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On the Existence of a Maximal Cauchy
Development for the Einstein Equations:
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Abstract. In 1969, Choquet-Bruhat and Geroch established the existence
of a unique maximal globally hyperbolic Cauchy development of given
initial data for the Einstein equations. Their proof, however, has the
unsatisfactory feature that it relies crucially on the axiom of choice in
the form of Zorn’s lemma. In this paper, we present a proof that avoids
the use of Zorn’s lemma. In particular, we provide an explicit construction
of this maximal globally hyperbolic development.

1. Introduction

This paper is concerned with the initial value problem for the vacuum Einstein
equations, Ric(g) = 0. In her seminal paper [1] from 1952, Choquet-Bruhat
showed that the initial value problem is locally well posed, i.e., in particular
she proved a local existence and a local uniqueness statement. Global aspects
of the Cauchy problem in general relativity were explored in the paper [2]
by Choquet-Bruhat and Geroch from 1969, where they showed that for given
initial data there exists a (unique) maximal globally hyperbolic development
(MGHD), i.e., a globally hyperbolic development (GHD) which is an extension
of any other GHD of the same initial data. The existence of the MGHD not
only implies ‘global uniqueness’ for the Cauchy problem in general relativity
within the class of globally hyperbolic developments, but it also defines the
object whose properties one needs to understand for answering further ques-
tions about the initial value problem1—thus turning the MGHD into a central
object in mathematical general relativity.

1 Prominent and important examples are here the weak and the strong cosmic censorship
conjectures, which are both concerned with the properties of the MGHD (for more details
see Sect. 1.1).
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The proof of the existence of the MGHD, as given by Choquet-Bruhat
and Geroch in [2], has the unsatisfactory feature that it relies heavily on the
axiom of choice in the form of Zorn’s lemma, which they invoke to ensure the
existence of such a maximal element without actually finding it. In this paper,
we present another proof of the existence of the MGHD which does not appeal
to Zorn’s lemma at all and, in fact, constructs the MGHD.

Outline of the paper. In the next subsection, we elaborate more on the impor-
tance of the MGHD by discussing the role it plays in the global theory of the
Cauchy problem for the Einstein equations. Our motivation for giving another
proof of the existence of the MGHD is discussed in Sect. 1.2. Thereafter, we
briefly recall the original proof by Choquet-Bruhat and Geroch. The impatient
or knowledgeable reader is invited to skip directly to Sect. 1.4, where we sketch
the idea of the proof given in this paper and exhibit the analogy of this new
proof with the elementary proof of the existence of a unique MGHD for, say,
a quasilinear wave equation on a fixed background manifold. Finally, Sect. 1.5
gives a brief schematic comparison of the original and the new proof.

In Sect. 2, we introduce the necessary definitions and state the main
theorems, which are then proved in Sect. 3.

1.1. The Maximal Globally Hyperbolic Development in the Global Theory of
the Cauchy Problem in General Relativity

In the following, we give a brief overview of the global aspects of the Cauchy
problem in general relativity, focusing on the role played by the MGHD. Let us
first discuss the aspect of ‘global uniqueness’. In the paper [2], Choquet-Bruhat
and Geroch raised the following question:

A priori, it might appear possible that, once the solution has been
integrated beyond a certain point in some region, the option, pre-
viously available, of further evolution in some quite different region
has been destroyed.2

First of all it is clear, by looking at the Kerr solution for example, that one can
only hope to obtain a global uniqueness result if one restricts consideration to
globally hyperbolic developments of initial data.3 That under this restriction,
however, a global uniqueness statement indeed holds, was first proven in 1969
by Choquet-Bruhat and Geroch in the above cited paper. They actually proved
a stronger statement than global uniqueness, namely they showed the existence
of the MGHD, from which it follows trivially that global uniqueness holds. But
the MGHD also furnishes the central object for the study of further global

2 The possible scenario they describe here is well illustrated by the example of the simple
ordinary differential equation ẋ = 3x2/3. If we prescribe, for instance, at time t = −1 the
initial data x(t = −1) = −1, then there is a unique solution up to time t = 0, given by
x(t) = t3. At time t = 0, however, one can continue x as a C2 solution of the ODE in
infinitely many ways, for example just by setting it to zero for all positive times.
3 A globally hyperbolic development is not just a ‘development’ which is globally hyperbolic,
but one also requires that the initial data embed as a Cauchy hypersurface. See Sect. 2 for
the precise definition of GHD.
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aspects of the Cauchy problem in general relativity. First and foremost one
should mention here the weak and the strong cosmic censorship conjectures.
The latter states that for generic asymptotically flat initial data, i.e., data
which model isolated gravitational systems, the MGHD cannot be isometrically
embedded into a strictly larger spacetime (of a certain regularity). A positive
resolution of the strong cosmic censorship conjecture would thus imply that
for asymptotically flat initial data global uniqueness holds generically even if
we lift the restriction to globally hyperbolic developments.

We now come to the more subtle aspect of ‘global existence’. In fact, the
sheer notion of a spacetime existing for ‘all time’ is already non-trivial due to
the absence of a fixed background manifold. However, the completeness of all
causal geodesics is a geometric invariant, which, moreover, accurately captures
the physical concept of the spacetime existing for all time. And indeed, there
are a few results which establish that global existence in this sense holds for
small neighbourhoods of special initial data (see, for example, the monumental
work of Christodoulou and Klainerman on the stability of Minkowski space,
[3]). On the other hand, there are explicit solutions to the Einstein equations
which do not enjoy this causal geodesic completeness, showing that one cannot
possibly hope to establish ‘global existence’ in this sense for all initial data.
Moreover, Penrose’s famous singularity theorem, see [9], shows that global
existence in this sense cannot even hold generically.4

If we restrict, however, our attention to asymptotically flat initial data,
one could make the physically reasonable conjecture that at least the observers
far out (at infinity) live for all time. Under the assumption that strong cosmic
censorship holds, the mathematical equivalent of this physical conjecture is
that null infinity of the corresponding MGHD is complete—which, for generic
asymptotically flat initial data, is the content of the weak cosmic censorship
conjecture. Thus, the weak cosmic censorship conjecture should be thought of
as conjecturing ‘global existence’.

1.2. Why Another Proof?

Our motivation for giving another proof of the existence of the MGHD is
mainly based on the following three arguments:
(i) A constructive proof is more natural and, from an epistemological point of

view, more satisfying than a non-constructive one, since one can actually
find or construct the object one seeks instead of inferring a contradiction
by assuming its non-existence. Moreover, a direct construction usually
provides not only more insight, but also more information.

(ii) In his lecture notes [6], David Hilbert distinguishes between two aspects
of the mathematical method:5 He first mentions the progressive task of

4 Penrose’s singularity assumes that the development is globally hyperbolic, but recall from
our discussion of global uniqueness that this is the class of spacetimes we are interested in.
5 For Hilbert’s original words on this matter, see [6], page 17:

Der Mathematik kommt hierbei eine zweifache Aufgabe zu: Einerseits gilt es, die
Systeme von Relationen zu entwickeln und auf ihre logischen Konsequenzen zu
untersuchen, wie dies ja in den rein mathematischen Disziplinen geschieht. Dies ist die
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mathematics, which is to establish a suitable set of postulates as the foun-
dations of a theory, and then to investigate the theory itself by finding the
logical consequences of its axioms. Hilbert then goes on to elaborate on
the regressive task of mathematics, which he says is to find and exhibit
the logical dependency of the theorems on the postulates, which, in par-
ticular, leads to a clarification of the strength and the necessity of each
axiom of the theory.

The work in this paper is motivated by the regressive task, we show
that the existence of the MGHD for the Einstein equations does not rely
on the axiom of choice. Besides a purely mathematical motivation for
investigating the strength and the necessity of each axiom of a theory,
there is also an important physical reason for doing so: The question
whether an axiom or a theory is ‘true’ is beyond the realm of mathematics.
However, a physical theory can be judged in accordance with its agreement
with our perception of reality. For example, one would have a reason to
dismiss the axiom of choice from the foundations of the physical theory,6

if its inclusion in the remaining postulates of our physical theory allowed
the deduction of a statement which is in serious disagreement with our
perception of reality. On the other hand, it would be reasonable to include
the axiom of choice in our axiomatic framework of the physical theory, if
one could not prove a theorem, that is crucial for the physical theory,
without it.

To the best of our knowledge, there are neither very strong arguments
for embracing nor for rejecting the axiom of choice in general relativity.
But if it had been the case that the axiom of choice had been needed
for ensuring the existence of the MGHD, this would have been a strong
reason for including it into the postulates of general relativity.

(iii) The structure of the original proof of the existence of the MGHD is in
stark contrast to the straightforward and elementary construction of the
MGHD for, say, a quasilinear wave equation on a fixed background man-
ifold; in the latter case, one constructs the MGHD by taking the union
of all GHDs (see also Sect. 1.4.1). The proof given in this paper embeds
the construction of the MGHD for the Einstein equations in the general
scheme for constructing MGHDs by showing that an analogous construc-
tion to ‘taking the union of all GHDs’ works.

Footnote 5 continued
progressive Aufgabe der Mathematik. Andererseits kommt es darauf an, den an Hand
der Erfahrung gebildeten Theorien ein festeres Gefüge und eine möglichst einfache
Grundlage zu geben. Hierzu ist es nötig, die Voraussetzungen deutlich herauszuar-
beiten, und überall genau zu unterscheiden, was Annahme und was logische Folgerung
ist. Dadurch gewinnt man insbesondere auch Klarheit über die unbewußt gemachten
Voraussetzungen, und man erkennt die Tragweite der verschiedenen Annahmen, so
daß man übersehen kann, was für Modifikationen sich ergeben, falls eine oder die
andere von diesen Annahmen aufgehoben werden muß. Dies ist die regressive Auf-
gabe der Mathematik.

6 Here, the ‘foundations of the physical theory’ should be thought of as ‘mathematics with
all its axioms together with those postulates within mathematics that actually model the
physical theory’.
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We conclude with some formal set theoretic remarks: The results from
PDE theory and causality theory we resort to in our proof do not require more
choice than the axiom of dependent choice (DC). Disregarding such ‘black
box results’ we refer to, our proof only needs the axiom of countable choice
(CC).7 We can thus conclude that the existence of the MGHD is a theorem
of8 ZF+DC; and checking how much choice is actually required for proving
the ‘black box results’ we resort to might even reveal that the existence of the
MGHD is provable in ZF+CC.

We have made no effort to avoid the axiom of countable choice in our
proof—mainly for two reasons: Firstly, the axiom of countable choice is needed
for many of the standard results and techniques in mathematical analysis.
Thus, investigating whether the ‘black box results’ we resort to can be proven
even without the axiom of countable choice promises to be a rather tedious
undertaking, while the gained insight might not be that enlightening. Secondly,
while the axiom of choice has rather wondrous consequences, the implications
of the axiom of countable (or dependent) choice seem, so far, to be less foreign
to human intuition.

1.3. Sketch of the Proof Given by Choquet-Bruhat and Geroch

The original proof by Choquet-Bruhat and Geroch can be divided into two
steps. In the first step, they invoke Zorn’s lemma to ensure the existence of
a maximal element in the class of all developments, and in the second step,
which is more difficult, they show that actually any other development embeds
into this maximal element. Let us recall their proof in some more detail:9

First step: Consider the set M of all globally hyperbolic developments of
certain fixed initial data. Define a partial ordering on this set by M ≤ M ′

iff M ′ is an extension of M . Since a chain is by definition totally ordered, it is
not difficult to glue all the elements of a chain together10 to construct a bound
for the chain in question. Zorn’s lemma then implies that there is at least one
maximal element in M. Pick one and call it M .11

Second step: Let M ′ be another element of M. Choquet-Bruhat and Geroch
set up another partially ordered set, namely the set of all common globally
hyperbolic developments of M and M ′, where the partial order is given by

7 For one application of it, see for example the proof of Lemma 3.10.
8 ZF stands here for the Zermelo–Fraenkel set theory.
9 The reader, who is not familiar with the terminology used below, is referred to the defini-
tions made it Sect. 2.
10 In particular, it is trivial to show that the so-obtained space is Hausdorff!
11 The collection of all globally hyperbolic developments of given initial data is actually
a proper class and not a set (see also footnote 18 and the discussion above the proof of
Theorem 2.8 on page 26). To justify the above steps within ZFC (the Zermelo–Fraenkel
set theory with the axiom of choice), one can perform a reduction to a set X of globally

hyperbolic developments analogous to the reduction used in the proof of Theorem 2.8. One
then identifies elements in X if, and only if, they are isometric (this is needed to ensure that
≤ as defined above is antisymmetric). The quotient space obtained in this way then takes
the place of M in the above argument.
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inclusion. Using the same argument as in Corollary 3.2, they again argue that
every chain is bounded, since one can just take the union of its elements.
By appealing to Zorn’s lemma once more, they establish the existence of a
maximal common globally hyperbolic development U , and argue that it must
be unique.

Now, one glues M and M ′ together along U . The resulting space M̃
can be endowed in a natural way with the structure needed for turning it
into a globally hyperbolic development, which, however, might a priori be
non-Hausdorff. Establishing that M̃ is indeed Hausdorff is at the heart of
their argument. Once this is shown, the resulting development is trivially an
extension of M—and since M is maximal, we must have had U = M ′, i.e., M ′

embeds into M .
The proof of M̃ being Hausdorff goes by contradiction. If it were not

Hausdorff, then one shows that this would be due to pairs of points on the
boundary of U in M and M ′, respectively (cf. the picture below). One then has
to ensure the existence of a ‘spacelike’ part of this non-Hausdorff boundary.
Given a ‘non-Hausdorff pair’ [p], [p′] ∈ M̃ , one then constructs a spacelike slice
T in M that goes through p and such that T\{p} is contained in U . If ψ denotes
the isometric embedding of U into M ′, this also gives rise to a spacelike slice
T ′ := ψ

(
T\{p}) ∪ {p′} in M ′.

Thick line contained twice = non-Hausdorff points

M̃

U

T and T ′ p and p′

M

M ′

extension of isometry

Clearly, the induced initial data on T and T ′ are isometric. Appealing to
the local uniqueness statement for the initial value problem for the Einstein
equations, one thus finds that one can actually extend the isometric identifi-
cation of M with M ′ to a small neighbourhood of p—in contradiction with U
being the maximal common globally hyperbolic development.

Let us remark that the proof of M̃ being Hausdorff is rather briefly pre-
sented in the original paper by Choquet-Bruhat and Geroch. A very detailed
proof is found in Ringström’s [11].

1.4. Outline of the Proof Presented in this Paper

We first discuss a proof of global uniqueness and of the existence of an MGHD
for the case of a quasilinear wave equation on a fixed background manifold.
Our proof for the case of the Einstein equations will then naturally arise by
analogy.



Vol. 17 (2016) On the Existence of a Maximal Cauchy Development 307

1.4.1. The Case of a Quasilinear Wave Equation. Let us consider a quasilinear
wave equation for u : R3+1 → R,

gμν(u, ∂u)∂μ∂νu = F (u, ∂u), (1.1)

where g is a Lorentz metric valued function. Under suitable conditions on g
and F , one can prove local existence and uniqueness of solutions to the Cauchy
problem.12 Such a statement takes the following form (see for example [12]):

Given initial data f, h ∈ C∞
0 (R3) there exists a T > 0 and a unique

solution u ∈ C∞([0, T ] × R
3) of (1.1) with u(0, ·) = f(·) and ∂tu(0, ·)=h(·).

Moreover, if T ∗ denotes the supremum of all such T > 0 then we have

either T ∗ = ∞ or the L∞(R3) norm of u(t, ·) and/or of some derivatives

of u blows up for t → T ∗. (1.2)

However, in the case of T ∗ < ∞, in general u(x, t) will not become singular
for all x ∈ R

3 for t → T ∗. The points x ∈ R
3 where it becomes singular are

called first singularities—at regular spacetime points (T ∗, x) we can extend
the solution.

First singularities

t = 0

A natural question is then: does there exist a unique maximal globally
hyperbolic13 solution of (1.1) with initial values f and h? In the following, we
sketch a construction of such an object.

First step: We show that global uniqueness holds, i.e., given two solutions
u1 : U1 → R and u2 : U2 → R to the above Cauchy problem, where Ui is
globally hyperbolic with respect to ui and with Cauchy surface {t = 0}, the
two solutions then agree on U1 ∩ U2.

There are different ways to establish global uniqueness. One could for
example prove this using energy estimates. Note, however, that such a proof is

12 We are not concerned with regularity questions here, all initial data can be assumed to
be smooth.
13 Note that it depends on the solution u whether a subset of R

3+1 is globally hyperbolic
or not.
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necessarily local by character, since U1 ∩ U2 is not a priori globally hyperbolic
with respect to either of the solutions.

The proof we sketch in the following is based on a continuity argument
and only appeals to the local uniqueness statement. By this statement, we know
that there is some open and globally hyperbolic neighbourhood V ⊂ U1 ∩ U2

of {t = 0} on which the two solutions agree (note that ‘global hyperbolicity’
is here well-defined since the two solutions agree on the domain in question).
Let us take the union W of all such common globally hyperbolic developments
(CGHD) of (U1, u1) and (U2, u2). By definition, this set is clearly maximal,
i.e., it is the biggest globally hyperbolic set on which u1 and u2 agree. We also
call it the maximal common globally hyperbolic development (MCGHD).

Assume the so-obtained set is not equal to U1∩U2. Then, as in the picture
below, we can take a small spacelike slice S that touches ∂W ∩ U1 ∩ U2.14

t = 0

W

U1 U2

S

Extension of MCGHD W

By assumption u1 and u2 agree in W , thus by continuity they also agree
on the slice S. We now consider the initial value problem with the induced
data on S.15 Clearly, u1 and u2 are solutions, and thus, by the local uniqueness
theorem, they agree in a small neighbourhood of S. This, however, contradicts
the maximality of W . Hence, u1 and u2 agree on U1 ∩ U2.16

14 This step actually requires a bit of care...
15 Note that a local uniqueness and existence statement for the initial value problem on S
can be derived from (1.2) by introducing slice coordinates for S and by appealing to the
domain of dependence property.
16 The proof we just sketched yielded W = U1 ∩ U2 by contradiction. However, it seems
reasonable to expect that one can also prove W = U1∩U2 directly by the following continuity
argument: To begin with, the local uniqueness theorem shows that the set on which two
solutions agree is not empty. By continuity of the solutions, we know then that the two
solutions must also agree on the closure of this set, which furnishes the closedness part
of the argument. Openness is achieved by restarting the local uniqueness argument from
(spacelike slices that touch) the boundary, as in the above picture. Note however, that in
order to obtain openness across null boundaries, one has to “work one’s way upwards” along
the null boundary, which makes this direct argument a bit more complicated. Also note that
this continuity argument is qualitatively the same as the one already encountered in proving
uniqueness of solutions to the initial value problem for regular ODEs.
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Second step: Having proved global uniqueness, the construction of the MGHD
is now a trivial task: We consider the set of all globally hyperbolic developments
{Uα, uα}α∈A of the initial data f , h and note that this set is non-empty by
the local existence theorem. We then take the union U :=

⋃
α∈A Uα of all the

domains Uα and define

u(x) := uα(x) for x ∈ Uα .

By global uniqueness, this is well defined. Moreover, it is easy to see that the
set U is globally hyperbolic with respect to u and that this development is
maximal by construction.

1.4.2. The Case of the Einstein Equations. Our proof of the existence of the
MGHD for the Einstein equations can be viewed as an ‘imitation’ of the
scheme just presented. To understand better the problems that have to be
overcome, however, let us first qualitatively compare the Einstein equations
with a quasilinear wave equation on a fixed background manifold: A solution
to the Einstein equations is given by a pair (M, g), where M is a manifold and
g a Lorentzian metric on M . The background manifold M is not fixed here.
The diffeomorphism invariance of the Einstein equations states that if φ is a
diffeomorphism from M to a manifold N , then (N,φ∗g) is also a solution to
the Einstein equations. Physically, these two solutions are indistinguishable—
which suggests that one should consider the Einstein equations as ‘equations
for isometry classes of Lorentzian manifolds’ (cf. also Remark 2.5). It is also
only then that the Einstein equations become hyperbolic. Moreover, it is well
known that breaking the diffeomorphism invariance by imposing a harmonic
gauge (this should be thought of as picking a representative of the isometry
class) turns the Einstein equations into a system of quasilinear wave equations.
It is thus reasonable to expect that the only problems caused in transferring
the construction of the MGHD from Sect. 1.4.1 to the Einstein equations are
due to the fact that, while in the case of the quasilinear wave equation the
objects one works with are functions defined on subsets of a fixed background
manifold, for the Einstein equations one actually would have to consider isom-
etry classes of Lorentzian manifolds. In particular, we face the following two
problems:

(i) Already the definition of ‘global uniqueness’ does not transfer directly to
the Einstein equations, since U1 ∩U2 is not a priori defined for two GHDs
U1 and U2 for the Einstein equations.

(ii) Since there is no fixed ambient space in the context of the Einstein equa-
tions, one cannot just take the union of all GHDs of given initial data to
construct the MGHD.

We discuss the first problem first. For the case of the quasilinear wave
equation on a fixed background manifold, a trivially equivalent formulation of
‘global uniqueness’ is that there is a globally hyperbolic development (U, u) of
the initial data such that U1 ∪ U2 is contained in U and such that u = u1 on
U1 and u = u2 on U2.
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This formulation of ‘global uniqueness’ does transfer to the Einstein equa-
tions: Given two globally hyperbolic developments of the same initial data, there
exists a globally hyperbolic development in which both isometrically embed. This
statement is the content of Theorem 2.7. Moreover, it is exactly this notion of
global uniqueness that is crucial for the existence of the MGHD.

Let us first motivate the method used in this paper for constructing this
common extension of two GHDs for the Einstein equations: In the case of a
quasilinear wave equation on a fixed background manifold, we would construct
a common extension of (U1, u1) and (U2, u2) by first showing that the solutions
agree on U1 ∩ U2—as we did in Sect. 1.4.1—and thereafter extending both
solutions to U1 ∪ U2. Let us observe here that instead of constructing the
bigger space U1 ∪ U2 by taking the union of U1 and U2, we can also glue
them together along U1 ∩ U2—which yields the same result. However, for the
construction of the common extension, both operations only make sense, if
we already know that the solutions agree on U1 ∩ U2. We can, however, still
glue along an a priori smaller set on which we know that the two solutions
agree, i.e., along a common globally hyperbolic development V of U1 and U2.
In general, the so-obtained space will not be Hausdorff due to the presence of
‘corresponding boundary points’, i.e., a point in ∂V that lies in U1 as well as
in U2. The same argument which established global uniqueness above (cf. the
last picture) shows, however, that if this is the case, then we can actually find
a bigger CGHD along which we can glue.

Let us now directly glue U1 and U2 together along the maximal CGHD
(recall, that this was defined as the union of all CGHDs). Again, the same
argument that corresponds to the last picture shows that the MCGHD of
(U1, u1) and (U2, u2) cannot have corresponding boundary points17 since this
would violate the maximality of the MCGHD. In particular, we see that glueing
along the MCGHD yields a Hausdorff space.

This reinterpretation of the construction of the common extension
U1 ∪ U2 of U1 and U2 for the case of a quasilinear wave equation can be
transferred to the Einstein equations: In Sect. 3.1, we establish the existence
of the MCGHD for two given GHDs for the Einstein equations. Note that this
is also proved in the original paper by Choquet-Bruhat and Geroch—however,
they appeal to Zorn’s lemma. Here, we construct the MCGHD of two GHDs
U1 and U2 by taking the union of all CGHDs (that are subsets of U1) in U1.
In Sect. 3.2, we then give the rigorous proof that the MCGHD does not have
corresponding boundary points, i.e., that the space obtained by glueing along
the MCGHD, lets call it M̃ , is then indeed Hausdorff. Moreover, it is more or
less straightforward to show that M̃ satisfies all other properties of a GHD,
see Sect. 3.3, which then finishes the construction of the common extension
and thus proves global uniqueness for the Einstein equations.

Let us summarise the main idea that guided the way for the construction
of the common extension of two GHDs for the Einstein equations:

17 In particular, we inferred that thus the MCGHD must be equal to U1 ∩ U2.
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In the case of the Einstein equations, the appropriate analogue of
‘taking the union’ of two GHDs is to glue them together

along their MCGHD. (1.3)

This statement, in spite of its simplicity, should be considered as the main
new idea of this paper. It also leads straightforwardly to the construction of
the MGHD in the case of the Einstein equations by proceeding in analogy
to the case of a quasilinear wave equation on a fixed background manifold:
for given initial data, we glue ‘all’ GHDs together along their MCGHDs, see
Sect. 3.3.18

1.5. Schematic Comparison of the Two Proofs

Original proof New proof

Ensure existence of a maximal element
M in the set of all GHDs (using Zorn’s
lemma).

Ensure existence of a MCGHD of two
GHDs (using Zorn’s lemma).

Construct MCGHD of two GHDs by tak-
ing the union (literally!) of all CGHDs.

Prove global uniqueness by ‘taking the
union’ [in the sense of (1.3)] of two GHDs.

Show that M is indeed the MGHD by ‘tak-
ing the union’ [in the sense of (1.3)].

Construct MGHD by ‘taking the union’ [in
the sense of (1.3)] of ‘all’ GHDs.

(Infer global uniqueness from the existence
of the MGHD.)

2. The Basic Definitions and the Main Theorems

Let us start with some words about the stipulations we make:
• This paper is only concerned with the smooth case, i.e., we only consider

smooth initial data for the Einstein equations. In particular, the MGHD
we construct is, a priori, only maximal among smooth GHDs. This raises
the question whether one could extend the MGHD to a bigger GHD that
is, however, less regular.

An answer to this question is provided by the low regularity local well-
posedness theory for quasilinear wave equations, which in particular entails
that as long as the solution remains in the low regularity class local well-
posedness is proven in, any additional regularity is preserved. The classical
approach using energy estimates yields such a local well-posedness state-
ment for very general quasilinear wave equations in H5/2+ε. For the special
case of the Einstein equations, the recent resolution of the bounded L2

curvature conjecture by Klainerman, Rodnianski and Szeftel implies that

18 Let us already remark here the following subtlety: The collection of all GHDs of given
initial data forms a proper class, i.e., it is too ‘large’ for being a set and, hence, also for
performing the glueing construction using the axioms of ZF. In Sect. 3.3, we show that it
suffices to work with an appropriate subclass of all GHDs, which actually is a set.
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additional regularity is preserved as long as (roughly speaking) the metric
is in H2 (see [7] for details).

Regarding the technique of the proof given in this paper, it heav-
ily depends on the causality theory developed for at least C2-regular
Lorentzian metrics. But as long as the initial data are such that it gives
rise to a GHD of regularity at least C2, basically the same proof as given
in this paper goes through. For work on the existence of the MGHD for
rougher initial data along the lines of the original Choquet-Bruhat Geroch
style argument using Zorn’s lemma, see [4]. Here one should mention that
up to a few years ago the proof of local uniqueness (which plays, not sur-
prisingly, a central role for proving global uniqueness) required one degree
of differentiability more than the proof of local existence. This issue was
overcome by Planchon and Rodnianski ([10]).

Having made these comments, we stipulate that all manifolds and ten-
sor fields considered in this paper are smooth, even if this is not mentioned
explicitly.

• We moreover assume that all Lorentzian manifolds we consider are con-
nected and time oriented. The dimension of the Lorentzian manifolds is
denoted by d + 1, where d ≥ 1.

• For simplicity of exposition, we restrict our consideration to the vacuum
Einstein equations Ric(g) = 0. However, the inclusion of matter and/or of
a cosmological constant does not pose any additional difficulty as long as
a local existence and uniqueness statement holds. In fact, exactly the same
proof applies.

The Einstein equations are of hyperbolic character; they allow for a well-
posed initial value problem. Initial data (M, ḡ, k̄) for the vacuum Einstein
equations consist of a connected d-dimensional Riemannian manifold (M, ḡ)
together with a symmetric 2-covariant tensor field k̄ on M that satisfy the
constraint equations:

R̄ − |k̄|2 + (trk̄)2 = 0

∇̄ik̄ij − ∇̄jtrk̄ = 0,

where R̄ denotes the scalar curvature and ∇̄ denotes the Levi-Civita connection
on M .

Definition 2.1. A globally hyperbolic development (GHD) (M, g, ι) of initial
data (M, ḡ, k̄) is a time oriented, globally hyperbolic Lorentzian manifold
(M, g) that satisfies the vacuum Einstein equations, together with an embed-
ding ι : M → M such that
1. ι∗(g) = ḡ
2. ι∗(k) = k̄, where k denotes the second fundamental form of ι(M) in M

with respect to the future normal
3. ι(M) is a Cauchy surface in (M, g).

Definition 2.2. Given two GHDs (M, g, ι) and (M ′, g′, ι′) of the same initial
data, we say that (M ′, g′, ι′) is an extension of (M, g, ι) iff there exists a time
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orientation preserving isometric embedding19 ψ : M → M ′ that preserves the
initial data, i.e., ψ ◦ ι = ι′.

Definition (First version) 2.3. Given two GHDs (M, g, ι) and (M ′, g′, ι′) of
initial data (M, ḡ, k̄), we say that a GHD (U, gU , ιU ) of the same initial data is
a common globally hyperbolic development (CGHD) of (M, g, ι) and (M ′, g′, ι′)
iff both (M, g, ι) and (M ′, g′, ι′) are extensions of (U, gU , ιU ).

Paraphrasing Definition 2.3, a GHD U is a CGHD of GHDs M and M ′ if,
and only if, U is ‘contained’ in M as well as in M ′. Here we have just written
M instead of (M, g, ι), etc. We will from now on often use this shorthand
notation.

We now give a slightly different definition of a common globally hyper-
bolic development and discuss the relation with the previous definition there-
after in Remark 2.5.

Definition (Second version) 2.4. Given two GHDs (M, g, ι) and (M ′, g′, ι′) of
initial data (M, ḡ, k̄), we say that a GHD (U ⊆ M, g|U , ι) is a common globally
hyperbolic development (CGHD) of (M, g, ι) and (M ′, g′, ι′) iff (M ′, g′, ι′) is an
extension of (U, gU , ιU ).

Remark 2.5. 1. The diffeomorphism invariance of the Einstein equations
implies that if M is a GHD of certain initial data, then so is any space-
time that is isometric to M . From a physical point of view, isometric
spacetimes should be considered to be the same, i.e., one should actually
consider the isometry class of a GHD to be the solution to the Ein-
stein equations. It is easy to check that the Definitions 2.2 and 2.3 also
descend to the isometry classes of GHDs, i.e., they do not depend on the
chosen representative of the isometry class. It is also only when one con-
siders isometry classes that one can prove uniqueness for the initial value
problem to the Einstein equations in the strict meaning of this word.
However, working with isometry classes has a decisive disadvantage for
the purposes of this paper: the isometry class of a given GHD is a proper
class, i.e., not a set. Thus, if we considered an infinite number of isometry
classes, not even the full axiom of choice would be strong enough to pick
a representative of each—and we need a representative to work with. We
thus refrain from considering isometry classes of GHDs.

2. As just mentioned, Definition 2.3 is diffeomorphism invariant. In Defi-
nition 2.4, we break the diffeomorphism invariance by requiring that a
CGHD U of M and M ′ is realised as a subset of M . However, this is
not a serious restriction, since given any CGHD U of M and M ′ in the
sense of Definition 2.3, we can isometrically embed U into M using the
isometric embedding that is provided by M being an extension of U .

Although Definition 2.4 is a bit less natural, we will choose it over
Definition 2.3 in this paper since, for our purposes, it is more convenient

19 We lay down some terminology here: An isometry is a diffeomorphism that preserves
the metric. An isometric immersion is an immersion that preserves the metric. Finally, an
isometric embedding is an isometric immersion that is a diffeomorphism onto its image.
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to work with. Also note that while Definition 2.3 is symmetric in M and
M ′, i.e., U being a CGHD of M and M ′ is the same as U being a CGHD
of M ′ and M , the symmetry is broken in Definition 2.4.

The local existence and uniqueness theorem for the initial value problem
for the vacuum Einstein equations can now be phrased as follows:

Theorem 2.6. Given initial data for the vacuum Einstein equations, there exists
a GHD, and for any two GHDs of the same initial data, there exists a CGHD.

The essential details of this theorem were proven by Choquet-Bruhat in
1952, see [1]. The next two theorems are the main theorems of this paper.

Theorem 2.7 (Global uniqueness). Given two GHDs M and M ′ of the same
initial data, there exists a GHD M̃ that is an extension of M and M ′.

Theorem 2.8 (Existence of MGHD). Given initial data, there exists a GHD M̃

that is an extension of any other GHD of the same initial data. The GHD M̃ is
unique up to isometry and is called the maximal globally hyperbolic development
(MGHD) of the given initial data.

Note that Theorem 2.8 clearly implies Theorem 2.7. In the original proof
by Choquet-Bruhat and Geroch, Theorem 2.8 was proven without first prov-
ing Theorem 2.7. In our approach, however, we first establish Theorem 2.7.
Thereafter, Theorem 2.8 follows easily.

3. Proving the Main Theorems

3.1. The Existence of the Maximal Common Globally Hyperbolic
Development

In this section, we construct the unique maximal common globally hyperbolic
development of two GHDs. We start with a couple of lemmata that are needed
for this construction.

Lemma 3.1. Let (M, g) and (M ′, g′) be Lorentzian manifolds, where M is con-
nected. Furthermore, let ψ1, ψ2 : M → M ′ be two isometric immersions with
ψ1(p) = ψ2(p) and dψ1(p) = dψ2(p) for some p ∈ M . It then follows that
ψ1 = ψ2.

Proof. One shows that the set

A =
{
x ∈ M | ψ1(x) = ψ2(x) and dψ1(x) = dψ2(x)

}

is open, closed and non-empty, from which it then follows that A = M . To
show openness, let x0 ∈ A be given and choose a normal neighbourhood U
of x0. For x ∈ U , there is then a geodesic γ : [0, ε] → U with γ(0) = x0

and γ(ε) = x. Since ψ1 and ψ2 are both isometric immersions, we have that
both ψ1 ◦ γ and ψ2 ◦ γ are geodesics. Moreover, since by assumption we have
(ψ1◦γ)(0) = (ψ2◦γ)(0) and ˙(ψ1 ◦ γ)(0) = ˙(ψ2 ◦ γ)(0), the two geodesics agree.
In particular, we obtain ψ1(x) = (ψ1 ◦ γ)(ε) = (ψ2 ◦ γ)(ε) = ψ2(x).

The closedness of A follows from the smoothness of ψ1 and ψ2, and non-
emptyness holds by assumption. �
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Corollary 3.2. Let (M, g) be a globally hyperbolic, time-oriented Lorentzian
manifold with Cauchy surface Σ and (M ′, g′) another time-oriented
Lorentzian manifold. Moreover, say U1, U2 ⊆ M are open and globally hyper-
bolic with Cauchy surface Σ, and ψi : Ui → M ′, i = 1, 2, are time orientation
preserving isometric immersions that agree on Σ.

Then, ψ1 and ψ2 agree on U1 ∩ U2.

Proof. Since ψ1 and ψ2 agree on Σ, their differentials agree on Σ if evaluated
on vectors tangent to Σ. Moreover, since the isometric immersion preserves
the time orientation, they both map the future normal of Σ onto the future
normal of ψ1(Σ) = ψ2(Σ). Thus, the differentials of ψ1 and ψ2 agree on Σ.
The corollary now follows from Lemma 3.1. �
Lemma 3.3. Say (M, g) and (M ′, g′) are two globally hyperbolic spacetimes
with Cauchy surfaces Σ and Σ′, respectively. Let ψ : M → M ′ be an isometric
immersion such that ψ|Σ : Σ → Σ′ is a diffeomorphism.

Then, ψ is an isometric embedding.

Note that this shows in particular that in Definition 2.2 one does not need
to require ψ to be an isometric embedding—ψ being an isometric immersion
suffices.

Proof. It suffices to show that ψ is injective. So let p, q be points in M with
ψ(p) = ψ(q). Consider an inextendible timelike geodesic γ : (a, b) → M with
γ(0) = q, where −∞ ≤ a < 0 < b ≤ ∞. Since (M, g) is globally hyperbolic,
γ intersects Σ exactly once; say γ(τ0) ∈ Σ, where τ0 ∈ (a, b). Note that since
ψ is an isometric immersion, ψ ◦ γ : (a, b) → M ′ is also a timelike geodesic.
We now choose a neighbourhood V of p such that ψ

∣
∣
V

: V → ψ(V ) is a
diffeomorphism and we pull back the velocity vector of ψ ◦ γ at ψ(p) to p.
Let σ : (c, d) → M denote the inextendible timelike geodesic with σ(0) = p

and σ̇(0) = dψ
∣
∣−1

V

( ˙ψ ◦ γ
)∣∣

ψ(q)
, where −∞ ≤ c < 0 < d ≤ ∞. Again, by M

being globally hyperbolic, σ intersects Σ exactly once; say at σ(τ1) ∈ Σ, with
c < τ1 < d. Clearly, the geodesics ψ ◦ γ and ψ ◦ σ agree on their common
domain, since they share the same initial data.

p
q

ψ

ψ(p) = ψ(q)

σ
γ

Σ Σ′

V
ψ(V )

ψ ◦ γ

By the global hyperbolicity of (M ′, g′), the geodesics ψ ◦ γ and ψ ◦ σ
cannot intersect Σ′ more than once, which implies that τ0 = τ1. Moreover, since
ψ

∣
∣
Σ

: Σ → Σ′ is a diffeomorphism, we have σ(τ0) = γ(τ0). Now making use
again of ψ being a local diffeomorphism at σ(τ0), one infers that σ̇(τ0) = γ̇(τ0)
also holds. It follows that σ = γ and in particular that p = σ(0) = γ(0) = q. �
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We can finally prove the main result of this section:

Theorem 3.4 (Existence of MCGHD). Given two GHDs M and M ′ of the same
initial data, there exists a unique CGHD U of M and M ′ with the property
that if V is another CGHD of M and M ′, then U is an extension of V .

We call U the maximal common globally hyperbolic development
(MCGHD) of M and M ′.

The original proof of this theorem, i.e., as it is found in [2] or [11] for
example, appeals to Zorn’s lemma. The much simpler method of taking the
union of all CGHDs of M and M ′, however, works:

Proof. We consider the set {Uα ⊆ M
∣
∣ α ∈ A} of all CGHDs of M and M ′.

By Theorem 2.6, this set is non-empty. We show that

U :=
⋃

α∈A

Uα

is the MCGHD of M and M ′.
1. It is clear that U is open and thus a time-oriented Ricci-flat Lorentzian

manifold.
2. U is globally hyperbolic with Cauchy surface ι(M): Let γ be an inex-

tendible timelike curve in U . Take a point on γ; it lies in some Uα and the
corresponding curve segment in Uα can be considered to be an inextendible
timelike curve in Uα and thus has to meet ι(M). Note that γ cannot meet
ι(M) more than once, since γ is also a segment of an inextendible timelike
curve in M—and M is globally hyperbolic.

3. It follows that U is a GHD of the given initial data.
4. U is a CGHD of M and M ′: It suffices to give an isometric immersion

ψ : U → M ′ that respects the embedding of M and the time orientation.
Note that by Lemma 3.3, ψ is, then automatically, an isometric embedding.

For each α ∈ A, there is such an isometric immersion ψα : Uα → M ′.
We define

ψ(p) := ψα(p) for p ∈ Uα.

By Corollary 3.2, this is well defined and clearly ψ is an isometric immersion
that respects the embedding of M and the time orientation.

5. That U is maximal follows directly from its definition. It then also follows
that U is the unique CGHD with this maximality property.

�

3.2. The Maximal Common Globally Hyperbolic Development Does Not Have
Corresponding Boundary Points

In this section, we prove that the MCGHD of two GHDs M and M ′ does not
have ‘corresponding boundary points’. Most of the proofs found in this section
are based on proofs found in Chapter 23 of Ringström’s book [11].

Definition 3.5. Let U be a CGHD of M and M ′, and let us denote the isometric
embedding of U into M ′ with ψ. Two points p ∈ ∂U ⊆ M and p′ ∈ ∂ψ(U) ⊆
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M ′ are called corresponding boundary points of U iff for all neighbourhoods V
of p and for all neighbourhoods V ′ of p′ one has

ψ−1
(
V ′ ∩ ψ(U)

) ∩ V 
= ∅ .

The main theorem of this section is:

Theorem 3.6. Let M and M ′ be GHDs of the same initial data, and say U is
a CGHD of M and M ′. If there are corresponding boundary points of U in M
and M ′, then there exists a strictly larger extension of U that is also a CGHD
of M and M ′. In particular, U is not the MCGHD of M and M ′.

Before we give the proof of Theorem 3.6, we need to establish some results
concerning the structure and properties of corresponding boundary points.
Let us begin by giving a different characterization of corresponding boundary
points using timelike curves, which will often prove more convenient.

Proposition 3.7. Let U be a CGHD of M and M ′ with isometric embedding
ψ : U ⊆ M → M ′. The following statements are equivalent:
(i) The points p ∈ ∂U and p′ ∈ ∂ψ(U) are corresponding boundary points.
(ii) If γ : (−ε, 0) → U is a timelike curve with lims↗0 γ(s) = p, then

lims↗0(ψ ◦ γ)(s) = p′.
(iii) There is a timelike curve γ : (−ε, 0) → U with lims↗0 γ(s) = p such that

lims↗0 ψ ◦ γ(s) = p′.
In particular, it follows from (ii) and (iii) that p ∈ ∂U has at most one corre-
sponding boundary point.

Before we give the proof, let us recall some notation from causality theory
on time-oriented Lorentzian manifolds:20 we write
1. p � q iff there is a future directed timelike curve from p to q
2. p < q iff there is a future directed causal curve from p to q
3. p ≤ q iff p < q or p = q.

Proof of Proposition 3.7. The implications (ii) =⇒ (iii) and (iii) =⇒ (i)
are trivial. We prove (i) =⇒ (ii): Without loss of generality, let us assume that
p and p′ lie to the future of the Cauchy surfaces ι(M) and ι′(M), respectively.21

Let γ : (−ε, 0) → U be now a (necessarily) future-directed timelike curve with
lims↗0 γ(s) = p.

We first show that22 ψ
(
I−(p,M) ∩ U

)
= I−(p′,M ′) ∩ ψ(U).

So let q ∈ I−(p,M) ∩ U . Then, I+(q,M) is an open neighbourhood of p.
Moreover, let t′1 ∈ M ′ with t′1 � p′. Then, I−(t′1,M

′) is an open neighbour-
hood of p′. Since p and p′ are corresponding boundary points, it follows that
ψ−1

(
I−(t′1,M

′)∩ψ(U)
)∩ I+(q,M) 
= ∅. Thus, we can find an r′

1 ∈ ψ(U) with

20 For a detailed discussion of causality theory on Lorentzian manifolds, the reader is referred
to Chapter 14 of [8].
21 It follows directly from Definition 3.5 that one cannot have one lying to the future and
the other to the past.
22 Although actually no confusion can arise, we write I−(p, M) to emphasise that this
denotes the past of p in M .
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ψ(q) � r′
1 � t′1; hence, in particular, ψ(q) ≤ t′1. Taking a sequence t′i � p′,

i ∈ N, with t′i → p′ for i → ∞, we get ψ(q) ≤ p′ since the relation ≤ is closed
on globally hyperbolic manifolds.23

To get ψ(q) � p′, take an s ∈ U with q � s � p and repeat the
argument above with s instead of q. This then gives ψ(q) � ψ(s) ≤ p′, and
thus24 ψ(q) � p′. Hence, we have shown ψ

(
I−(p,M)∩U

) ⊆ I−(p′,M ′)∩ψ(U).
The other inclusion follows by symmetry.

Let now γ : (−ε, 0) → M be a future-directed timelike curve with
lims↗0 γ(s) = p. Then, ψ ◦ γ|(−ε,0) is a timelike curve in I−(p′,M ′) and we
claim that limt↗0(ψ ◦ γ)(t) = p′. To see this, let V ′ be an open neighbour-
hood of p′. Since M ′ satisfies the strong causality condition, we can find a
q′ ∈ V ′ ∩ I−(p′,M ′) such that I+(q′,M ′) ∩ I−(p′,M ′) ⊆ V ′.25

From what we first showed, we know that q := ψ−1(q′) ∈ I−(p,M).
Since I+(q,M) is an open neighbourhood of p, there exists a δ > 0 such
that γ(s) ∈ I+(q,M) ∩ I−(p,M) for all −δ < s < 0. Moreover, we have
ψ

(
I+(q,M) ∩ I−(p,M)

)
= I+(q′,M ′) ∩ I−(p′,M ′), from which it follows that

(ψ ◦ γ)(s) ∈ V ′ for all −δ < s < 0. �
If U is a CGHD of M and M ′ with isometric embedding ψ : U ⊆ M →

M ′, we denote the set of points in ∂U that have a corresponding boundary
point in ∂ψ(U) with C.

Lemma 3.8. Let U be a CGHD of M and M ′ with isometric embedding ψ :
U ⊆ M → M ′. Then, the set C is open in ∂U and the isometric embedding
ψ : U → M ′ extends smoothly to ψ : U ∪ C → M ′.

Proof. Assume that there exists a pair p ∈ ∂U and p′ ∈ ∂ψ(U) of correspond-
ing boundary points, otherwise there is nothing to show.

Let V ⊆ M be a convex26 neighbourhood of p and V ′ ⊆ M ′ be
a convex neighbourhood of p′. Consider a future-directed timelike geodesic

23 Cf. Lemma 22 in Chapter 14 of [8].
24 Cf. Proposition 46 in Chapter 10 of [8].
25 Recall that the strong causality condition is satisfied at the point p′ iff for all neighbour-
hoods V ′ of p′ there is a neighbourhood W ′ of p′ such that all causal curves with endpoints
in W ′ are entirely contained in V ′. To prove the just made claim, it remains to pick a point
q′ ∈ W ′ ∩ I−(p′, M ′).
26 Recall that an open set is called convex iff it is a normal neighbourhood of each of its
points. For the existence of convex neighbourhoods, we refer the reader to Proposition 7 of
Chapter 5 of [8].
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γ : [−ε, 0) → U with lims↗0 γ(s) = p. Then, by Proposition 3.7, γ′ := ψ ◦ γ is
a future-directed timelike geodesic in M ′ with lims↗0 γ′(s) = p′. Without loss
of generality, we may assume that ε > 0 is so small that γ([−ε, 0)) ⊆ V and
γ′([−ε, 0)) ⊆ V ′.

Let p ∈ W ⊆ V be a small open neighbourhood of p such that W ⊆
I+(γ(−ε)) and

ψ∗
[
exp−1

γ(−ε)(W )
] ⊆ exp−1

γ′(−ε)(V
′).

We can now define the smooth extension ψ̂ : W → M ′ by

ψ̂(q) := expγ′(−ε)

(
ψ∗(exp−1

γ(−ε)(q))
)
.

This is clearly a smooth diffeomorphism onto its image and it also agrees
with ψ on W ∩ U , since the exponential map commutes with isometries: Let
q ∈ W ∩ U and say X ∈ Tγ(−ε)M is such that q = expγ(−ε)(X). We then have

ψ(q) = ψ
(
expγ(−ε)(X)

)
= exp(ψ◦γ)(−ε)

(
ψ∗(X)

)
= ψ̂(q) .

Moreover, using the same argument, we have W ∩∂U ⊆ C, since for q ∈ W ∩∂U
and X := exp−1

γ(−ε)(q), we have that s �→ γ(s) = expγ(−ε)(s · X) is a timelike
curve that converges to q for s ↗ 1, while (ψ ◦ γ)(s) converges to a point in
∂ψ(U) for s ↗ 1. By Proposition 3.7, point (iii), q thus has a corresponding
boundary point. Hence, C is open in ∂U . �

Note that in the case of C being non-empty, this lemma states that one
can extend the identification of M with M ′. It thus furnishes the closure part
of the analogy to the method of continuity referred to in the introduction. Pur-
suing this analogy, the next two lemmata lay the foundation for restarting the
local uniqueness argument again, i.e., they lay the foundation for the openness
part.

Lemma 3.9. Let U be a CGHD of M and M ′ with isometric embedding ψ :
U ⊆ M → M ′. Assume that C ∩ J+

(
ι(M)

)
is non-empty. Then, there exists

a point p ∈ C with the property

J−(p) ∩ ∂U ∩ J+
(
ι(M)

)
= {p}. (3.1)

Whenever C is non-empty, we can assume without loss of generality (oth-
erwise we reverse the time orientation) that we have in fact C∩J+

(
ι(M)

) 
= ∅.
In this case, the above lemma ensures the existence of a ‘spacelike’ part of the
boundary—only those parts are suitable for restarting the local uniqueness
argument.

Proof. So assume that C ∩ J+
(
ι(M)

)
is non-empty. Let p ∈ C ∩ J+

(
ι(M)

)

and we have to deal with the case that
(
J−(p) ∩ ∂U ∩ J+

(
ι(M)

))\{p} 
= ∅.
So let q ∈ (

J−(p) ∩ ∂U ∩ J+
(
ι(M)

))\{p}. Thus, there exists a past-directed
causal curve γ from p to q. Since ∂U ∩ J+

(
ι(M)

)
is achronal, γ must be a
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null geodesic.27 Let γ : [0, a) → M , where a > 1, be a parameterization of the
past inextendible null geodesic γ with γ(0) = p and γ(1) = q. Moreover, note
that γ([0, 1]) ⊆ ∂U . Since if there was a 0 < t < 1 with γ(t) ∈ U then global
hyperbolicity of U would imply that γ(1) = q ∈ U as well. On the other hand,
if γ(t) ∈ U c\∂U , then we could find a closeby point r ∈ U c\∂U that could be
connected by a timelike curve to p. But then, we could also find a point s ∈ U
close by to p such that r and s could be connected by a timelike curve—again
a contradiction to the global hyperbolicity of U .

Let [0, b] := γ−1(∂U). Since ∂U is closed in M , this is indeed a closed
interval—and exactly the same argument as above shows that it is connected.
In the following, we show that γ(b) has the wanted property, namely

γ(b) ∈ C and J−(γ(b)) ∩ ∂U ∩ J+
(
ι(M)

)
= {γ(b)} .

We first show that J := {t ∈ [0, b] | γ(t) ∈ C} is equal to [0, b]. Since γ(0) ∈ C,
J is non-empty. By Lemma 3.8, we know that C is open in ∂U , so J is open
in [0, b]. It remains to show that J is closed in [0, b] to deduce that J = [0, b].

Since by Lemma 3.8, ψ extends to an isometric embedding on U ∪ C,
γ′|J := ψ ◦ γ|J is a null geodesic in M ′. Denote with γ′ the corresponding
past inextedible null geodesic in M ′. So let tj ∈ J , j ∈ N, be a sequence
with tj → t∞ in [0, b] for j → ∞. We then claim that γ′(t∞) and γ(t∞)
are corresponding boundary points. This is seen as follows: let V ⊆ M be a
neighbourhood of γ(t∞) and V ′ ⊆ M ′ a neighbourhood of γ′(t∞). Consider
now a sequence of future-directed timelike curves αj : (−ε, 0) → U , j ∈ N,
with lims↗0 αj(s) = γ(tj). Then for j large enough and σ < 0 close enough to
zero, we have αj(σ) ∈ V ∩ ψ−1

(
V ′ ∩ ψ(U)

)
. This finally shows that γ(b) ∈ C.

That γ(b) lies to the future of ι(M) is immediate, since γ cannot cross
ι(M) as long as it lies in ∂U .

To show that J−(γ(b))∩∂U ∩J+
(
ι(M)

)
= {γ(b)}, assume that there was

a q ∈ (
J−(γ(b)) ∩ ∂U ∩ J+

(
ι(M)

))\{γ(b)}. Then, there is a past-directed null
geodesic from γ(b) to q. Concatenate γ|[0,b] and this null geodesic. Note that by
definition of [0, b] this null geodesic must be broken. But then we can connect
p and q by a timelike curve,28 which, as before, leads to a contradiction to U
being globally hyperbolic. �

Lemma 3.10. Let U be a GHD of some initial data and M ⊇ U an extension of
U . Suppose that there exists a p ∈ ∂U that satisfies (3.1). Then for every open
neighbourhood W of p in M , there exists a point q ∈ I+(p) ⊆ M such that

27 That ∂U ∩ J+
(
ι(M)

)
is achronal follows from � being an open relation, see Lemma 3 in

Chapter 14 of [8]: If there were two points x, y ∈ ∂U ∩ J+
(
ι(M)

)
with x � y, then we could

also find x′ ∈ Uc ∩J+
(
ι(M)

)
close to x and y′ ∈ U ∩J+

(
ι(M)

)
close to y such that x′ � y′.

This, however, gives rise to an inextendible timelike curve in U which does not intersect the

Cauchy hypersurface ι(M)—a contradiction to the global hyperbolicity of U . That γ must
be a null geodesic is an easy consequence of the fundamental Proposition 46 in Chapter 10
of [8].
28 See again Proposition 46 in Chapter 10 of [8].
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J−(q) ∩ U c ∩ J+
(
ι(M)

) ⊆ W.

Proof. So let p satisfy J−(p) ∩ ∂U ∩ J+
(
ι(M)

)
= {p}. Let γ : [0, ε] → M be

a future-directed timelike curve with γ(0) = p. Then, we have γ((0, ε]) ⊆ U c.
Let W ⊆ M be an open neighbourhood of p. If the lemma were not true, then
there is a sequence tj ∈ (0, ε], j ∈ N, with tj → 0 in [0, ε] for j → ∞, and a
sequence of points {qj}j∈N with

qj ∈ J−(γ(tj)) ∩ U c ∩ J+
(
ι(M)

) ∩ W c .

Since M is globally hyperbolic, J−(γ(ε)) ∩ J+
(
ι(M)

)
is compact, thus

J−(γ(ε)) ∩ U c ∩ J+
(
ι(M)

) ∩ W c is compact, and we can assume without loss
of generality that qj → q ∈ J−(γ(ε))∩U c ∩J+

(
ι(M)

)∩W c. Since the relation
≤ is closed, we obtain q ≤ p, and thus clearly q < p. But this leads again
to a contradiction: We cannot have q ∈ ∂U by assumption, thus q ∈ U c\∂U .
This, however, contradicts the global hyperbolicity of U in the same way as
we argued in the proof of Lemma 3.9. �

We are finally well prepared for the proof of Theorem 3.6.

Proof of Theorem 3.6. Recall that M and M ′ are GHDs, and U ⊆ M is a
CGHD of M and M ′ that has corresponding boundary points in M and M ′.
Without loss of generality, we can assume that C ∩ J+

(
ι(M)

)
is non empty

and, thus, by Lemma 3.9, we can find a p ∈ C which satisfies J−(p) ∩ ∂U ∩
J+

(
ι(M)

)
= {p}. Since by Lemma 3.8 C is open in ∂U , we can find a convex

neighbourhood V ⊆ M of p such that V ∩ ∂U ⊆ C. Since the strong causality
condition holds at p, we can find a causally convex neighbourhood W of p
whose closure is compact and completely contained in V .29 Let q ∈ I+(p) be
a point with the property that J−(q) ∩ U c ∩ J+

(
ι(M)

) ⊆ W , whose existence
is guaranteed by Lemma 3.10.

Let us denote with τq : M → [0,∞) the time separation from q, i.e.,
τq(r) := sup{L(γ) : γ is a future directed causal curve segment from

r to q},
where L(γ) denotes the length of γ. If r /∈ J−(q), we set τq(r) equal to zero.
Note that τq restricted to W can be explicitly given by the exponential map
based at q: Given r ∈ W , there exists, by the global hyperbolicity of M , a
geodesic from r to q whose length equals the time separation from r to q. Since
W is causally convex, this geodesic must be completely contained in W—and

29 Recall that an open set W ⊆ M is called causally convex iff every causal curve in M
with endpoints in W is entirely contained in W . That we can find such a causally convex
neighbourhood follows from the strong causality condition: Let V1 be a neighbourhood of p
whose closure is compact and completely contained in V . By the strong causality condition,
we can find a neighbourhood V2 ⊆ V1 of p with the property that every causal curve with
endpoints in V2 is completely contained in V1. Pick now two points p1, p2 ∈ V2 such that

p1 � p � p2. It follows that W := I+(p1) ∩ I−(p2) is an open neighbourhood of p which is
completely contained in V1 and thus has compact closure. Moreover, W is causally convex:
Let γ be a causal curve with endpoints x ≤ y ∈ W and let z be a point on γ. We then have
p1 � x ≤ z ≤ y � p2, and by Proposition 46 of Chapter 10 in [8] it follows that z ∈ W .
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since V ⊇ W is convex, this geodesic is a radial one in the exponential chart
centred at q. Thus, we obtain for r ∈ I−(q) ∩ W that

τq(r) =
√

−g|q
(
exp−1

q (r), exp−1
q (r)

)
. (3.2)

In particular τq is smooth in I−(q)∩W and, by the global hyperbolicity of M ,
continuous in V .30

p

q

S

U

V

W

Since W is compact, τq takes on its maximum on W ∩ U c ∩ J+
(
ι(M)

)
.

Let us denote this maximum by τ0. Clearly, we have τ0 > 0. Moreover, one
has τq(r) = τ0 only for r ∈ ∂U ∩W ∩J+

(
ι(M)

)
, since if this was not the case,

using normal coordinates around q, one could continue the length maximising
geodesic from r0 to q a bit to the past, staying in W ∩ U c, which would lead
to a longer timelike curve.

We now define

S := τ−1
q (τ0) ∩ W ∩ I+

(
ι(M)

)
.

By construction, S contains at least one point of ∂U ; and since the hyperboloid

Q−
τ0 :=

{
X ∈ TqM

∣
∣
√

−g|q(X,X) = τ0 and X past directed
}

is smooth, (3.2) shows that S is smooth as well. Moreover, it follows from the
Gauss lemma31 that the normal of S at expq(X), where X ∈ Q−

τ0 , is given
by (expq)∗(X), which is timelike—and hence S is spacelike. Furthermore, S is
contained in U ∩J+

(
ι(M)

)
, since τq(r) is only greater than zero for r ∈ J−(q),

and on J−(q) ∩ U c ∩ J+
(
ι(M)

) ⊆ W we only have τq(r) = τ0 for r ∈ ∂U as
argued above.

Using Lemma 3.8 (and therefore the fact that V ∩ ∂U ⊆ C), we can thus
map32 S isometrically to ψ(S) ⊆ M ′—and suitable neighbourhoods of S in M
and of ψ(S) in M ′ are GHDs of (S, ḡS , kS) (where ḡS is the induced metric
from the ambient spacetime M and kS is the second fundamental form of S in
M). By Theorem 2.6, there exists a globally hyperbolic development N ⊆ M

30 Cf. Lemma 21 in Chapter 14 of [8].
31 Cf. Lemma 1 in Chapter 5 of [8].
32 Recall that we denote the isometric embedding of U into M ′ by ψ.
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of (S, ḡS , kS) together with an isometric embedding φ : N → M ′ such that
φ|S = ψ|S .

We now claim that ψ = φ holds in N ∩ U , which would imply that we
can extend ψ to an isometric embedding Ψ : U ∪ N → M ′. By the same
argument as in the proof of Corollary 3.2, we obtain (dψ)|S = (dφ)|S . The
same continuity argument as in the proof of Lemma 3.1, but this time applied
to N ∩ U , now proves the claim.

Also note that U ∪ N is globally hyperbolic with Cauchy hypersurface
ι(M): consider a point r on an inextendible timelike curve γ in U ∪ N . If r
is in N\U , the curve γ must intersect S, since S is a Cauchy hypersurface in
N . The choice of τ0 then implies that γ must also enter U . So without loss
of generality, we can assume that there exists a point r on γ that lies in U .
But since U is globally hyperbolic with Cauchy hypersurface ι(M), it now
follows that γ must intersect ι(M). Moreover, γ cannot intersect ι(M) more
than once, since ι(M) is also a Cauchy hypersurface for M .

Finally, since S contains at least one point in ∂U , it follows that U ∪N ⊆
M is a strictly larger CGHD of M and M ′ than the CGHD U we started
with. �

Invoking the tertium non datur, Theorem 3.6 implies

Theorem 3.11. Let M and M ′ be GHDs of the same initial data, and let U be
the MCGHD of M and M ′. Then, U does not have corresponding boundary
points in M and M ′.

3.3. Finishing off the Proof of the Main Theorems

From here on, the proof of Theorem 2.7 is straightforward:

Proof of Theorem 2.7: As already outlined in the introduction, we will con-
struct the common extension of M and M ′ by glueing them together along
their MCGHD. Theorem 3.11 will yield that this space is Hausdorff. It then
remains to show that this quotient space comes with enough natural structure
that turns it into a GHD.

Thus, let us take the disjoint union M � M ′ of M and M ′ and endow it
with the natural topology. Let us denote the MCGHD of M and M ′ by U (the
existence of such a CGHD is guaranteed by Theorem 3.4) and the isometric
embedding of U into M ′ by ψ. We now consider the following equivalence
relation on M � M ′: For p, q ∈ M � M ′, we define p ∼ q if and only if

p ∈ U ⊆ M and q = ψ(p)
or q ∈ U ⊆ M and p = ψ(q)
or p = q.

We then take the quotient (M � M ′)/∼ =: M̃ , endowed with the quotient
topology. The following elementary remark is needed in the remainder of the
proof:

The maps π ◦ j and π ◦ j′ are homeomorphisms onto their image. (3.3)
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M

M ′

j

j′
M � M ′ π

(M � M ′)/∼

Here, the maps j and j′ denote the canonical inclusion maps. Verifying
(3.3) is an easy exercise in set topology: Clearly, the maps are continuous and
injective. We show that they are also open: for A ⊆ M open we have, with
slight abuse of notation, that M ∩ [

π−1
(
(π ◦ j)(A)

)]
= A is open and so is

M ′ ∩ [
π−1

(
(π ◦ j)(A)

)]
= ψ(U ∩ A).

We now show that the quotient topology on M̃ is indeed Hausdorff. Using
(3.3), we can easily separate two points [p] 
= [q] ∈ M̃ , if
1. p 
= q ∈ M : In this case, we separate p and q in M and then use the fact

that π ◦ j is a homeomorphism to push forward the separating neighbour-
hoods to M̃ .

2. p ∈ M\U and q ∈ M ′\ψ(U): we choose a neighbourhood of p in M that
lies entirely in M\U and an arbitrary neighbourhood of q in M ′. Push-
ing forward these neighbourhoods via the homeomorphisms, we obtain
separating neighbourhoods in M̃ .

Trivial permutations or modifications of these two possibilities leave only open
the task to separate [p] and [q] if p ∈ ∂U and q ∈ ∂ψ(U), or q ∈ ∂U and
p ∈ ∂ψ(U). So suppose we could not separate these two points in, without loss
of generality, the case p ∈ ∂U and q ∈ ∂ψ(U). For all neighbourhoods V of p
and V ′ of p′, we then have (π ◦ j)(V )∩ (π ◦ j′)(V ′) 
= ∅. This, however, implies
that ψ−1

(
V ′ ∩ψ(U)

)∩V 
= ∅, i.e., p and q are corresponding boundary points
of U—in contradiction to Theorem 3.11. Thus, M̃ is indeed Hausdorff.

In the remaining part of the proof, we show that M̃ possesses a natural
structure that turns it into a common extension of M and M ′.
1. M̃ is locally euclidean and has a natural smooth structure: We have to give

an atlas for M̃ . Let {Vi, ϕi}i∈N be an atlas for M and {V ′
k, ϕ′

k}k∈N an atlas
for M ′, where the ϕ′s are here homeomorphisms from some open subset of
R

d+1 to the V ′s. We then define an atlas for M̃ by
{

(π ◦ j)(Vi), π ◦ j ◦ ϕi

}

i∈N

∪
{

(π ◦ j′)(Vk), π ◦ j′ ◦ ϕk

}

k∈N

.

By (3.3), this furnishes an open covering of M̃ and it is easy to check that
the transition functions are either of the form ϕ−1

i0
◦ϕi1 with i0, i1 ∈ N, the

primed analogue, or (ϕ′
k0

)−1 ◦ψ ◦ϕi0 with i0, k0 ∈ N, which are all smooth
diffeomorphisms.

2. M̃ is second countable: This follows directly from the previous construction.
3. M̃ has a natural smooth Lorentzian metric that is Ricci-flat : Since π◦j and

π ◦ j′ are smooth diffeomorphism onto their image, we can endow M̃ with
a smooth Lorentzian metric by pushing forward g and g′. On (π ◦ j)(U),
the two metrics obtained in this way agree since ψ is an isometry, thus this
yields a smooth Lorentzian Ricci-flat metric g̃ on M̃ . Moreover, note that
this turns π ◦ j and π ◦ j′ into isometries.
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4. (M̃, g̃) is globally hyperbolic with Cauchy surface ι̃(M): Here, we have
defined ι̃ := π ◦ j ◦ ι : M → M̃ . So let γ : I → M̃ be an inextendible
timelike curve, where I ⊆ R. Take t0 ∈ I and, without loss of generality,
assume γ(t0) ∈ (π◦j)(M). If we denote with J � t0 the maximal connected
subinterval of I such that γ(J) ⊆ (π◦j)(M), then γ|J can be considered as
an inextendible timelike curve in M and thus has to intersect ι(M). Hence,
γ intersects ι̃(M) at least once.

Let us now assume that γ intersected ι̃(M) more than once. We can
find t1 < t3 ∈ I with γ(t1), γ(t3) ∈ ι̃(M) and γ(t) /∈ ι̃(M) for t1 < t <
t3. Since M and M ′ are globally hyperbolic, γ|[t1,t3] cannot be contained
entirely in π ◦ j(M) or π ◦ j′(M ′). Thus, there must be t2, t12, t23 with
t1 < t12 < t2 < t23 < t3 such that γ(t2) ∈ (π ◦ j)(U) and, without loss
of generality, γ(t12) /∈ (π ◦ j′)(M ′) and γ(t23) /∈ (π ◦ j)(M).33 But this
leads to an inextendible timelike curve in U that does not intersect ι(M),
a contradiction, since U is globally hyperbolic.

5. (M̃, g̃) has a natural time orientation: Since M and M ′ are time oriented,
there exist continuous timelike vector fields T on M and T ′ on M ′. Since
ψ : U → M ′ preserves the time orientation, at each point ψ∗(T |U ) and
T ′|ψ(U) lie in the same component of the set of all timelike tangent vec-
tors at this point. Thus, pushing forward T and T ′ via π ◦ j and π ◦ j′,
we can consistently single out a future direction at each point of M̃ . It
remains to show that this choice is continuous. But since this is a local
property, this follows immediately from (π ◦ j)∗(T ) and (π ◦ j′)∗(T ′) being
continuous.

We have thus shown that (M̃, g̃, ι̃) is a GHD of (M, ḡ, k̄) and, moreover, it is
an extension of M and M ′, where the isometric embeddings are given by the
maps π ◦ j and π ◦ j′. This finishes the proof of Theorem 2.7. �

As outlined in the introduction, we would like to construct now the
MGHD by glueing all GHDs together along their MCGHDs. However, the
following subtlety arises: the collection of all GHDs of given initial data is
not a set, but a proper class—and thus we cannot use the axioms of the
Zermelo–Fraenkel set theory for justifying the glueing construction we have in
mind. Fortunately, there is an easy way to circumvent this obstacle: Instead
of considering all GHDs of given initial data (M, ḡ, k̄), we only consider those
whose underlying manifold is a subset of M × R.34 This collection X of
GHDs is indeed a set (as we will show below), and thus we can glue all
such GHDs together along their MCGHDs. To justify that the so-obtained
GHD M̃ is indeed the MGHD, we just note that any GHD of the same
initial data is isometric to one in X, and hence isometrically embeds into
M̃ .

33 The other possibility is γ(t12) /∈ (π ◦ j)(M) and γ(t23) /∈ (π ◦ j′)(M ′) and leads in the
same way to a contradiction.
34 We will in fact impose some further restrictions on the GHDs, which are, however, not
strictly necessary.
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Proof of Theorem 2.8. We consider fixed initial data (M, ḡ, k̄). In the follow-
ing, we argue that the collection X of all GHDs M whose underlying mani-
fold is an open neighbourhood of M × {0} in M × R and whose embeddings
ι : M → M of the initial data into M are given by ι(x) = (x, 0), where x ∈ M ,
is a set.

To see this, consider the set Y := T ∗(M ×R)⊗T ∗(M ×R), i.e., the tensor
product of the cotangent bundle of M ×R with itself. Each of the members of
X is given by a subset of Y . The axiom of power set ensures that there is a
set P(Y ) containing all subsets of Y . The axiom schema of specification now
ensures that

X :=
{
M ∈ P(Y )

∣
∣ M × {0} ⊆ M ⊆ M × R is a GHD of the given initial

data and the initial data embeds canonically into M × {0} ⊆ M
}

is a set.
To simplify notation, let us now write X = {Mα | α ∈ A}. We denote the

MCGHD of Mαi
and Mαk

with Uαiαk
⊆ Mαi

and the corresponding isometric
embedding with ψαiαk

: Uαiαk
→ Mαk

. We define an equivalence relation ∼
on

⊔
α∈A Mα by

Mαi
� pαi

∼ qαk
∈ Mαk

iff pαi
∈ Uαiαk

and ψαiαk
(pαi

) = qαk
(3.4)

and take the quotient (
⊔

α∈A Mα)/∼ =: M̃ with the quotient topology. Note
that (3.4) is indeed an equivalence relation. For the transitivity observe that if
pαi

∈ Mαi
, pαk

∈ Mαk
and pαl

∈ Mαl
with pαi

∼ pαk
and pαk

∼ pαl
, then we

have that Uαiαk
∩ ψ−1

αiαk
(Uαkαl

) together with the composition ψαkαl
◦ ψαiαk

is a CGHD of Mαi
and Mαl

that contains pαi
and identifies it with pαl

—so
certainly the MCGHD of Mαi

and Mαl
leads to the same identification.

1. M̃ is Hausdorff : Let [pαi
] 
= [qαk

] ∈ M̃ with pαi
∈ Mαi

and qαk
∈ Mαk

.
We show that we can find open neighbourhoods in M̃ that separate these
points.

Mαi

Mαk

ji

jk

jik

⊔
α∈A Mα

Mαi � Mαk

π

π

π ◦ jik

⊔
α∈A Mα

)
/∼

Mαi � Mαk

)
/∼

j̃ik

Here, all j′s denote canonical inclusion maps (in particular ji and jk

denote the inclusion maps of Mαi
and Mαk

into
⊔

α∈A Mα), the π′s denote
projection maps, the lower equivalence relation is defined as in the proof
of Theorem 2.7 and it is easy to check that the map π ◦ jik descends to the
quotient, i.e., to j̃ik.
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As for (3.3) one checks that π ◦ jik is an open map. Thus, j̃ik is open
as well. Since j̃ik is also continuous and injective, it is a homeomorphism
onto its image.

In Theorem 2.7, we proved that the quotient topology on (Mαi
�

Mαk
)/∼ is Hausdorff—thus we can find open neighbourhoods that separate

[pαi
] and [qαk

] in (Mαi
�Mαk

)/∼. Pushing forward these neighbourhoods to
(
⊔

α∈A Mα)/∼ via j̃ik, we obtain separating open neighbourhoods of [pαi
]

and [qαk
] in M̃ .

2. M̃ is locally euclidean and has a natural smooth structure: This is seen
exactly as in the proof of Theorem 2.7.

3. M̃ has a natural smooth Lorentzian metric that is Ricci-flat and comes
with a natural time orientation: Again, this is seen exactly as before.

4. (M̃, g̃) is globally hyperbolic with Cauchy surface ι̃(M): Here, ι̃ := π ◦ ji ◦ ιi
for some αi ∈ A. This definition does obviously not depend on αi ∈ A.

The proof is also nearly the same as before. Let γ : I → M̃ be an
inextendible timelike curve. For t0 ∈ I we have, say, γ(t0) ∈ (π ◦ ji)(Mαi

).
Let J � t0 denote the maximal connected subinterval of I such that γ(J) ⊆
(π ◦ ji)(Mαi

). We can then pull back γ|J via π ◦ ji to Mαi
, which gives

rise to an inextendible timelike curve in Mαi
that has to intersect ιi(M).

Thus, γ intersects ι̃(M).
Assume γ intersected ι̃(M) more than once. Again, we can find t1 <

t4 ∈ I with γ(t1), γ(t4) ∈ ι̃(M) and γ(t) /∈ ι̃(M) for t1 < t < t4. Since γ is
continuous and [t1, t4] is compact, γ([t1, t4]) is contained in finitely many
π ◦ jα(Mα). But since each of these Mα

′s is globally hyperbolic, one can
actually reduce this cover to just two elements, since otherwise one would
get an inextendible timelike curve of the form γ|[t2,t3] in some Mα, where
t1 < t2 < t3 < t4, that does not intersect ια(M).

From here on, one follows the remaining argument from point 4 of
the proof of Theorem 2.7.

5. M̃ is second countable: This follows directly from a Theorem of Geroch, see
the appendix of [5], where he shows that any manifold that is connected,35

Hausdorff and locally euclidean and which, moreover, admits a smooth
Lorentzian metric, is also second countable.

6. M̃ is an extension of any GHD of the same initial data: Let (M, g, ι)
be a GHD of the same initial data. Since M is second countable and time
oriented, we can find a globally timelike vector field T on M . Let us denote
with Ix ⊆ R the maximal time interval of existence of the integral curve
of T starting at x ∈ M .36 In the following, we recall some results from
standard ODE theory: The set D := {(x, t) ∈ M × R | t ∈ Ix} is open and
the flow Φ : D → M of T is smooth. Moreover, if we fix t ∈ R and regard

35 That M̃ is connected here follows trivially from it being globally hyperbolic, hence path
connected (recall that we assumed that M is connected).
36 Note that the existence of such a maximal time interval follows from an elementary ‘taking
the union of all time intervals of existence argument’—without appealing to Zorn’s lemma.
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Φt(·) := Φ
(
(·, t)) as a function from some open subset of M to M , then Φt

is a local diffeomorphism.
We now define Dι(M) := {(x, t) ∈ ι(M) × R | t ∈ Ix}, which is an

open neighbourhood of ι(M) × {0} in ι(M) × R (again by standard ODE
theory), and claim that χ := Φ

∣
∣
Dι(M)

: Dι(M) → M is a diffeomorphism.
The smoothness of χ follows directly from the smoothness of Φ, and

the bijectivity follows from the global hyperbolicity of M . More precisely,
since every maximal integral curve of T (which is, in particular, an inex-
tendible timelike curve) has to intersect ι(M), χ is surjective; and since
every such curve intersects ι(M) exactly once, we obtain the injectivity.
To see that χ is a local diffeomorphism, let (x, t) ∈ Dι(M) and choose a
basis (Z1, . . . , Zd) of Txι(M). We have

χ∗
∣
∣
(x,t)

(Zi) =
(
Φt

)
∗
∣
∣
x
(Zi) and χ∗

∣
∣
(x,t)

(∂t) = T
∣
∣
Φt(x)

=
(
Φt

)
∗
∣
∣
x
(T

∣
∣
x
).

(3.5)

Since ι(M) is spacelike, (Z1, . . . , Zd, Tx) forms a basis for TxM ; and since
Φt is a local diffeomorphism, it follows from (3.5) that χ∗ is surjective.
Thus, we have shown that χ is a diffeomorphism.

It now follows that χ ◦ (ι × id) is a diffeomorphism from some open
neighbourhood of M × {0} in M ×R to M which maps M × {0} on ι(M).
Pulling back the Lorentzian metric, we obtain that there is an Mαi

∈ X
that is isometric to M via χ ◦ (ι × id). The isometric embedding of M into
M̃ is now given by π ◦ ji ◦ (

χ ◦ (ι × id)
)−1.

Finally, it is straightforward to deduce from this maximality property
that M̃ is, up to isometry, the only GHD with this property.

This finally finishes the proof of the existence of the MGHD. �
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