψε

in is concentrated in a given spectral subspace of H, then it will
remain so for all times. However, as soon as H = H(t), the spectral subspaces
(in general) start to mix during the time evolution, and thus we do not have
any precise information on the solution Ψ(t, ·).

However, one might hope that for small 0 < ε � 1 there is a remedy to
the situation. To this end, let us assume that the spectral subspaces of H(t)
vary smoothly in time for t ∈ [0, T ], and that the initial wave function Ψε

in

is concentrated in one of these subspaces. Then, the classical time-adiabatic
theorem of quantum mechanics states that, for sufficiently small ε � 1, the
solution Ψε(t, ·) approximately (i.e., up to a certain error which vanishes as
ε → 0) remains within the same subspace, provided the latter stays isolated
from the rest of the spectrum of H(t) for all t ∈ [0, T ], see below. In this
situation, the spectral subspace is said to be adiabatically stable under the
time evolution. Note that in the unscaled variable τ this result corresponds
to an approximation on timescales of order τ ∼ O(1/ε). The first adiabatic
result for quantum systems appeared as early as 1928, cf. [5]. Since then, many
mathematical extensions and developments have taken place, see, e.g., [1,2,14–
17,25], and the references therein. For a general introduction to this subject,
we refer to [32].

A possible way of introducing the slow parameter ε is to think about
a quantum mechanical experiment in which the experimentalist is allowed to
slowly tune the external potential V = V (ετ, x). With this in mind, it is worth
noting that modern quantum mechanical experiments are often performed on
ultra-cold quantum gases in the state of their Bose–Einstein condensation [21].
Indeed, ultra-cold quantum gases offer a superb level of control, unprecedented
in several respects, which has triggered a vast amount of scientific activity,
both theoretical and experimental. It is well known that within a mean-field
approximation the (macroscopic) wave function of the condensate is accurately
described by a nonlinear Schrödinger (or, Gross–Pitaevskii) equation, cf. [21]
for a general discussion [9,19], and the references therein for a rigorous math-
ematical justification. It therefore seems a natural question to ask, whether
one can extend the results of time-adiabatic perturbation theory to the case of
nonlinear Schrödinger equations (NLS). This work is a first, modest attempt in
this direction, although one should mention that there exist some non-rigorous
works in the physics literature, cf. [36]. Moreover, one should distinguish our
time-adiabatic setting from the one in [24], which studies solitary wave so-
lutions to nonlinear Schrödinger equations in a space-adiabatic situation, i.e.,
with a potential of the form V = V (t, εx). In addition, we mention [7,8] both
of which include rigorous results for related nonlinear adiabatic situations.

To be more concrete, we shall study the Cauchy problem corresponding
to the following class of NLS:

iε∂tΨε = −1
2
ΔΨε + V (t, x)Ψε + λ|Ψε|2σΨε, Ψε

|t=t0
= Ψε

in(x), (1.4)
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where σ ∈ N, and where λ ∈ R denotes a nonlinear coupling constant, describ-
ing either focusing or defocusing behavior, cf. [27] for a broad discussion of
these terms. The cubic case σ = 1 corresponds to the classical Gross–Pitaevskii
equation. Clearly, an extension of the time-adiabatic theorem to such nonlin-
ear models is not straightforward, in particular due to the lack of a spectral
theory for general nonlinear operators. The basic idea in the present paper is
to work in an asymptotic regime for which the nonlinearity can be considered
as a small perturbation of the associated linear problem. A possible way to do
so is to restrict ourselves to asymptotically small solutions of the form

Ψε(t, x) = ε1/(2σ)ψε(t, x), (1.5)

where, as ε → 0, we formally regard ψε ∼ O(1), say in L2(Rd). Note that the
size of the original wave function is then Ψε ∼ O(ε1/(2σ)) and hence it becomes
asymptotically larger as σ ∈ N becomes larger. Rewriting (1.4) in terms of the
new unknown ψε yields

iε∂tψ
ε = −1

2
Δψε + V (t, x)ψε + λε|ψε|2σψε, ψε

|t=t0
= ψε

in(x), (1.6)

with an effective nonlinear coupling constant of size |λε| = |λ|ε � 1. The
Cauchy problem (1.6) can thus be considered weakly nonlinear.

As we shall see below, a nonlinear coupling constant of order O(ε) will be
critical for our analysis, since it corresponds to the threshold for which non-
linear effects are present at the leading order description of ψε. In particular,
if λε were even smaller, the problem would become essentially linearizable (as
we will show below, cf., Remark 2.2). The main result of this work can now
be stated as follows:

Theorem 1.1. Let σ ∈ N, λ ∈ R, I ⊆ R be an open time interval containing
t0 ∈ R, and V ∈ C1

b(I;S(Rd)). Assume that there exists a simple eigenvalue
E(t) ∈ spec(H(t)) which stays separated from the rest of the spectrum by some
δ > 0, i.e.,

inf
t∈I

dist
(
E(t), spec(H(t))\{E(t)}) = δ,

and choose an associated normalized eigenfunction χ ∈ C1
b(I;Hs(Rd)) for s �

0. Finally, let k > d
2 and assume that at t = t0, the initial data is concentrated

in the eigenspace corresponding to E(t0), such that

‖ψε
in − χ(t0, ·) − εγε‖Hk(Rd) � C0ε

k+1,

where γε ∈ Hk(Rd) is a corrector which is constructed according to (3.5) and
satisfies 〈χ(t0, ·), γε〉L2 = 0.

Then, for any compact time interval J ⊂ I containing t0, there exist
ε0(J) < 1, and a constant C > 0, such that for any 0 < ε � ε0(J) the unique
solution ψε ∈ C(J ;Hk(Rd)) to the nonlinear Schrödinger equation (1.6) exists,
and, in addition,

sup
t∈J

∥
∥
∥ψε(t, ·) − χ(t, ·)e−iϕε(t)

∥
∥
∥

L2(Rd)
� Cε,
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where the phase ϕε(t) ∈ R is given by

ϕε(t) =
1
ε

∫ t

t0

E(s)ds + λ

∫ t

t0

‖χ(s, ·)‖2σ+2
L2σ+2 ds − iβ(t),

with β(t) ∈ iR the Berry phase, defined in (2.8).

We see that the presence of the nonlinearity shows up in the form of a
slowly varying phase modulation within the leading order approximation of
ψε. An immediate consequence is the following corollary for the associated
spectral projectors (for which we use Dirac’s notation):

Corollary 1.2. Under the same assumptions as in Theorem 1.1, we obtain

sup
t∈J

∥
∥|ψε(t, ·)〉〈ψε(t, ·)| − |χ(t, ·)〉〈χ(t, ·)|∥∥

L2→L2 � Cε,

In other words, in terms of spectral projections, the linear time-adiabatic
theorem is still valid under weakly nonlinear perturbations of the form (1.6).

The proof of Theorem 1.1 relies on a multiple scales expansion which
yields an approximate solution to (1.6). This approximate solution is proven to
be well defined (under our assumptions) and, in a second step, used to infer the
existence of a true solution ψε which is asymptotically close to the approximate
one for times of order O(1). Unfortunately, to control the nonlinear effects
within our method of proof, we require that the initial data is sufficiently well
prepared (in the sense described above), even if one is only interested in the
leading order approximation. In the language of, e.g., [32], we require the initial
data to be concentrated in a super-adiabatic subspace. This is very similar to
the situation encountered in [8], where the semiclassical asymptotics for weakly
nonlinear Schrödinger equations with highly oscillatory periodic potentials is
studied. In fact, the basic strategy for the proof of Theorem 1.1 is similar to
the one used in [8].

Clearly, Theorem 1.1 can be reformulated in terms of Ψε, yielding a
time-adiabatic result for asymptotically small solutions of order O(

√
ε). In

particular, we have

sup
t∈J

∥
∥|Ψε(t, ·)〉〈Ψε(t, ·)| − ε|χ(t, ·)〉〈χ(t, ·)|∥∥

L2→L2 � Cε2, (1.7)

where Ψε =
√

εψε. In this case, a connection to the theory of nonlinear bound
states for NLS equations becomes apparent. To this end, consider the “sta-
tionary” Schrödinger equation associated to (1.4), i.e.,

− 1
2
ΔΦ + V (t, x)Φ + λ|Φ|2σΦ = E∗Φ, (1.8)

where E∗ ≡ E∗(t) ∈ R is a nonlinear energy-eigenvalue. Now, let t ∈ R be
fixed assume that the potential V (t, x) is such that H(t) has a discrete (linear)
eigenvalue/eigenfunction pair (E,χ). Then, classical bifurcation theory (cf.,
[18]) implies that for E∗ ≈ E a nonlinear bound state solution Φ exists, which
is approximately given by a small multiple of χ (see Sect. 5.2 for more details).
In the context of NLS, this has been rigorously proved in a number of papers, cf.
[20,23,33–35]. Combining this fact with the result in Theorem 1.1 will allow us
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to prove that in the regime of O(
√

ε)-solutions, these nonlinear bound states
are also adiabatically stable, at least in terms of spectral projections. More
precisely, we have the following result.

Corollary 1.3. In addition to the assumptions of Theorem 1.1, assume that for
a compact J ⊂ I there is an M0(J) > 0 such that for all M � M0, there exists
a family Φ ∈ C(J,H2(Rd)) of solutions to (1.8) with ‖Φ(t, ·)‖L2 = M , for all
t ∈ J . Let ε ∈ (0,min(ε0(J),M0(J))] and denote by Φε(t, x) a family of bound
states with norm ‖Φε(t, ·)‖L2 =

√
ε. Furthermore, let Ψε be the solution to

(1.4) with initial data Ψε
in =

√
εψε

in, where ψε is as in Theorem 1.1.
Then, there exists a constant K > 0 such that

sup
t∈J

∥
∥|Ψε(t, ·)〉〈Ψε(t, ·)| − |Φε(t, ·)〉〈Φε(t, ·)|∥∥

L2→L2 � Kεmin(2,σ+1/2).

Note that for σ = 1 (cubic nonlinearity) this estimate is not as good as
the one in (1.7). In addition, Corollary 1.3 does not provide any information
on the phase, an issue which will be discussed in more detail in Sect. 5.2.

We finally want to mention that in the recent PhD thesis [11] (see also the
upcoming paper [10]) a similar result has been proven (for d = 3, λ > 0 and
σ = 1). Namely, that there exists a family of nonlinear bound states t �→ Φ(t, ·)
with ‖Φ(t, ·)‖L2 = M � 1 sufficiently small, such that for ε � 1 the solution
Ψε of (1.4) satisfies

sup
t∈[0,1]

∥
∥|Ψε(t, ·)〉〈Ψε(t, ·)| − |Φ(t, ·)〉〈Φ(t, ·)|∥∥

L2→L2 � ε.

Indeed, the author of [11] proves a slightly stronger statement in terms of
the wave function, not only the spectral projections (their phase information,
however, is not as precise as the one we have in Theorem 1.1). Note that
Corollary 1.3 is consistent with the one from [11], if one specifies the latter to
solutions of size O(

√
ε) (but we require more assumptions on the initial data

due to the fact that we need to go through the proof of Theorem 1.1). The
main difference between the two results seems to be that in our case there is
only a single small parameter ε (induced by the dimensionless form of the NLS
itself) in which the size of the solution (or, equivalently, the strength of the
nonlinearity) is measured. In comparison to that, [11] considers both M and
ε to be small and independent, so that for a given M � 1 one can choose an
ε sufficiently small to derive a nonlinear time-adiabatic result.

The paper is now organized as follows: In Sect. 2, we shall show how
to obtain the leading order approximation by means of formal asymptotic
expansions. These expansions will then be made mathematically rigorous in
Sect. 3. The nonlinear stability of our approximation is proved in Sect. 4,
yielding the proof of Theorem 1.1. Possible extensions and variations of our
results, in particular, the proof of Corollary 1.3 are then discussed in Sect. 5.

2. Formal Construction of the Approximate Solution

In this section, we shall first recall the standard adiabatic expansion for linear
equations of Schrödinger type and show (in a second step) how to include the
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case of (sub-)critical nonlinearities. To this end, we consider (1.6) in the case
λ = 0 and seek a solution in the form

ψε(t, x) = e−iϕ(t)/εUε(t, x),

where ϕ(t) ∈ R is some sufficiently smooth phase function, and the complex-
valued amplitude Uε is assumed to be of the form

Uε(t, x) ∼
ε→0

∑

n�0

εnUn(t, x), (2.1)

in the sense of formal asymptotic expansions. Plugging this into (1.6) yields

H(t)Uε = ϕ̇(t)Uε + iε∂tUε,

where H(t) is given by (1.3). Next, we plug in (2.1) and equate powers in ε.
At leading order, i.e., by equating terms of order O(1), we find:

H(t)U0(t, x) = ϕ̇(t)U0(t, x). (2.2)

This can be seen as an eigenvalue problem for the operator H(t) with eigen-
value E(t) = ϕ̇(t) and we consequently conclude that

ϕ(t) =
∫ t

t0

E(s) ds, (2.3)

the so-called dynamic phase. Let I ⊆ R be an open time interval containing
t0. Assuming for the moment that E(t) is a simple eigenvalue for all t ∈ I,
with associated normalized eigenfunction χ(t, ·) ∈ L2(Rd), we infer U0(t, x) =
u0(t)χ(t, x), for some yet to be determined coefficient function u0(t) ∈ C.

Next, by equating terms of order O(ε), we find the following inhomoge-
neous equation

H(t)U1(t, x) = ϕ̇(t)U1(t, x) + i∂tU0(t, x). (2.4)

Using the information from the step before, this can be rewritten as

LE(t)U1(t, x) = i
(
u̇0(t)χ(t, x) + u0(t)∂tχ(t, x)

)
. (2.5)

where from now on, we shall denote

LE(t) = H(t) − E(t).

The kernel of LE(t) is given by span(χ(t, ·)) and we consequently decompose

U1(t, x) = u1(t)χ(t, x) + v1(t, x), (2.6)

where 〈v1(t, ·), χ(t, ·)〉L2 = 0, for all t ∈ I.
To guarantee that (2.5) has a solution, Fredholm’s alternative asserts

that the right hand side of (2.5) has to be orthogonal to χ(t, ·), for all t ∈ I.
Taking the L2(Rd) inner product of (2.5) with χ gives

du0

dt
+ u0〈∂tχ(t, ·), χ(t, ·)〉L2 = 0, (2.7)

and thus (up to a multiplicative constant which we shall choose equal to 1 for
simplicity), we find

u0(t) = e−β(t),
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where

β(t) =
∫ t

t0

〈∂tχ(s, ·), χ(s, ·)〉L2 ds, (2.8)

denotes the Berry phase term [2,3]. Note that β(t) ∈ iR, for all t ∈ I, as
one can easily see from differentiating the normalization condition 〈χ(t, ·),
χ(t, ·)〉L2 = 1. As a consequence, we also have that solutions to (2.7) satisfy

|u(t, x)| = |u(t0, x)|, ∀t ∈ I.

In summary, we find the well-known leading order approximation of linear
time-adiabatic theory. Namely, that for ε → 0 the solution ψε behaves like

ψε(t, x) ∼
ε→0

exp
(

− i

ε

∫ t

t0

E(s) ds − β(t)
)

χ(t, x).

Remark 2.1. Concerning the significance of the Berry phase, we first note that
the eigenvalue equation

H(t)χ(t, ·) = E(t)χ(t, ·),
does not uniquely determine the eigenfunction χ(t, ·), even if one imposes the
normalization condition ‖χ(t, ·)‖L2 = 1. One still has the freedom to change

χ(t, ·) → χ̃(t, ·) = χ(t, ·)eiS(t)

with some (smooth) phase S(t) ∈ R. Under such a gauge transformation, the
Berry phase changes by

β(t) → β̃(t) = β(t) + iS(t) − iS(t0).

This allows to choose an appropriate S such that β̃ ≡ 0, which is the reason
why the Berry phase has historically been ignored for quite some time. How-
ever, in the case of a periodic Hamiltonian, i.e., H(t0) = H(t0 + T ) for some
T > 0, one usually imposes (for physical reasons) the additional assumption
that χ(t0, ·) = χ(t0 +T, ·). In this case, the fact that χ̃ should be single valued
implies

S(t0) − S(t0 + T ) = 2πn, n ∈ Z.

This shows that β(t0 + T ) can only be changed by an integer multiple of 2πi
and thus cannot be gauged away in general, as has been noted in [2,3]. Note
that this problem remains, even in the case where H(t) is real (as it is true
in the present work) and thus H(t) commutes with the operator of complex
conjugation Θ. In this case, we infer that [P (t),Θ] = 0, and hence there ex-
ists a real-valued eigenfunction χ(t, ·) ∈ ran P (t) which consequently satisfies
〈∂tχ(t, ·), χ(t, ·)〉L2 ≡ 0. This eigenfunction, however, does not necessarily sat-
isfy the periodicity condition imposed before. In the present work, we do not
want to exclude the possibility of a periodic H(t) and thus refrain from gaug-
ing away the Berry phase. For a general discussion of the physical significance
of geometric phases (of which the Berry phase is one particular example), we
refer to [4,37].



920 C. Sparber Ann. Henri Poincaré

With this in hand, it is possible to determine v1 through (2.5). At least
formally, this yields

v1(t, x) = iL−1
E (t)

(
u̇0(t)χ(t, x) + u0(t)∂tχ(t, x)

)
= iL−1

E (t)
(
u0(t)∂tχ(t, x)

)
,

where we denote the partial inverse (or, partial resolvent) of LE(t) by

L−1
E (t) := (1 − P (t))(H(t) − E(t))−1(1 − P (t)), (2.9)

with P (t) = |χ(t, ·)〉〈χ(t, ·)| being the projection onto the eigenspace corre-
sponding to E(t) ∈ R. Note that this also shows that initially v1(t0, x) �= 0, in
general.

The remaining unknown u1 appearing in (2.6) can then be obtained by
equating terms of order O(ε2). Indeed, by looking at the solvability condition
for

LE(t)U2(t, x) = i∂tU1 ≡ i (u̇1(t)χ + u1(t)∂tχ(t, x)) + i∂tv1,

one finds that u1(t) solves the following differential equation

u̇1 + β(t)u1 + 〈∂tv1(t, ·), χ(t, ·)〉L2 = 0.

Choosing, for simplicity, u1(t0) = 0, we get

u1(t) = −e−β(t)

∫ t

t0

〈∂tv1(s, ·), χ(s, ·)〉L2 eβ(s) ds.

By repeating these steps, one easily finds that all amplitudes Un(t, x), n � 1,
appearing in (2.1), are of the form

Un(t, x) = un(t)χ(t, x) + vn(t, x), (2.10)

where every un(t) is determined through an ordinary differential equation ob-
tained from the solvability condition at order O(εn+1), together with the initial
data un(t0) = 0.

Next, we want to understand how to take into account a (sub-)critical
nonlinearity in our asymptotic expansion. To this end, we first note that (2.1)
yields

ε|Uε|2σUε ∼ ε|U0|2σU0 + ε2
(
(σ + 1)|U0|2σU1 + εσ|U0|2σ−2U2

0 U1

)
+ O(ε3).

Thus, the leading order eigenvalue problem (2.2) does not change. The nonlin-
earity enters only in the expressions of order O(ε) or higher. For the former,
we find the following analog of (2.4):

LE(t)U1(t, x) = i∂tU0(t, x) − λ|U0|2σU0. (2.11)

Here, we can use our knowledge from before to make the following ansatz
for U0:

U0(t, x) = χ(t, x)e−β(t)−iθ(t), (2.12)
where β(t) is defined in (2.8) and θ(t) ∈ R is some other phase yet to be
determined. By doing so, the solvability condition requiring that the right
hand side of (2.11) has to be orthogonal to ker LE(t) yields

dθ

dt
= λ〈|χ(t, ·)|2σχ(t, ·), χ(t, ·)〉L2 = λ

∫

Rd

|χ(t, x)|2σ+2 dx,
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where we have used the fact that β(t) ∈ iR. Assuming, for the moment, that
χ(t, ·) ∈ L2σ+2(Rd), we thus find

θ(t) = λ

∫ t

t0

‖χ(s, ·)‖2σ+2
L2σ+2 ds. (2.13)

In view of (2.12), we see that the nonlinearity contributes at leading order by
adding an additional nonlinear phase modulation, i.e.,

ψε(t, x) ∼
ε→0

exp
(

− i

ε

∫ t

t0

E(s) ds − iλ

∫ t

t0

‖χ(s, ·)‖2σ+2
L2σ+2 ds − β(t)

)
χ(t, x).

Note that even though the nonlinear phase modulation is slowly varying, one
should still think of it as a small (i.e., of order O(ε)) nonlinear modification of
the dynamical phase.

Remark 2.2. It is clear by now that the choice (1.5) is critical with respect to
our asymptotic expansion. Indeed, if instead of (1.5) we set

Ψε(t, x) = εα/(2σ)ψε(t, x),

then instead of (1.6) we would obtain

iε∂tψ
ε = −1

2
Δψε + V (t, x)ψε + λεα|ψε|2σψε (2.14)

Performing the same asymptotic expansion as before, we see that if α � 2, then
no nonlinear effects are present in the leading order asymptotics. The prob-
lem thus becomes essentially linearizable, and can be considered sub-critical
with respect to our asymptotic analysis. A somewhat intermediate regime is
obtained in the case where α is no longer a natural number and such that
1 < α < 2. This situation will be discussed in more detail in Sect. 5.1.3. Fi-
nally, if 0 � α < 1, the problem can be considered super-critical with respect
to our asymptotic expansion. The case α = 0 is probably the most relevant
from the physics point of view, but clearly also mathematically much more
challenging and thus beyond the scope of the present work. One can expect
this problem to be intimately related to the modulation stability of nonlinear
ground states studied in [35] (see also [28]).

3. A Mathematical Framework for Asymptotic Expansions

In this section, we will prove that the solution obtained through the formal
multiple scales approximation above is indeed well defined and furnishes an
approximate solution to (1.6). To this end, we shall impose the following basic
assumptions on the time-dependent potential:

Assumption 1. The potential V (t, x) satisfies V ∈ C1
b(I;S(Rd)), where S de-

notes the space of smooth and rapidly decaying functions.

Remark 3.1. This assumption is mainly imposed for the sake of a simple and
clean presentation but certainly far from optimal concerning the regularity of
V . Indeed, all of our results can be reformulated for potentials V (t, ·) ∈ Ck

b (Rd)
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and vanishing at infinity. However, it turns out that at different stages of our
proofs we require different (and relatively strong) bounds on k, which result
in a somewhat tedious regularity count that we want to avoid.

Nest, we fix t ∈ I. Then, it is well known (see, e.g., [31, Chapter 10.1])
that for V (t, ·) bounded, i.e., k = 0, and decaying at infinity, the Hamiltonian
H(t) is a self-adjoint operator with dom(H(t)) = H2(Rd) ⊂ L2(Rd). Moreover,
for any fixed t ∈ I, the spectrum of H(t) is of the standard form, i.e.,

spec(H(t)) = [0,∞) ∪ {Ej(t) | − Ej(t) > 0, j = 0, 1, . . . }.

see, e.g., [13]. Of course as these eigenvalues vary in time, they might cross
each other, or disappear into the continuous spectrum. Our main assumption
is that the eigenvalue E(t) we are interested in stays separated from the rest
of the spectrum by a spectral gap.

Assumption 2. There exists a simple eigenvalue E(t) ∈ spec(H(t)) and a con-
stant δ > 0, satisfying

inf
t∈I

dist(E(t), spec
(
H(t)\E(t))

)
= δ. (3.1)

Note that this implies E(t) � −δ, for all t ∈ I. Denoting by χ(t, ·) ∈
L2(Rd) a normalized eigenfunction corresponding to such a well-separated
eigenvalue E(t), we have the following regularity result.

Lemma 3.2. Let Assumptions 1 and 2 hold, then we can choose χ : I →
Hk(Rd), such that χ ∈ C1

b(I,Hk(Rd)) for any k � 0, and such that ‖χ(t, ·)‖L2

= 1, for all t ∈ I.

Proof. The proof follows from standard arguments. Indeed, we first notice that,
for any fixed t ∈ R, χ(t, ·) satisfies the Schrödinger eigenvalue problem

(
−1

2
Δ + V (t, x)

)
χ(t, x) = E(t)χ(t, x),

which, in view of Assumption 1 and [13, Proposition 1.2], implies the asserted
regularity in Hk(Rd) for any k � 0. Thus, it only remains to prove the differen-
tiability property in time. This follows from the fact that as long as E(t) stays
separated from the rest of the spectrum, the associated orthogonal projector
P (t) can be expressed via Riesz’ formula as

P (t) =
i

2π

∮

Γ(t)

(H(t) − z)−1 dz,

where Γ(t) ⊂ C is a continuous (positively oriented) curve encircling E(t) once,
such that

inf
t∈I

dist(E(t), spec
(
H(t))

)
= δ/2,

i.e., no other points within spec(H(t)) are enclosed by Γ(t). Using this, we see
that

d
dt

P (t) =
i

2π

∮

Γ(t)

d
dt

(H(t) − z)−1 dz,
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whenever (H(t) − z)−1 ∈ C1
b(I;L(L2(Rd))). The latter is proved, for example,

in [32, Lemma 2.4]. Hence, t �→ P (t) is in C1
b(I).

To obtain a corresponding eigenfunction χ ∈ C1
b(I;Hk(Rd)), we can fol-

low the classical idea of Kato [15] (see also [16,17]), which starts from the
definition of the following operators

K(t) := i[P (t), Ṗ (t)],

and A(t) given by
d
dt

A(t) = iK(t)A(t), A(t0) = I.

Then, it is easily seen that K(t) is self-adjoint and thus A∗(t) = A−1(t).
In addition, one checks (after some calculations invoking the properties of
projections)

d
dt

(A∗(t)P (t)A(t)) = 0,

so that the intertwining property holds:

P (t) = A(t)P (t0)A∗(t), ∀t ∈ I. (3.2)

We now choose χ(t0) normalized such that P (t0)χ(t0, ·) = χ(t0, ·) and define
χ(t, ·) = A(t)χ(t0, ·). In view of (3.2), this implies that P (t)χ(t, ·) = χ(t, ·) for
all t ∈ I. In addition, ‖χ(t, ·)‖L2 = 1 and since A ∈ C1

b(I;L(L2(Rd))) we also
get χ(t, ·) ∈ C1

b(I;Hk(Rd)). �

By Sobolev imbedding, we also have Hk(Rd) ↪→ L∞(Rd), provided k > d
2 .

In particular, we have χ ∈ Lq(Rd) for any q ∈ [2,∞] and thus the expression for
the nonlinear phase modulation θ(t) given by (2.13) is well defined. Moreover,
for k > d

2 , the Sobolev space Hk(Rd) is in fact an algebra, i.e., if f, g ∈ Hk(Rd)
then fg ∈ Hk(Rd). This can be used to prove the following regularity result:

Lemma 3.3. Let σ ∈ N, λ ∈ R, and Assumptions 1 and 2 hold. Then, the
expressions appearing in the asymptotic expansion (2.1) satisfy Un ∈ C1

b(I;Hk

(Rd)) for all n ∈ N and k � 0.

Proof. Each Un is of the form given in (2.10), i.e., Un(t, x) = un(t)χ(t, x) +
vn(t, x), with v0 ≡ 0. In view of the asymptotic expansion above, we know
that each un(t) solves an ordinary differential equation of the form

u̇n + β(t)un + 〈∂tvn(t, ·), χ(t, ·)〉L2

= iλ

〈
dn

dsn
F

(

U0 +
n∑

	=1

s	U	

)∣
∣
∣
s=0

, χ(t, ·)
〉

L2

,

where we denote the nonlinearity by F (z) = |z|2σz, which for σ ∈ N is smooth.
Note that due to the orthogonality of χ with every v	, the right hand side in
fact only involves u	’s. Moreover, we see that for n � 1, these differential
equations are indeed linear. Together with the fact that d

dt |u0(t, x)|2 = 0 we
infer that there is no restriction on the existence time of un(t). In view with
Lemma 3.2, we thus have unχ ∈ C1

b(I;Hk(Rd)) for all k � 0.
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On the other hand, we know that all vn, for n � 1, are determined by
inverting an elliptic equation for any fixed t ∈ I, i.e.,

vn(t, x) = L−1
E (t)

(

i∂tUn−1(t, x) + λ
dn−1

dsn−1
F

(

U0 +
n−1∑

	=1

s	U	

)∣
∣
∣
s=0

)

. (3.3)

The fact that Hk(Rd) for k > d
2 forms an algebra implies that the right hand

side, which is a sum of products of U	’s, is in Hk(Rd) for all k � 0 (see also
the proof of Proposition 3.4 below). Since L−1

E (t) : L2(Rd) → dom(H(t)) =
H2(Rd), in view of (2.9), the assertion follows by induction over n. �

With this result in hand, we set

ψε
N (t, x) := e−iϕ(t)/ε

N∑

n=0

εnUn(t, x), (3.4)

where ϕ(t) is the dynamic phase given by (2.3) and N ∈ N. Note that at t = t0,
the Un can in general not be chosen arbitrarily, since parts of it need to be
determined recursively as given in (3.3). In particular, we have

ψε
N (t0, x) = χ(t0, x) + εγε(x)

where, due to the regularity of vn, the corrector γε ∈ Hk(Rd) of Theorem 1.1
is of the form

γε(x) =
N∑

n=1

εn−1vn(t0, x), (3.5)

with vn(t0, x) as above. This definition of ψε
N then yields an approximate so-

lution of the nonlinear Schrödinger equation (1.6) in the following sense:

Proposition 3.4. Let σ ∈ N, λ ∈ R, and Assumptions 1 and 2 hold. Then, ψε
N

defined by (3.4) satisfies ψN ∈ C1
b(I;Hk(Rd)) for all k � 0 and

iε∂tψ
ε
N + H(t)ψε

N + λε|ψε
N |2σψε

N = rε
N (t, x),

where the remainder is bounded by

sup
t∈I

‖rε
N (t, ·)‖Hk(Rd)) � CεN+1.

Proof. By plugging ψε
N into the nonlinear Schrödinger equations, the asymp-

totic expansion above shows that

rε
N (t, x) = εN+1e−iϕ(t) (i∂tUN (t, x) + λr̃ε

N (t, x)) ,

where

r̃ε
N =

(2σ+1)N∑

j=N

εj−N
∑

	1+···+	σ+m1+···+mσ+r=j

U	1 . . . U	σ
Ūm1 . . . Ūmσ

Ur.

In view of the regularity result established in Lemma 3.3, and the algebra
property of Hk(Rd), for k > d/2, we directly obtain the estimate on the
remainder stated above. �
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This result, however, is not sufficient to conclude that the exact solution
ψε will stay close to the approximate solution ψε

N for times of order O(1). We
shall show in the next section that this is indeed the case.

4. Nonlinear Stability of the Approximation

4.1. Preliminaries

Before we can prove stability of our asymptotic expansion, we need a basic
(local in-time) existence result for solutions to nonlinear Schrödinger equations
of the form (1.6).

Lemma 4.1. Let σ ∈ N, λ ∈ R, and N � k > d
2 . Moreover, let ψε

in ∈ Hk(Rd)
and the potential satisfies V ∈ C1

b(I;S(Rd)). Then, there exist T ε
1 , T ε

2 > 0, and
a unique solution ψε ∈ C

(
[t0 − T ε

1 , t0 + T ε
2 ];Hk(Rd)

)
to (1.6). Furthermore,

‖ψε(t, ·)‖L2(Rd) = ‖ψε
in(t0, ·)‖L2(Rd), ∀t ∈ [t0 − T ε

1 , t0 + T ε
2 ] ⊂ I.

Proof. The proof is a straightforward extension of the one given in, e.g., [30,
Proposition 3.8] for the case without potential. We rewrite the NLS using
Duhamel’s principle

ψε(t, ·) = e−it Δ
2ε ψε

in − i

∫ t

t0

ei(s−t) Δ
2ε

(
λ|ψε(s, ·)|2σ +

1
ε
V (s, ·)

)
ψε(s, ·) ds

=: Ξ(ψε)(t).

Clearly, the free Schrödinger group e−it Δ
2ε is an isometry on Hk(Rd) for any

k ∈ R, and our assumptions on V guarantee that there is a constant C =
C(k, d) > 0 such that

‖V ψε‖Hk �
∑

|α|�k

‖∂αV ‖L∞ ‖ψε‖Hk−α � C ‖V ‖Ck
b

‖ψε‖Hk < ∞.

Moreover, for σ ∈ N, the nonlinearity F (z) = |z|2σz is smooth which, together
with the fact that Hk(Rd) for k > d

2 forms an algebra, allows us to estimate

‖ψε(t, ·)‖Hk � ‖ψε
in‖Hk + Cε

∫ t

t0

‖ψε(s, ·)‖2σ+1
Hk + ‖ψε(s, ·)‖Hk ds, (4.1)

where Cε = C(k, d, λ, V, ε) > 0.
Now, denote by X := C(([t0 − T ε

1 , t0 + T ε
2 ];Hk(Rd)) for some T ε

1 , T ε
2 > 0

to be chosen later on and s > d
2 . Further, let R > 1 be such that ‖ψε

in‖Hk � R.
Then, we can show that the u �→ Ξ(u) maps the ball B2R(0) ⊂ X into itself.
Indeed, the estimate (4.1) implies

‖Ξ(u)‖X � ‖ψε
in‖Hk + Cε max(T ε

1 , T ε
2 )

(‖u‖2σ+1
X + ‖u‖X

)

� R + Cε max(T ε
1 , T ε

2 )
(
(2R)2σ+1 + 2R

)

�R + 22σ+2Cε max(T ε
1 , T ε

2 )R2σ+1.

Hence, we can choose T ε
1 , T ε

2 � R−2σ

22σ+2Cε and such that [t0−T ε
1 , t0+T ε

2 ] ⊂ I. The
same type of estimate shows that u �→ Ξ(u) is a contraction on B2R(0) ⊂ X
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and hence there exists a unique fixed point u = ψε ∈ X. The conservation of
the L2-norm of the solution then follows from the fact that H(t) is self-adjoint
and the nonlinearity is gauge invariant. �
Remark 4.2. By carefully tracking the ε-dependence of T ε

1,2, one finds that, in
general, T ε

1,2 will go to zero, as ε → 0. However, the stability proof below actu-
ally shows that for our choice of initial data, one can find T ε

1,2 > 0 independent
of ε.

We will also need the following Moser-type lemma, proved in, e.g., [22].

Lemma 4.3. Let R > 0, s ∈ N and F (z) = |z|2σz, with σ ∈ N. Then, there
exists K = K(R, s, σ) such that if w satisfies

∥
∥∂βw

∥
∥

L∞(Rd)
� R, |β| � s,

and η satisfies ‖η‖L∞(Rd) � R, then
∑

|β|�s

∥
∥∂β

(
F (w + η) − F (w)

)∥∥
L2(Rd)

� K
∑

|β|�s

∥
∥∂βη

∥
∥

L2(Rd)
.

In [22], this lemma was proved for ε-scaled derivatives. For our purposes,
we can set ε = 1 but note that the estimate above is linear in the Hs norm of
η, which subsequently allows the use of Grownwall’s lemma (see the proof of
Proposition 4.4 below).

4.2. Nonlinear Stability

We are now in the position to prove the desired stability result for the asymp-
totic expansion obtained above.

Proposition 4.4. Let σ ∈ N, λ ∈ R, N � k > d
2 , and Assumptions 1 and 2 hold.

Given an approximate solution ψε
N of the form (3.4) with N > k, we assume

that, at t = t0, the initial data ψε
in ∈ Hk(Rd) is such that

‖ψε
in − ψε

N−1(t0, ·)‖Hk(Rd) � C0ε
N .

Then, for any compact time interval J ⊂ I containing t0, there exist an
ε0(J) > 0, and a constant C > 0, such that for any 0 < ε � ε0(J) the
unique solution ψε ∈ C(J ;Hk(Rd)) to (1.6) exists and, in addition,

sup
t∈J

‖ψε(t, ·) − ψε
N−1(t, ·)‖Hk(Rd) � CεN−k.

Note that this result in particular implies that the solution ψε to (1.6)
cannot exhibit blow-up on any finite time interval J ⊂ I ⊆ R.

Proof. Let J = [t0 − T1, t0 + T2] ⊂ I, for some T1, T2 > 0 independent of ε.
From Lemma 4.1 we obtain the existence of a unique solution ψε ∈ C([t0 −
T ε

1 , t0 + T ε
2 ],Hk(Rd)) with k > d

2 , to (1.6). We denote the difference between
the exact and the approximate solution by

ηε := ψε − ψε
N .

Proposition 3.4 then implies that ηε ∈ C([t0 − τε
1 , t0 + τε

2 ],Hk(Rd)), where
τε
j = min(T ε

j , Tj), with j = 1, 2. We prove that for ε sufficiently small, ηε
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may be extended up to the time interval J ⊂ I, with ηε ∈ C(J,Hk(Rd)). For
simplicity, we shall only show the argument for the times bigger than t0. A
similar argument applies on the time interval [t0 − T1, t0].

Take ε0 > 0 so that C0ε0 ≤ 1
2 , and for ε ∈]0, ε0], let

tε := sup
{

t � t0 | sup
t′∈[t0,t]

‖ηε(t′)‖Hk(Rd) � 1
}

.

We already know that tε > 0 by the local existence result for ψε. By possibly
reducing ε0 > 0 even further, we shall show that tε � t0+T2. The error satisfies

iε∂tη
ε = H(t)ηε + λε

(|ψε
N + ηε|2σ(ψε

N + ηε) − |ψε
N |2σψε

N

)
+ rε

N , (4.2)

subject to ηε
|t=t0

= ηε
in(x), where ‖ηε

in‖Hk = O(εN+1) by assumption.
Next, we multiply (4.2) by ηε, integrate over R

d, and take the real part
of the resulting expression. Since H(t) is self-adjoint, this yields

∂t‖ηε‖L2 �
∥
∥|ψε

N + ηε|2σ(ψε
N + ηε) − |ψε

N |2σψε
N

∥
∥

L2 +
1
ε
‖rε

N‖L2 .

In view of Proposition 3.4, we have ‖rε
N‖Hk = O(εN+1). On the other hand,

for k > d
2 the Gagliardo–Nirenberg inequality implies

‖ηε‖L∞ � ‖ηε‖Hk � 1 ∀t ∈ [t0, tε],

and we will show, that in fact ‖ηε‖L∞ is (asymptotically) small. To this end,
we first recall that since ψN (t, ·) ∈ Hm(Rd) for all m � 0 we also have that
ψN (t, ·) ∈ W s,∞(Rd), for all s � k. Applying Lemma 4.3 with s = 0, we
consequently obtain

∂t‖ηε‖L2 � K‖ηε‖L2 + CεN ,

for t ∈ [t0, tε] and, using Grownwall’s lemma, we thus find

‖ηε‖L2 ≤ C1ε
N , ∀t ∈ [t0, tε]. (4.3)

The idea is now to obtain a similar estimate for (weak) derivatives of ηε, to
close the argument in Hk(Rd). To this end, we first note that

iε∂t(∇ηε) = H(t)(∇ηε) + [∇,H(t)]ηε + λε∇ (F (ψε
N + ηε) − F (ψε

N )) + ∇rε
N ,

and the same type of argument as before, together with the Cauchy Schwarz
inequality, yields

∂t‖∇ηε‖L2 � ‖∇ (F (ψε
N + ηε)−F (ψε

N )) ‖L2 +
1
ε
‖[∇,H(t)]ηε‖L2 +

1
ε
‖∇rε

N‖L2 .

Now, [∇,H(t)] = ∇V (t, x), which is bounded by assumption, and so

∂t‖∇ηε
N‖L2 � ‖∇ (F (ψε

N + ηε) − F (ψε
N )) ‖L2 +

1
ε
‖ηε‖L2 + CεN .

Invoking again Lemma 4.3 with s = 1, and the bound (4.3), we infer that
∀t ∈ [t0, tε] it holds

∂t‖∇ηε‖L2 � ‖∇ηε‖L2 + εN−1,

and Grownwall’s lemma, together with (4.3), then yields

‖ηε‖H1 � εN−1, ∀t ∈ [t0, tε],
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Iterating in s � k, we obtain, more generally

‖ηε‖Hk � εN−k, ∀t ∈ [t0, tε]. (4.4)

and the Gagliardo–Nirenberg inequality consequently implies

‖ηε‖L∞ � ‖ηε‖Hk � εN−k ∀t ∈ [t0, tε],

provided k > d
2 . For N − k > 0, continuity of ‖ηε(·, t)‖Hk implies that tε �

t0 + T2, for ε � ε0(T2) sufficiently small, since if tε < t0 + T2 the estimate

sup
t∈[0,tε]

‖ηε‖L∞ � ‖ηε‖Hk � εN−k <
1
2
,

(after possibly reducing ε0) shows that ηε can be continued beyond tε, a con-
tradiction. In particular, we obtain that ηε, and hence ψε, is well defined for
all t ∈ [t0, t0 + T2], thus showing T ε

2 � T2. Since the same argument can be
applied for times smaller than t0, we finally conclude that ψε is well defined
for all t ∈ J = [t0 − T1, t0 + T2] ⊂ I and 0 < ε � ε0(J).

To complete the proof of the theorem, we note that (4.4) implies

sup
t∈J

‖ψε − ψε
N‖Hk � εN−k,

and since N > k, we also have

sup
t∈J

‖ψε
N − ψε

N−1‖Hk � εN = o(εN−k).

Thus, we can use the triangle inequality to replace ψε
N with ψε

N−1 in our
estimate, which yields the desired result. �

Proposition 4.4 directly implies the result stated in Theorem 1.1. Due to
our method of proof, Proposition 4.4 yields a loss in accuracy for the obtained
error estimates, which we are unable to overcome at this point.

5. Possible Extensions and Variations

5.1. Remarks on Closely Related Cases

In this section, we collect several remarks on how to extend Theorem 1.1 to
other, closely related, situations.

5.1.1. Degenerate Eigenvalues. The results above readily generalize to the case
of an M -fold degenerate eigenvalue E(t), satisfying the gap condition (3.1).
In this case, there exists a smooth basis χ	(t, ·) ∈ L2(Rd), where � = 1, . . . , L,
of the associated eigenspace. The associated projection onto the eigenspace
corresponding to E(t) then becomes

P (t) =
L∑

	=1

|χ	(t, ·)〉〈χ	(t, ·)|.

Using this, one can proceed along the same lines as above to obtain that

sup
t∈Ĩ

∥
∥
∥ψε(t, ·) − eiϕ(t)/ε

L∑

	=1

u0,	(t)χ	(t, ·)
∥
∥
∥

Hk
� Cε.
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However, the formulas in general become more complicated, since the coeffi-
cient functions, u	,0(t), are now determined by an L × L system of ordinary
differential equations (leading to matrix-valued Berry phases and analogous
nonlinear phase modulations). This consequently leads to rather tedious com-
putations in the subsequent steps of our asymptotic expansion, which is why
we shall not go into further details here. In addition, the global (on I) existence
of the solutions to the L×L system is not clear, a priori. However, Proposition
4.4 applies on any interval Ĩ ⊆ I on which the u	’s are defined.

5.1.2. Quadratic Potentials. In view of a possible application to Bose–Einstein
condensates, the assumption that V (t, x) vanishes as |x| → ∞ seems unrealis-
tic, since one typically considers trapping potentials of the form

V (t, x) =
d∑

j=1

Ωj(t)x2
j , Ω(t) ∈ R,

i.e., a time-dependent harmonic oscillator. There is, however, no fundamental
difficulty in extending our result to such a situation. Indeed, as long as Ωj(t) >
0, the existence of eigenvalues E(t) together with their associated smooth
(and rapidly decaying) eigenfunctions is guaranteed (see, e.g., [31]), and the
asymptotic expansion stays (at least formally) exactly the same as before.
Only from the point of view of rigorous estimates, one needs to shift from the
usual Sobolev space setting Hk(Rd), to weighted spaces of the form

Σk = Hk(Rd) ∩ {|x|kf ∈ L2(Rd)}.

The basic existence and well-posedness theory for NLS in such weighted spaces
has been established in [6], yielding a unique solution ψε ∈ C(Ĩ; Σk) on some
Ĩ ⊆ I, provided ψin ∈ Σk. Moreover, an extension of the Schauder Lemma
4.3 to Σk is straightforward. The only extra work needed is in the proof of
the nonlinear stability, where now [∇,H(t)] = ∇V (t, x) is no longer bounded.
However, since ‖∇V ηε‖L2 � ‖xηε‖L2 , and since [x,H(t)] = ∇, a closed set of
estimates for the combined L2-norms of xηε and ∇ηε (and thus for the Σ1-
norm of ηε) can be obtained, cf. [8] for more details. Iterating this then yields
a stability result in Σk.

5.1.3. The Intermediate Regime 1 < α < 2. We go back to the discussion
started in Remark 2.2 and consider the slightly more general situation of

iε∂tψ
ε = −1

2
Δψε + V (t, x)ψε + λεα|ψε|2σψε, α � 1.

We already know that if α = 1 the problem is critical, and that if α � 2, the
problem is sub-critical (i.e., linearizable). The intermediate regime 1 < α < 2,
however, is slightly more complicated, since the asymptotic expansion used
before fails to match the size of the nonlinearity. One way to overcome this
problem is to include the nonlinearity in the equation of order O(ε), which
yields

LE(t)U1(t, x) = i∂tU0(t, x) + εα−1λ|U0|2σU0,
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instead of (2.11). For εα−1 � 1, this can be seen as a regular perturbation
problem of the associated linear situation. The corresponding solvability con-
dition now yields an ε-dependent leading order amplitude of the form

Uε
0 (t, x) = χ(t, x)e−β(t)+iεα−1θ(t),

with θ(t) given by (2.12). The nonlinear phase modulation appearing in this
expression is obviously rather weak, due to the small εα−1 � 1 factor in front.
The price to pay is that now all the Uε

n become ε-dependent. An alternative
approach would be to consider a modified asymptotic expansion, which in-
cludes powers of εα. This can be done in principle, but is rather cumbersome
and we will leave the details to the reader.

5.2. Connection to Nonlinear Bound States

We finally turn to the connection with nonlinear bound states and thus, to
the proof of Corollary 1.3. To this end, we first recall that, for fixed t ∈ R,
nonlinear bound states are solutions to the stationary Schrödinger equation

− 1
2
ΔΦ + V (t, x)Φ + λ|Φ|2σΦ = E∗Φ. (5.1)

Denoting by E(t) < 0 a simple eigenvalue of the linear Hamiltonian H(t), stan-
dard bifurcation theory (cf. [18]) then ensures the existence of such nonlinear
bound states Φ bifurcating from the zero solution at the eigenvalues E(t). De-
pending on the type of eigenvalue E(t), these bound states are called nonlinear
ground states, or nonlinear excited states, respectively (see, e.g., [29,33]). To
be more precise, we recall the following result:

Lemma 5.1. Let t ∈ I be fixed, V (t, ·) ∈ S(Rd) and denote by E(t) < 0
a simple eigenvalue separated from the rest of spec (H(t)). For λ > 0 let
E∗(t) ∈ (E(t), 0) and for λ < 0, let E∗(t) < E(t). Then, there exists a so-
lution (E∗(t),Φ(t, ·)) to (5.1), such that E∗(t) �→ ‖Φ(t, ·)‖H2 is smooth for
E∗ �= E and

lim
E∗→E

‖Φ(t, ·)‖H2 = 0.

In addition, for ε1 < 1 sufficiently small and 1
λ (E∗ − E) < ε1, we have

∥
∥
∥
∥
∥

Φ(t, ·) −
(

E∗(t) − E(t)
μ(t)

) 1
2σ

χ(t, ·)
∥
∥
∥
∥
∥

H2(Rd)

= O(E∗(t) − E(t)),

where χ(t, ·) ∈ L2(R3) is a normalized eigenfunction associated to the linear
eigenvalue E(t) and

μ(t) := λ‖χ(t, ·)‖2σ+2
L2σ+2 .

This result (for time-independent potentials V = V (x)) is stated in [28,
Theorem 2.1] in the case where the linear Hamiltonian has exactly one eigen-
value E < 0. The formula for Φ is a result of a perturbation calculation and
already stated in [23]. A more detailed proof in the case where H admits ex-
actly two simple eigenvalues, d = 3, σ = 1, and λ > 0, can be found in [34,
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Lemma 2.1]. The situation for several linear eigenvalues is discussed in, e.g.,
[33], while [12] studies the case of degenerate eigenvalues.

Remark 5.2. One should note that in several of the aforementioned works (cf.
[29,33,34]), the additional assumption that 0 is neither an eigenvalue nor a
resonance for the linear Hamiltonian H = −Δ+V is imposed. This condition,
however, is not used in the existence proof of nonlinear bound states (it ensures
the applicability of certain dispersive estimates for the associated Schrödinger
group [20]).

Hence, for any fixed t ∈ I, there is an ε1(t) > 0, such that as long as
1
λ (E∗(t) − E(t)) < ε1(t), we have a nonlinear bound state of size

M(t) := ‖Φ(t, ·)‖L2 = O(ε1/(2σ)
1 ).

Unfortunately, Lemma 5.1 does not provide any assertion on the time depen-
dence of t �→ M(t). In fact, it has been shown in [11], that for a given compact
time interval J ⊂ I, and M > 0 sufficiently small there exists a unique fam-
ily of bound states t �→ Φ(t, ·) ∈ H2(Rd)) continuously depending on time,
and with constant mass ‖Φ(t, ·)‖2

L2 = M . However, since [11] is currently only
published in a PhD thesis (the corresponding paper [10] is being finalized),
we shall not take this result for granted but only assume that such a property
holds. More precisely, we impose:

Assumption 3. Let J ⊂ I be a compact time interval and assume that there
is an M0(J) > 0 such that for all M � M0, there exists a unique family of
solutions t �→ Φ(t, x) to (5.1) with Φ ∈ C(J ;H2(Rd)) and ‖Φ(t, ·)‖2

L2 = M .

This allows us to prove the following result, in which ε0(J) > 0 denotes
the same constant as in Theorem 1.1.

Proposition 5.3. Let σ ∈ N, λ ∈ R, and Assumptions 1, 2 and 3 hold. Moreover,
let ε ∈ (0,min(ε0(J),M0(J))] and denote by Φε(t, x) a family of bound states
such that ‖Φε(t, ·)‖L2 =

√
ε. Finally, let Ψε be the solution to (1.4) with initial

data Ψε
in =

√
εψε

in where ψε
in satisfies the conditions of Theorem 1.1. Then,

there exists a constant K > 0 such that

sup
t∈J

∥
∥
∥Ψε(t, ·) − Φε(t, ·)e−iϕε(t)

∥
∥
∥

L2(R3)
� Kεmin(3/2,σ),

where ϕε is given by

ϕε(t) =
1
ε

∫ t

t0

E(s)ds + λ

∫ t

t0

‖χ(s, ·)‖2σ+2
L2σ+2 ds − iβ(t).

Proof. Using the triangle inequality, we obtain
∥
∥
∥Ψε(t, ·) − Φε(t, ·)e−iϕε(t)

∥
∥
∥

L2
�

∥
∥
∥Ψε(t, ·) − √

εχ(t, ·)e−iϕε(t)
∥
∥
∥

L2

+
∥
∥√

εχ(t, ·) − Φε(t, ·)∥∥
L2

where in the second term on the right hand side we have used the fact that ϕε

is purely time dependent. In view of Theorem 1.1, the first term on the right
hand side is O(ε3/2), uniformly for t ∈ J , where J is any compact time interval
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J ⊂ I. To estimate the second term, we use the triangle inequality once more
to obtain

∥
∥√

εχ(t, ·) − Φε(t, ·)∥∥
L2 �

∥
∥
∥
∥
∥

(
E∗(t) − E(t)

μ(t)

) 1
2σ

χ(t, ·) − Φε(t, ·)
∥
∥
∥
∥
∥

L2

+

∣
∣
∣
∣
∣

(
E∗(t) − E(t)

μ(t)

) 1
2σ

− √
ε

∣
∣
∣
∣
∣
,

since ‖χ(t, ·)‖L2 = 1, by assumption. From Lemma 5.1, we find that for all
t ∈ J :

∣
∣
∣
∣
∣
‖Φε‖L2 −

(
E∗(t) − E(t)

μ(t)

) 1
2σ

∣
∣
∣
∣
∣
� O(E∗(t) − E(t)),

which together with the fact that ‖Φε(t, ·)‖L2 =
√

ε, implies

ε =
(

E∗(t) − E(t)
μ(t)

) 1
σ

+ O
(
(E∗(t) − E(t))1+

1
2σ

)
. (5.2)

In particular (5.2) together with Lemma 5.1 implies
∥
∥
∥
∥
∥

(
E∗(t) − E(t)

μ(t)

) 1
2σ

χ(t, ·) − Φε(t, ·)
∥
∥
∥
∥
∥

L2

� εσ.

On the other hand, using
√

a − √
b = (a − b)/(

√
a +

√
b), we also have

∣
∣
∣
∣
∣

(
E∗(t) − E(t)

μ(t)

) 1
2σ

− √
ε

∣
∣
∣
∣
∣
� εσ.

In summary, we find that for t ∈ J it holds
∥
∥
∥Ψε(t, ·) − Φ(t, ·)e−iϕε(t)

∥
∥
∥

L2
� ε3/2 + εσ � εmin(3/2,σ),

which yields the desired result. �

Remark 5.4. Interestingly, the proof shows that in the asymptotic regime con-
sidered and in the case σ = 1 (cubic nonlinearity), the linear eigenfunction
(endowed with the appropriate phase factor) satisfies a better approximation
estimate than the nonlinear one. However, for σ � 2, the approximation rate
is the same for both the linear and the nonlinear subspace.

Proof of Corollary 1.3. To estimate the operator norm of

|Ψε〉〈Ψε| − |Φε〉〈Φε| = |Ψε〉〈Ψε| − |Φεe−iϕε〉〈Φεe−iϕε |,
it is enough to consider f ∈ L2(Rd), with ‖f‖L2 = 1 and estimate

‖|Ψε〉〈Ψε, f〉 − |Φεe−iϕε〉〈Φεe−iϕε

, f〉‖L2

� ‖|Ψε〉〈Ψε, f〉 − |Ψε〉〈Φεe−iϕε

, f〉‖L2

+ ‖|Ψε〉〈Φεe−iϕε

, f〉 − |Φεe−iϕε〉〈Φεe−iϕε

f〉‖L2 .
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Cauchy–Schwarz implies that the first term on the right hand side can be
estimated by

‖|Ψε〉〈Ψε, f〉 − |Ψε〉〈Φεe−iϕε

, f〉‖L2 � ‖Ψε‖L2‖Ψε − Φεe−iϕε‖L2 ,

since ‖f‖L2 = 1. Analogously, we get

‖|Ψε〉〈Φεe−iϕε

, f〉 − |Φεe−iϕε〉〈Φεe−iϕε

f〉‖L2 � ‖Φε‖L2‖Ψε − Φεe−iϕε‖L2 .

Having in mind that ‖Φε‖L2 � ‖Ψε‖L2 = O(
√

ε), this, together with the result
of Proposition 5.3, then yields

∥
∥|Ψε(t, ·)〉〈Ψε(t, ·)| − |Φε(t, ·)〉〈Φε(t, ·)|∥∥

L2→L2 � εmin(2,σ+1/2),

which implies the assertion of Corollary 1.3. �
The main drawback of Proposition 5.3 is the fact that the phase ϕε in-

volves information of the linear eigenvalue problem. In particular, the dynam-
ical phase involves the linear eigenvalue E(t) instead of E∗(t). This, however,
can be remedied in the case of sufficiently strong nonlinearities.

Corollary 5.5. Under the same assumptions as in Proposition 5.3 but for σ � 2,
there exists a solution Ψε of (1.4) and a K > 0 such that

sup
t∈J

∥
∥
∥Ψε(t, ·) − Φε(t, ·)e−iϕε

∗(t)
∥
∥
∥

L2(R3)
� Kεσ−1,

where ϕε
∗ is given by

ϕε
∗(t) =

1
ε

∫ t

t0

E∗(s)ds + λ

∫ t

t0

‖χ(s, ·)‖2σ+2
L2σ+2 ds.

In other words, for nonlinearities with powers larger than cubic, we can
obtain the physically “correct” dynamical phase. Here, we also implicitly as-
sume that χ is chosen to be real valued, and thus β(t) ≡ 0, which is always
possible as long as the evolution is not cyclic in time (see Remark 2.1).

Proof. We choose a real-valued family of linear eigenfunctions χ(t, x), which
implies β(t) ≡ 0. Using the triangle inequality, we have

∥
∥
∥Ψε(t, ·) − Φε(t, ·)e−iϕε

∗(t)
∥
∥
∥

L2
�

∥
∥
∥Ψε(t, ·) − Φε(t, ·)e−iϕε(t)

∥
∥
∥

L2

+
∥
∥
∥ Φε(t, ·)

(
e−iϕε(t) − e−iϕε

∗(t)
)∥
∥
∥

L2
.

Here, the first term on the right hand side is of order O(εmin(3/2,σ)), in view
of Proposition 5.3. To estimate the second term, we write

∥
∥
∥ Φε(t, ·)

(
e−iϕε(t) − e−iϕε

∗(t)
)∥
∥
∥

L2
=

∥
∥
∥ Φε(t, ·)

(
e−i(ϕε(t)−ϕε

∗(t)) − 1
)∥
∥
∥

L2

� ‖Φε(t, ·)‖L2

∣
∣
∣e−i(ϕε(t)−ϕε

∗(t)) − 1
∣
∣
∣ .

Recalling the definition of the phases and the fact that |eiθ−1| � |θ|, we obtain
∣
∣
∣e−i(ϕε(t)−ϕε

∗(t)) − 1
∣
∣
∣ � 1

ε

∫ t

t0

|E(s) − E∗(s)|ds � εσ−1,

in view of (5.2). �
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In certain dimensions (and for certain σ � 2), a more careful analy-
sis, using the result of Lemma 5.1 together with a Gagliardo–Nirenberg type
inequality, would allow a similar statement in which the ‖χ(s, ·)‖L2σ+2 ap-
pearing in ϕε

∗ is replaced by ‖Φε(s, ·)‖L2σ+2 . In this case, the phase function
consequently only depends on information given by the nonlinear eigenvalue
problem (5.1). In view of the many assumptions needed, however, this result
seems to be very far from optimal and we shall therefore not pursue it any
further.
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