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Optimal Lower Bound of the Resonance
Widths for the Helmholtz Resonator

André Martinez and Laurence Nédélec

Abstract. Under a geometric assumption on the region near the end of its
neck, we prove an optimal exponential lower bound on the widths of res-
onances for a general two-dimensional Helmholtz resonator. An extension
of the result to the n-dimensional case, n ≤ 12, is also obtained.

1. Introduction

A resonator consists of a bounded cavity (the chamber) connected to the exte-
rior by a thin tube (the neck of the chamber). The frequencies of the sounds
it produces are determined by the shape of the chamber, while their duration
by the length and the width of the neck in a non-obvious way, and our goal
is to understand these. Mathematically, this phenomenon is described by the
resonances of the Dirichlet Laplacian −ΔΩ on the domain Ω consisting of the
union of the chamber, the neck and the exterior (see Fig. 1).

This article extends our previous work [17], in that we are now able to
handle regions where the shape of the exterior is quite general, although the
shape of the neck stays the same. The main changes appear in Sects. 4, 5 and
6, where Carleman estimates are used, and Green’s identity is replaced by an
estimate to obtain a lower bound on the imaginary part of the resonances.

We recall that resonances are the eigenvalues of a complex deformation
of −ΔΩ; their real and imaginary parts are the frequencies and inverses of the
half-lives, respectively, of the corresponding vibrational modes. It is of obvious
physical interest to estimate these two quantities as precisely as possible. One
practical way to do this involves studying this problem in the asymptotic limit
when the width ε of the neck tends to zero. Those resonances with imaginary
parts tending to zero converge to the eigenvalues of the Dirichlet Laplacian on

A. Martinez is partly supported by Università di Bologna, Funds for Selected Research
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Figure 1. The Helmholtz resonator

the cavity, and there is an exponentially small upper bound for the absolute
values of the imaginary parts (the widths) of the resonances [13]. However,
without very restrictive hypotheses, no lower bound is known. We mention in
particular that lower bounds are known in the one-dimensional case [9,10].
As for the higher dimensional case, we mention [5,8,11] which contain results
concerning exponentially small widths of quantum resonances, but these do
not apply to a Helmholtz resonator. We also mention that the semiclassical
lower bound obtained in [11] is optimal (see also [7] for a generalization).

Here, we obtain an optimal lower bound (see Theorem 2.2) under a geo-
metric condition concerning the external end part of the neck. Namely, we
assume that the neck meets the boundary of the external region perpendicu-
larly to it, and that the exterior region is concave and symmetric there [see
(2.1) and Fig. 1]. This assumption is probably purely technical and should
not be necessary. However, it permits us to adapt to this case some of the
arguments of [17], to obtain the lower bound after reducing the problem to an
estimate near the end part of the neck. This reduction itself is obtained using
Carleman estimates up to the boundary, as in [14,15].

2. Geometrical Description and Results

Consider a Helmholtz resonator in R
2 consisting of a regular bounded open

set C (the cavity), connected to a regular unbounded open exterior domain E
through a thin straight tube T (ε) (the neck) of radius ε > 0 (see Fig. 2). We
shall suppose that ε is very small.
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To state this more precisely, let C and B be two bounded domains in R
2

with C∞ boundary; their closures and boundaries are denoted as C, B and ∂C,
∂B. We assume that Euclidean coordinates (x, y) can be chosen in such a way
that, for some L > 0, one has,

C ⊂ B; (0, 0) ∈ ∂C; (L, 0) ∈ ∂B; [0, L] × {0} ⊂ B\C;

Near M0 := (L, 0), B is convex and ∂B is symmetric with

respect to {y = 0}.

(2.1)

Remark 2.1. This also contains the case where ∂B is flat near M0, that is when
{L} × [−ε0, ε0] ⊂ ∂B for some ε0 > 0.

Setting T (ε) := [−ε0, L] × (−ε, ε) ∩ (R2\C), C(ε) = C ∪ T (ε) and E :=
R

2\B, then the resonator is defined as,

Ω(ε) := C(ε) ∪ E.

As ε → 0+, the resonator Ω(ε) collapses to Ω0 := C ∪ [0,M0] ∪E, where M0 is
the point (L, 0) ∈ R

2.
For any domain Q, let PQ denote the Laplacian −ΔQ with Dirichlet

boundary conditions on ∂Q; for brevity, we write PΩε
as Pε.

The resonances of Pε are defined as the eigenvalues of the operator
obtained by performing a complex dilation with respect to the coordinates
(x, y), for |x| + |y| large. We are interested in those resonances of Pε that are
close to the eigenvalues of PC . Thus, let λ0 > 0 be an eigenvalue of PC with u0

the corresponding (normalized) eigenfunction. We make the following
Assumption (H):

λ0 is the lowest eigenvalue of − ΔC .

By the arguments of [13], we know that there is a resonance ρ(ε) ∈ C of
Pε such that ρ(ε) → λ0 as ε → 0. Furthermore, the lowest eigenvalue λ(ε) of
PC(ε) is such that, for any δ > 0,

|ρ(ε) − λ(ε)| ≤ Cδe
−π(1−δ)L/ε, (2.2)

for some Cδ > 0 and all sufficiently small ε > 0. In particular, since λ(ε) ∈ R,
this gives

| Im ρ(ε)| ≤ Cδe
−π(1−δ)L/ε. (2.3)

We now state our main result.

Theorem 2.2. Under Assumption (H), for any δ > 0, there exists Cδ > 0 such
that, for all ε > 0 small enough, one has

| Im ρ(ε)| ≥ 1
Cδ

e−π(1+δ)L/ε.

Remark 2.3. We extend this result to the higher dimensional case in Sect. 11.

Remark 2.4. Gathering (2.3) and Theorem 2.2, we can reformulate the result
as:

lim
ε→0+

ε ln | Im ρ(ε)| = −πL. (2.4)
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3. Properties of the Resonant State

By definition, the resonance ρ(ε) is an eigenvalue of the complex distorted
operator,

Pε(μ) := UμPεU
−1
μ ,

where μ > 0 is a small parameter, and Uμ is a complex distortion of the form,

Uμϕ(x, y) := ϕ((x, y) + iμf(x, y)),

with f ∈ C∞(R2;R2), f = 0 near B, f(x, y) = (x, y) for |(x, y)| large enough.
(Observe that by Weyl Perturbation Theorem, the essential spectrum of Pε(μ)
is e−2iα

R+, with α = arctan μ.)
It is well known that such eigenvalues do not depend on μ (see, e.g.,

[12,19]), and that the corresponding eigenfunctions are of the form Uμuε with
uε independent of μ, smooth on R

2 and analytic in a complex sector around
E. In other words, uε is a non-trivial analytic solution of the equation −Δuε =
ρ(ε)uε in Ω(ε), such that uε

∣
∣
∂Ω(ε) = 0 and, for all μ > 0 small enough, Uμuε

is well defined and is in L2(Ω(ε)) (in our context, this latter property will
be taken as a definition of the fact that uε is outgoing). Moreover, uε can be
normalized by setting, for some fixed μ > 0,

‖Uμuε‖L2(Ω(ε)) = 1.

In that case, we learn from [13] (in particular Proposition 3.1 and formula
(5.13)), that, for any δ > 0, and for any R > 0 large enough, one has,

‖uε‖L2(Ω(ε)∩{|(x,y)|<R}) ≥ 1 − O(e(δ− πL
2 )/ε), (3.1)

and

‖uε‖H1(E∩{|(x,y)|<R}) = O(e(δ− πL
2 ))/ε). (3.2)

Now, we take R > 0 such that B ⊂ {|(x, y)| < R}. Using the equation
−Δuε = ρuε and Green’s formula on the domain Ω(ε) ∩ {|(x, y)| < R}, and
using polar coordinates (r, θ), we obtain,

Im ρ

∫

Ω(ε)∩{|(x,y)|<R}
|uε|2dxdy = − Im

∫ 2π

0

∂uε

∂r
(R, θ)uε(R, θ)Rdθ,

and thus, by (3.1–3.2), and for some δ0 > 0,

Im ρ = −(1 + O(e(δ−πL)/ε)) Im
∫ 2π

0

∂uε

∂r
(R, θ)uε(R, θ)Rdθ (3.3)

where the O is locally uniform with respect to R.
Therefore, to prove our result, it is sufficient to obtain a lower bound on

Im
∫ 2π

0
∂uε

∂r (R, θ)uε(R, θ)Rdθ. Note that, using (3.2), we immediately obtain
(2.3).
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4. Estimate Outside a Large Disc

The goal of this section is to prove,

Proposition 4.1. Let R1 > R0 > 0 be fixed in such a way that B ⊂ {|(x, y)| <
R0}. Then, for any C > 0, there exists a constant C ′ = C ′(R0, R1, C) > 0
such that, for all ε > 0 small enough, one has,

| Im ρ| ≥ 1
C ′ ‖uε‖2

L2(R0<|(x,y)|<R1)
− C ′e−C/ε.

Proof. Working in polar coordinates (r, θ), for r ≥ R0, we can represent u = uε

as,

u(r, θ) =
1
2π

∑

k∈Z

uk(r)eikθ,

where uk(r) :=
∫ 2π

0
u(r, θ)e−ikθdθ = akHk(r

√
ρ), Hk being the outgoing Han-

kel function, defined for k ≥ 0 as

Hk(t) :=
ei(t− kπ

2 − π
4 )

Γ(k + 1
2 )

√

2
πt

∫ ∞

0

e−ssk− 1
2

(

1 +
is

2t

)k− 1
2

ds,

for k < 0 by Hk = (−1)kH−k, and solution to,

t2H ′′
k (t) + tH ′

k(t) + (t2 − k2)Hk(t) = 0.

In particular, for all k, the function hk := Hk(r
√

ρ) is an analytic function,
solution to

− h′′
k − 1

r
h′

k +
k2

r2
hk = ρhk, (4.1)

and for any μ > 0 fixed small enough, one has,

hk(reiμ) ∈ H2([R0,+∞)). (4.2)

By (3.3), for any R ∈ [R0, R1] we also have,

Im ρ = −(1 + O(e(δ−πL)/ε))
∑

k∈Z

αk(R) = −(1 + O(e(δ−πL)/ε))
∑

k∈Z

βk(R)|ak|2,

(4.3)
with

αk(R) := Im Ru′
k(R)uk(R); βk(R) := Im Rh′

k(R)hk(R). (4.4)

We set,

λ(R) :=
∑

k∈Z

αk(R) =
∑

k∈Z

βk(R)|ak|2,

and, for C > 0 arbitrary large, we write,

λ(R) =
∑

|k|≤C/ε

αk(R) +
∑

|k|>C/ε

αk(R) =: λ−(R,C) + λ+(R,C).

We first prove,
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Lemma 4.2. There exists δ > 0 such that, for any C > 0, one has,

λ+(R,C) = O(e−δC/ε),

uniformly as ε → 0+.

Proof. In view of (4.4), it is enough to prove that |uk(R)|+|u′
k(R)| = O(e−δ|k|)

for some δ = δ(R) > 0, uniformly as |k| → ∞. From (4.1), we know that uk is
solution to,

−k−2u′′
k − 1

k2r
u′

k +
1
r2

uk − ρ

k2
uk = 0,

that can be considered as a semiclassical differential equation with small para-
meter h := |k|−1 and principal symbol a(r, r∗) := (r∗)2 + r−2. In particular,
this symbol is locally elliptic, and since u is locally bounded together with all
its derivatives, we also know that uk is locally uniformly bounded (together
with all its derivatives) as |k| → ∞. Then, we can apply standard techniques of
semiclassical analysis (in particular Agmon estimates: see, e.g., [16]) to prove
that |uk| + |u′

k| is locally O(e−δ|k|) for some δ > 0, and the result follows. �

Next, we show,

Lemma 4.3. For any C > 0 and any σ ∈ (0, πL/2), there exists C ′ =
C ′(C, δ1) > 0 such that

λ−(R,C) ≥ 1
C ′

∑

|k|≤C/ε

|ak|2 − C ′| Im ρ|e−2σ/ε,

uniformly as ε → 0+.

Proof. For |k| ≤ C/ε, let μk = μk,R ∈ C∞(R+;R+) be a real non-decreasing
function verifying,

μk(r) = 0 for r ≤ rk := max(C0|k|, R) ; μk(r) =
μ0

1 + |k| for r ≥ rk + 1,

where μ0 > 0 is fixed small enough, and C0 > 0 will be chosen sufficiently
large later on. We set,

νk(r) := reiμk(r); gk(r) = Ukhk(r) := hk(νk(r)). (4.5)

By (4.2) we have,
gk ∈ H2([R0,+∞)). (4.6)

Moreover, by construction we also have,

βk(R) = Im
νk(R)
ν′

k(R)
g′

k(R)gk(R),

and using (4.1), we see that gk is solution to,

− g′′
k −

(
ν′

k

νk
− ν′′

k

ν′
k

)

g′
k +

k2(ν′
k)2

ν2
k

gk = ρ(ν′
k)2gk. (4.7)
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Then, using (4.6–4.7),we can write,

βk(R) =− Im
∫ ∞

R

d

dr

(
νk(r)
ν′

k(r)
g′

k(r)gk(r)
)

dr

=− Im
∫ ∞

R

[(

1 − νkν′′
k

(ν′
k)2

)

g′
kgk +

νk(r)
ν′

k(r)
g′′

k (r)gk(r) +
νk(r)
ν′

k(r)
|g′

k(r)|2
]

dr

=− Im
∫ ∞

R

[(
k2ν′

k

νk
− ρνkν′

k

)

|gk|2 +
νk(r)
ν′

k(r)
|g′

k(r)|2
]

dr.

Since ν′
k/νk = r−1 + iμ′

k and νkν′
k = r(1 + irμ′

k)e2iμk , we obtain,

βk(R) =
∫ ∞

R

(

γk(r)|g′
k(r)|2 + δk(r)|gk(r)|2

)

dr,

with,

γk(r) :=
μ′

k

r−2 + (μ′
k)2

;

δk(r) := r Re ρ sin 2μk + r Im ρ cos 2μk

+r2μ′
k[(Re ρ) cos 2μk − (Im ρ) sin 2μk] − k2μ′

k.

In particular, γk ≥ 0. Since μk ≤ μ0(1 + |k|)−1, Im ρ ≤ 0, and Re ρ → λ0 > 0
as ε → 0, we also have,

δk ≥ δ0r sin 2μk + r Im ρ cos 2μk + μ′
k(δ0r

2 − k2),

where δ0 is any positive constant such that δ0 < λ0 cos 2μ0. But, by con-
struction, we have μ′

k(r) = 0 when r ≤ C0|k|. Therefore, μ′
k(r)(δ0r

2 − k2) ≥
μ′

k(r)(δ0C
2
0 − 1)k2 ≥ 0 if we choose C0 ≥ δ

−1/2
0 . Then, we obtain,

βk(R) ≥
∫ ∞

R

r (δ0(sin 2μk(r) + Im ρ cos 2μk(r)) |gk(r)|2dr

≥ δ0 sin(
μ0

1 + |k| )
∫ ∞

rk+1

r|gk(r)|2dr − | Im ρ|
∫ ∞

R

r|gk(r)|2dr. (4.8)

Since |k| ≤ C/ε and | Im ρ| = O(e−c1/ε) for some c1 > 0, we also have | Im ρ| ≤
1
2δ0 sin( μ0

1+|k| ) for ε > 0 small enough, and therefore,

βk(R) ≥ 1
2
δ0 sin(

μ0

1 + |k| )
∫ ∞

rk+1

r|gk(r)|2dr − | Im ρ|
∫ rk+1

R

r|gk(r)|2dr.

Equivalently, setting vk(r) := uk(νk(r)) = akgk(r), we have proved,

αk(R) ≥ 1
2
δ0|ak|2 sin(

μ0

1 + |k| )
∫ ∞

rk+1

r|gk(r)|2dr − | Im ρ|
∫ rk+1

R

r|vk(r)|2dr

(4.9)
Now, considering a cutoff function χ = χ(r) ∈ C∞(R+; [0, 1]) such that χ = 1
on r ≥ R0, χ = 0 on r ≤ R0−δ0 (δ0 > 0 small enough), we see that the function
w := χu satisfies (−Δ − ρ)w = [−Δ, χ]u on all of R2, and is outgoing. Then,
standard estimates on the outgoing resolvent of the Laplacian (or, equivalently,
on the Green function of the Helmholtz equation in R

n, n ≥ 2) show that, for
all δ > 0 arbitrarily small, one has w = O(eδr||[−Δ, χ]u||L2) uniformly as r →
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∞. Actually, such estimates remain valid for the complex distorted Laplacian
U0ΔU−1

0 [where U0 is as in (4.5) with some arbitrary μ0 ≥ 0 small enough],
and since ||[−Δ, χ]u||L2 = O(e−δ1/ε) for any δ1 ∈ (0, πL/2), we obtain: u(r) =
O(eδr−δ1/ε) uniformly on {r ∈ C ; Re r ≥ R0 , | Im r| ≤ μ0(Re R − R0)}, where
δ > 0 is arbitrary. In particular, this gives us: r|vk(r)|2 = O(eδr−2δ1/ε), and
therefore,

∑

|k|≤C/ε

∫ rk+1

R

r|vk(r)|2dr = O
(

C

ε
eδC/ε−2δ1/ε

)

= O(e−2δ′
1/ε),

where δ′
1 = δ1 − δC can be taken arbitrarily close to δ1 (and thus, to πL/2) by

choosing δ << 1/C. Inserting into (4.9) and taking the sum over k, we obtain,

λ−(R,C) ≥ 1
2
δ0

∑

|k|≤C/ε

|ak|2 sin(
μ0

1 + |k| )
∫ ∞

rk+1

r|gk(r)|2dr − C ′| Im ρ|e−δ′
1/ε

(4.10)
with C ′ = C ′(C) > 0.

To complete the proof, we need to estimate the quantity Jk :=
∫∞

rk+1
r|gk(r)|2dr as |k| → ∞. Setting r = |k|s, for |k| large enough we find,

Jk ≥ |k|2
∫ ∞

2C0

|wk(seiμ0/(1+|k|))|2ds (4.11)

where wk(z) := z1/2hk(|k|z) (z ∈ C, |z| ≥ C0, | arg z| ≤ μ0). Using (4.1), we
see that wk is solution to,

− 1
k2

w′′
k +

(
1
z2

− 1
4k2z2

− ρ

)

wk = 0.

This is a semiclassical Schrödinger equation, with small parameter h := |k|−1,
and we can apply to it the standard WKB complex method to find the asymp-
totic of wk, both as k → ∞ and Re z → +∞. Using also that wk must be
outgoing, we immediately obtain,

wk(z) ∼ τk

(ρ − z−2)
1
4

exp
(

i|k|
∫ z

2C0

(ρ − t−2)
1
2 dt

)

(4.12)

as |k| + Re z → ∞, uniformly with respect to ε > 0. Here, τk ∈ C is a complex
constant of normalization that we have to compute. To do so, we use the
well-known asymptotic of Hk(t) as Re t → +∞,

Hk(t) ∼
√

2
πt

exp
(

i

(

t − kπ

2
− π

4

))

,

that gives,

wk(r) = r
1
2 Hk (|k|r√ρ) ∼

√

2
π|k| exp

(

i

(

|k|r√ρ − kπ

2
− π

4

))

(r → +∞).
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Comparing with (4.12), we obtain,

τk = ρ
1
4

√

2
π|k|e

−i( kπ
2 + π

4 )ei|k|L

where

L := lim
r→+∞

(

r
√

ρ −
∫ r

2C0

(ρ − t−2)
1
2 dt

)

= lim
r→+∞

(

r
√

ρ −
[√

ρt2 − 1 − tan−1
√

ρt2 − 1
]r

2C0

)

that is,

L =
π

2
+
√

4ρC2
0 − 1 − tan−1

√

4ρC2
0 − 1.

In particular,

Im L = Im
√

4ρC2
0 − 1 +

1
2

∫ − Im
√

4ρC2
0−1

Im
√

4ρC2
0−1

1
1 + (Re

√

4ρC2
0 − 1 + it)2

dt,

and thus

Im L = (1 + O(C−1
0 )) Im

√

4ρC2
0 − 1 ≤ 0

if C0 has been taken sufficiently large. As a consequence,

|τk| ≥ |ρ| 1
4

√

2
π|k| ,

and then, by (4.12), and for s ≥ 2C0, we deduce,

|k|2|wk(seiμ0/(1+|k|))|2 ≥ δ2|k|e−δs,

where δ2 > 0 is a constant (independent both of k and ε). Going back to
(4.11), for |k| large enough we finally obtain,

Jk ≥ |k|
C1

,

where C1 is a positive constant. Then, inserting into (4.10), we obtain

λ−(R,C) ≥ δ0

3C1

∑

|k|≤C/ε

|ak|2 − C ′| Im ρ|e−δ′
1/ε,

and Lemma 4.3 follows. �

Now, for any K ≥ 0, we have,

||u||2r=R = R
∑

k∈Z

|ak|2|hk(R)|2 ≤ CK

∑

|k|≤K

|ak|2 + R
∑

|k|>K

|ak|2|hk(R)|2,

with CK := sup|k|≤K ; R∈[R0,R1] R|hk(R)|2. Then, in the same spirit as in [4],
we use an estimate on the outgoing Hankel functions that will permit us to
compare its values at two different points.
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Lemma 4.4. One has,

hk(R) = −i

√

2
π

kk− 1
2

(
2

eR
√

ρ

)k
(

1 + O(k−1)
)

,

uniformly with respect to R ∈ [R0, R1], ε > 0 small enough, and k ≥ 1 large
enough.

Proof. See Appendix. �

It follows from this lemma that, for any R ∈ [R0, R1], we have,

|hk(R)|
|hk(R0)|

= O
(

(R0/R)|k|
)

uniformly as |k| → ∞. Therefore, we obtain,

||u||2r=R ≤ CK

∑

|k|≤K

|ak|2 + CR
∑

|k|>K

|ak|2|hk(R0)|2R2|k|
0 R−2|k| (4.13)

where C > 0 does not depend on K,R. Integrating with respect to R on the
interval [R0, R1], we obtain,

||u||2R0≤R≤R1
≤ C ′

K

∑

|k|≤K

|ak|2 + C
∑

|k|>K

|ak|2|hk(R0)|2R2|k|
0

R
2−2|k|
0

2|k| − 2
,

and thus,

||u||2R0≤R≤R1
≤ C ′

K

∑

|k|≤K

|ak|2 +
CR0

2K − 2
||u||2r=R0

. (4.14)

Moreover, for all S ∈ [R0, R1], we have,

||u||2r=R0
= ||u||2r=S −

∫ R0

S

(||u(r)||2L2(0,2π) + 2r Re〈∂ru, u〉L2(0,2π))dr,

that gives,

||u||2r=R0
= ||u||2r=S + O(||∂ru||2R0≤r≤R1

+ ||u||2R0≤r≤R1
),

and thus, using the equation −Δu = ρu and standard Sobolev estimates,

||u||2r=R0
= ||u||2r=S + O(||u||2R0≤r≤R1

).

Inserting this into (4.14), and taking K sufficiently large, we obtain,

||u||2R0≤R≤R1
≤ C ′

K

∑

|k|≤K

|ak|2 +
C ′

K − 1
||u||2r=S , (4.15)

where C ′, C ′
K > 0 are constants, and C ′ is independent of K. Finally, integrat-

ing in S on [R0, R1], and increasing again the value of K, we arrive at,

||u||2R0≤r≤R1
≤ 2C ′

K

∑

|k|≤K

|ak|2. (4.16)

Then, Proposition 4.1 directly follows from (4.3), Lemmas 4.2 and 4.3 and
(4.16). �
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Remark 4.5. By integrating with respect to R on any bounded interval of
[R0,+∞), and using the equation −Δuε = ρuε and standard estimates on the
Laplacian, we easily deduce from this proposition that, for any bounded open
set V ⊂ {|(x, y)| ≥ R0} and any s ≥ 0, one has ‖uε‖2

Hs(V ) = O(| Im ρ|+e−C/ε)
for any C > 0.

Remark 4.6. The result of Proposition 4.1 can easily be generalized to any
dimension n ≥ 2 by working with the complex measure (νk(r)/ν′

k(r))n−1dr
instead of (νk(r)/ν′

k(r))dr in the proof of Lemma 4.3.

Remark 4.7. As pointed out to us by J. Sjöstrand, an alternative (and probably
more conceptual) proof of Proposition 4.1 may consist in making the change
of scale r �→ r/h, where h > 0 is an extra small parameter, and to apply
the techniques of semiclassical analysis as h → 0+. The fact that u is outgoing
means that it lives around the outgoing trajectories starting from the obstacle,
and thus in a microlocal weighted space where −h2Δ − ρ can be written as
the product of an elliptic pseudodifferential operator with ∂r − iA, where the
selfadjoint operator A acts on the tangent variable θ only, and is positive. Such
arguments are developed in [18], Section 4.

5. Estimate Near the Obstacle

Now, reasoning by contradiction, assume the existence of δ0 > 0 such that,
along a sequence ε → 0+, one has

| Im ρ| = O(e−(πL+δ0)/ε). (5.1)

In the rest of the proof, it will always be assumed that ε tends to zero along
this sequence. Then, Proposition 4.1 (added to standard Sobolev estimates)
tells us that for any R1 > R0 > 0 such that B ⊂ {|(x, y)| < R0}, we have,

‖uε‖2
H1(R0<|(x,y)|<R1)

= O(e−(πL+δ0)/ε). (5.2)

To propagate this estimate up to an arbitrarily small neighborhood of B, we
use the Carleman estimate in [14, Theorem 3.5].

First, fix a point (x0, y0) in E = R
2\B, and assume there exists a real

function f defined on a small open neighborhood V0 of (x0, y0) in E, with
f(x0, y0) = 0, ∇f(x0, y0) �= 0, and such that for any δ > 0 small enough, there
exists δ′ = δ′(δ) > 0, such that,

‖uε‖2
H1(V ∩{f≥δ}) = O(e−(πL+δ′)/ε), (5.3)

uniformly as ε → 0+. (For instance, in view of (5.2), (x0, y0) could be any point
of E such that |(x0, y0)| = R−, with R− := inf{R > 0 ; B ⊂ {|(x, y)| ≤ R},
and f(x, y) = x2 + y2 − R2

−.)
For λ > 0 fixed large enough and (x, y) in V0, following [14,15], we con-

sider the function,

ϕ(x, y) := eλ(f(x,y)−(x−x0)
2−(y−y0)

2).
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Then, setting,

pϕ(x, y, ξ, η) := ξ2 + η2 − |∇ϕ(x, y)|2 + 2i〈∇ϕ(x, y), (ξ, η)〉 = q1 + iq2,

it is easy to check that, if λ has been taken large enough, then there exists a
constant C0 > 0 such that one has the implication,

pϕ(x, y, ξ, η) = 0 ⇒ {q1, q2}(x, y, ξ, η) ≥ 1
C0

,

where {q1, q2} is the Poisson bracket of the real-valued functions q1 and q2.
Moreover, possibly by shrinking V0 around (x0, y0), we see that ∇ϕ �= 0 on
V . In particular, Assumption 3.1 of [14] is satisfied, and if χ ∈ C∞

0 (V0 ; [0, 1])
is such that χ = 1 near (x0, y0), we can apply Theorem 3.5 of [14] to the
function w := χuε, and with small parameter h := ε/μ, where μ > 0 is an
extra-parameter that will be fixed small enough later on. Then, for ε/μ small
enough, we obtain,

‖eμϕ/εw‖2
L2 + μ−2ε2‖eμϕ/ε∇w‖2

L2 ≤ Cμ−3ε3‖eμϕ/εΔw‖2
L2 (5.4)

where C > 0 is a constant. Then, writing −Δw = ρw− [Δ, χ]uε, and observing
that, for ε/μ small enough, the term involving ρw in the right-hand side of
(5.4) can be absorbed by the first term of the left-hand side, we led to,

‖eμϕ/εw‖2
L2 + μ−2ε2‖eμϕ/ε∇w‖2

L2 ≤ Cμ−3ε3‖eμϕ/ε[Δ, χ]uε‖2
L2 ,

with a new constant C > 0. Now, setting m0 := supV0
ϕ, V ′

0 := {χ = 1},
Sδ := Supp∇χ ∩ {f < δ} (δ > 0 small enough), and using (5.3), we deduce,

‖eμϕ/εuε‖2
L2(V ′

0 ) + μ−2ε2‖eμϕ/ε∇uε‖2
L2(V ′

0 )

= O(μ−3ε3‖eμϕ/ε[Δ, χ]uε‖2
L2(Sδ) + e(μm0−πL−δ′)/ε). (5.5)

On the other hand, we have Sδ ⊂ {f < δ} ∩ {|(x, y) − (x0, y0)| ≥ δ1} for
some δ1 > 0 independent of δ, and thus, by construction, for δ > 0 sufficiently
small, there exists a constant δ2 > 0 such that,

Sδ ⊂ {ϕ(x, y) ≤ 1 − δ2}. (5.6)

As a consequence, we obtain,

‖eμϕ/εuε‖2
L2(V ′

0 ) + μ−2ε2‖eμϕ/ε∇uε‖2
L2(V ′

0 )

= O(μ−3ε3eμ(1−δ2)/ε‖uε‖2
H1(Sδ) + e(μm0−πL−δ′)/ε). (5.7)

Since Sδ ⊂ E, we also know [see (3.2)] that ‖uε‖H1(S) is not exponentially
larger than e−πL/2ε. Moreover, since ϕ(x0, y0) = 1, if Br stands for the ball of
radius r centered at (x0, y0), we have ϕ ≤ 1 − θ(r) on Br, with θ(r) → 0 as
r → 0. Therefore, for r > 0 small enough, we deduce from (5.7),

‖uε‖2
L2(Br) + μ−2ε2‖∇uε‖2

L2(Br)

= O(μ−3ε3e(μ(θ(r)− 1
2 δ2)−πL)/ε + e(μ(m0−1+θ(r))−πL−δ′)/ε). (5.8)
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Now, we first fix δ > 0 such that (5.6) is satisfied, and then r > 0 and μ > 0
sufficiently small, in such a way that θ(r) ≤ 1

4δ2 and (μ(m0 − 1 + θ(r)) ≤ 1
2δ′.

We obtain,

‖uε‖2
L2(Br) + ε2‖∇uε‖2

L2(Br) = O(e−πL/ε(e− μ
4 δ2/ε + e− 1

2 δ′/ε))

In other words, we have extended the estimate (5.3) across the boundary {f =
0} near (x0, y0). Our argument can be performed near any point (x0, y0) ∈ E
where an estimate like (5.3) is valid, and thus, starting from the points of the
circle {|(x, y)| = R−} [where the estimate is valid thanks to the Proposition
4.1 and the assumption (5.1)], and deforming continuously this circle up to
make it become the boundary of B, a standard covering argument leads to,

Proposition 5.1. Under assumption (5.1), for any compact set K ⊂ E, there
exists δ = δ(K) > 0 such that,

‖uε‖2
H1(K) = O(e−(πL+δ)/ε),

uniformly as ε → 0+.

Remark 5.2. Using the equation, we deduce that, actually, in the previous
estimate H1 can be replaced by any Hm, m ≥ 0.

6. Estimate at the Boundary

Now, we plan to propagate the estimates of the previous section up to the
boundary of B (but away from any arbitrarily small neighborhood of M0),
by making use of the Carleman estimate at the boundary as stated in [15],
Proposition 2 [see also [14], Theorem 7.6, applied to e−ρtuε(x, y)].

We consider an arbitrary point (x0, y0) on the boundary ∂B of B, with
(x0, y0) �= (L, 0), and a small enough open neighborhood V of (x0, y0) in R

2.
We also consider a compact neighborhood K ⊂ V of (x0, y0), and we denote
by f a function defining ∂B near (x0, y0), in the sense that one has,

B ∩ V = {(x, y) ∈ V ; f(x, y) < 0},

and ∇f �= 0 on V . Finally, as in following [14,15], one sets,

ϕ(x, y) := eλ(f(x,y)−(x−x0)
2−(y−y0)

2),

where λ > 0 is fixed sufficiently large and C0 > supV (f(x, y) − (x − x0)2 −
(y − y0)2)). In particular, if V has been taken sufficiently small, we see (e.g.,
as in [14], Lemma A.1) that ϕ satisfies Assumption (8) of [15]. Moreover, since
the outward pointing unit normal to E in V is n := −∇f/|∇f |, we also have
∂nϕ |∂E∩V < 0. Therefore, we can apply Proposition 2 of [15] (or, alternatively,
Theorem 7.6 of [14]), and we obtain the existence of a constant C > 0 such
that, for any μ, ε > 0 with ε/μ small enough,

‖eμϕ/εχuε‖2
L2(E∩V ) + μ−2ε2‖eμϕ/ε∇(χuε)‖2

L2(E∩V )

≤ Cμ−3ε3‖eμϕ/εΔ(χuε)‖2
L2(E∩V ),
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where χ ∈ C∞
0 (V ; [0, 1]) is some fixed cutoff function such that χ = 1 on K.

Using that −Δuε = ρuε, for ε small enough, we deduce,

‖eμϕ/εuε‖2
L2(E∩K) + μ−2ε2‖eμϕ/ε∇uε‖2

L2(E∩K)

≤ 2Cμ−3ε3‖eμϕ/ε[Δ, χ]uε)‖2
L2(E∩V ).

Now, for all δ > 0 small enough, on Supp∇χ ∩ {f ≤ δ} ∩ V , we have,

ϕ ≤ ϕ(x0, y0) − δ′,

with δ′ = δ′(δ) > 0. On the other hand, on {f ≥ δ} ∩ V , by Proposition 5.1
we have,

‖uε‖2
L2({f≥δ}∩V ) = O(e−(πL+δ′)/ε).

Therefore, using also (3.2), and fixing μ > 0 in a convenient way as before, we
obtain the existence of δ1 > 0, such that,

‖eμϕ/εuε‖2
L2(E∩K) + ε2‖eμϕ/ε∇uε‖2

L2(E∩K) = O(e(μϕ(x0,y0)−πL−δ1)/ε),

and if V ′ ⊂ K is a sufficiently small neighborhood of (x0, y0), we finally obtain,

‖uε‖2
H1(E∩V ′) = O(e−(πL+ 1

2 δ1)/ε).

Since (x0, y0) was arbitrary on ∂B\{M0} (where M0 = (L, 0)), we have proved,

Proposition 6.1. Under the assumption (5.1), for any neighborhood U of M0

and any compact set K ⊂ R
2, there exists δ > 0 such that,

‖uε‖2
H1(E∩K\U) = O(e−(πL+δ)/ε),

uniformly as ε → 0+.

Remark 6.2. Using the equation and a standard result of regularity on the
Dirichlet Laplacian (see, e.g., [2]), we can deduce that, in the previous estimate,
H1 can be replaced by any Hm, m ≥ 0.

7. Estimate Near the Aperture

Now, we concentrate our attention to a small neighborhood of M0 in E. More
precisely, we fix ε1 ∈ (0, ε0], such that,

π2

4ε2
1

> λ0,

and we consider the rectangle,

Q := [Lε, L + ε1] × [−ε1, ε1],

where Lε = L − O(ε2) is defined as the unique value such that (Lε,±ε) ∈ ∂B.
In particular, the point Mε := (Lε, 0) belongs to ∂Q, and, if ε1 is taken

sufficiently small, then,

Q\({Lε} × [−ε1, ε1]) ⊂ Ω(ε).

Moreover, by Proposition 6.1, we know the existence of some δ > 0 such
that uε is O(e−(πL+δ)/ε) near ∂Q\({Lε} × [−ε1, ε1]).
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∂B

− 1

1

χ = 1

χ = 0

M

x = L

Figure 2. The aperture

Let χ ∈ C∞
0 (R2; [0, 1]) such that (see Fig. 2),

• χ = 1 on [Lε, L + 1
2ε1] × [− 1

2ε1,
1
2ε1];

• χ = 0 on ([L + ε1,+∞) × R) ∪ (R × (−∞,−ε1]) ∪ (R × [ε1,+∞)).

We set,

v := χuε.

In particular, v ∈ H2(Q) and v
∣
∣|y|=ε1 = 0. Therefore, on Q, we can expand v

as,

v(x, y) =
∑

j≥1

vj(x)ϕj(y), (7.1)

where ϕjs are the eigenfunctions of the Dirichlet realization of −d2/dy2 on
[−ε1, ε1], namely,

ϕ2j(y) =
1√
ε1

sin(α2jy/ε1) ; ϕ2j−1(y) =
1√
ε1

cos(α2j−1y/ε1) ; αj :=
jπ

2
,

and vj ∈ H2([Lε, L + ε1]). Moreover, using Proposition 6.1 and Remark 6.2,
on Q we have,

−Δv = ρv + r
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where ‖r‖2
Hm(Q) = ‖[Δ, χ]uε‖2

Hm(Q) = O(e−(πL+δ)/ε), and r
∣
∣|y|=ε1 = 0 (m ≥

0 arbitrary, and δ = δ(m) > 0). We deduce that the vjs verify,

− v′′
j + βjvj = rj , (7.2)

where we have set βj := α2
j

ε2
1

− ρ, and rj :=
∫ ε1

−ε1
r(x, y)ϕj(y)dy, so that we

have,
∑

j≥1

jm‖rj‖2
Hm([L,L+ε1])

= O(e−(πL+δ)/ε). (7.3)

By construction, we also have vj = 0 on [L + ε1,+∞).

Proposition 7.1. Assume (5.1). Then, for all j ≥ 1, there exist bj ∈ C and
sj ∈ ∩m≥0H

m([L,L + ε1], such that,

vj(x) = bje
−(x−Lε)

√
βj + sj(x);

∑

j≥1

jm‖sj‖2
Hm([Lε,L+ε1])

= O(e−(πL+δm)/ε),

with δm > 0 and uniformly with respect to ε small enough.

Proof. Set,

Wj :=
(

vj

v′
j

)

.

Then, by (7.2), Wj is the solution of,
{

W ′
j = AjWj − Rj ;

Wj(L + ε1) = 0,

with Aj :=
(

0 1
βj 0

)

and Rj :=
(

0
rj

)

. Therefore,

Wj(x) =
∫ L+ε1

x

e(x−t)Aj Rj(t)dt,

and, diagonalizing Aj and re-writing the solution in a basis of eigenvectors of
Aj , we obtain in particular,

v′
j(x) +

√

βjvj(x) =
∫ L+ε1

x

e(x−t)
√

βj rj(t)dt.

Using again that v(L + ε1) = 0, we deduce,

vj(x) = −
∫ L+ε1

x

∫ L+ε1

x1

e(2x1−t−x)
√

βj rj(t)dtdx1.

Then, the results follow with bj := −
∫ L+ε1

Lε

∫ L+ε1

x1
e(2x1−t−Lε)

√
βj rj(t)dtdx1

and sj(x) :=
∫ x

Lε

∫ L+ε1

x1
e(2x1−t−x)

√
βj rj(t)dtdx1, by observing that Re((2x1 −

t − x)
√

βj) < 0 on the domain of integration of sj(x) and using (7.3). �



Vol. 17 (2016) Lower Bound of Resonances for Helmholtz Resonator 661

Remark 7.2. Let ε2 ∈ (0, 1
2ε1) arbitrary. By Proposition 5.1, we know that

there exists a constant δ = δ(ε2) > 0 such that,

‖v‖L2((L+ε2,L+ε1)×(−ε1,ε1)) = O(e−(πL+δ)/2ε).

On the other hand, using (7.1) and Proposition 7.1, on (Lε, L+ε1)×(−ε1, ε1)),
we have,

v(x, y) =
∑

j≥1

bje
−(x−Lε)

√
βj ϕj(y) + s(x, y),

with ‖s‖L2((Lε,L+ε1)×(−ε1,ε1)) = O(e−(πL+δ0)/2ε) for some constant δ0 > 0.
Since

√
βj ∼ jπ

2ε1
as j → ∞, and ε2 is arbitrarily small, we immediately

deduce that, for any ν > 0, there exists δ = δ(ν) > 0, such that,
∑

j≥1

|bj |2e−νj = O(e−(πL+δ)/ε), (7.4)

uniformly as ε → 0+.

8. Representations at the Aperture

In this section, we consider the trace of v on {x = Lε}. By construction, it
also coincides with the trace uε as long as |y| < 1

2ε1. Now, as in [17], there are
two ways of taking this trace, depending if one takes the limit x → (Lε)+ or
x → (Lε)−.

Considering first the limit x → (Lε)−, we can just apply the results of
[17], Sections 4 & 6 (in particular (4.2), (4.3) and Lemma 6.1), and for x < Lε

close to Lε and |y| < ε, we obtain,

v(x, y) =
∞∑

k=1

(

ak,+eθkx/ε + ak,−e−θkx/ε
)

ψk(y), (8.1)

where we have used the notations,

ψ2k(y) =
1√
ε

sin(α2ky/ε) ; ψ2k−1(y) =
1√
ε

cos(α2k−1y/ε) ; αk :=
kπ

2
;

θk :=
√

α2
k − ε2ρ(ε),

(here,
√· stands for the principal square root), and where ak,± are

(ε-dependent) constant complex numbers. Moreover, the sum converges in
H2((L − ε1, Lε) × (−ε, ε)), and the limit x → (Lε)− gives (see [17],
Lemma 6.1),

v(Lε, y) =
∞∑

k=1

(

ak,+eθkLε/ε + ak,−e−θkLε/ε
)

ψk(y), (8.2)
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together with [see [17], formula (6.7)],

∂xv(L, y) =
1
ε

∑

k≥1

θk

(

ak,+eθkLε/ε − ak,−e−θkLε/ε
)

ψk(y) in H1/2(|y| ≤ ε).

(8.3)
Then, starting from(7.1), and using similar arguments, the limit x →

(Lε)+ can be taken in the same way, and using Proposition 7.1, we obtain,

v(Lε, y) =
∞∑

j=1

(bj + sj(Lε)) ϕj(y), (8.4)

together with,

∂xv(Lε, y) =
∞∑

j=1

(−
√

βjbj + sj
′(Lε))ϕj(y) in H1/2(|y| ≤ ε1). (8.5)

Moreover, still by Proposition 7.1, we have,
∑

j≥1

(

|sj(Lε)|2 + |s′
j(Lε)|2

)

= O(e−(πL+δ)/ε), (8.6)

for some constant δ > 0.

9. Estimates on the Coefficients

At this point, we can proceed as [17], Section 7 (but working with v instead
of uε), with the difference that, in our present case, the index j0 appearing in
[17], formula (6.8), is just 0 (that is, all the sums over {j ≤ j0} become null).
For the sake of completeness, we briefly reproduce these arguments here.

The main idea consists in computing in two different ways the three
following quantities:

〈v, ∂xv〉{Lε}×[−ε,ε] , 〈v, ϕ1〉{Lε}×[−ε,ε] , 〈∂xv, ψ1〉{L}×[−ε,ε].

We set

Ak,± := ak,±e±θkL/ε.

In view of (8.2–8.6), the two computations of 〈v, ∂xv〉{Lε}×[−ε,ε] give the
identity

1
ε

∑

k≥1

θk(|Ak,+|2 − |Ak,−|2 + 2i Im(Ak,+Ak,−)) = −
∑

j≥1

(
√

βj)|bj |2 + r(ε),

with

r(ε) = O

⎛

⎜
⎝e−(πL+δ)/ε + e−(πL+δ)/2ε

⎛

⎝
∑

j≥1

|bj |2
⎞

⎠

1
2
⎞

⎟
⎠

= O

⎛

⎝e−(πL+ δ
2 )/ε + e−δ/ε

∑

j≥1

|bj |2
⎞

⎠ . (9.1)
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Taking the real part, and using the fact that Re θk ∼ kπ/2 as k → ∞, while
| Im θk| = O(k−1e−δ/ε) for some constant δ > 0, we obtain,

1
ε

∑

k≥1

(Re θk)(|Ak,+|2 − |Ak,−|2) +
1
ε

∑

k≥1

O(k−1e−δ/ε)|Ak,+Ak,−|

= −
∑

j≥1

(Re
√

βj)|bj |2 + r(ε).

In particular, since Re
√

βj = πj
2ε1

(1 + O(ε2j−2)), we see that there exists a
constant C > 0 such that
∑

k≥1

Re θk(|Ak,+|2 − |Ak,−|2) ≤ C
∑

k≥1

k−1e−δ/ε|Ak,+Ak,−|

−π

2
ε

ε1

∑

j≥1

j(1 − Cε2j−2)|bj |2 + r(ε). (9.2)

Moreover, by Appendix A in [17], there exists a constant c > 0, such
that,

∑

k≥1

k|ak,−e−cθk |2 = O(ε−1/2), (9.3)

and thus, for ε small enough,
∑

k≥2

k|Ak,−|2 =
∑

k≥2

k|ak,−e−cθk |2e−2θk( L
ε −c) = O(ε−1/2e−2πL/ε). (9.4)

Therefore, we deduce from (9.2)(with some new positive constants C, δ),
∑

k≥1

(k − Ck−1e−δ/ε)|Ak,+|2

≤ (1 + Ce−δ/ε)|A1,−|2 − 2ε

π
(1 + r1(ε))

∑

j≥1

Re
√

βj |bj |2 + r2(ε), (9.5)

with
r1(ε) = O

(

e−δ/ε
)

; r2(ε) = O
(

e−(πL+δ)/ε
)

. (9.6)

Now, computing 〈v(Lε, ·), ϕ1〉L2(|y|<ε) and 〈∂xv(Lε, ·), ψ1〉L2(|y|<ε) in
two different ways [using (8.2–8.6)], we find

∑

k≥1

μk(Ak,+ + Ak,−) = b1;

1
ε
θ1(A1,+ − A1,−) = −

∑

j≥1

νj(
√

βjbj − s′
j(Lε)),

with

μk :=
∫ ε

−ε

ψk(y)ϕ1(y)dy =

⎧

⎨

⎩

0 if k is even;

(−1)
k−1
2

4k
√

ε/ε1

π(k2−(ε/ε1)
2)

cos π
2

ε
ε1

if k is odd,
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and

νj :=
∫ ε

−ε

ϕj(y)ψ1(y)dy =

⎧

⎪⎪⎨

⎪⎪⎩

0 if j is even;
4
√

ε/ε1 sin(((ε/ε1)j−1)π/2)

π((ε/ε1)
2j2−1)

if j �= ε1
ε is odd;

√

(ε/ε1) if j = ε1
ε is odd.

Using (9.4) again and (7.4), we obtain

|A1,+ + A1,−| ≤ Ce−(πL+δ)/2ε +
∑

k≥2

|μk

μ1
Ak,+| +

C√
ε
e−πL/ε; (9.7)

|A1,+ − A1,−| ≤ ε

|θ1|
∑

j≥1

|νj

√

βjbj | + Ce−(πL+δ)/2ε, (9.8)

with some new constant C > 0.
Then, we observe that |μk/μ1| ≤ (k − ε2

ε2
1
)−1 (k odd), thus by (9.5),

∑

k≥2

|μk

μ1
Ak,+| ≤

⎛

⎝
∑

k≥3

1
k(k − ε2

ε2
1
)2

⎞

⎠

1
2
⎛

⎝
∑

k≥2

k|Ak,+|2
⎞

⎠

1
2

≤ τ1

⎛

⎝α|A1,−|2 − β
2ε

π

∑

j≥1

Re
√

βj |bj |2 + r2(ε)

⎞

⎠

1
2

+ Ce−(πL+δ)/2ε, (9.9)

where τ1 can be taken arbitrarily close to (
∑

k≥3 k−3)
1
2 < 1

2 , and α, β are
positive numbers that tend to 1 as ε → 0, and are such that α|A1,−|2 −
β 2ε

π

∑

j≥1 Re
√

βj |bj |2+r2(ε) remains non-negative for all ε > 0 small enough.
Inserting (9.9) into (9.7), we obtain

|A1,+ + A1,−|

≤ τ1

⎛

⎝α|A1,−|2 − β
2ε

π

∑

j≥1

Re
√

βj |bj |2 + r2(ε)

⎞

⎠

1
2

+ 2Ce−(πL+δ)/2ε.

(9.10)

On the other hand, going back to (9.8), the Cauchy–Schwarz inequality gives,

ε

|θ1|
∑

j≥1

|νj

√

βjbj | ≤ τ2

⎛

⎝
2ε

π

∑

j≥1

|bj |2|
√

βj |

⎞

⎠

1
2

(9.11)

with

τ2
2 =

επ

2|θ1|2
∑

j≥1

j|νj |2|
√

βj |

=
16
π2

(1 + O(ε2))
∑

j≥1, j odd

ε

ε1

jε
ε1

sin2
(

( jε
ε1

− 1)π
2

)

(

( jε
ε1

)2 − 1
)2 (1 + O(j−2)) (9.12)
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In particular, when ε → 0, then τ2 tends to Γ2 := 2
√

2
π

(∫∞
0

x sin2((x−1)π/2)
(x2−1)2 dx

) 1
2
, and we deduce from (9.8) and (9.11), plus the fact

that Im
√

βj = O(e−δ/ε) uniformly,

|A1,+ − A1,−| ≤ τ̃2

⎛

⎝
2ε

π

∑

j≥1

Re
√

βj |bj |2
⎞

⎠

1
2

+ Ce−(πL+δ)/2ε, (9.13)

where τ̃2 can be taken arbitrarily close to Γ2. Actually, Γ2 can be computed
exactly, and one finds,

Γ2 =
2
√

2
π

(

−1
2

+
π

4
Si(π)

) 1
2

≈ 0, 879.

(Here, Si(x) :=
∫ x

0
sin t

t dt.)
Summing (9.10) with (9.13), and using the triangle inequality, we finally

obtain

2|A1,−| ≤ τ1

√

α|A1,−|2 − βX + r2(ε) + τ2

√
X + 3Ce−(πL+δ)/2ε, (9.14)

where we have set

X :=
2ε

π

∑

j

Re
√

βj |bj |2.

Now, an elementary computation shows that the map

[0, A2] � Y �→ τ1

√

A2 − βY 2 + τ2Y

reaches its maximum at Y = τ2
2

βτ2
1 +τ2

2
A/

√
β, and the maximum value is

(√

τ2
1 + β−1τ̃2

2

)

A.

Therefore, we deduce from (9.14),

2|A1,−| ≤
(√

τ2
1 + β−1τ̃2

2

)√

α|A1,−|2 + r2(ε) + 3Ce−(πL+δ)/2ε

≤
(√

α(τ2
1 + β−1τ̃2

2 )
)

|A1,−| + O(e−(πL+δ)/2ε). (9.15)

Since
√

α(τ2
1 + β−1τ2

2 ) tends to
√
∑

k≥2 k−3 + Γ2
2 as ε → 0, and

∑

k≥3

k−3 + Γ2
2 ≤ 1

4
+

8
10

< 4,

we have proved,

Proposition 9.1. Under the assumption (5.1), there exist two constants C, δ > 0
such that, for any ε > 0 small enough, one has,

|A1,−| ≤ Ce−(πL+δ)/2ε. (9.16)
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10. End of the Proof

By Assumption (H), we see that the Dirichlet eigenfunction u0 satisfies the
hypothesis of [3] Lemma 3.1. Then, following the arguments of [3] leading to
(13) in that paper, and using again [13], Proposition 3.1 and Formula (5.13),
we conclude that for any δ > 0 and any x ∈ (0, L), there exists C1 such that
the resonant state uε verifies (see [3], Formula (13)),

‖uε‖L2([x,Lε]×[−ε,ε]) ≥ 1
C0

ε4.5+δe−πx/2ε. (10.1)

Using this estimate, we can now prove as in [17], Proposition 8.2, the following
proposition that contradicts the inequality (9.16), and thus completes the proof
the theorem 2.2.

Proposition 10.1. For any δ > 0, there exists C > 0, such that

|A1,−| ≥ 1
C

ε4.5+δe−πL/2ε, (10.2)

for ε > 0 small enough.

Proof. Starting from (9.5), we see,
∑

k≥1

|Ak,+|2 ≤ (1 + Ce−δ/ε)|A1,−|2 + Ce−(πL+δ)/ε. (10.3)

Then, computing the quantity ‖uε‖L2([x,L]×[−ε,ε]) using the expression (8.1),
we obtain (see [17], proof of Proposition 8.2),

‖uε‖2
L2([x,Lε]×[−ε,ε]) ≤ 4

∑

k≥1

|Ak,+|2 + 4
∑

k>1

|ak,−|2e−2x Re θk/ε

+ε|a1,−|2e−2x Re θ1/ε. (10.4)

Using (10.3) and (9.3), we deduce

‖uε‖2
L2([x,Lε]×[−ε,ε]) ≤ Cε|a1,−|2e−2x Re θ1/ε + C|a1,−|2e−2L Re θ1/ε

+Cε−Ce−2x Re θ1/εe−2C0x/ε + Ce−(πL+δ)/ε, (10.5)

and thus, using (10.1), we finally obtain,

ε9+2δ ≤ C|a1,−|2, (10.6)

and the result is proved. �

11. An Extension to Larger Dimensions

Here, we consider the similar problem in dimension n ≥ 3, obtained by taking
tubes with square sections. That is, C is a regular bounded open subset of Rn,
and we have (in Euclidean coordinates x = (x1, . . . , xn) = (x1, x

′) ∈ R×R
n−1),
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C ⊂ B;
(0, 0) ∈ ∂C; (L, 0) ∈ ∂B;
[0, L] × {0} ⊂ B\C;
Near M0 := (L, 0), B is convex and ∂B is symmetric with
respect to {xj = 0} for all j ≥ 2.

(11.1)

Remark 11.1. In particular, this also contains the case where ∂B is flat near
M0, that is when {(L, x2, . . . , xn) ; |xj | < ε0, j = 2, . . . , n} ⊂ ∂B for some
ε0 > 0.

Then, setting Qε := {(x2, . . . , xn) ; |xj | < ε, j = 2, . . . , n}, T (ε) :=
[−ε0, L] × Qε ∩ (Rn\C), and E := R

n\B, we consider the resonances of the
resonator Ω(ε) := C ∪ T (ε) ∪ E.

As before, let λ0 be an eigenvalue of −ΔC , and let u0 be the corresponding
normalized eigenfunction.

In this situation, the lower estimate of [13] (see also [3]) becomes

Im ρ(ε) = O(e−(1−δ)πL
√

n−1/ε),

where ρ(ε) stands for any resonance that tends to λ0 as ε → 0+, and δ > 0 is
arbitrary.

We assume again,
Assumption (H):

λ0 is the lowest eigenvalue of − ΔC .

Then, we have

Theorem 11.2. Assume (H) and 2 ≤ n ≤ 12. Then, for any δ > 0, there exists
Cδ > 0 such that, the only resonance ρ(ε) close to λ0 satisfies,

| Im ρ(ε)| ≥ 1
Cδ

e−π(1+δ)L
√

n−1/ε,

uniformly as ε → 0+.

Proof. The computations are very similar to those in dimension 2, and we
highlight here only what is specific to dimension n. The notations are similar,
but their meaning is modified as follows. For k = (k2, . . . , kn) ∈ N

n−1 (where
N := {1, 2, 3, . . . }), we set

αk :=
(

k2π

2
, . . . ,

knπ

2

)

∈ R
n−1;

θk :=
√

|αk|2 − ε2ρ(ε);

βk := |αk|2ε−2
1 − ρ(ε);

ψk(x′) := ψk2(x2) . . . ψkn
(xn);

ϕk(x′) := ϕk2 . . . (x2)ϕkn
(xn).

(Here, |k| stands for the Euclidean norm of k in R
n−1.) With these nota-

tions, the formulas (8.1–8.6) remain valid with the following changes:
•
∑∞

k=1 must be replaced by
∑

k∈Nn−1 , and analog for
∑∞

j=1;
• y must be replaced by x′;
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• (−ε, ε) and (−ε1, ε1) must be, respectively, replaced by Qε and Qε1 (where
ε1 is taken such that (n−1)π2

4ε2
1

> λ0).

Computing in two ways the quantities 〈v, ∂xv〉{L}×Qε
, 〈v, ϕ1,...,1〉{L}×Qε

,
and 〈∂xv, ψ1,...,1〉{L}×Qε

, we find the following analogs of (9.5–9.8):
∑

k∈Nn−1

(|k| − C|k|−1e−δ/ε)|Ak,+|2

≤ (1 + Ce−δ/ε)|A1,...,1,−|2 − 2ε

π
(1 + r1)

∑

j∈Nn−1

Re
√

βj |bj |2 + r2;

|A1,...,1,+ + A1,...,1,−| ≤ Ce−(πL
√

n−1+δ)/2ε +
∑

|k|>√
n−1

| μk

μ1,1
Ak,+|

+
C√
ε
e−πL

√
4+(n−2)2/2ε;

|A1,1,+ − A1,1,−| ≤ ε

|θ1,...,1|
∑

j∈Nn−1

|νj

√

βjbj | + Ce−(πL
√

n−1+δ)/2ε,

where we have set

νj := νj2 . . . νjn
; μk := μk2 . . . μkn

,

and with,

r1 = O(e−δ/ε); r2 = O(e−(πL
√

n−1+δ)/ε).

Using the fact that μk2,...,kn
/μ1,...,1 ≤ (k2 − ε2

ε2
1
)−1 . . . (kn − ε2

ε2
1
)−1 (k2, . . . , kn

odd), this also gives

|A1,...,1,+ + A1,...,1,−|

≤ τ̃1

⎛

⎝|A1,...,1,−|2 − ε

ε1

∑

j∈Nn−1

|j||bj |2
⎞

⎠

1
2

+ Ce−(πL
√

2+δ)/2ε, (11.2)

where τ̃1 can be taken arbitrarily close to

J1 :=
( ∑

|k|2>n−1 ; kj odd

|k|−1k−2
2 . . . k−2

n

) 1
2

=
( ∑

kj odd

|k|−1k−2
2 . . . k−2

n − 1√
n − 1

) 1
2
. (11.3)

A rough estimate on J1 can be obtained by writing,

J2
1 ≤ 1√

n − 1

⎛

⎝

(
∑

�∈N odd

1
�2

)n−1

− 1

⎞

⎠ ≤ 1√
n − 1

((
π2

8

)n−1

− 1

)

.
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In a similar way we obtain,

|A1,...,1,+ − A1,...,1,−| ≤ τ̃2

⎛

⎝
ε

ε1

∑

j∈Nn−1

|j||bj |2
⎞

⎠

1
2

+ Ce−πL(
√

n−1+δ)/2ε, (11.4)

where τ̃2 can be taken arbitrarily close to the quantity

J2 =
4n−1

(π
√

2)n−1
√

n − 1

×
(
∫

R
n−1
+

|x| sin2((x1 − 1)π/2) . . . sin2((xn−1 − 1)π/2)
(x2

1 − 1)2 . . . (x2
n−1 − 1)2

dx1 . . . dxn−1

) 1
2

.

(11.5)

Writing |x| ≤ |x1| + · · · + |xn−1| and making permutations on the variables,
we obtain,

J2 ≤ 4n−1

(π
√

2)n−1

(∫ +∞

0

t sin2((t − 1)π/2)
(t2 − 1)2

dt

) 1
2

×
(∫ +∞

0

sin2((t − 1)π/2)
(t2 − 1)2

dt

)n−2
2

Setting

L1 :=
∫ +∞

0

t sin2((t − 1)π/2)
(t2 − 1)2

dt; L2 :=
∫ +∞

0

sin2((t − 1)π/2)
(t2 − 1)2

dt,

it becomes,

J2 ≤
(

L1

L2

) 1
2
(

4
√

L2

π
√

2

)n−1

.

The integrals L1 and L2 can be computed exactly, and one finds,

L1 = −1
2

+
π

4
Si(π) ≈ 0.9545; L2 =

π2

8
.

In particular, for ε small enough, we have

τ̃2
1 + τ̃2

2 <
8
10

+
1√

n − 1

((
π2

8

)n−1

− 1

)

, (11.6)

and one can check that this quantity is strictly less than 4 when 2 ≤ n ≤ 12.
At this point, we can complete the proof as in the two-dimensional case.
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Appendix A.

We prove Lemma 4.4. For k ≥ 0, we can represent hk(R) = Hk(R
√

ρ) by the
formula (see, e.g., [20]),

hk(R) =
1
iπ

∫ +∞+iπ

−∞
eR

√
ρ sinh t−ktdt,

that we split into,

hk(R) =
1
iπ

∫ 0

−∞
eR

√
ρ sinh t−ktdt +

1
π

∫ π

0

ei(R
√

ρ sin θ−kθ)dθ

+
1
iπ

∫ +∞

0

e−R
√

ρ sinh t−kt−ikπdt

=
1
iπ

∫ 0

−∞
eR

√
ρ sinh t−ktdt + O(1).

In the latter integral, we make the change of variable: t �→ −t − ln k, and we
obtain,

hk(R) =
kk

iπ

∫ +∞

− ln k

ekψ(t)ak(t)dt + O(1),

with,

ψ(t) := t − R
√

ρet/2; ak(t) := eR
√

ρe−t/2k.

Here, we observe that, for any j ≥ 0, we have a
(j)
k,R(t) = O(1) uniformly on

[− ln k,+∞). Moreover, the phase function ψ admits a unique critical point
at tc := ln(2/R

√
ρ), and ψ′′(tc) = −1. In particular, since also Re tc > 0 and

Im tc → 0 as ε → 0, we can apply the method of steepest descent to estimate
this integral, and we obtain,

hk(R) = −i

√

2
π

kk− 1
2 ekψ(tc)

(

ak(tc) + O(k−1)
)

+ O(1),

that is,

hk(R) = −i

√

2
π

kk− 1
2

(
2

eR
√

ρ

)k
(

ak(tc) + O(k−1)
)

+ O(1).

Since ak(tc) = 1 + O(k−1), the result follows.
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