
Ann. Henri Poincaré 17 (2016), 401–436
c© 2015 Springer Basel
1424-0637/16/020401-36
published online March 6, 2015
DOI 10.1007/s00023-015-0398-9 Annales Henri Poincaré

Dynamical Locality of the Free Maxwell Field

Christopher J. Fewster and Benjamin Lang

Abstract. The extent to which the non-interacting and source-free Maxwell
field obeys the condition of dynamical locality is determined in various
formulations. Starting from contractible globally hyperbolic spacetimes,
we extend the classical field theory to globally hyperbolic spacetimes of
arbitrary topology in two ways, obtaining a ‘universal’ theory and a ‘re-
duced’ theory of the classical free Maxwell field and their corresponding
quantisations. We show that the classical and the quantised universal
theory fail local covariance and dynamical locality owing to the possibil-
ity of having non-trivial radicals in the classical pre-symplectic spaces
and non-trivial centres in the quantised ∗-algebras. The classical and
the quantised reduced theory are both locally covariant and dynamically
local, thus closing a gap in the discussion of dynamical locality and pro-
viding new examples relevant to the question of how theories should be
formulated so as to describe the same physics in all spacetimes.

1. Introduction

The purpose of this paper is to test various formulations of the free Maxwell
field, both classical and quantised, for the property of dynamical locality. This
property was introduced recently in connection with a discussion of a founda-
tional problem for physics in curved spacetimes: namely, to understand how a
theory should be formulated such that its physical content is preserved across
the various spacetimes on which it is defined; i.e. so that it represents the same
physics in all spacetimes (SPASs) [23]. This touches on what is actually meant
by the physical content of a theory, which is not easy to make mathematically
precise and it is conceivable there might be more than one satisfactory notion
of SPASs, or possibly none at all.

A suitable framework to address such questions is the functorial frame-
work of locally covariant quantum field theory set up in [12]. There, a quantum
field theory is described as a functor between a category of curved spacetimes
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and a category of unital (C)*-algebras. Two quantum field theories are equiv-
alent if and only if there is a natural isomorphism between the functors de-
scribing them. Due to the flexibility of the functorial framework, the ideas of
locally covariant quantum field theory can be easily applied to other physical
theories by a change of the target category, leading to the notion of locally
covariant (physical) theories.

In [23], the issue of SPASs was addressed as follows. Any putative notion
of SPASs can be represented by a class of locally covariant theories—those
conforming to the notion in question. One can then assert axioms for what
a good notion of SPASs should be as restrictions on such classes of theories.
In particular, suppose one has two theories F , G, in a class T , each of which
is supposed to represent the same physics in all spacetimes according to a
common notion. If there is at least one spacetime in which the theories F and
G coincide, then it seems natural to demand that they should coincide in all
spacetimes. This idea was implemented mathematically for the case in which
theory F is a subtheory of G: a class of theories T is said to have the SPASs
property if and only if whenever F,G are locally covariant theories in T and
η : F→̇G is a partial natural isomorphism (i.e. at least one of its components
is an isomorphism), then η is a natural isomorphism. It was pointed out in
[23] that the collection of all locally covariant quantum field theories does not
have the SPASs property, while the class of locally covariant theories which
are furthermore dynamically local does. It was also noted that one might wish
to consider other implementations of the underlying idea of SPASs, to which
we will return in Sect. 8.4.

The condition of dynamical locality requires that two notions of the local
physical content of a locally covariant theory should coincide: (a) the kine-
matic description provided by the functor applied to local regions considered as
spacetimes in their own right, and (b) the dynamical description which singles
out the elements that are invariant under changes to the metric in the causal
complement of the region. The precise definition will be recalled in Sect. 5.
Dynamical locality is also of interest its own right, regardless of SPASs, because
of its consequences for locally covariant theories such as additivity, extended
locality (see [36,43] for the original notion) and a no-go theorem concerning
preferred states in locally covariant quantum field theories [23, § 6].

It is useful to summarise the current state of knowledge regarding
dynamical locality. Klein–Gordon theory in spacetime dimension n ≥ 2, with
mass m and curvature coupling ξ, is known to be dynamically local provided
at least one of m or ξ is non-zero [18,24]. The same is known to be true for
the extended theory of Wick polynomials for m > 0 in the two cases of min-
imal and conformal coupling in dimensions n ≥ 2 [18]; moreover, the Dirac
field in n = 4 dimensions is dynamically local for m ≥ 0 [17]. The massless
minimally coupled scalar field fails to be dynamically local in all dimensions
n ≥ 2, which can be traced to the rigid gauge symmetry φ �→ φ + const of
the theory; as mentioned, dynamical locality is restored if either m or ξ be-
come non-zero. Moreover, the free massless current is also dynamically local in
dimensions n ≥ 3, and also in n = 2 if we restrict to the category of connected
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spacetimes [24]. The inhomogeneous minimally coupled Klein–Gordon theory
has recently been studied [22]; here, the category of spacetimes is replaced
by a category of spacetimes with sources, and one modifies the definition of
the relative Cauchy evolution and the dynamical net to take account of both
metric and source perturbations. The result is that the inhomogeneous theory
is dynamically local for all n ≥ 2 and m ≥ 0. Thus, we see that the failure
of dynamical locality is lifted as soon interactions, in the form of curvature
coupling or external sources (or, mass terms) are included. Note that, while
the curvature and mass terms break the gauge symmetry, this is not the case
for the inhomogeneous theory.1 In this paper, we intend to close a gap by
including the free (i.e. non-interacting and source-free) Maxwell field in the
discussion of dynamical locality.

In fact, the formulation of the free Maxwell field and related models has
attracted some interest recently, particularly in relation to local covariance.
Results on the initial value problem and the quantisation in [16] were gener-
alised to differential p-form fields in [40], Hadamard states were discussed in
[15,21] and the Reeh–Schlieder property was analysed in [13]. However, these
treatments have in common that they make some assumptions on the topology
of the underlying spacetime. Approaches which do not make such assumptions
are [14], which treats field strengths, [42], which treats the vector potential,
and [25], which discusses the Gupta–Bleuler formalism in curved spacetimes.
A consideration of electromagnetism in the spirit of Yang–Mills gauge theories
is given in the series of papers [4–6]. Moving beyond electromagnetism, the
renormalisability of quantum Yang–Mills theories in curved spacetimes was
established in [33] and a general setting for linear quantised gauge field the-
ories is given in [32]. One might also mention progress in linearised quantum
gravity [20], which partly inspired some of the work just discussed.

There are various reasons for this interest in free electromagnetism. First,
it is important as a model in which physical phenomena such as the Casimir
effect can be described, and as a building block in the construction of the per-
turbative construction of interacting quantum field theories in curved space-
times [11,34,35]. Second, it is a theory in which the effects of a non-trivial
spacetime topology such as topological charges and their superselection rules
[1,44] and Aharonov–Bohm-like effects [42] can be discussed. Related to this,
topological effects result in a failure of electromagnetism and similar theories
to obey the axioms of locally covariant physics—as emphasised by [42], it is
locality, rather than covariance, which is lost, as the price for incorporating ob-
servables such as those related to Gauss’ law. Finally, for our current purposes,
the known failure of dynamical locality with the massless and minimally cou-
pled free scalar field, as a result of a rigid gauge symmetry, evidently makes
electromagnetism, as a local gauge field theory, an interesting test case for
dynamical locality.

1 There is a subtlety in [22]: not all generators of relative Cauchy evolutions correspond to
observable (gauge-invariant) fields in the m = 0 case; if one excludes such relative Cauchy
evolutions from the construction of the dynamical net, then dynamical locality fails. See [22,
Remark 7.20 and §8].
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A legitimate question is whether to use a field strength tensor [14] or a
vector-potential description [4–6,16,42] of the free Maxwell field for the task
of investigating dynamical locality. Our basic approach, following [14], will
be to take the theory of the free Maxwell field on contractible curved space-
times, where a field strength tensor description coincides with a gauge invari-
ant vector potential description and leads to symplectic spaces and simple
unital (C)*-algebras, and to ask how it may be extended to curved spacetimes
with arbitrary topologies in a functorial way. This differs from other, more
global, approaches like [4–6,16,42] insofar as we are led to our global theory
(on non-contractible curved spacetimes) by local reasoning. Such an exten-
sion was already achieved in [14] for the quantised free Maxwell field in terms
of the field strength tensor using Fredenhagen’s idea of the universal algebra
[26–28]. The classical and the quantum field theory obtained in this way will
be called ‘universal’; as the field strength and vector potential formulations of
electromagnetism coincide in contractible curved spacetimes, their correspond-
ing universal theories are also equivalent: this is a generalisation of the “natural
algebraic relation” described by Bongaarts [8] between the Borchers–Uhlmann
algebras for the field strength description and the vector potential description
of the quantum theory of the free Maxwell field in Minkowski space.

The classical and the quantised universal F-theories (“F” is to indicate
the field strength tensor description) of the free Maxwell field do not obey
local covariance since degenerate pre-symplectic spaces and non-simple uni-
tal (C)*-algebras arise whenever the second de Rham cohomology group of
the curved spacetime considered is non-trivial. However, they still satisfy the
time-slice axiom and the dynamical net can be constructed, thus allowing one
to test them for dynamical locality, which they will fail as well. It is therefore
of interest to know whether these desirable properties can be restored in some
way; moreover, it would also be closer to the original spirit of algebraic quan-
tum field theory [30,31] to work with simple unital (C)*-algebras (and thus
with non-degenerate pre-symplectic spaces in the classical case. Hence, we will
also consider ‘reduced’ theories of the free Maxwell field which quotient out
non-trivial radicals or centres of the universal free F-theories—similar ideas
have been mentioned in [42], where it is also stated that this cannot be done
in a functorial way for the vector potential description. As we will show, the
classical and the quantised reduced free F-theory are both locally covariant
(by design) and, which is not so obvious, dynamically local.

The paper is structured as follows. We begin with some preliminary work,
collecting notions of locally covariant quantum field theory in Sect. 2 and
recalling some exterior calculus of differential forms in Sect. 3. Next, we review
the classical and the quantum field theories of the free Maxwell field, which
we wish to consider, in Sect. 4. In Sect. 5, we recap the general construction of
the dynamical net. In Sect. 6, we will see that the classical and the quantised
universal free F-theory obtained in Sect. 4 fail local covariance and dynamical
locality due to the topological reasons already mentioned. This failure can be
remedied, leading to the locally covariant and dynamically local, classical and
quantised reduced F-theory of the free Maxwell field, which will be the topic of
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Sect. 7. In Sect. 8, we discuss the status of dynamical locality, the categorical
structure underlying some of our constructions, and the relation of our present
work to the discussions of SPASs in [23,24].

2. Locally Covariant Physics

We briefly review the functorial framework of algebraic quantum field theory
in curved spacetimes collected in [12], in which a quantum field theory is
described as a functor between a category of spacetimes and a category of
unital (C)*-algebras, and its application to other physical systems.

2.1. Spacetimes and Physical Systems

The category of spacetimes, Loc, has as its objects all oriented globally hyper-
bolic spacetimes M = (M, g, o, t) of dimension 4 and signature (+,−,−,−),
where o is the orientation and t is the time-orientation. A Loc-morphism
ψ : M → N is an isometric smooth embedding which preserves the orienta-
tion and the time-orientation and whose image ψ(M) is causally convex2 in
N (preservation of the causal structure). For (algebraic) quantum field theory,
the following two categories are of importance:

• C*Algm
1 : Objects are unital C∗-algebras; morphisms are unital ∗-mono-

morphisms.
• *Algm

1 : Objects are unital ∗-algebras (over C); morphisms are unital
∗-monomorphisms.

Following standard notation, we denote the set of morphisms between objects
A,B of *Algm

1 by *Algm
1 (A,B), and similarly for the other categories encoun-

tered.
A locally covariant quantum field theory is a functor F : Loc → C*Algm

1

or F : Loc → *Algm
1 . This means that to each spacetime M ∈ Loc the

theory assigns an algebra FM (in C*Algm
1 or *Algm

1 as appropriate) and,
importantly, to each embedding of spacetimes ψ : M → N in Loc, the theory
assigns a morphism Fψ : FM → FN ; in the current algebraic setting, Fψ is
an injective unital ∗-homomorphism. The functorial axioms specify the action
of F on identity morphisms and composite morphisms, namely, F idM = idFM

and F (ψ ◦ ϕ) = Fψ ◦ Fϕ. Note that it is important to insist on the injectivity
of the unital *-homomorphisms in order to fully implement the principle of
local covariance.

Due to the flexibility of the functorial framework, we can consider other
physical situations by changing the target category. The physical systems un-
der consideration shall form the objects of a category Phys, so that a mor-
phisms of Phys represents an inclusion of one physical system as a physical
subsystem of another. The category of Phys is subjected to further conditions
[23, § 3.1]: to be specific it is required that all Phys-morphisms are monic and

2 ψ(M) is causally convex in N if and only if each causal smooth curve in N with endpoints
in ψ(M) is entirely contained in ψ(M).
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that Phys has equalisers, intersections, unions3 and an initial object, which
represents the trivial physical theory. A functor F : Loc → Phys is called a
locally covariant (physical) theory. We will consider just a few candidates for
Phys in this paper, namely, *Algm

1 and
• pSymplm

K
: Objects are (complexified if K = C) pre-symplectic spaces,

(V, ω,C), where V is a K-vector space, C a C-involution on V (which
is omitted or set to be the identity on V if K = R)4 and ω a (pos-
sibly degenerate) skew-symmetric K-bilinear form satisfying ω ◦ (C ×
C) = ◦ ω; the morphisms are symplectic C-monomorphisms, i.e. f ∈
pSymplm

K
((V, ω,C), (V ′, ω′, C ′)) is an injective K-linear map f : V → V ′

such that ω′ ◦ (f × f) = ω and f ◦ C = C ′ ◦ f .
We will also consider modifications of the categories mentioned so far as aux-
iliary structures. Loc c© is the full subcategory of Loc whose objects are con-
tractible spacetimes. *Alg1 is defined in the same way as its subcategory
*Algm

1 , but dropping the restriction of injectivity and allowing general uni-
tal ∗-homomorphisms. Similarly, pSympl

K
is defined in the same way as its

subcategory pSymplm
K

, but dropping the restriction that the morphisms be
injective maps.5 Finally, Sympl

K
is the full subcategory of pSymplm

K
, where

the (complexified if K = C) pre-symplectic form is now assumed to be weakly
non-degenerate.

2.2. The Relative Cauchy Evolution

We call a Loc-morphism ψ : M → N Cauchy whenever the image ψ(M)
contains a Cauchy surface for N ; see [23, Appx.A.1] for some properties of
Cauchy morphisms. A locally covariant theory F : Loc → Phys is said to obey
the time-slice axiom if and only if Fψ : FM → FN is a Phys-isomorphism
whenever ψ ∈ Loc(M ,N) is Cauchy.

For locally covariant theories obeying the time-slice axiom, it is possible
to define the relative Cauchy evolution [12], which captures the dynamical
reaction of the theory to a local perturbation of the background metric; its
functional derivative with respect to the metric perturbation is closely related
to the stress–energy tensor of the theory, see [12,23,24]. The relative Cauchy
evolution can thus be regarded as the natural replacement of the action.

Let M = (M, g, o, t) ∈ Loc. A globally hyperbolic perturbation h of M
is a compactly supported, symmetric and smooth tensor field such that the
modification M [h] := (M, g + h, o, th) becomes a Loc-object, where th is
the unique choice for a time-orientation on (M, g + h) that coincides with t
outside supph. We write H(M) for all globally hyperbolic perturbations of
M , while H(M ;K) denotes the subset of all globally hyperbolic perturbations

3 For the categorical notions of equalisers, which are also known as difference kernels, inter-
sections and unions see [39] or [23, Appx.B].
4 A C-involution on a complex vector space V is a complex-conjugate linear map C : V → V
satisfying C ◦ C = idV .
5 Note that in [24], pSymplK denotes the category we call pSymplm

K
here. As non-monic

morphisms arise when considering the universal theory of the free Maxwell field, it is neces-
sary to indicate unambiguously whether we only allow for monics or not.
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whose support is contained in a subset K ⊆ M . For each h ∈ H(M), we
define open sets M± [h] := M\J∓

M (supph), which will become Loc-objects
in their own right if endowed with the structures induced by M or M [h]6

by [23, Lem.3.2(a)]. We denote these Loc-objects by M± [h] = M |M±[h] =
(M± [h] , g|M±[h], o|M±[h], t|M±[h]). By [23, Lem.3.2(b)], the inclusion maps

ιM±[h]M : M± [h] −→ M and ιM±[h]M [h] : M± [h] −→ M [h]

become Cauchy morphisms, which we will denote by

ı±M [h] : M± [h] −→ M and j±
M [h] : M± [h] −→ M [h] .

Now, given a locally covariant theory F : Loc → Phys which obeys the time-
slice axiom, the relative Cauchy evolution for F induced by h ∈ H(M) is the
Phys-automorphism FM → FM defined by

rceF
M [h] := F

(
ı−M [h]

) ◦ (
F

(
j−
M [h]

))−1 ◦ F
(
j+M [h]

) ◦ (
F

(
ı+M [h]

))−1
. (1)

3. Some Preliminaries on Differential Forms

Differential forms allow for an elegant geometrical description of electromag-
netism, that extends to curved spacetimes and allows for a relatively easy
quantisation. For M ∈ Loc, we denote the C∞(M,K)-module of all smooth
K-valued differential p-forms (p ≥ 0) by Ωp(M ;K). Adding the subscript “0”,
i.e. writing Ωp

0(M ;K), will denote the C∞(M,K)-module of all smooth K-
valued differential p-forms of compact support. By convention, Ω−1

(0)(M ;K) is
the trivial K-vector space.

Several operators on smooth differential forms will be of importance to
us. First, the exterior derivative7 dM : Ωp

(0)(M ;K) → Ωp+1
(0) (M ;K) is given, in

abstract index notation, by

(dMω)a1...ap+1
=

p+1∑

i=1

(−1)i+1 ∇ai
ωa1...ai−1ai+1...ap+1 , ω ∈ Ωp (M ;K) ,

where ∇ denotes the Levi–Civita connection on M ; by convention we set dM :
Ω−1

(0)(M ;K) → Ω0
(0)(M ;K) to be the zero map. The K-vector space of all (com-

pactly supported) smooth K-valued differential p-forms ω ∈ Ωp
(0)(M ;K) which

are closed, that is, dMω = 0, is denoted by Ωp
(0),d(M ;K). We say that ω ∈

Ωp
d(M ;K) is exact if and only if there is θ ∈ Ωp−1(M ;K) such that ω = dMθ.

The K-vector spaces Hp
dR,(c)(M ;K) := Ωp

(0),d(M ;K)/dMΩp−1
(0) (M ;K), called

the de Rham cohomology groups (with compact supports), indicate to what ex-
tent the closed smooth differential forms (with compact support) of a smooth
manifold fail to be exact (via compactly supported smooth differential forms)

6 It does not matter whether we use M or M [h] since M± [h] ∩ supp h = ∅.
7 The subscript ‘(0)’ indicates that the map is well-defined for both with and without the
subscript.
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and are deeply connected to the topology of the manifold via singular homol-
ogy. By Poincaré duality [29, § V.4], we have Hp

dR(M ;K) ∼= (H4−p
dR,c(M ;K))∗,

where ‘∗’ denotes the vector space dual.
Next, the Hodge-∗-operator ∗M : Ωp

(0)(M ;K)→Ω4−p
(0) (M ;K) is the C∞(M,

K)-module isomorphism defined by

ω ∧ ∗Mη =
1
p!

ωa1...ap
ηa1...ap volM , ω, η ∈ Ωp (M ;K) ,

with inverse ∗−1
M = (−1)p(4−p)+1∗M . The Hodge-∗-operator provides a weakly

non-degenerate K-bilinear pairing
∫

M
(·) ∧ ∗M (·) of Ωp(M ;K) and Ωp

0(M ;K).
Using the exterior derivative and the Hodge-∗-operator, we form the exte-

rior coderivative δM := (−1)p ∗−1
M dM∗M : Ωp

(0)(M ;K) → Ωp−1
(0) (M ;K), which

is formally adjoint to dM in the sense that
∫

M

ω ∧ ∗MδMη =
∫

M

dMω ∧ ∗Mη

whenever ω ∈ Ωp(M ;K) and η ∈ Ωp+1(M ;K) such that suppω ∩ supp η is
compact. In abstract index notation

(δMω)a1...ap−1
= −∇a0ω

a0
a1...ap−1

, ω ∈ Ωp (M ;K) .

Ωp
(0),δ(M ;K) will denote the K-vector space of all (compactly supported)

smooth K-valued differential p-forms ω ∈ Ωp(M ;K) which are coclosed, that is
δMω = 0. ω ∈ Ωp

δ(M ;K) is called coexact if and only if there is η ∈ Ωp+1(M ;K)
with ω = δMη. Closed and coclosed as well as exact and coexact smooth dif-
ferential forms are related to each other by the Hodge-∗-operator.

The d’Alembertian or wave operator �M : Ωp
(0)(M ;K) → Ωp

(0)(M ;K) is
defined by �M := −δMdM − dMδM . In abstract index notation, we have

(�Mω)a1...ap
= gab∇a∇b ωa1...ap

+
p∑

i=1

(−1)pgab [∇a,∇ai
]ωba1...ai−1ai+1...ap

,

ω ∈ Ωp (M ;K),

which establishes that �M is a normally hyperbolic linear differential oper-
ator of metric type (see [3, § 1.5] for a definition but note that [3] employ
the (−,+,+,+)-metric signature). Hence, [3] shows that �M has a well-posed
Cauchy problem and that there are unique retarded and advanced Green’s
operators G

ret/adv
M such that supp G

ret/adv
M ω ⊆ J

+/−
M (suppω) (usage of “ad-

vanced” and “retarded” is reversed in [3]). We will make extensive use of the
difference GM := Gret

M −Gadv
M ,8 and collect at this point some useful properties:

Lemma 3.1. The following hold for any p ≥ 0: (a) The identities GMdMω =
dMGMω and GMδMω = δMGMω hold for all ω ∈ Ωp

0(M ;K). (b) The kernel
of �M on Ωp

0(M ;K) is trivial, while the range of GM on Ωp
0(M ;K) coincides

with the space of η ∈ Ωp(M ;K) such that �Mη = 0 and so that η has space-like

8 Note that the advanced-minus-retarded Green operator is often used in the literature, e.g.,
[21,24].
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compact support (which is equivalent to having compact support on Cauchy sur-
faces [41]). The kernel of GM on Ωp

0(M ;K) is given by �MΩp
0(M ;K). (c) The

identity GMdMδMω = −GMδMdMω holds for all ω ∈ Ωp
0(M ;K). (d) The

kernels of dM�M and δM�M on Ωp
0(M ;K) are Ωp

0,d(M ;K) and Ωp
0,δ(M ;K),

respectively. (e) The kernels of dMGMδM and δMGMdM on Ωp
0(M ;K) are

both equal to Ωp
0,d(M ;K) ⊕ Ωp

0,δ(M ;K).

Proof. (a) is proved, e.g., in [40, Prop. 2.1]; (b) is standard for normally hy-
perbolic operators, e.g., [3, Thm. 3.4.7]; (c) is a special case of (b) using the
definition of �M . For (d), we observe that dM�Mα = 0 for α ∈ Ωp

0(M ;K)
implies �MdMα = 0 and hence that dMα = 0 by (b); conversely, it is clear
that α ∈ Ωp

0,d(M ;K) implies dM�Mα = 0. Similarly, δM�Mα = 0 if and
only if δMα = 0. Finally, if dMGMδMω = 0 for ω ∈ Ωp

0(M ;K) then we also
have GMdMδMω = 0 and hence dMδMω = �Mα for some α ∈ Ωp

0(M ;K)
by (b); as it is clear that dM�Mα = 0, (d) gives α ∈ Ωp

0,d(M ;K). By
(c), we also have GMδMdMω = 0 and by similar arguments, δMdMω =
�Mβ for β ∈ Ωp

0,δ(M ;K). We deduce that �M (ω + α + β) = 0 and hence
ω ∈ Ωp

0,d(M ;K) + Ωp
0,δ(M ;K). This is actually a direct sum, because any

ω ∈ Ωp
0,d(M ;K) ∩ Ωp

0,δ(M ;K) obeys �Mω = 0, so the intersection is trivial.
The reverse inclusion is easily shown using (c). �

4. Classical and Quantum Maxwell Theories

4.1. The Initial Value Problem

For M ∈ Loc, the free Maxwell equations for the electromagnetic field strength
tensor F ∈ Ω2(M ;K) are

dMF = 0 and δMF = 0. (2)

Given the electric field E ∈ Ω1
0,δ(Σ;K) and the dualised magnetic field B ∈

Ω2
0,d(Σ;K) on a smooth spacelike Cauchy surface Σ for M with inclusion

map ιΣ : Σ → M , we can formulate the well-posed initial value problem [14,
Prop. 2.1]:

dMF = 0, δMF = 0, −ι∗ΣF = B and ∗Σ ι∗Σ ∗−1
M F = E. (3)

Borrowing terminology from [8], we will generally call this the F-description
of the free Maxwell field.

As is well-known, on any M ∈ Loc c©, every solution of (2) can be ex-
pressed as F = dMA (i.e. Fab = ∇aAb − ∇bAa) because H2

dR(M ;K) = 0,
whereupon the free Maxwell equations (2) can be re-expressed as the single
equation δMdMA = 0 for the electromagnetic vector potential A ∈ Ω1(M ;K).
Owing to gauge freedom, however, the initial value problem

δMdMA = 0, −ι∗ΣA = A and ∗Σ ι∗Σ ∗−1
M dMA = E,

where Σ, ιΣ and E as above and A ∈ Ω1
0(Σ;K) is the magnetic vector potential,

i.e. dΣA = B, is not well-posed. Instead, a well-posed initial value problem is
obtained by passing to suitable equivalence classes of initial data and solutions



410 C. J. Fewster and B. Lang Ann. Henri Poincaré

[16,40,42]. We will generally refer to the description in terms of the vector
potential as the A-description of the free Maxwell field.

4.2. Classical Phase Space and Quantum Algebra: Contractible Spacetimes

As explained in the introduction, we start with the description of the classical
and the quantised free Maxwell field on contractible curved spacetimes, where
there is no dispute about the symplectic spaces and the unital *-algebras of
the smeared quantum field and the F- and the A-description coincide.

Hence, we continue to assume that M ∈ Loc c©. In the F- and the A-
description of the free Maxwell field, there are three descriptions of the classical
field theory in terms of a (possibly complexified) symplectic space: the phase
space of the Cauchy data, the phase space of the solutions and the phase space
of the test forms (cf. [16, § 3] for the case of the electromagnetic vector poten-
tial). However, these three choices are symplectomorphic and hence equivalent.
In view of the unital *-algebras of the smeared quantum field and their relation
to the classical phase space, we find it most convenient to work with the phase
space of the test forms.

F-description. As shown in the proof of [14, Prop. 2.1], any solution of (3)
with compact support on Cauchy surfaces is also a solution for the initial
value problem of the wave equation �MF = 0 with compactly supported
Cauchy data, and can be written as [14, Prop. 2.2]:

F = GM (dMθ + δMη) , θ ∈ Ω1
0,δ (M ;K) , η ∈ Ω3

0,d (M ;K) .

This general form may be simplified as M is contractible (so H1
dR(M ;K) is triv-

ial), and hence Ω1
0,δ(M ;K) = δMΩ2

0(M ;K) and Ω3
0,d(M ;K) = dMΩ2

0(M ;K).
Making use of Lemma 3.1, we see that any solution of (3) with compact support
on Cauchy surfaces can be written as

F = dMGMδMω, ω ∈ Ω2
0 (M ;K) .

By Lemma 3.1(e), ω, η ∈ Ω2
0(M ;K) give rise to the same solution if and only if

they differ by an element of Ω2
0,d(M ;K)⊕Ω2

0,δ(M ;K). As M is contractible, we
have Ω2

0,d(M ;K) = dMΩ1
0(M ;K) and Ω2

0,δ(M ;K) = δMΩ3
0(M ;K), so the space

of the test forms may be described as a (complexified if K = C) symplectic
space FM := (

[
Ω2

0(M ;K)
]
,wM , ),9 where

[
Ω2

0 (M ;K)
]

:= Ω2
0 (M ;K)

/ (
dMΩ1

0 (M ;K) ⊕ δMΩ3
0 (M ;K)

)
,

wM ([ω] , [η]) := −
∫

M

GMδMω ∧ ∗MδMη, (4)

[ω] := [ω] , [ω] , [η] ∈ [
Ω2

0 (M ;K)
]
,

(the complex conjugation is to be omitted if K = R). The fact that wM is a
well-defined and non-degenerate follows immediately from the following result:

9 The use of the same symbol F [and later A] for both K = R and K = C, should not give
rise to any confusion.
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Lemma 4.1. Let M ∈ Loc (contractibility is not assumed). Then

(ω, η) �→ −
∫

M

GMδMω ∧ ∗MδMη,

is a skew-symmetric, K-bilinear form on Ω2
0(M ;K), with radical Ω2

0,d(M ;K)⊕
Ω2

0,δ(M ;K).

Proof. Bilinearity is obvious and skew-symmetry follows from general proper-
ties of GM . Fixing ω ∈ Ω2

0(M ;K) and noting that
∫

M

GMδMω ∧ ∗MδMη =
∫

M

dMGMδMω ∧ ∗Mη ∀η ∈ Ω2
0 (M ;K) , (5)

the non-degeneracy of the pairing
∫

M
(·) ∧ ∗M (·) : Ω2(M ;K) × Ω2

0(M ;K) → K

implies that the left-hand side of (5) vanishes for all η ∈ Ω2
0(M ;K) if and only

if dMGMδMω = 0 and hence ω ∈ Ω2
0,d(M ;K)⊕Ω2

0,δ(M ;K) by Lemma 3.1(e).
�

The corresponding quantum version, that is, the unital *-algebra FM
of the smeared quantum field for the free Maxwell field in terms of the field
strength tensor is generated by the abstract elements FM (ω), ω ∈ Ω2

0(M ;C),
which obey the following relations (cf. [14, Def. 3.1]):

• Linearity and Hermiticity:

FM (λω + μη) = λFM (ω) + μFM (η) and FM (ω)∗ = FM (ω)

∀λ, μ ∈ C, ∀ω, η ∈ Ω2
0 (M ;C).

• Free Maxwell equations in the weak sense:

FM (dMθ) = 0 and FM (δMη) = 0 ∀θ ∈ Ω1
0 (M ;C) , ∀η ∈ Ω3

0 (M ;C) .

• Commutation relations:10

[FM (ω) ,FM (η)] =
(

− i
∫

M

GMδMω ∧ ∗MδMη

)
· 1FM ∀ω, η ∈ Ω2

0 (M ;C) .

As will become clear from the discussion of the quantisation functor later, FM
is simple.

A-description. In the A-description, the classical field theory can be described
by the (complexified if K = C) symplectic space

AM =
([

δMΩ2
0 (M ;K)

]
, vM ,

)
,

where (omitting the complex conjugation if K = R)
[
δMΩ2

0 (M ;K)
]

:= δMΩ2
0 (M ;K)

/
δMdMΩ1

0 (M ;K) ,

vM ([θ] , [φ]) := −
∫

M

GMθ ∧ ∗Mφ,

[θ] :=
[
θ
]
, [θ] , [φ] ∈ [

δMΩ2
0 (M ;K)

]
,

10 Also known as Lichnerowicz’s commutation relations—see the remark in [16, § 4] and
[37].
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see [13,15,16,40]. Note, the first two references assume that M has compact
Cauchy surfaces. This assumption is not necessary here (though we have con-
tractibility at present). Also, recall the identity δMΩ2

0(M ;K) = Ω1
0,δ(M ;K)

due to the assumption M ∈ Loc c©. The corresponding simple unital *-algebra
AM of the smeared quantum field for the free Maxwell field in terms of the vec-
tor potential is generated by the abstract symbols [A]M (θ), θ ∈ δMΩ2

0(M ;C),
obeying the following relations [16,21,40,42]:
• Linearity and Hermiticity:

[A]M (λθ + μφ) = λ[A]M (θ) + μ[A]M (φ) and [A]M (θ)∗ = [A]M
(
θ
)

∀λ, μ ∈ C, ∀θ, φ ∈ δMΩ2
0 (M ;C).

• Free Maxwell equations in the weak sense:

[A]M (δMdMθ) = 0 ∀θ ∈ Ω1
0 (M ;C) .

• Commutation relations:
[
[A]M (θ), [A]M (φ)

]
=

(
− i

∫

M

GMθ ∧ ∗Mφ

)
· 1AM ∀θ, φ∈δMΩ2

0 (M ;C).

Functorial properties. Let ψ ∈ Loc c©(M ,N) be a morphism between con-
tractible spacetimes M and N . Then there is a natural pushforward of com-
pactly supported smooth K-valued differential forms, ψ∗ : Ωp

0(M ;K) → Ωp
0(N ;

K) as well as the pullback ψ∗ : Ωp(N ;K) → Ωp(M ;K), and there is a well-
known identity ψ∗GNψ∗ = GM (cf. e.g., [24, Sec. 3]). Making use of these
properties, we obtain Sympl

K
-morphisms Fψ : FM → FN and Aψ :

AM → AN by Fψ [ω] := [ψ∗ω] for ω ∈ Ω2
0(M ;K) and Aψ [θ] := [ψ∗θ] for θ ∈

δMΩ2
0(M ;K). Similarly, putting Fψ(FM (ω)) := FN (ψ∗ω) for ω ∈ Ω2

0(M ;K)
and also Aψ([A]M (θ)) := [A]N (ψ∗θ) for θ ∈ δMΩ2

0(M ;K) well-defines *Algm
1 -

morphisms Fψ : FM → FN and Aψ : AM → AN . In this way, we obtain
functors

F : Loc c© −→ Sympl
K

and A : Loc c© −→ Sympl
K
,

F : Loc c© −→ *Algm
1 and A : Loc c© −→ *Algm

1 .

It is straightforward to see that the map Ω2
0(M ;K) � ω �→ δMω ∈ δMΩ2

0(M ;K)
gives rise to a Sympl

K
-isomorphism ηM : FM → AM for each M ∈ Loc c©

and that the family {ηM}M∈Loc c© thus obtained form the components of a nat-
ural isomorphism η : F→̇A. Thus, F and A are equivalent physical theories on
Loc c©. The quantum version of η is a natural isomorphism ε : F→̇A determined
by εMFM (ω) = [A]M (δMω) for ω ∈ Ω2

0(M ;K) and M ∈ Loc c©, and precisely
generalises the “natural algebraic relation” between the Borchers–Uhlmann al-
gebras for the F- and the A-descriptions discussed in [8] for Minkowski space.

4.3. Extensions to Non-contractible Spacetimes

The previous subsection described the classical and the quantised free Maxwell
field on contractible curved spacetimes in terms of both the field strength
tensor and the vector potential. However, there are physically relevant curved
spacetimes with non-trivial topologies such that not every field strength tensor
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F can be derived from a vector potential A via F = dA (Fab = ∇aAb −∇bAa),
which generally leads to interesting features such as topological (electric and
magnetic) charges and superselection rules thereof [1,44]. An example of such
a curved spacetime is the Schwarzschild–Kruskal spacetime, which has the
topology of M ∼= R × R × S2, hence H2

dR(M ;K) �= 0 �= H2
dR,c(M ;K). Such

features ultimately prevent one from having classical and quantised theories of
the free Maxwell field in the usual, straightforward manner (in the F- as well
as in the A-description).

Universal theories. To deal with non-trivial spacetime topologies and to
analyse the impact they have on the (unital) (C)*-algebras of the quantum field
theory, Fredenhagen has suggested the use of (the analogue of) the universal
algebra construction in [26–28], to obtain a ‘minimal’ description compatible
with, and unifying, the local descriptions of the quantum field theory on con-
tractible regions of the spacetime. This was addressed in [33, Appx. A] and
carried out in detail in [14]. The final result of the analysis is very simple
in the F-description: the universal algebra FuM is precisely what would be
obtained by removing the restriction to M ∈ Loc c© in the construction of
FM and allowing general M ∈ Loc instead (cf. [14, Prop. 3.1 + 3.2]). The
difference lies in the fact that we now have Ω2

0,d(M ;K) �= dMΩ1
0(M ;K) and

Ω2
0,δ(M ;K) �= δMΩ3

0(M ;K) if H2
dR(M ;K) �= 0 (and hence H2

dR,c(M ;K) �= 0
by Poincaré duality). This implies that FuM is non-simple and possesses a
non-trivial centre whenever M ∈ Loc such that H2

dR(M ;K) �= 0. Of course,
FuM = FM for all M ∈ Loc c©.

A similar construction can be carried out for the classical field theory,
that is, there exists a ‘universal’ (complexified if K = C) pre-symplectic space
which can be constructed from the local (complexified if K = C) symplectic
spaces of the contractible spacetime regions. For each M ∈ Loc, FuM :=
(
[
Ω2

0(M ;K)
]
,wuM , ) is the (complexified if K = C) pre-symplectic space

given by (omitting the complex conjugation if K = R)
[
Ω2

0 (M ;K)
]

:= Ω2
0 (M ;K)

/ (
dMΩ1

0 (M ;K) ⊕ δMΩ3
0 (M ;K)

)
,

wuM ([ω] , [η]) := −
∫

M

GMδMω ∧ ∗MδMη, (6)

[ω] := [ω] , [ω] , [η] ∈ [
Ω2

0 (M ;K)
]
,

which is well-defined as a consequence of Lemma 4.1. On contractible space-
times M ∈ Loc c©, FuM coincides precisely with FM defined by (4). How-
ever, the skew-symmetric bilinear form wuM is degenerate on spacetimes with
non-trivial H2

dR(M ;K) as can be seen from Lemma 4.1. Indeed, closed but
non-exact ω ∈ Ω2

0(M ;K) give rise to elements in the radical radwuM that
will be called electric topological degeneracies, while coclosed but non-coexact
ω ∈ Ω2

0(M ;K) give rise to magnetic topological degeneracies of wuM (cf. [14,
Prop.3.3]). Putting this another way, there is a linear isomorphism

H2
dR,c(M) ⊕ H2

dR,c(M) −→ radwuM

[α] ⊕ [β] �−→ [α + ∗Mβ],
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where the square brackets on the left are cohomology classes. The motivation
for our nomenclature is that an electric topological degeneracy ω defines a
classical observable F �→ ∫

M
F ∧ ∗Mω. By means of Poincaré duality theory

[10, § 1.5] the space of such observables is spanned by integrals of the form∫
S

∗MF for some closed 2-surface S that can be chosen to lie in a space-like
Cauchy surface, and so measures the topological electric charge enclosed by
S. Likewise, magnetic degeneracies determine observables measuring magnetic
fluxes.

Example 4.2. Let M be the Cauchy development of the exterior of a unit
ball in the t = 0 hyperplane of Minkowski spacetime. Then H2

dR(M ;K) ∼=
K, and H2

dR,c(M ;K) ∼= K is generated by ω = f(t, r)dt ∧ dr in spherical
polar coordinates, where f ∈ C∞

0 (R× (1,∞)). The observable
∫

M
F ∧ ∗Mω is

proportional to the electric flux through any closed 2-surface in the t = 0 plane
enclosing the excluded ball, while

∫
M

F ∧ ω is proportional to the magnetic
flux. (It is interesting to compare this with [42, Example 3.7], in which context
only the electric charges appear.)

For any Loc-morphism ψ : M → N , we define Fuψ : FM → FN and
FuM → FuN by extending the previous definitions, i.e. Fuψ [ω] := [ψ∗ω] and
Fuψ(FM (ω)) := FN (ψ∗ω) for ω ∈ Ω2

0(M ;K), thus obtaining morphisms in
pSympl

K
and *Alg1, respectively. This yields functors Fu : Loc → pSympl

K

and Fu : Loc → *Alg1, which will be called the classical universal F-theory
and quantised universal F-theory of the free Maxwell field. Note that on restric-
tion to contractible spacetimes, we recover the previously constructed theories:
Fu|Loc c© = F and Fu|Loc c© = F.

Reduced theories. The degeneracies just mentioned ultimately turn out to
obstruct desirable properties of local covariance and dynamical locality. To
restore them, we may modify the theory by forming quotients by the larger
direct sum of closed and coclosed forms, instead of quotienting by the direct
sum of exact and coexact forms, thus obtaining a classical reduced F-theory of
the free Maxwell field R : Loc → Sympl

K
. In more detail, for each M ∈ Loc,

RM := (
�
Ω2

0(M ;K)
�

, rM , ), where
�
Ω2

0 (M ;K)
�

:= Ω2
0 (M ;K)

/ (
Ω2

0,d (M ;K) ⊕ Ω2
0,δ (M ;K)

)
,

rM (�ω�, �η�) := −
∫

M

GMδMω ∧ ∗MδMη, (7)

�ω� := �ω� , �ω�, �η� ∈ �
Ω2

0 (M ;K)
�

,

(omitting complex conjugation if K = R). For any Loc-morphism ψ : M → N ,
Rψ : RM → RN is given by �ω� �−→ �ψ∗ω�, ω ∈ Ω2

0(M ;K). RM is precisely
obtained from FuM by quotienting out the radical of wuM . We also see that
RM = FuM whenever M ∈ Loc such that H2

dR(M ;K) = 0 (which implies
H2

dR,c(M ;K) = 0 by Poincaré duality and thus, Ω2
0,d(M ;K) = dMΩ1

0(M ;K)
and Ω2

0,δ(M ;K) = δMΩ3
0(M ;K)). Hence R|Loc c© = F .
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The quantised reduced F-theory of the free Maxwell field, R : Loc →
*Algm

1 , is given for each M ∈ Loc by the simple unital *-algebra RM gener-
ated by the abstract elements RM (ω), ω ∈ Ω2

0(M ;C), subject to the following
relations:

• Linearity and Hermiticity:

RM (λω + μη) = λRM (ω) + μRM (η) and RM (ω)∗ = RM (ω)

∀λ, μ ∈ C, ∀ω, η ∈ Ω2
0 (M ;C).

• Strengthened free Maxwell equations in the weak sense:

RM (ω) = 0 ∀ω ∈ Ω2
0,d (M ;C) ⊕ Ω2

0,δ (M ;C) .

• Commutation relations:

[RM (ω) ,RM (η)] =
(

− i
∫

M

GMδMω ∧ ∗MδMη

)
· 1RM

∀ω, η ∈ Ω2
0 (M ;C) .

The unital *-monomorphism Rψ : RM → RN is given by Rψ(RM (ω)) :=
RN (ψ∗ω) for ω ∈ Ω2

0(M ;K). It is readily seen that RM = FuM whenever
M ∈ Loc such that H2

dR(M ;K) = 0 and thus, R|Loc c© = F.
We conclude this subsection with some remarks. First, our classical re-

duced theory of the free Maxwell field is closely related to the “charge-zero
phase space functor” for electromagnetism given in [5, § 7]. The latter functor
actually yields degenerate pre-symplectic spaces. However, as pointed out in
[25], the treatment of affine theories used in [5] should be corrected; once this
is done their approach would coincide with our reduced theory.

Second, it would also have been possible to start in the A-description of
the free Maxwell field and then obtain a corresponding classical and quantised
universal A-theory Au : Loc → pSympl

K
and Au : Loc → *Alg1 from A :

Loc c© → pSympl
K

and A : Loc c© → *Algm
1 , in the same way as Fu : Loc →

pSympl
K

and Fu : Loc → *Alg1 were obtained from F : Loc c© → pSympl
K

and F : Loc c© → *Algm
1 . As A and F , and A and F are equivalent theories, that

is, naturally isomorphic as functors, it follows on abstract categorical grounds
that Au is naturally isomorphic to Fu and that Au is naturally isomorphic to
Fu. This means that the universal F-theory and the universal A-theory of the
free Maxwell field are equivalent theories. Choosing the universal F -theory over
the A-theory and vice versa has no physical significance and purely expresses a
different point of view on the same theory. In the following sections, we will take
the point of view of the F-description, which slightly simplifies some arguments
as we are automatically working in a gauge invariant setting. In fact, there is
a sense in which the universal algebra construction and its classical analogue
favours the F-description. An explicit expression for AuM and AuM , where
M ∈ Loc, purely in terms of (equivalence classes of) coclosed smooth K-
valued differential 1-forms appears only to be available when H1

dR(M ;K) and
H2

dR(M ;K) are both trivial. The reason for this is that the universal algebra
construction and its classical analogue allow not only for a 1-form potential
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for the field strength, but also for a description in terms of a 3-form potential,
i.e. V ∈ Ω3(M ;K) such that F = δV .

Finally, we have described the various quantised theories F, Fu and R,
by constructing the algebras in each spacetime and giving the morphisms cor-
responding to spacetime embeddings explicitly. However, we can also describe
them more abstractly as the result of composing the corresponding classical
theories F , Fu and R with a quantisation functor that implements the infin-
itesimal Weyl quantisation of (complexified) pre-symplectic spaces. Namely,
given any complexified pre-symplectic space (V, ω,C),11 the unital *-algebra
Q(V, ω,C) is defined to be ∗-algebra generated by abstract elements QV (v)
(v ∈ V ), subject to linearity of v �→ QV (v), the Hermiticity condition QV (v)∗ =
QV (Cv), and commutation relations [QV (v),QV (w)] = iω(v, w)1Q(V,ω,C). Fur-
ther, if f : (V, ωV , CV ) → (W,ωW , CW ) is a symplectic C-homomorphism
(again complexifying if needed), then Qf : Q(V, ωV , CV ) → Q(W,ωW , CW ) is
the unique unital *-homomorphism such that Qf(QV (v)) = QW (fv) for all
v ∈ V . These descriptions give rise to functors Q : pSympl

K
→ *Alg1.

It turns out that Q(V, ω,C) is a simple unital *-algebra whenever ω is
weakly non-degenerate [2, Scholium 7.1] and if f is injective, Qf will be injec-
tive.12 Hence, Q also gives rise to functors Sympl

K
→ *Algm

1 and pSymplm
K

→
*Algm

1 , all of which will be denoted by the same symbol Q and called the quan-
tisation functor. For the various locally covariant theories introduced above it
holds that R = Q ◦ R, Fu = Q ◦ Fu and F = Q ◦ F as well as A = Q ◦ A.

4.4. Electromagnetic Duality

As a slight digression, but with a view to later developments, we discuss the
status of electromagnetic duality in our theories. In each M ∈ Loc, the Hodge-
∗ is a linear isomorphism of Ω2

0(M ;K) to itself. As δM∗M = (−1)p+1 ∗M dM
and dM∗M = (−1)p ∗M δM on Ωp(M ;K), it is easily seen that ∗M induces
an isomorphism of the quotient space

[
Ω2

0(M ;K)
]

given by [ω] �→ [∗Mω], and
evidently obeys Fψ[∗Mω] = [∗Nψ∗ω] for every morphism ψ : M → N in
Loc c©. At the level of solutions, dMGMδM ∗M ω = − ∗M dMGMδMω for
ω ∈ Ω2

0(M ;K) and one easily derives from this that

wM ([∗Mω] , [∗Mη]) = −
∫

M

dMGMδM ∗M ω ∧ (∗M ∗M η)

= −
∫

M

dMGMδMω ∧ ∗Mη

= wM ([ω] , [η]) , [ω] , [η] ∈ [
Ω2

0 (M ;K)
]
.

From these results, it follows that the electromagnetic duality rotations

ΘM (α)[ω] = [cos α ω + sin α ∗M ω] ω ∈ Ω2
0(M), M ∈ Loc c© (8)

yield automorphisms Θ(α) ∈ Aut(F) for α ∈ R; as Θ(α)Θ(β) = Θ(α + β)
and Θ(α + 2π) = Θ(α) for all α, β ∈ R, we see that there is a faithful homo-
morphism from U(1) to Aut(F). In a similar way one may check that these

11 Real pre-symplectic spaces are treated by first complexifying them.
12 See [24] which discusses an equivalent description using the symmetric tensor product.
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automorphisms lift to automorphisms of both the universal and reduced the-
ories Fu and R. Furthermore, they induce automorphisms of the quantised
theories by Θ̂M (α)FM (ω) = FM (cos α ω + sin α ∗M ω) and so forth.

Automorphisms of locally covariant theories have been identified as global
gauge transformations [19]. This raises an interesting question, because the
electromagnetic duality is not a symmetry of the Maxwell Lagrangian L =
− 1

4F ∧ ∗F , which changes sign under F �→ ∗F . One might be concerned that
the presence of these automorphisms is an indication that the theories under
consideration are not true reflections of the original physics. Against this, we
note that the Maxwell Lagrangian has other unusual properties, in particu-
lar, the field equations obtained by variation with respect to F are trivial.
The Maxwell equations can be derived from the Lagrangian, however, by de-
manding conservation of the stress-energy tensor constructed by varying the
action with respect to the metric. As electromagnetic duality rotations leave
the stress-energy tensor invariant, there is good reason to accept them as bona
fide symmetries.

5. Kinematical and Dynamical Nets, and Dynamical Locality

One of the virtues of locally covariant quantum field theory is that it generalises
the framework of algebraic quantum field theory in a natural way [12, § 2.4].
Let F : Loc → (C)*Algm

1 be a locally covariant quantum field theory, where
we think of the algebra elements as local observables or as local smearings of
the quantum field. For M ∈ Loc, we denote the set of all globally hyperbolic
open subsets of M by O(M). Due to the functoriality of F , O(M) � O �→
FιO(FM |O) is a net of local unital (C)*-algebras, where ιO : O → M denotes
the inclusion map and M |O denotes O endowed with the structures as an
oriented globally hyperbolic spacetime induced by M . We call this net of local
unital (C)*-algebras the kinematical net of F for M and also denote ιO(FM |O)
by F kin(M ;O). The adjective “kinematical” is chosen because the construction
only relies on the functoriality of F , which corresponds to isotony in algebraic
quantum field theory, that is, a Haag–Araki–Kastler axiom referring to the
kinematics of a quantum field theory.

By contrast, the dynamical net of F for M ∈ Loc is a net of local unital
(C)*-algebras whose construction refers to the relative Cauchy evolution of F
and hence to dynamical aspects of the locally covariant quantum field theory
[23, § 5]. We thus assume that F obeys the time-slice axiom and take K
compact in M ∈ Loc. Then, we consider all elements of FM which are
insensitive to all globally hyperbolic perturbations h ∈ H(M ;K⊥) supported
in the region K⊥ := M\JM (K) that is causally inaccessible to K,

F • (M ;K) =
{
a ∈ FM | rceF

M [h] a = a ∀h ∈ H
(
M ;K⊥)}

.

This can be used to define what it means for an observable or smearing of the
quantum field to be localised in K. Finally, to localise observables or smearings
of the quantum field in globally hyperbolic open subsets of M , we define for
all O ∈ O(M),
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F dyn (M ;O) :=
∨

K∈K (M ;O)

F • (M ;K) ,

that is, F dyn(M ;O) is defined as the unital (C)*-algebra generated by the
unital (C)*-algebras F •(M ;K), where K ranges over a specific collection
K(M ;O) of compact subsets of O.

The definition of K (M ;O) is slightly involved. First, we define a Cauchy
ball to be an open set of a smooth spacelike Cauchy surface Σ for M diffeomor-
phic to an open ball of R3 under a smooth chart for Σ, with the chart image
containing the ball’s closure.13 A finite union of causally disjoint Cauchy balls
is called a multi-diamond, of which the Cauchy balls form the base. Finally,
following [23, § 5], K (M ;O) is the set of all compact subsets of O ∈ O(M)
which have a multi-diamond open neighbourhood whose base is contained
in O.

The assignment O(M) � O �→ F dyn(M ;O) is the dynamical net of F for
M and a locally covariant quantum field theory is said to be dynamically local
if and only if it obeys the time-slice axiom and the dynamical net coincides
with the kinematical net. Note that F kin(M ;O) and F dyn(M ;O) are both
subalgebras of FM .

The kinematical and dynamical nets can be defined in much more general
locally covariant theories, including categories Phys which do not have a no-
tion of the image of a morphism. To do this, we redefine F kin(M ;O) as FM |O,
and focus attention on the unital *-monomorphism mkin

M ;O : F kin(M ;O) →
FM given by mkin

M ;O = FιM ;O, where ιM ;O : M |O → M is the Loc-morphism
induced by the inclusion map of O in M . In categorical terminology, mkin

M ;O

is monic and defines a subobject of FM (see [39] or [23, Appx. B]), thus
allowing us to define the kinematical net for every locally covariant theory
F : Loc → Phys by the rule assigning to each O ∈ O(M) the subobject
mkin

M ;O : F kin(M ;O) → FM . Also the dynamical net can be characterised
purely in terms of categorical notions, to be specific equalisers, intersections
and unions of subobjects (see again [39] or [23, Appx. B]), and thus can be
formulated for every locally covariant theory F : Loc → Phys obeying the
time-slice axiom. The construction results in an assignment of O ∈ O(M) to
a subobject mdyn

M ;O : F dyn(M ;O) → FM , details of which can be found in
[23, § 5]. A locally covariant theory is dynamically local if and only if mkin

M ;O

and mdyn
M ;O are equivalent subobjects (see yet again [39] or [23, Appx. B]) for

every O ∈ O(M).
The net advantage of this abstract categorical viewpoint is an immense

simplification in the argument that the quantised reduced free F-theory R :
Loc → *Algm

1 is dynamically local. Since R is related to the classical reduced
free F-theory R : Loc → Sympl

K
via a functorial quantisation prescription, it

13 Every point x ∈ M is contained in a Cauchy ball: let Σx be any smooth spacelike
Cauchy surface for M containing x, choose any smooth chart ϕ : U → W ⊆ R

3 for Σx

with x ∈ U and ε > 0 such that the ε-ball around ϕ(x) is contained in W , and then take
Bx := ϕ−1(Bδ(ϕ(x))) with δ < ε.
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is enough to show that R is dynamically local and then prove a small number
of additional properties listed as [24, (L 1–L 4)].

6. Dynamical Locality of the Universal Theory

6.1. The Universal Theory Fails Local Covariance

It was already pointed out in [14, § 3.7] that the quantised universal free F-
theory Fu : Loc → *Alg1 is not a locally covariant quantum field theory
according to [12] because algebra homomorphisms corresponding to space-
time embeddings are not always injective. The same is true for the clas-
sical universal free F-theory Fu : Loc → pSympl

K
. This problem arises

whenever one has a Loc-morphism ψ : M → N between objects obeying
H2

dR,c(M ;K) ∼= H2
dR(M ;K) �= 0 and H2

dR,c(N ;K) ∼= H2
dR(N ;K) = 0, where

the isomorphisms are due to Poincaré duality. A specific instance may be given
as follows:

Example 6.1. With M as in Example 4.2 and N taken to be Minkowski
spacetime, let ψ : M → N be the inclusion morphism. Then H2

dR(M ;K) ∼= K,
while H2

dR(N ;K) = 0.

Under such circumstances, there exists ω ∈ Ω2
0,d(M ;K)\dMΩ2

0(M ;K),
which corresponds to a nonzero element [ω] ∈ [

Ω2
0(M ;K)

]
= FuM , be-

cause ω cannot be written in the form ω = dMθ + δMη for θ ∈ Ω1
0(M ;K)

and η ∈ Ω3
0(M ;K).14 However, the push-forward ψ∗ω ∈ Ω2

0(N ;K) obeys
dNψ∗ω = ψ∗dMω = 0 and hence ψ∗ω ∈ dNΩ1

0(N ;K) ⊕ δNΩ3
0(N ;K) because

H2
dR,c(N ;K) = 0. Thus, (Fuψ) [ω] = [ψ∗ω] = 0 ∈ [

Ω2
0(N ;K)

]
and, similarly,

(Fuψ)(FM (ω)) = FN (ψ∗ω) = 0FuN , so neither Fuψ nor Fuψ is injective.
A similar argument applies to ω ∈ Ω2

0,δ(M ;K)\δMΩ2
0(M ;K). The ele-

ments just described in this and the last paragraph precisely span the radical
of wuM and the centre of FuM , respectively, M ∈ Loc (cf. [14, Prop.3.3]).
Hence, local covariance of Fu and Fu is precisely spoiled by the radical elements
and the central elements, respectively.

Despite the failure of injectivity, the theories Fu and Fu are well-behaved
in other ways. For example, Fu is still a causal functor—local algebras of
causally disjoint regions commute—owing to the form of Lichnerowicz’s com-
mutator. As we will see shortly, both Fu and Fu obey the time-slice axiom, i.e.
Fuψ is a pSympl

K
-isomorphism and Fuψ is an *Alg1-isomorphism whenever

ψ ∈ Loc(M ,N) is Cauchy.

6.2. The Universal Theory Obeys the Time-Slice Axiom

We start with some helpful, more general statements, which will allow us to
show the validity of the time-slice axiom and to compute inverses. The specifi-
cation of inverses usually involves certain choices (of representatives of equiv-
alences classes and of smooth spacelike Cauchy surfaces) and time-slice maps

14 Otherwise, δMη = Gret
M�M δMη = −Gret

M δMdM δMη = −Gret
M δMdM (dMθ − ω) = 0,

so ω = dMθ, a contradiction.
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will help us to efficiently deal with these choices. For the rest of this subsection,
let ψ ∈ Loc(M ,N) be Cauchy, ξ = (E,N, π, V ) a smooth K-vector bundle
over N and P : Γ∞(ξ) → Γ∞(ξ) a normally hyperbolic differential operator of
metric type.

Definition 6.2. A time-slice map for (ψ, ξ, P ) is a K-linear map L : Γ∞
0 (ξ) →

Γ∞
0 (ξ) such that

supp
((

idΓ∞
0 (ξ) −PL

)
σ
) ⊆ ψ (M) ∀σ ∈ Γ∞

0 (ξ) .

If a particular time-slice map is understood, we will write

σ = σe + Pσ£

for the corresponding decomposition σ£ := Lσ, σe := σ − Pσ£.
Time-slice maps exist by slight modification of a standard construction:

fix any two smooth spacelike Cauchy surfaces Σf and Σp for N such that
Σf ,Σp ⊆ ψ(M) and Σf lies strictly in the future of Σp. This can be achieved us-
ing [23, Lem.A.2] and the splitting theorem of Bernal and Sánchez [7, Prop.2.4].
Further, let {χ+, χ−} be a smooth partition of unity subordinated to the open
cover

{
I+
N (Σp), I−

N (Σf )
}

of N . Define for each σ ∈ Γ∞
0 (ξ)

σe := σ − Pχ+Gadvσ − Pχ−Gretσ, (9)

where Gadv and Gret are the advanced and the retarded Green’s operator for P ,
which exist and are unique [3, Cor.3.4.3]. By the properties of χ± and Gret/adv,
suppσe is compactly supported in ψ(M). Finally, σ£ ∈ Γ∞

0 (ξ) is defined by
σ£ := χ+Gadvσ+χ−Gretσ. However, many properties of time-slice maps can be
proved without using a specific formula. The main technical point is that any
compactly supported solution φ to the inhomogeneous equation Pφ = σ, where
σ ∈ Γ∞

0 (ξ), must be supported in the intersection J+
N (suppσ) ∩ J−

N (suppσ)
because φ = Gret/advσ. Let us observe

Lemma 6.3. If L is any time-slice map for (ψ, ξ, P ), we have

suppLσ ⊆ ψ (M)

whenever σ ∈ Γ∞
0 (ξ) with suppσ ⊆ ψ(M); if K is another time-slice map for

(ψ, ξ, P ), then

supp (K − L) σ ⊆ ψ (M) ∀σ ∈ Γ∞
0 (ξ) .

Hence,

σeK
− σeL

= Pτ,

where τ ∈ Γ∞
0 (ξ) with supp τ ⊆ ψ(M); moreover,

Lσ
∣
∣
∣N\J

−/+
N (ψ(M))

= G
adv/ret
N σ

∣
∣
∣
N\J

−/+
N (ψ(M))

.

Proof. Taking any σ∈Γ∞
0 (ξ) with suppσ ⊆ ψ(M), PLσ = σ−(idΓ∞

0 (ξ) −PL)σ
is (compactly) supported in ψ(M). As Lσ is compactly supported, it follows
that Lσ is supported in J+

N (ψ(M)) ∩ J−
N (ψ(M)) = ψ(M) as required. Next,

let σ ∈ Γ∞
0 (ξ). Then by definition of time-slice maps, P (K − L)σ has support
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in ψ(M), while (K −L)σ has compact support. Thus, (K −L)σ is (compactly)
supported in J+

N (ψ(M)) ∩ J−
N (ψ(M)) = ψ(M). The penultimate formula fol-

lows from this and the definition σe := σ − Pσ£ = σ − PLσ for σ ∈ Γ∞
0 (ξ).

Finally, our result shows that the action of any timeslice map on σ is fixed
modulo terms compactly supported in ψ(M). Outside this set, all timeslice
maps agree, so we may use the formula implicit in (9) to obtain the final
result. �

As a digression, the existence of a time-slice map for (ψ, ξ, P ) implies
that the following is a short exact sequence of K-linear maps

0 −→ PΓ∞
0 (ξ, ψ (M)) α−−→ Γ∞

0 (ξ) ⊕ PΓ∞
0 (ξ, ψ (M))

β−−→ Γ∞
0 (ξ) −→ 0

where α : σ �−→ (σ,−σ) and β : (σ, τ) �−→ σ + τ , and we denote smooth
sections of ξ with compact support in O ⊂ N by Γ∞

0 (ξ,O). Exactness at
PΓ∞

0 (ξ, ψ(M)) is immediate because α is injective; moreover, its image is
precisely the kernel of β, so, we have exactness at Γ∞

0 (ξ)⊕PΓ∞
0 (ξ, ψ(M)). Any

time-slice map L for (ψ, ξ, P ) induces γ : Γ∞
0 (ξ) → Γ∞

0 (ξ) ⊕ PΓ∞
0 (ξ, ψ(M))

by γ : σ �−→ (σ − PLσ, PLσ), and as β ◦ γ = idΓ∞
0 (ξ), it is clear that β is

surjective and we have a split short exact sequence.

Lemma 6.4. Let η = (D,N, �,W ) be a smooth K-vector bundle with a normally
hyperbolic differential operator Q : Γ∞(η) → Γ∞(η) such that P and Q are
intertwined by a linear differential operator ∂ : Γ∞(ξ) → Γ∞(η), i.e. ∂ ◦ P =
Q ◦ ∂. Suppose L and K are time-slice maps for (ψ, ξ, P ) and (ψ, η,Q), then
for any σ ∈ Γ∞

0 (ξ),

supp (∂Lσ − K∂σ) ⊆ ψ (M)

and accordingly

(∂σ)eK
− ∂σeL

= Q (∂Lσ − K∂σ) = Qτ

with τ ∈ Γ∞
0 (η), supp τ ⊆ ψ(M).

Proof. We calculate for σ ∈ Γ∞
0 (ξ)

Q (∂Lσ − K∂σ) = ∂PLσ − QK∂σ = ∂ (σ − σeL
) − (

∂σ − (∂σ)eK

)

= (∂σ)eK
− ∂σeL

,

where supp((∂σ)eK
− ∂σeL

) ⊆ ψ(M). Hence, ∂Lσ − K∂σ is compactly sup-
ported in ψ(M) and the remaining assertion follows. �

Finally, let us apply this to smooth differential forms with a view to the
description of electromagnetism. Let our smooth K-vector bundles be the (com-
plexified if K = C) p-th exterior power λp

N of the cotangent bundle τ∗
N of N for

p ≥ 0 and let ψ ∈ Loc(M ,N) be Cauchy. Then taking the appropriate wave
operators as the normally hyperbolic differential operators acting on smooth
differential p-forms, the exterior derivative and the exterior coderivative pro-
vide intertwining operators. The previous lemma now gives the following.
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Lemma 6.5. For any time-slice map L : Ωp
0(N ;K) → Ωp

0(N ;K), we have for
ω ∈ Ωp

0(N ;K),

(dNω)e − dNωe = �Nη and (δNω)e − δNωe = �Nθ,

where η ∈ Ωp+1
0 (N ;K) with supp η ⊆ ψ(M) and θ ∈ Ωp−1

0 (N ;K) with supp θ ⊆
ψ(M). Further, if ω ∈ Ωp

0,d(N ;K) ⊕ Ωp
0,δ(N ;K), then

ωe = α + β, (10)

where α ∈ Ωp
0,d(N ;K) with suppα ⊆ ψ(M) and β ∈ Ωp

0,δ(N ;K) with suppβ ⊆
ψ(M).

Proof. The first part is a direct consequence of Lemma 6.4. Now, suppose that
dNω = 0, then supp(dNLω) ⊆ ψ(M). Using �N = −(dNδN + δNdN ), we have

ω = ωe + �NLω or equivalently ω + dNδNLω = ωe − δNdNLω

the right-hand side of which is obviously supported in ψ(M). Hence, the left-
hand side of the second equation must have the same support and is in the
kernel of dN . Thus, (10) holds for closed ω, and as the same argument applies
to coexact ω, the result is proved. �

We will now apply these general statements to show that Fu and Fu obey
the time-slice axiom. In the proof, we will explicitly construct the inverses
of Fuψ and Fuψ, where ψ ∈ Loc(M ,N) is Cauchy, which will be helpful
when computing a concrete expression for the relative Cauchy evolution for
Fu and Fu. Since functors preserve isomorphisms and Fu = Q ◦ Fu (where
Q : pSympl

K
→ *Alg1 is the quantisation functor) it is enough to concentrate

on the classical universal free F-theory.

Proposition 6.6. For ψ ∈ Loc(M ,N) Cauchy, Fuψ is a pSympl
K
-

isomorphism whose inverse is explicitly given by

(Fuψ)−1 : FuN → FuM , [ω] �−→ [ψ∗ωe] ,

for any time-slice map of (ψ, λ2
N ,�N ) and any representative ω of the equiva-

lence class [ω] ∈ [
Ω2

0(N ;K)
]
. Thus, both Fu and Fu obey the time-slice axiom.

Proof. By Lemmas 6.3 and 6.4, the map Ξ : FuN → FuM , [ω] �−→ [ψ∗ωe], is
well-defined, i.e. independent of the representative of [ω] ∈ [

Ω2
0(N ;K)

]
and the

time-slice map chosen (cf. the paragraph after Lemma 6.4). It is not difficult
to check that Ξ is K-linear, symplectic and intertwines with the C-involution
in the case K = C. The computations

(Ξ ◦ (Fuψ)) [ω] = Ξ [ψ∗ω] =
[
ψ∗ (ψ∗ω)e

]
= [ψ∗ψ∗ω] = [ω]

∀ [ω] ∈ [
Ω2

0 (M ;K)
]
,

where we have used Lemma 6.3, and

((Fuψ) ◦ Ξ) [ω] = (Fuψ) [ψ∗ωe] = [ψ∗ψ∗ωe] = [ωe] = [ω]

∀ [ω] ∈ [
Ω2

0 (N ;K)
]

show the rest. �
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6.3. The Relative Cauchy Evolution of the Universal Theory

The explicit inverse computed in Proposition 6.6 allows us to compute the
relative Cauchy evolution for Fu and Fu induced by h ∈ H(M). To this end,
let L± : Ω2

0(M ;K) → Ω2
0(M ;K) be time-slice maps for (ı+M [h] : M+ [h] →

M , λ2
M , �M ) and (ı−M [h] : M− [h] → M [h], λ2

M ,�M [h]) respectively and
use the symbols ‘e±’ to correspond to L±. Then we have, for any [ω] ∈[
Ω2

0(M ;K)
]
,

rceFu

M [h] [ω] = [(ωe+)e− ] = [ωe+ ] − [
�M [h]L

−ωe+

]

= [ω] +
[
(�M − �M [h])L−ωe+

]
,

where we have used the fact that L−ωe+ is compactly supported and hence
[�ML−ωe+ ] = 0. Now, �M and �M [h] differ only on the support of h, which
lies outside and to the future of the range of ı−M [h], allowing us to replace L−

by Gadv
M [h] (by the last part of Lemma 6.3). Hence

rceFu

M [h] [ω] = [ω] +
[
(�M − �M [h])Gadv

M [h]ωe+

]

= [ω] − [
(�M − �M [h])GM [h]ωe+

]
,

where we have used the fact that Gret
M [h]ωe+ vanishes on the support of h.

This expression is independent of the time-slice map L+, because ωe+ is fixed
modulo the image of �M on smooth differential 2-forms compactly supported
in the image of ı+M [h], on which �M and �M [h] agree. Standard manipulations
with smooth differential forms and the equivalence relation give

rceFu

M [h] [ω] = [ω] − [(
δM [h] − δM

)
GM [h]dMωe+

]
, (11)

for any [ω] ∈ [
Ω2

0(M ;K)
]
. Finally, the relative Cauchy evolution of Fu is given

by the application of the quantisation functor:

rceFu

M [h] = Q
(
rceFu

M [h]
)

.

6.4. The Failure of Dynamical Locality for the Universal Theory

The failure of injectivity demonstrated in Sect. 6.3, already shows that Fu and
Fu cannot possibly be dynamically local in the original sense of this definition
[23]. For if ψ ∈ Loc(M ,N) is such that Fuψ is non-injective (e.g., as in
Example 6.1) then the same holds for f kin

N ;M , which is thereby inequivalent
to the (necessarily injective/monic) subobject f dyn

N ;M : Fdyn
u (N ;M) → FuN .

Similarly, in the quantised case, the subobject ϕdyn
N ;M : Fdyn

u (N ;M) → FuN

cannot be equivalent to the non-monic ϕkin
N ;M = Fuψ : Fkin

u (N ;M) = FuM →
FuN .

In this subsection, we show that the failure of dynamical locality for
these theories is even more severe and cannot be achieved even if we restrict
to contractible globally hyperbolic open subsets. There is no harm now in
shifting our focus from the abstract categorical subobjects f kin

M ;O, f dyn
M ;O, ϕkin

M ;O
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and ϕdyn
M ;O to the concrete (complexified if K = C) pre-symplectic spaces and

unital *-algebras Fkin
u (M ;O), Fdyn

u (M ;O), Fkin
u (M ;O) and Fdyn

u (M ;O).
Let M ∈ Loc be such that H2

dR(M ;K) �= 0. By arguments given in
Sect. 6.1, there exists ω ∈ Ω2

0(M ;K) satisfying dMω = 0 but [ω] �= 0 ∈[
Ω2

0 (M ;K)
]

(and hence FM (ω) �= 0 ∈ FuM). In other words, [ω] corresponds
to a electric topological degeneracy. Lemma 6.5 and (11) give

rceFu

M [h] [ω] = [ω] ∀h ∈ H(M),

and hence (rceFu

M [h])(FM (ω)) = FM (ω) for all h ∈ H(M). Consequently,
[ω] ∈ F•

u (M ;K) and FM (ω) ∈ F•
u (M ;K) for all K ∈ K (M ;O) and for

all contractible O ∈ O(M). This implies [ω] ∈ Fdyn
u (M ;O) and FM (ω) ∈

Fdyn
u (M ;O) for all contractible O ∈ O(M). As [ω] is in the radical of the (com-

plexified if K = C) pre-symplectic form on FuM , it follows that Fdyn
u (M ;O)

has a degenerate (complexified if K = C) pre-symplectic form, while Fkin
u (M ;

O) is weakly non-degenerate; thus, these two (complexified if K = C) pre-
symplectic spaces cannot possibly be symplectomorphic for any contractible
O ∈ O(M); i.e. dynamical locality fails.

The same is true for the quantised universal free F-theory because, for
every contractible O ∈ O(M), Fdyn

u (M ;O) is not simple, while Fkin
u (M ;O) is

simple; hence these two unital *-algebras are not unital *-isomorphic. As far
as the dynamical net is concerned, the elements [ω] resp. FM (ω) are local to
all regions.

We have shown that the electric topological degeneracies spoil dynam-
ical locality. This is also true for magnetic topological degeneracies, i.e. ω ∈
Ω2

0(M ;K) satisfying δMω = 0 but [ω] �= 0 ∈ [
Ω2

0(M ;K)
]

and FM (ω) �= 0 ∈
FuM . These are also fixed points under relative Cauchy evolution, which is not
obvious from (11), but can be shown abstractly because electric and magnetic
topological degeneracies are exchanged by the electromagnetic duality rotation
Θ(π/2) defined by (8), which is an automorphism of Fu and therefore, com-
mutes with the relative Cauchy evolution [19, Prop. 2.1]. The application of
the quantisation functor yields the analogous result for the quantised universal
free F-theory.

We summarise:

Theorem 6.7. The classical and the quantised universal free F-theory (and
hence also the A-theory) are not dynamically local (even in the weakened sense
obtained by restricting to contractible open globally hyperbolic subsets).

7. Dynamical Locality of the Reduced Theory

In the last section, we saw that the classical and the quantised universal free
F-theory (and hence A-theory) fail local covariance and dynamical locality.
However, we were also able to clearly identify what causes this failure, namely
the possibility of having non-trivial radicals in the classical case and non-trivial
centres in the quantum case. The reduced theories are free of these features
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and, as we will show, they are dynamically local. We work in the F-description,
but all our statements have analogues in the equivalent A-description.

7.1. The Relative Cauchy Evolution of the Reduced Theory

Having established local covariance, we will now show that the classical and the
quantised reduced free F-theories obey the time-slice axiom. We will compute
their respective relative Cauchy evolutions and differentiate them with respect
to the metric perturbation, thus obtaining the stress-energy tensor for the
classical reduced free F-theory. Since R = Q ◦ R, we can concentrate on the
classical case.

The only difference to Sects. 6.2 and 6.3 is so far the use of a different
equivalence relation and hence different equivalence classes, i.e. �·� instead of
[·]. Assume ψ ∈ Loc(M ,N) is Cauchy and L : Ωp

0(N ;K) → Ωp
0(N ;K) is a time-

slice map for (ψ, λp
N ,�N). By Lemma 6.5, ωe = α + β with α ∈ Ωp

0,d(N ;K)
such that suppα ⊆ ψ(M) and β ∈ Ωp

0,δ(N ;K) such that suppβ ⊆ ψ(M) for
ω ∈ Ωp

0(M ;K) such that dMω = 0 or δMω = 0. Thus, we can adapt the results
of Sects. 6.2 and 6.3 by just replacing [·] with �·�. In particular, R and R obey
the time-slice axiom and their respective relative Cauchy evolutions induced by
h ∈ H(M) are given (in the same conventions as in Sect. 6.3; in particular,‘e+’
refers to an arbitrary time-slice map L+ : Ω2

0(M ;K) → Ω2
0(M ;K) for (ı+M [h] :

M+ [h] → M , λ2
M ,�M )) by

rceR
M [h] �ω� = �ω�+

�(
δM [h] − δM

)
Gadv

M [h]dMωe+

�

= �ω�− �(
δM [h] − δM

)
GM [h]dMωe+

�
, �ω� ∈ �

Ω2
0 (M ;K)

�
,

(12)

and also

rceRM [h] = Q
(
rceR

M [h]
)
. (13)

The intermediate expression in (12) allows us to employ a Born expansion as
in [24, (B.2)],

Gadv
M [h]ω = Gadv

M ω − Gadv
M

(
�M [h] − �M

)
Gadv

M [h]ω ∀ω ∈ Ω2
0 (M ;K) ,

to further compute:

rceR
M [h] �ω� = �ω�+

�(
δM [h] − δM

)
Gadv

M dMωe+

�

= [ω] + −
�(

δM [h] − δM
)
Gadv

M

(
�M [h] − �M

)
Gadv

M [h]dMωe+

�
,

�ω� ∈ �
Ω2

0 (M ;K)
�
.

Now, suppGret
Mωe+ ∩ supph = ∅ by construction for any ω ∈ Ω2

0(M ;K)
and, as δM [h] − δM vanishes outside supph, we can replace Gadv

M dMωe+ by
−GMdMωe+ = −GMdMω to obtain

rceR
M [h] �ω� = �ω�−

�(
δM [h] − δM

) (
GMdMω

+Gadv
M

(
�M [h] − �M

)
Gadv

M [h]dMωe+

)�
, �ω� ∈ �

Ω2
0 (M ;K)

�
.

(14)
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For M ∈ Loc, we can associate to each �ω� ∈ �
Ω2

0(M ;K)
�

a solution
of the free Maxwell equations (2) with compact support on smooth space-like
Cauchy surfaces for M by setting F�ω� := dMGMδMω for any representative
ω ∈ Ω2

0(M ;K). Clearly, all representatives will give rise to the same solution
and if dMGMδMη = F�ω� for �η� ∈ �

Ω2
0(M ;K)

�
, �η� = �ω� necessarily. Thus,

in the classical reduced free F-theory, we are only dealing with solutions of (3)
which are of the form dMGMδMω for ω ∈ Ω2

0(M ;K). Note that all solutions
of the Cauchy problem (3) take this form if M ∈ Loc c© (cf. Subsection 4.2).
This provides a nice interpretation of the relative Cauchy evolution: namely,

dM [h]GM [h]δM [h]

(Rj+M [h]
) ((Rı+M [h]

)−1
�ω�

)
= dM [h]GM [h]δM [h]ωe+

is the unique solution of the free Maxwell equations on M [h] which coin-
cides with F�ω� on M+[h] (cf. [24]). The agreement is not difficult to see,
the uniqueness follows from the well-posedness of the Cauchy problem. Then,
if η ∈ Ω2

0(M ;K) is a representative of rceR
M [h] �ω�, then dMGMδMη is the

unique solution of the free Maxwell equations for the field strength on M
agreeing with dM [h]GM [h]δM [h]ωe+ on M− [h]. This interpretation of the rel-
ative Cauchy evolution will become very helpful in the proof of Lemma 7.1.

7.2. The Stress–Energy Tensor of the Classical Modified Theory

To show that R and R are dynamically local, it will be helpful to relate the
relative Cauchy evolution to the stress-energy tensor for the classical reduced
free F-theory. This can be done as follows: taking any compactly supported,
symmetric and smooth tensor field15 h ∈ Γ∞

0 (τ∗
M �τ∗

M ), there exists ε > 0 such
that th ∈ H(M) for all t ∈ (−ε, ε) (cf. [24, §§ 2 and 3]). The relative Cauchy
evolution for R induced by th ∈ H(M) for M ∈ Loc is differentiable in the
weak symplectic topology (cf. [24, § 3 and Appx.B]), i.e. there is a K-linear
map HM [h] : RM → RM such that

rM (HM [h] �ω�, �η�) =
d
dt

rM
(
rceR

M [th] �ω�, �η�
) ∣
∣
∣
t=0

,

�ω�, �η� ∈ �
Ω2

0 (M ;K)
�

(15)

and the derivative on the right-hand side exists for all such �ω�, �η�. Note,
HM [h] is called FM [h] in [24], a notation we avoid for obvious reasons. In-
serting (14) and already dropping some terms of order t2 and higher, we need
to compute (up to first order in t)

d
dt

rM
(
rceR

M [th] �ω�, �η�
) ∣
∣
∣
t=0

= lim
t→0

rM
(�−t−1

(
δM [th] − δM

)
dMGMω

�
, �η�

)
,

= − lim
t→0

∫

M

t−1
(
δM [th] − δM

)
dMGMω ∧ ∗MdMGMδMη,

�ω�, �η� ∈ �
Ω2

0 (M ;K)
�

. (16)

15 Recall, τ∗
M denotes the cotangent bundle of the smooth manifold M .
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The coderivative δM [th] may be expanded by a lengthy but straightforward
computation (being careful to recall that the inverse metric to g + th is (g +
th)−1 = g−1 − th�� +O(t2), which reads in abstract index notation gab − thab +
O(t2)):

t−1
((

δM [th] − δM
)
�

)
cd

= ∇a

(
hab�bcd

) − 1
2

(∇bh
a
a) �b

cd + (∇ahbc) �ab
d

− (∇ahbd) �ab
c + O(t), � ∈ Ω3 (M ;K) ,

where ∇ stands for the Levi–Civita connection with respect to g. This yields

HM [h] �ωcd� =
�
−∇a

(
hab (GMdMω)bcd

)
+

1
2

(∇bh
a
a) (GMdMω)b

cd

− (∇ahbc) (GMdMω)ab
d + (∇ahbd) (GMdMω)ab

c

�
,

�ω� ∈ �
Ω2

0 (M ;K)
�
,

(17)

whose well-definedness can be seen using the weak non-degeneracy of rM .
To bring (16) into a nicer form, we define � := dMGMω ∈ Ω3(M ;K) and
F�η� := dMGMδMη. The divergence theorem entails the following identities
∫

M

∇a

(
hab�bcd

)
F cd

�η� volM = −
∫

M

hab�bcd∇aF cd
�η� volM ,

∫

M

(∇bh
a
a) �b

cdF
cd
�η� volM = −

∫

M

(
ha

a∇b

(
�b

cd

)
F cd

�η� + ha
a�b

cd∇bF
cd
�η�

)
volM

and
∫

M

(∇ahbc)�ab
dF

cd
�η� volM

= −
∫

M

(
hb

c (∇a�a
bd) F cd

�η�) + hbc�
ab

d∇aF cd
�η�

)
volM ,

where ∇b(�b
cd) = −(δM�)cd = +(dMGMδMω)cd =: F�ω�cd; together with

dMF�η� = 0 and

�b
cd∇bF

cd
�η� volM = �bcd∇[bF

cd]
�η� volM = 3!� ∧ ∗MdMF�η� = 0,

they yield overall

rM (HM [h] �ω�, �η�) =
d
dt

rM
(
rceR

M [h] �ω�, �η�
) ∣
∣
∣
t=0

= −
∫

M

hab

(
1
4
gabF�ω�mnFmn

�η� − gmnF am
�ω�F

bn
�η�

)
volM

= −
∫

M

habT
ab
M (�ω�, �η�) volM ,

�ω�, �η� ∈ �
Ω2

0 (M ;K)
�

.

(There is a sign error in the analogous formula [24, Eq. (3.7)], which how-
ever does not alter the main results of that reference.) Here TM (�ω�, �η�) is
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the polarised form of the stress-energy tensor for the classical reduced free
F-theory on M ∈ Loc

T ab
M (�ω�, �η�) =

1
4

gabF�ω�mnFmn
�η� − gmnF am

�ω�F
bn
�η�, �ω�, �η� ∈ �

Ω2
0 (M ;K)

�
,

(18)

where F�ω� := dMGMδMω with a representative ω ∈ Ω2
0(M ;K) for �ω� ∈�

Ω2
0(M ;K)

�
. The same expression (18) is obtained for the stress-energy tensor

of the classical universal free F-theory if �·� is replaced with [·].
7.3. Verification of Dynamical Locality for the Reduced Theories

We will now prove that the reduced free F-theory R : Loc → Sympl
K

obeys
dynamical locality (hence the same is true for the corresponding reduced A-
theory). To do so, we can work with concrete (complexified if K = C) pre-
symplectic spaces and avoid referring to underlying categorical notions such
as subobjects. We will follow the reasoning of [24] using the stress-energy tensor
of R to characterise the dynamical net. The main technical point of difference
is that the field strength tensor satisfies not only the wave equation but also
the free Maxwell equations.

Lemma 7.1. Let K be any compact subset of M ∈ Loc. Then,

R• (M ;K) =
{

�ω� ∈ RM | suppTM

(
�ω�, �ω�

)
⊆ JM (K)

}

=
⋂

h∈Γ∞
0 (τ∗

M
τ∗
M )

supp h⊆K⊥

ker HM [h] , (19)

and also R•(M ;K) =
{
�ω� ∈ RM | suppF�ω� ⊆ JM (K)

}
.

Proof. Labelling the members of (19) as I, II and III respectively, we will
prove that I ⊆ III ⊆ II ⊆ I. Starting with I ⊆ III, suppose �ω� ∈ R•(M ;K).
For h ∈ Γ∞

0 (τ∗
M � τ∗

M ) with support supph ⊆ K⊥, there is ε > 0 such
that th ∈ H(M ;K⊥) for all t ∈ (−ε, ε). As rceR

M [th] �ω� = �ω� for all t ∈
(−ε, ε), we have d

dt
rM (rceR

M [th] �ω�, �η�)
∣
∣
t=0

= 0 for all �η� ∈ RM . Hence also
rM (HM [h] �ω�, �η�) = 0 for all �η� ∈ RM and so by weak non-degeneracy,
�ω� ∈ ker HM [h]; as h was arbitrary, we have I ⊆ III. For III ⊆ II, if

�ω� ∈
⋂

h∈Γ∞
0 (τ∗

M
τ∗
M )

supp h⊆K⊥

ker HM [h] ,

then rM (HM [h] �ω�, �ω�) = − ∫
M

habT
ab
M (�ω�, �ω�) volM = 0 for all h ∈

Γ∞
0 (τ∗

M � τ∗
M ) with support supph ⊆ K⊥, so suppTM (�ω�, �ω�) ⊆ JM (K) as

required. Finally, to prove II ⊆ I, we note that suppTM (�ω�, �ω�) ⊆ JM (K)
implies that supp(F�ω�) ⊆ JM (K) because the energy density, which is the
sum of the squares of the off-diagonal components of F�ω� (in some local
framing), must vanish at each point p �∈ JM (K). Accordingly, F�ω� is a
solution of Maxwell’s equations in the perturbed spacetime M [h] for every
h ∈ H(M ;K⊥). Hence, it is the unique solution on M [h] that coincides with
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F�ω� on M+ [h] and also the unique solution on M that coincides with F�ω� on
M− [h]. Thus, �ω� and rceR

M [h] �ω� give rise to the same solution of the free
Maxwell equations on M which implies rceR

M [h] �ω� = �ω� and consequently,
�ω� ∈ R•(M ;K). The final statement is immediate from the argument just
given. �

Lemma 7.2. For all O ∈ O(M), we have Rkin(M ;O) ⊆ Rdyn(M ;O).

Proof. Let �ω� ∈ Rkin(M ;O) and ω ∈ Ω2
0(M ;K), suppω ⊆ O a representative

of �ω�. Choosing for each x ∈ suppω a Cauchy ball Bx containing x and taking
the Cauchy developments, we have found an open cover {DM (Bx)}x∈supp ω of
suppω in M . Since suppω is compact, finitely many of these sets are enough
to cover suppω, say suppω ⊆ ⋃n

i=0 DM (Bi) with n ≥ 0.
Let

{
χ, χi | i = 0, . . . , n

}
be a smooth partition of unity subordinated

to the open cover {M\ suppω,DM (Bi) | i = 0, . . . , n} of M . Defining for all
i ∈ I ωi := χiω ∈ Ω2

0(M ;K) with suppωi ⊆ DM (Bi) ∩ O, we can write ω =∑n
i=0 ωi. By construction, suppωi ∈ K (M ;O). As suppTM (�ωi� , �ωi�) ⊆

JM (suppωi), Lemma 7.1 yields �ωi� ∈ R•(M ; suppωi) and hence, �ω� =∑n
i=0 �ωi� ∈ Rdyn(M ;O) because Rdyn(M ;O) is the smallest (complexified

if K = C) pre-symplectic subspace of RM containing R•(M ;K) for all K ∈
K (M ;O). �

The following lemma can be considered as an analogue to [24, Lem. 3.1]
and is integral to the proof that the kinematical and the dynamical nets coin-
cide.

Lemma 7.3. Let M ∈ Loc and K ⊆ O ∈ O(M) compact. There exists
χ ∈ C∞(M) such that every solution F ∈ Ω2(M,K) of Maxwell’s equations
with suppF ⊆ JM (K) can be written as F = GM�MχF , where �MχF ∈
Ω2

0(M ;K), δMχF ∈ Ω1
0(M,K) and dMχF ∈ Ω3

0(M,K) are supported in O.

Proof. The proof works in exactly the same way as that of [24, Lem. 3.1(i)].
The additional point is that due to dMF = 0 and δMF = 0, the Leibniz rule
gives dMχF = 0 and δMχF = 0 outside of the compact set K0 ⊆ O defined
in [24, Lem. 3.1(i)], and are thereby compactly supported in O. �

Recall from Sect. 5 that for M ∈ Loc and O ∈ O(M), Rdyn(M ;O)
is the (complexified if K = C) pre-symplectic subspace of RM generated by⋃

K∈K (M ;O) R•(M ;K).

Lemma 7.4. For all O ∈ O(M), we have Rdyn(M ;O) ⊆ Rkin(M ;O).

Proof. We have to show that for each K ∈ K (M ;O), �ω� ∈ R•(M ;K)
has a representative η ∈ Ω2

0(M ;K) with supp η ⊆ O. By Lemma 7.1, we have
supp dMGMδMω ⊆ JM (K) for any representative ω ∈ Ω2

0(M ;K) of �ω�. Now,
by definition of K (M ;O), K has a neighbourhood comprising finitely many
causally disjoint diamonds {DM (Bi)}i=0,...,n, n ≥ 0, based in smooth space-
like Cauchy surfaces for M such that the bases {Bi}i=0,...,n are contained
in O. Note that these diamonds might not be entirely contained in O. Hence,
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{
DM |O (Bi)

}
i=0,...,n

are globally hyperbolic open subsets of both M |O and M ,
which are furthermore contractible. Because of the causal disjointness, their
(disjoint) union U :=

⊔n
i=0 DM |O(Bi) is a globally hyperbolic open subset of

M |O and M , contains16 K and each connected component is contractible.
We apply Lemma 7.3 to U and find that F := dMGMδMω = GM�MχF =
−GMδMdMχF − GMdMδMχF , where dMχF ∈ Ω3

0(M ;K) and δMχF ∈
Ω1

0(M ;K) are compactly supported in U . Since each connected component of
U is contractible, there are η1, η2 ∈ Ω2

0(M ;K) with supp η1, supp η2 ⊆ U satis-
fying the equalities dMχF = dMη1 and δMχF = δMη2. Thus, dMGMδMω =
dMGMδM (η1 − η2), which shows �ω� = �η1 − η2�. Accordingly, η := η1 − η2 ∈
Ω2

0(M ;K) is a representative of �ω� that is compactly supported in O (because
η is compactly supported in U ⊆ O). �

Combining Lemmas 7.2 and 7.4, the main statement of this subsection
follows:

Theorem 7.5. The classical reduced theory of the free Maxwell field is dynam-
ically local.

From Theorem 7.5, we may deduce that the quantised reduced free F-
theory R : Loc → *Algm

1 (and hence the quantised reduced free A-theory) is
dynamically local:

Corollary 7.6. The quantised reduced theory of the free Maxwell field obeys
dynamical locality.

Proof. R = Q ◦ R with the quantisation functor Q : pSymplm
K

→ *Algm
1 and

as a result of that we need to check (L 1 − L 4) of [24, p.1688]:
(L 1) The relative Cauchy evolution of R is differentiable in the weak symplec-

tic topology as in (15), and the resulting maps obey (the sign appears
incorrectly in [24])

rM

(
HM [h] �ω�, �ω�

)
= −

∫

M

habT
ab
M

(
�ω�, �ω�

)
volM ,

�ω� ∈ �
Ω2

0 (M ;K)
�
, h ∈ H (M ;O), O ∈ O (M), M ∈ Loc,

where TM (�ω�, �ω�) ∈ Γ∞(τM � τM ) for each �ω� ∈ �
Ω2

0(M ;K)
�

and
M ∈ Loc.

(L 2) For each O ∈ O(M) containing supph of h ∈ Γ∞
0 (τ∗

M�τ∗
M ), img HM [h]

can be identified with a subset of Rkin(M ;O).
(L 3) R obeys extended locality, i.e. Rkin(M ;O1) ∩ Rkin(M ;O2) = 0 ∈ RM

for spacelike separated O1, O2 ∈ O(M), M ∈ Loc.
(L 4) R•(M ;K) =

⋂

h∈Γ∞
0 (τ∗

M
τ∗
M )

supp h⊆K⊥

ker HM [h] for K compact in M ∈ Loc.

(L 1) is obvious from what was done in Sect. 7.2. For M ∈ Loc, the im-
age of HM [h], where h ∈ Γ∞

0 (τ∗
M � τ∗

M ), can be identified with a subset of

16 DM|O (Bi) = DM (Bi) ∩ O for i = 0, . . . , n because O is causally convex in M .
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Rkin(M ;O) for each O ∈ O(M) with supph ⊆ O ∈ O(M) by (17). (L 3) is
obvious and (L 4) is proven by Lemma 7.1. Hence [24, Thm.5.3]17 applies and
proves the result. �

8. Discussion

8.1. Summary

In this paper, we have discussed the notion of dynamical locality for the free
Maxwell field. Describing the quantum field theory in terms of the universal
algebra of the unital ∗-algebras of smeared quantum field (cf. [14]), and describ-
ing the classical field theory by the equivalent for (complexified if K = C) pre-
symplectic spaces, we showed that the classical and the quantised universal the-
ories, given by functors Fu,Au : Loc → pSympl

K
and Fu,Au : Loc → *Algm

1 ,
fail dynamical locality due to Loc-objects M with H2

dR(M ;K) �= 0. However,
we were able to modify the classical and the quantised universal F -theory to
obtain locally covariant and dynamically local theories R : Loc → Sympl

K

and R : Loc → *Algm
1 . In establishing this, we have used the same chain of

arguments as [24] for the free real scalar field.
To conclude, we discuss three aspects in more detail, namely the status

of dynamical locality, the categorical structure underlying some of our con-
structions, and the relation of our present work to the discussions of SPASs in
[23,24].

8.2. Dynamical Locality

Our present results on the free Maxwell field contribute to the emerging pic-
ture of dynamical locality as follows. The failure of dynamical locality for the
universal free F-theory can be traced to the existence of topological charges
present whenever the second de Rham cohomology is non-trivial. These ob-
servables are invariant under all relative Cauchy evolutions and so are common
to every element of the dynamical net, which does not distinguish between ob-
servables that are local to every region and “observables that are localised at
infinity”. Actually, these observables can have unusual spatial localisation as
well: it is possible for such an element to be common to spacelike separated el-
ements of the kinematic net, giving a failure of extended locality [36,43]. In the
quantum field theory, the topological charges are central elements which para-
meterise different superselection sectors of the theory [1,44], again underlining
their global nature. By contrast, the reduced F-theory of the free Maxwell field
in n = 4 dimensions provides a well-behaved locally covariant and dynamically
local theory (at the cost of giving up topological observables labelled by the
first and the second de Rham cohomology group with compact supports). Over-
all, dynamical locality appears to be a reasonable expectation for theories of
local observables, but to fail where theories admit observables of an essentially
global nature that are stabilised by topological or other constraints.

17 The sign error in [24] does not affect the validity of this result because the focus is on
solutions with vanishing stress-energy tensor.
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8.3. Categorical Structures

A number of ideas concerning the ‘universal’ and the ‘reduced’ theory for
the classical and the quantised free Maxwell field can be put in a broader
categorical context. The details of the following discussion have been worked
out and will appear in B.L.’s forthcoming Ph.D. thesis.

For each M = (M, g, o, t) ∈ Loc, we can consider the category JM whose
objects are those N = (N, gN , oN , tN ) ∈ Loc c© such that N ⊆ M is a globally
hyperbolic open subsets (excluding N = M if M ∈ Loc c©), gN = g|N , oN =
o|N and tN = t|N ; the morphisms in JM are the inclusion maps. We can thus
restrict each of the functors F,A : Loc c© → *Algm

1 to JM and obtain functors
FM ,AM : JM → *Algm

1 . The universal algebras FuM and AuM are now
precisely the universal objects of the colimits (see [39, Sec.2.5], [9, Sec.2.6] or
[38, Sec.III.3] for this categorical notion) for the functors FM and AM but
viewed as functors FM ,AN : JM → *Alg1. Here, it is crucial to drop the
restriction to injective unital *-homomorphisms, because *Alg1 is cocomplete,
i.e. the colimit for any functor from any small category to *Alg1 always exists,
while *Algm

1 is not; in fact, the colimits for FM and AM do not exist in *Algm
1

for general M . This justifies the use of the term ‘universal’. At this point,
we get the functorial property of Fu,Au : Loc → *Alg1 for free because they
necessarily turn out to be the left Kan extensions (see [9, Sec.3.7] or [38,
Chap.X]) of F,A : Loc c© → *Alg1 (again, one must work in *Alg1 rather
than *Algm

1 ). Hence, from this categorical point of view, the universal theories
of the quantised free Maxwell field are highly distinguished extensions of the
quantum field theories on contractible curved spacetimes.

The notion of a colimit and a left Kan extension also make sense for
the categories pSympl

K
, pSymplm

K
and Sympl

K
, but none of these three

categories is cocomplete. However, it can be shown that the functors FM ,AM :
JM → pSympl

K
have colimits whose universal objects are precisely FuM

and AuM respectively, and that Fu,Au : Loc → pSympl
K

are the left Kan
extensions of F ,A : Loc c© → pSympl

K
. Moreover, the relations Q(FuM) =

FuM and Q(AuM) = AuM can be understood as special cases of a general
result. Although the colimits for FM ,AM : JM → pSymplm

K
(or Sympl

K
)

do not exist, the non-existence of colimits does not rule out the existence
of left Kan extensions and it would be indeed interesting to know if F,A :
Loc c© → *Algm

1 and F ,A : Loc c© → pSympl
K

(or Sympl
K
) have left Kan

extensions in *Algm
1 and pSympl

K
(or Sympl

K
). If they do exist, the resulting

theories would be distinguished as the minimal locally covariant extensions of
the theory on contractible curved spacetimes; while we have not reached a
conclusion on the question of existence, it can however be shown that if these
extensions exist, they would coincide with the reduced theories.

8.4. Theories of the Free Maxwell Field and SPASs

The models for the free Maxwell field in curved spacetimes studied in this paper
provide a new viewpoint on the issue of the same physics in all spacetimes
(SPASs), in relation to locally covariant (quantum field) theories that can
be regarded as extensions of others. The locally covariant theories Fu and
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R (resp., Fu and R) coincide on all spacetimes (of dimension n = 4) with
trivial second de Rham cohomology group. To be specific, let Loc2 be the
full subcategory of Loc formed by the spacetimes M with H2

dR(M ;K) = 0,
and let K : Loc2 → Loc be the inclusion functor. Then there are natural
isomorphisms Fu◦K→̇R◦K and Fu◦K→̇R◦K. However, the locally covariant
theories are not equivalent on Loc and it is evidently not tenable to regard
both the universal and reduced F-theory of the free Maxwell field as each
representing the same physics in all spacetimes according to a common notion.

As far as we are aware, there is no way of embedding the reduced free F-
theory as a subtheory of its universal cousin.18 However, it would be natural to
regard the universal-free F-theory as an extension of its reduced counterpart.
On the classical level, we have a short left exact sequence

0 ·−→ radwu
·−−→

m
Fu

·−−→
e

R,

of functors from Loc to pSympl
K
, where all components of e are epic. Here,

0 denotes the constant functor returning the zero (complexified if K = C)
pre-symplectic space and radwu is the functor assigning the radical radwuM

(equipped with the zero (complexified if K = C) pre-symplectic form) to each
M ∈ Loc, and with morphisms obtained by restriction from Fu. The com-
ponents of m, which are given by the inclusion maps of radwuM into Fu,
are necessarily monic. As pSympl

K
lacks a zero object,19 it is not possible

to write a short exact sequence, and we have to insist on e being epic sepa-
rately. Applying the quantisation functor, we obtain a similar short left exact
sequence in the quantum case. In general, we could consider any sequence
C ·−−→

m
B ·−−→

e
A with monic m and epic e as indicating that B is an extension

of A (by C), where A,B, C : Loc → Phys (for these purposes, we would allow
Phys to admit non-monic morphisms). One may then formulate a version of
the SPASs property to cover extensions: a class T of theories Loc → Phys
has the SPASs property for extensions if, whenever A,B ∈ T and B is an ex-
tension of A so that e is a partial natural isomorphism, then e is a natural
isomorphism. It would be very interesting to know whether the class of dynam-
ically local theories satisfies this version of SPASs in addition to the subtheory
version studied in [23]. Our results on the free Maxwell field studied here are
certainly consistent with a positive answer to that question.

18 In any spacetime M one can find a symplectic C-monomorphism (resp. symplectic R-
linear injection if K = R) from RM to FuM , e.g., �ω� 	→ ∑

α[χαω], where χα is a partition
of unity subordinate to a covering by contractible globally hyperbolic open subsets; the
problem is that such maps are not generally unique and (lacking a global Hodge theory for
Loc) there is no natural choice.
19 The zero space 0 is an initial object but not a terminal object in pSymplK, and hence is

not a zero object.
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