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Boundary Quantum Knizhnik–
Zamolodchikov Equations and Fusion

Nicolai Reshetikhin, Jasper Stokman and Bart Vlaar

Abstract. In this paper we extend our previous results concerning Jack-
son integral solutions of the boundary quantum Knizhnik–Zamolodchikov
(qKZ) equations with diagonal K-operators to higher spin representations
of quantum affine sl2. First we give a systematic exposition of known re-
sults on R-operators acting in the tensor product of evaluation representa-
tions in Verma modules over quantum sl2. We develop the corresponding
fusion of K-operators, which we use to construct diagonal K-operators in
these representations. We construct Jackson integral solutions of the asso-
ciated boundary qKZ equations and explain how in the finite-dimensional
case they can be obtained from our previous results by the fusion proce-
dure.

1. Introduction

The boundary q-Knizhnik–Zamolodchikov (qKZ) equations have their origins
in the representation theory through works of Cherednik [4,5] and in quan-
tum field theory and in statistical mechanics with special “integrable” bound-
ary conditions, see, e.g. [1,11,12,18,30]. For detailed references see [27]. Their
formulation involves solutions to the Yang–Baxter equation, the so-called R-
operators or R-matrices, and solutions to the reflection equation, known as
(boundary) K-operators or K-matrices.

1.1. The Boundary qKZ Equations

Let M � be the Verma module over quantum sl2 with highest weight � ∈ C.
Then we will denote by Rk�(x) the operator acting in Mk ⊗ M � which is the
evaluation of the truncated universal R-matrix for quantum affine sl2 acting
in the tensor product of corresponding evaluation representations. It satisfies
the Yang–Baxter equation:

Rk�
12(x − y)Rkm

13 (x − z)R�m
23 (y − z) = R�m

23 (y − z)Rkm
13 (x − z)Rk�

12(x − y).
(1.1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-014-0395-4&domain=pdf
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This is an equation in Mk ⊗M �⊗Mm and we are using the standard notations
Rk�

12(x) = Rk�(x) ⊗ IdMm , etc. For details and references see Sect. 2.
Given the above R-operator Rk�(x), operators K+,�(x) and K−,�(x) act-

ing in M � are called left and right K-operators if they satisfy the left and right
reflection equations, respectively. These equations are also known as “bound-
ary Yang–Baxter equations” and were introduced in [29]. In the current setting
they are given by

Rk�(x − y)K+,k
1 (x)R�k

21(x + y)K+,�
2 (y)

= K+,�
2 (y)Rk�(x + y)K+,k

1 (x)R�k
21(x − y),

R�k
21(x − y)K−,k

1 (x)Rk�(x + y)K−,�
2 (y)

= K−,�
2 (y)R�k

21(x + y)K−,k
1 (x)Rk�(x − y).

(1.2)

These are equations in Mk ⊗ M �; we are using the notations K±,k
1 (x) =

K±,k(x) ⊗ Id, K±,�
2 (y) = Id ⊗ K±,�(y) and R�k

21(x) := P�kR�k(x)Pk�, where
Pk� : Mk ⊗ M � → M � ⊗ Mk is the permutation operator Pk�(mk ⊗ m�) =
m� ⊗ mk (mk ∈ Mk, m� ∈ M �).

For � = (�1, . . . , �N ) ∈ C
N , consider the tensor product

M � = M �1 ⊗ · · · ⊗ M �N .

The boundary qKZ equations [4,5] in M � are given by the following compatible
system of difference equations

f(t + τer) = Ξ�
r(t; ξ+, ξ−; τ)f(t), r = 1, . . . , N (1.3)

for M �-valued meromorphic functions f(t) in t ∈ C
N , where τ ∈ C

× and
{er}r is the standard orthonormal basis of RN . Here

Ξ�
r(t; ξ+, ξ−; τ) := R�r�r+1

r,r+1 (tr − tr+1 + τ) . . . R�r�N

r,N (tr − tN + τ)

× K+,�r
r

(
tr +

τ

2

)
R�N �r

N,r (tN + tr) . . . R�r+1�r

r+1,r (tr+1 + tr)

× R�r−1�r

r−1,r (tr−1 + tr) . . . R�1�r
1,r (t1 + tr)K−,�r

r (tr)

× R�r�1
r,1 (tr − t1) . . . R�r�r−1

r,r−1 (tr − tr−1) (1.4)

is the (boundary) transport operator on M �, depending meromorphically on
t ∈ C

N . The compatibility of the system (1.3) is guaranteed by the conditions

Ξ�
r(t + esτ ; ξ+, ξ−; τ)Ξ�

s(t; ξ+, ξ−; τ) = Ξ�
s(t + erτ ; ξ+, ξ−; τ)Ξ�

r(t; ξ+, ξ−; τ),

for r, s = 1, . . . , N , which themselves are consequences of the quantum Yang–
Baxter and reflection equations (1.1–1.2). In this paper, we construct explicit
Jackson integral solutions of (1.3) when the left and right K-operators K±,�(x)
are of the form Kξ±,�(x) with Kξ,�(x) (ξ ∈ C) an explicit one-parameter family
of K-operators diagonal with respect to the weight basis of M �.
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1.2. Finite-Dimensional Representations and Fusion

When � ∈ 1
2Z≥0 the representation M � is no longer irreducible; it has an

infinite-dimensional subrepresentation and an irreducible finite-dimensional
quotient representation V �. When some of the �s’s in the boundary qKZ equa-
tions are in 1

2Z≥0 the equations descend to the tensor product of corresponding
quotient modules.

For k, � ∈ 1
2Z≥0, the tensor product of the associated evaluation mod-

ules V k(x) ⊗ V �(y) becomes reducible for special values of x, y ∈ C [3].
Owing to this degeneracy, R-operators acting in (tensor products of) higher
dimensional evaluation modules can be obtained from corresponding objects
acting in (tensor products of) lower dimensional evaluation modules through
a process called fusion [15,20]. We extend this representation-theoretic app-
roach to fusion of K-operators in Sect. 4. Such R- and K-operators can
then be generalized to R- and K-operators associated with modules M �(x)
for arbitrary � ∈ C by means of an analytical continuation. This will
allow us to establish the above reflection equation (1.2) for a larger class
of K-operators than hitherto has been done. In particular, we obtain the
diagonal K-operators Kξ,�(x) from this fusion approach applied to Chered-
nik’s [5] diagonal K-matrix associated to V

1
2 . The Kξ,�(x) are closely

related to the family of K-operators constructed in [9] using the q-Onsager
algebra.

For other approaches to fusion of K-operators, see e.g. [13,17,21,22,24,
31].

1.3. Main Result

In [27] we constructed q-integral solutions to (1.3) when all �s = 1
2 . In this case

the corresponding irreducible quotient spaces are two dimensional and (1.3)
reduces to an equation in (C2)⊗N . The main result of this paper is the construc-
tion of q-integral solutions to (1.3) for arbitrary �s ∈ C. For �s ∈ 1

2Z≥0 it gives
Jackson integral solutions in the tensor product of corresponding irreducible
representations V �s . Our main result (Theorem 6.2) can be summarized as
follows.

Theorem 1.1. Let ξ+, ξ− ∈ C and let gξ+,ξ−(x), h(x) and F �(x) be meromor-
phic functions in x ∈ C satisfying the functional equations

gξ+,ξ−(x + τ) =
sinh

(
ξ− − x − η

2

)
sinh

(
ξ+ − x − τ

2 − η
2

)

sinh
(
ξ− + x + τ − η

2

)
sinh

(
ξ+ + x + τ

2 − η
2

)gξ+,ξ−(x),

h(x + τ) =
sinh(x + τ) sinh(x + η)
sinh(x) sinh(x + τ − η)

h(x),

F �(x + τ) =
sinh(x + τ − �η)
sinh(x + τ + �η)

F �(x).
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Given fixed generic x0 ∈ C
S, and fixed parameters ξ+, ξ−, η, τ in a suitable

parameter domain (see Sect. 6), the M �-valued sum

f �
S(t) :=

∑
x∈x0+τZS

(
S∏

i=1

gξ+,ξ−(xi)

)( ∏
1≤i<j≤S

h(xi + xj)h(xi − xj)

)

×
(

N∏
r=1

S∏
i=1

F �r (tr + xi)F �r (tr − xi)

)(
S∏

i=1

Bξ−(xi; t)

)
Ω

is a solution of the boundary qKZ equations (1.3), meromorphic in t ∈ C
N .

Here, Bξ
(x; t) are matrix elements of the boundary quantum monodromy ma-

trix and Ω = m�1
1 ⊗ · · · ⊗ m�N

1 is the tensor product of highest weight vectors
m�s

1 ∈ M �s (see Sect. 5 for details).

Explicit formulae for functions gξ+,ξ− , h and F � are given in Sect. 6. We
will discuss integral (not Jackson integral) solutions in a forthcoming paper.
It yields a complete system of solutions to the boundary qKZ equations.

Theorem 1.1 gives for �s ∈ 1
2Z≥0 Jackson integral solutions of the bound-

ary qKZ equations taking values in

V � = V �1 ⊗ · · · ⊗ V �S .

These can alternatively be obtained from a fusion procedure applied to the
Jackson integral solutions when all �s = 1

2 derived earlier in [27] (see Sect.
8.3). It seems though that the result for continuous spin �s ∈ C (Theorem 1.1)
cannot be obtained from half-integer spins by analytic continuation.

1.4. Outline of the Paper

In Sects. 2 and 3 we overview solutions to the quantum Yang–Baxter equation
corresponding to quantum sl2 and their fusion, following [15,19,20]. Reflection
equations and the fusion of K-operators are discussed in Sect. 4. The bound-
ary monodromy matrices defined in terms of these R- and K-operators are
introduced in Sect. 5, as are the off-shell Bethe vectors

(∏S
i=1 Bξ−(xi; t)

)
Ω.

In Sect. 6 we state and discuss the main theorem on the Jackson integral solu-
tions of the boundary qKZ equations with continuous spins; its proof is given
in Sect. 7. In Sect. 8, we show that the boundary qKZ equations (1.3) acting
on V � (�s ∈ 1

2Z≥0) and the associated Jackson integral solutions of the bound-
ary qKZ equations can be obtained from the special case when all �s = 1

2 by
fusion.

2. Quantum Affine sl2 and R-Operators

In this section we discuss basic facts on quantum affine sl2 and its associ-
ated evaluation R-and L-operators, following [15,16]. We use slightly different
conventions compared to [15,16] to obtain a direct match with the R-and
L-operators of the 6-vertex model (see Sect. 2.5).
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2.1. Quantum Affine Algebra sl2 and the Universal R-Matrix

We fix η ∈ C such that p := eη is not a root of unity. We write px := eηx for
x ∈ C.

Set h = Ch0 ⊕Ch1. Quantum affine sl2 is the Hopf algebra Ûη := Uη(ŝl2)
over C with generators ei, fi (i = 0, 1), ph (h ∈ h) and with defining relations

p0 = 1, ph+h′
= phph′

,

pheip
−h = pαi(h)ei, phfip

−h = p−αi(h)fi, [ei, fj ] = δi,j
phi − p−hi

p − p−1
,

e3i ej − (p2 + 1 + p−2)e2i ejei + (p2 + 1 + p−2)eieje
2
i − eje

3
i = 0, i �= j,

f3
i fj − (p2 + 1 + p−2)f2

i fjfi + (p2 + 1 + p−2)fifjf
2
i − fjf

3
i = 0, i �= j

for i, j = 0, 1 and h, h′ ∈ h. Here αi are linear functionals on h satisfying
αj(hi) = aij with Cartan matrix

(
a00 a01

a10 a11

)
=
(

2 −2
−2 2

)
.

The comultiplication Δ and the counit ε are determined by their action on
generators:

Δ(ph) = ph ⊗ ph,

Δ(ei) = ei ⊗ 1 + p−hi ⊗ ei,

Δ(fi) = fi ⊗ phi + 1 ⊗ fi

and

ε(ph) = 1, ε(ei) = 0, ε(fi) = 0.

The antipode is determined by S(ph) = p−h, S(ei) = −phiei and S(fi) =
−fip

−hi .
The extension Ũη of this algebra by generators pλd (λ ∈ C) such that

[pλd, ph] = 0 and pλdei = pλδi,0eip
λd, pλdfi = p−λδi,0fip

λd is a quantized Kac–
Moody algebra. The corresponding Lie algebra has a non-degenerate scalar
product and there is a universal R-matrix R ∈ Ũη⊗̂Ũη [14]. It has the form

R = exp(η(c ⊗ d + d ⊗ c))R

where c = h0 + h1 and R ∈ Ûη⊗̂Ûη. In the category of modules where c acts
by zero (zero-level representations), the element R satisfies all properties of
the universal R-matrix:

RΔ(a) = Δop(a)R,

(Δ ⊗ Id)(R) = R13R23, (Id ⊗ Δ)(R) = R13R12.

Here, Δop the opposite comultiplication. See also [15, Lecture 9] for further
details (note though that we have a different convention for the comultiplica-
tion).



142 N. Reshetikhin et al. Ann. Henri Poincaré

2.2. Evaluation Representations

We write Uη ⊂ Ûη for the Hopf subalgebra generated by e1, f1 and pλh1 (λ ∈
C). It is the quantized universal enveloping algebra of sl2.

Let � ∈ C and M � :=
⊕∞

n=1 Cm�
n be a left Uη-module with the action

given by

π�(pλh1)m�
n = p2λ(�+1−n)m�

n,

π�(e1)m�
n =

sinh((n − 1)η) sinh((2� + 2 − n)η)
sinh(η)2

m�
n−1,

π�(f1)m�
n = m�

n+1,

where m�
0 := 0. The Uη-module (π�,M �) is the Verma module with highest

weight � and highest weight vector m�
1.

If k ∈ 1
2Z≥0 the subspace Nk :=

⊕∞
n=2k+2 Cmk

n ⊂ Mk is a Uη-submodule.
We write V k := Mk/Nk for the resulting quotient Uη-module. The cosets
vk

n := mk
n + Nk (1 ≤ n ≤ 2k + 1) form a weight basis in V k. The associated

representation map will be denoted by πk and for this representation of Uη we
will write (πk, V k).

For each x ∈ C there exists a unique unit-preserving algebra homomor-
phism φx : Ûη → Uη satisfying

φx(pλh0) = p−λh1 , φx(pλh1) = pλh1 ,

φx(e0) = e−xf1, φx(e1) = e−xe1,

φx(f0) = exe1, φx(f1) = exf1.

Given a representation π of Uη on V we write πx := π ◦ φx, which turns V in
a representation of Ûη called the evaluation representation. Sometimes we will
denote it by V (x).

In what follows we will work with evaluation representation (πk
x, V k) and

(π�
x,M �), where k ∈ 1

2Z≥0 and � ∈ C.

2.3. Evaluation R-and L-Operators

We follow here [15, Lecture 9]. Fix x, y ∈ C with 
(x − y) � 0. For k, � ∈ C

the evaluation of the truncated universal R-matrix(
πk

x ⊗ π�
y

)
(R)

is a linear operator on Mk ⊗ M � which only depends on the difference x − y
of x and y. It acts on the tensor product of highest weight vectors as

(
πk

x ⊗ π�
y

)
(R)mk

1 ⊗ m�
1 = αk�(x − y)mk

1 ⊗ m�
1

where αk�(x − y) is invertible for generic p and x − y. Define

Rk�(x − y) := αk�(x − y)−1
(
πk

x ⊗ π�
y

)
(R).
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The operator Rk�(x − y) intertwines the action of Ûη with its opposite:

Rk�(x − y)
(
πk

x ⊗ π�
y

)
(Δ(X)) =

(
πk

x ⊗ π�
y

)
(Δop(X))Rk�(x − y), X ∈ Ûη

(2.1)

and satisfies Rk�(x − y)mk
1 ⊗ m�

1 = mk
1 ⊗ m�

1. These properties determine
Rk�(x − y) uniquely for generic values of x − y.

The dependence of the operator Rk�(x − y) on x, y, k, � is as a rational
function in ex−y, pk and p�. Analytic continuation thus gives a well-defined
linear operator Rk�(x − y) on Mk ⊗ M � for generic values of x − y, which can
be characterized by the same intertwining property (2.1) with respect to the
action of Ûη.

Let k ∈ 1
2Z≥0 and write prk : Mk � Vk for the canonical map. For each

x ∈ C, it defines an intertwiner prk
x : Mk(x) � Vk(x) of Ûη-modules. Note that

for k ∈ 1
2Z≥0, there exists a unique linear map

Lk�(x − y) : V k ⊗ M � → V k ⊗ M �

depending rationally on ex−y and satisfying(
prk ⊗ IdM�

)
Rk�(x − y) = Lk�(x − y)

(
prk ⊗ IdM�

)
.

Similarly, for k, � ∈ 1
2Z≥0, there exists a unique linear map

Rk�(x − y) : V k ⊗ V � → V k ⊗ V �

satisfying
(prk ⊗ pr�)Rk�(x − y) = Rk�(x − y)(prk ⊗ pr�). (2.2)

2.4. Basic Properties of Evaluation R-and L-Operators

We follow [16] and for details [15, Lecture 9].
The basic properties of the universal R-matrix give the quantum Yang–

Baxter equation

Rk�
12(x − y)Rkm

13 (x − z)R�m
23 (y − z) = R�m

23 (y − z)Rkm
13 (x − z)Rk�

12(x − y) (2.3)

as linear operators on Mk ⊗ M � ⊗ Mm. In addition, the operator Rk�(x − y)
satisfies unitarity:

Rk�(x − y)−1 = R�k
21(y − x),

where

R�k
21(x) := P�kR�k(x)Pk� : Mk ⊗ M � → Mk ⊗ M �

and Pk� : Mk ⊗ M � → M � ⊗ Mk is the permutation operator.
Both properties descend naturally to the L-operators and finite R-

operators. In particular, the familiar RLL-relations

Rk�
12(x − y)Lkm

13 (x − z)L�m
23 (y − z) = L�m

23 (y − z)Lkm
13 (x − z)Rk�

12(x − y) (2.4)

for k, � ∈ 1
2Z≥0 as well as the quantum Yang–Baxter equation for the R-

operators Rk�(x) (k, � ∈ 1
2Z≥0) follow immediately from the quantum Yang–

Baxter equation for Rk�.
The next property of Rk�(x) is P -symmetry:
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Lemma 2.1. As linear maps on Mk ⊗ M � we have for generic x ∈ C,

R�k
21(x) = Rkl(x). (2.5)

Proof. Write T k�(x) for the left-hand side of (2.5). Then clearly

T k�(x)mk
1 ⊗ m�

1 = mk
1 ⊗ m�

1 = Rk�(x)mk
1 ⊗ m�

1.

Hence, it suffices to show that for generic x and y,

T k�(x − y)
(
πk

x ⊗ π�
y

)
(Δ(X)) =

(
πk

x ⊗ π�
y

)
(Δop(X))T k�(x − y), ∀X ∈ Ûeη .

This is clear for X = ph (h ∈ h). For X = e0, f1 it is a direct consequence of
the identity

(
πk

y ⊗ π�
x

)
(Δop(e0)) =

(
πk

−y ⊗ π�
−x

)
(Δ(f1))

and (2.1). For the algebraic generators X = e1, f0 it follows similarly from
(2.1) using the fact that

(
πk

y ⊗ π�
x

)
(Δop(e1)) =

(
πk

−y ⊗ π�
−x

)
(Δ(f0)).

�

Finally we discuss crossing symmetry. We start with crossing symmetry
for L-operators:

Lemma 2.2. Let k ∈ 1
2Z≥0 and � ∈ C. Let wk : V k ∼−→ V k be the linear

isomorphism defined by

wk(vk
n) := cnvk

2k+2−n

with cn ∈ C
× determined by the recursion cn+1 := −cnp2k+1−2n and c1 := 1.

Then

Lk�(−x)T1 = αk�(x)αk�(x − η)
(
wk ⊗ IdM�

)
Lk�(x − η)

(
wk ⊗ IdM�

)−1

with T1 the transpose in the first tensor component with respect to the weight
basis.

Proof. For an evaluation module (π, V ) over Ûη we write (π∗, V ∗) for the
graded dual V ∗ of V with respect to the weight grading, with Ûη-action
(π∗(X)φ)(v) := φ(π(S(X))v). If A : V → V is a linear map, then we write
At : V ∗ → V ∗ for the corresponding dual linear operator.

It follows from the identity (S ⊗ Id)(R) = R−1 that
((

πk
x

)∗
⊗ π�

y

)
(R) =

((
πk

x ⊗ π�
y

)
(R−1)

)t1
. (2.6)

Here t1 means taking the dual with respect to the first component in the
tensor product. Write {(vk

n)∗} for the basis of (V k)∗ dual to the weight basis
{vk

n}n of V k. We identify V k 
 (V k)∗ by vk
n �→ (vk

n)∗ (the dual At of a
linear operator A : V k → V k then corresponds to the transpose AT of A with
respect to the weight basis {vk

n} of V k). Accordingly we interpret the map wk
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as a linear map wk : V k → (V k)∗, in which case it defines an isomorphism
V k(x − η) ∼−→ V k(x)∗ of Ûη-modules. Consequently

Lk�(−x + y)T1 = αk�(x − y)
(
πk

x ⊗ π�
y

)
(R−1)T1

= αk�(x − y)
((

πk
x

)∗
⊗ π�

y

)
(R)

= αk�(x − y)
(
wk ⊗ IdM�

) (
πk

x−η ⊗ π�
y

)
(R)

(
wk ⊗ IdM�

)−1
,

where we have used (2.6) for the second equality. This proves the desired
result. �
Remark 2.3. For k ∈ C the canonical linear isomorphism Mk ∼−→ (Mk)∗∗

defines an isomorphism Mk(x − 2η) ∼−→ Mk(x)∗∗ of Ûη-modules (cf. Lemma
2.2). It then follows from a double application of (2.6) (for arbitrary evaluation
modules) that

Rk�(x − 2η) =
αk�(x)

αk�(x − 2η)

((
(Rk�(x)−1)T1

)−1)T1

.

Note the difference with [15, Prop. 9.5.2], which involves an additional conju-
gation by a diagonal operator in the first tensor component.

2.5. Explicit Formulae for L-Operators

It is possible to compute L
1
2 �(x) explicitly using the expression of the universal

R-matrix (a comprehensive survey of this can be found in [2]). This leads to
the formulae

L
1
2 �(x)(v

1
2
1 ⊗ m�

n) =
sinh

(
x +

(
3
2 + � − n

)
η
)

sinh(x + (12 + �)η)
v

1
2
1 ⊗ m�

n

+ e(�+
3
2−n)η sinh((n − 1)η) sinh((2� + 2 − n)η)

sinh(η) sinh(x + (12 + �)η)
v

1
2
2 ⊗ m�

n−1

and

L
1
2 �(x)(v

1
2
2 ⊗ m�

n) = e(−�− 1
2+n)η sinh(η)

sinh(x + (� + 1
2 )η)

v
1
2
1 ⊗ m�

n+1

+
sinh(x + (− 1

2 − � + n)η)
sinh(x + (12 + �)η)

v
1
2
2 ⊗ m�

n.

Note that exponential factors can be removed by a similarity transformation.
After this, the result coincides with the L-operator found in [19]. It follows from
these formulae that the finite R-operator R

1
2

1
2 (x) is the 6-vertex R-operator:

R
1
2

1
2 (x) =

1
sinh(x + η)

⎛
⎜⎜⎝

sinh(x + η) 0 0 0
0 sinh(x) sinh(η) 0
0 sinh(η) sinh(x) 0
0 0 0 sinh(x + η)

⎞
⎟⎟⎠

(2.7)

with respect to the ordered basis (v
1
2
1 ⊗ v

1
2
1 , v

1
2
1 ⊗ v

1
2
2 , v

1
2
2 ⊗ v

1
2
1 , v

1
2
2 ⊗ v

1
2
2 ) of

V
1
2 ⊗ V

1
2 .
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The crossing symmetry of the L-operators (Lemma 2.2) becomes

L
1
2 �(−x)T1 = ϑ�(x)σy

1L
1
2 �(x − η)σy

1 (2.8)

as linear operators on V
1
2 ⊗M �, where T1 is the matrix transpose with respect

to the weight basis in V
1
2 and

σy :=
(

0 −
√

−1√
−1 0

)
, ϑ�(x) =

sinh(x − ( 12 − �)η)
sinh(x − ( 12 + �)η)

. (2.9)

Equation (2.8) can be directly verified using the above explicit formulae for
L

1
2 �(x).

3. Fusion of R-Operators

We use the notations from Sect. 2. Fix a generic η ∈ C throughout this section
and write p = eη.

3.1. Tensor Products of Evaluation Representations

Let k, � ∈ 1
2Z≥0. By [3, Thm. 4.8] the tensor product Ûη-module V k(x)⊗V �(y)

is irreducible for generic x, y ∈ C. For the fusion of R- and K-operators we need
to focus on the special cases that the Ûη-module V k(x) ⊗ V �(y) is reducible.

For k, � ∈ 1
2Z≥0 we write P k� : V k ⊗ V � → V � ⊗ V k for the permutation

operator. The following result should be compared with [3, Prop. 4.9]. The
proof is by a straightforward computation.

Proposition 3.1. Let k ∈ 1
2Z≥0.

(i) The linear map ιk : V k+ 1
2 ↪→ V

1
2 ⊗ V k, defined by

ιk
(
v

k+ 1
2

n

)
= e

η
2 (n−1)v

1
2
1 ⊗ vk

n + e− η
2 (n−2−2k) sinh((n − 1)η)

sinh(η)
v

1
2
2 ⊗ vk

n−1,

defines a Ûη-intertwiner ιkx : V k+ 1
2 (x) ↪→ V

1
2 (x − kη) ⊗ V k(x + η

2 ).
(ii) The linear map jk := P

1
2kιk : V k+ 1

2 ↪→ V k ⊗ V
1
2 defines a Ûη-intertwiner

jk
x : V k+ 1

2 (x) ↪→ V k
(
x − η

2

)
⊗ V

1
2 (x + kη).

Note that the intertwiners ιkx and jk
x do not depend on x as linear maps.

We add the subscript x to clarify the Ûη-action we are considering.

3.2. Fusion Operators

It follows from Lemma 2.1 that the R-operators Rk�(x) (k, � ∈ 1
2Z≥0) are

P -symmetric. In the remainder of this section we focus on the fusion of the
R-operators Rk�(x) (k, � ∈ 1

2Z≥0).
For the fusion of the R-operators the interpretation of R-operators as

intertwiners between tensor products of evaluation modules plays a crucial
role. We need explicit expressions for its action in case that the tensor product
of the evaluation modules is reducible.



Vol. 17 (2016) Boundary Quantum KZ Equations 147

Lemma 3.2. For k ∈ 1
2Z≥0 the linear operators R

1
2k(x) and Rk 1

2 (x) are regular

at x = (k + 1
2 )η. The resulting linear maps Sk := P

1
2kR

1
2k
(
(k + 1

2 )η
)

and

T k := P k 1
2 Rk 1

2

(
(k + 1

2 )η
)
, which we will view as Ûη-intertwiners

Sk
x : V

1
2 (ex+kη) ⊗ V k(ex− η

2 ) → V k(ex− η
2 ) ⊗ V

1
2 (ex+kη),

T k
x : V k(ex+ η

2 ) ⊗ V
1
2 (ex−kη) → V

1
2 (ex−kη) ⊗ V k(ex+ η

2 )

are explicitly given by

Sk
(
v

1
2
1 ⊗ vk

n

)
=

sinh((2k + 2 − n)η)
sinh((2k + 1)η)

e− η
2 (n−1)jk

(
v

k+ 1
2

n

)
,

Sk
(
v

1
2
2 ⊗ vk

n

)
=

sinh(η)
sinh((2k + 1)η)

e
η
2 (n−2k−1)jk

(
v

k+ 1
2

n+1

)
.

T k
(
vk

n ⊗ v
1
2
1

)
=

sinh((2k + 2 − n)η)
sinh((2k + 1)η)

e− η
2 (n−1)ιk

(
v

k+ 1
2

n

)
,

T k
(
vk

n ⊗ v
1
2
2

)
=

sinh(η)
sinh((2k + 1)η)

e
η
2 (n−2k−1)ιk

(
v

k+ 1
2

n+1

)
.

Proof. By P -symmetry we have Rk 1
2 (x) = P

1
2kR

1
2k(x)P k 1

2 , and Proposition
3.1 gives ιk = P k 1

2 jk. So it suffices to prove the statement for Sk. Using the
fact that (Id

V
1
2
⊗prk)L

1
2k(x) = R

1
2k(x)(Id

V
1
2
⊗prk), Remark 2.5 gives explicit

formulae for Sk. Comparing those formulae with the explicit formulae for jk
x

(see Proposition 3.1) now leads to the desired result. �

3.3. The Fusion Formula for the R- and L-Operators

The fusion formulae for the R-operators Rk�(x) (k, � ∈ 1
2Z≥0) and L-operators

Lk�(x) (k ∈ 1
2Z≥0, � ∈ C) follow directly from the representation-theoretic

considerations of the previous subsection. Recall the linear map ιk : V k+ 1
2 ↪→

V
1
2 ⊗ V k from Proposition 3.1.

Proposition 3.3. For k ∈ 1
2Z≥0 and � ∈ C we have the fusion formula

(
ιk ⊗ IdM�

)
Lk+ 1

2 ,�(x − y) = L
1
2 �
13 (x − kη − y)Lk�

23

(
x +

η

2
− y
) (

ιk ⊗ IdM�

)

as linear maps V k+ 1
2 ⊗ M � → V

1
2 ⊗ V k ⊗ M �.

Proof. Using the fact that(
π

1
2
x ⊗ πk

y ⊗ π�
z

)
(R13R23) =

(
π

1
2
x ⊗ πk

y ⊗ π�
z

)
((Δ ⊗ Id)(R))

and the intertwining property of ιkx (see Proposition 3.1), gives

L
1
2 �
13 (x − kη − y)Lk�

23

(
x +

η

2
− y
) (

ιkx ⊗ IdM�

)
=
(
ιkx ⊗ IdM�

)
Lk+ 1

2 ,�(x − y)

as linear maps V k+ 1
2 (x) ⊗ M �(y) → V

1
2 (x − kη) ⊗ V k(x + η

2 ) ⊗ M �(y). The
result follows now immediately. �
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Remark 3.4. Proposition 3.3 leads for k, � ∈ 1
2Z≥0 to the fusion formula

(
ιk ⊗ IdV �

)
Rk+ 1

2 ,�(x − y) = R
1
2 �
13 (x − kη − y)Rk�

23

(
x +

η

2
− y
) (

ιk ⊗ IdV �

)

for the R-operators.

Remark 3.5. Another approach to fusion formulae for L-operators (originating
from [20]) is by specialization of the RLL relations (2.4) at values of x − y for
which Rk�

12(x − y) is not invertible. For instance, in the present setting (2.4)
gives (

T k ⊗ IdM�

)
Lk�
13

(
x +

η

2
− y
)

L
1
2 �
23 (x − kη − y)

= L
1
2 �
13 (x − kη − y)Lk�

23

(
x +

η

2
− y
) (

T k ⊗ IdM�

)
,

which shows directly that the operator L
1
2 �
13 (x−kη−y)Lk�

23(x+ η
2 −y) restricts to

a linear endomorphism on the image of T k⊗IdM� . The resulting linear operator
is equivalent to the fused L-operator Lk+ 1

2 ,�(x − y) in view of Lemma 3.2.

4. The Reflection Equation, Fusion of K-Operators
and Diagonal K-Operators

4.1. Reflection Equations

A collection of linear maps K�(x) : M � → M � is called a family of higher spin
K-operators if they satisfy the reflection equations in Mk ⊗ M �:

Rk�(x − y)Kk
1(x)Rk�(x + y)K�

2(y) = K�
2(y)Rk�(x + y)Kk

1(x)Rk�(x − y). (4.1)

Remark 4.1. The natural representation-theoretic forms of the reflection equa-
tions (4.1) involve R�k

21(x) = P�kR�k(x)Pk�, cf. (1.2). However, the P -symmetry
(2.5) of the R-operators has the simplifying effect that all R-operators can be
put into the form Rk� and consequently the distinction between left and right
versions of reflection equations disappears (cf. [29]).

Suppose that for k ∈ 1
2Z≥0 there exists a (necessarily unique) linear map

Kk(x) : V k → V k such that

prk ◦ Kk(x) = Kk(x) ◦ prk.

Then the Eq. (4.1) naturally give rise to (semi-)finite-dimensional versions
which will also be referred to as reflection equations. More precisely, when
k ∈ 1

2Z≥0 Eq. (4.1) projects to the following equation in V k ⊗ M �:

Lk�(x − y)Kk
1 (x)Lk�(x + y)K�

2(y) = K�
2(y)Lk�(x + y)Kk

1 (x)Lk�(x − y).
(4.2)

Furthermore, when k, l ∈ 1
2Z≥0 Eq. (4.1) then projects to the following equa-

tion in V k ⊗ V �:

Rk�(x − y)Kk
1 (x)Rk�(x + y)K�

2(y) = K�
2(y)Rk�(x + y)Kk

1 (x)Rk�(x − y). (4.3)
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Just as solutions to the quantum Yang–Baxter equation are related to
the representation theory of quantized universal enveloping algebras, solu-
tions to the reflection equation (K-operators) are related to coideal subal-
gebras of quantized universal enveloping algebras. We will discuss it briefly in
Sect. 4.4.

4.2. K-Matrices for Spin-1
2

With respect to the 6-vertex R-operator R
1
2

1
2 (x) [see (2.7)], the general diago-

nal solution of (4.3) (for k = � = 1
2 ) is given by Cherednik’s [5] one-parameter

family

Kξ, 12 (x) =

(
1 0
0 sinh(ξ−x)

sinh(ξ+x)

)

written with respect to the basis (v
1
2
1 , v

1
2
2 ) of V

1
2 . To simplify notations we will

use R(x) for R
1
2

1
2 (x) and Kξ(x) for Kξ, 12 (x). In other words, this matrix acts

on the weight basis as

Kξ(x)v
1
2
1 = v

1
2
1 , Kξ(x)v

1
2
2 =

sinh(ξ − x)
sinh(ξ + x)

v
1
2
2 .

Remark 4.2. The proof that Kξ(x) satisfies (4.3) for k = � = 1/2 reduces to
the identity

∑
ε1,ε2∈{±1}

ε1ε2
sinh(ξ + ε1x) sinh(ξ + ε2y)

sinh(ε1x + ε2y)
= 0

cf. [27].

The reflection operator Kξ(x) satisfies the boundary crossing symmetry:

Tr2

(
R12(2x − 2η)P12K

ξ
2(x)

)
=

sinh(ξ + x − η) sinh(2x)
sinh(ξ + x) sinh(2x − η)

Kξ
1(x − η), (4.4)

where Tr2 is the partial trace over the second tensor component of V
1
2 ⊗ V

1
2

and P = P
1
2

1
2 . The identity (4.4) is equivalent to the trigonometric identity

sinh(ξ + x) sinh(x − z) + sinh(ξ − x) sinh(x + z) = sinh(ξ − z) sinh(2x). (4.5)

In Lemma 7.8 we prove a multivariate extension of (4.5), which plays an im-
portant role in the proof of the main result (Theorem 6.2).

A three-parameter family of solutions K
1
2 (x) of (4.3) (with k = � = 1

2 )
is known, see [10,25].

4.3. Fusion Formula for K-Operators When k, � ∈ 1
2
Z≥0

Notwithstanding Remark 4.1, to put formulas in the natural representation-
theoretic form, we will sometimes use the notation R�k

21(x). The intertwining
property of the R-operator Rk�(x) gives
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Rk�
21(x−y)

(
π�

−x ⊗ πk
−y

)
(Δop(X))=

(
π�

−x ⊗ πk
−y

)
(Δ(X))Rk�

21(x − y), ∀ X ∈ Ûη.

Proposition 4.3. Suppose that the K
1
2 (x) are complex-linear operators on V

1
2

depending meromorphically on x ∈ C and satisfying the reflection equation

R
1
2

1
2

21 (x − y)K
1
2
1 (x)R

1
2

1
2 (x + y)K

1
2
2 (y) = K

1
2
2 (y)R

1
2

1
2

21 (x + y)K
1
2
1 (x)R

1
2

1
2 (x − y)

(4.6)

as linear operators on V
1
2 ⊗ V

1
2 . Then there exist unique complex-linear oper-

ators Kk(x) on V k for k ∈ 1
2Z≥2 satisfying

jkKk+ 1
2 (x) = P

1
2kK

1
2
1 (x − kη)R

1
2k

(
2x −

(
k − 1

2

)
η

)
Kk

2

(
x +

η

2

)
ιk

(4.7)

for all k ∈ 1
2Z≥2. Furthermore,

R�k
21(x − y)Kk

1 (x)Rk�(x + y)K�
2(y) = K�

2(y)R�k
21(x + y)Kk

1 (x)Rk�(x − y) (4.8)

as linear operators on V k ⊗ V � for all k, � ∈ 1
2Z>0.

Remark 4.4. We will always set K0(x) := IdV 0 . Then Eqs. (4.7) and (4.8) are
trivially satisfied for k = 0 and/or � = 0.

Remark 4.5. Fusion of K-operators has been studied before in various different
contexts, see, e.g. [13,17,21–24,31].

Proof of Proposition 4.3. Let m ∈ 1
2Z≥0 and suppose that the K-operators

Kk(x) have been constructed for k ≤ m satisfying (4.7) for k < m and satis-
fying (4.8) for k, l ≤ m.

Consider (4.8) for � = 1
2 and k = m, and replace x by x + η

2 and y by
x − mη. Then we obtain

SmKm
2 (x +

η

2
)Řm 1

2

(
2x −

(
m − 1

2

)
η

)
K

1
2
2 (x − mη)

= P
1
2mK

1
2
1 (x − mη)R

1
2m

(
2x −

(
m − 1

2

)
η

)
Km

2 (x +
η

2
)Tm

with Řk�(x) := P k�Rk�(x) (see Lemma 3.2 for the definition of Sm and Tm).
Since the images of the linear maps Tm and ιm coincide by Lemma 3.2, it
follows that the image of the linear map

P
1
2mK

1
2
1 (x − mη)R

1
2m

(
2x −

(
m − 1

2

)
η

)
Km

2 (x +
η

2
)ιm

is contained in the image of Sm. By Lemma 3.2 again, the image of Sm

coincides with the image of jm, hence there exists a unique linear operator
Km+ 1

2 (x) on V m+ 1
2 such that
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jmKm+ 1
2 (x) = P

1
2mK

1
2
1 (x − mη)R

1
2m

(
2x −

(
m − 1

2

)
η

)
Km

2

(
x +

η

2

)
ιm.

It remains to show that (4.8) is valid for k, � ∈ 1
2Z≤0 and k, � ≤ m + 1

2 . It
suffices to consider the case that k = m + 1

2 and/or � = m + 1
2 . We divide it

into the following three cases:

1. (k, �) = (m + 1
2 , �) with � ≤ m.

2. (k, �) = (k,m + 1
2 ) with k ≤ m.

3. (k, �) = (m + 1
2 ,m + 1

2 ).

If the reflection equation (4.8) is proved for case (1), then (2) follows from
(1) using the unitarity of the R-operator, and (3) follows from (1) and (2) by
taking � = m + 1

2 in the following proof of (1).

Proof of (1). Suppose � ∈ 1
2Z≥0 and � ≤ m. Using the fusion formulae of the

R- and K-operators we obtain

R
�,m+ 1

2
21 (x − y)Km+ 1

2
1 (x)Rm+ 1

2 ,�(x + y)K�
2(y)

= (ιm ⊗ IdV �)−1R
� 1
2

31 (x − mη − y)R�m
32 (x +

η

2
− y)(ιm ⊗ IdV �)

× (jm ⊗ IdV �)−1P
1
2m
12 K

1
2
1 (x − mη)R

1
2m
12 (2x − (m − 1

2
)η)Km

2 (x +
η

2
)

× R
1
2 �
13 (x − mη + y)Rm�

23 (x +
η

2
+ y)K3(y)(ιm ⊗ IdV �),

where the sublabels 1, 2, 3 in the right-hand side stand for the first, second
and third tensor component in V

1
2 ⊗ V m ⊗ V � and the sublabels 1, 2 in the

left-hand side stand for the first and second tensor component in V m+ 1
2 ⊗ V �.

Using Pm 1
2 jm = ιm, the expression simplifies to

(ιm ⊗ IdV �)−1
R

� 1
2

31 (x − mη − y)K
1
2
1 (x − mη)

× R�m
32

(
x +

η

2
− y
)

R
1
2m
12

(
2x −

(
m − 1

2

)
η

)
R

1
2 �
13 (x − mη + y)

× Km
2

(
x +

η

2

)
Rm�

23

(
x +

η

2
+ y
)

K�
3(y) (ιm ⊗ IdV �) .

Using the quantum Yang–Baxter equation in the second line the expression
can be rewritten as

(ιm ⊗ IdV �)−1
R

� 1
2

31 (x − mη − y)K
1
2
1 (x − mη)

× R
1
2 �
13 (x − mη + y)R

1
2m
12

(
2x −

(
m − 1

2

)
η

)

× R�m
32

(
x +

η

2
− y
)

K2

(
x +

η

2

)
Rm�

23

(
x +

η

2
+ y
)

K�
3(y)(ιm ⊗ IdV �).
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Applying the reflection equation to the last line leads to the expression

(ιm ⊗ IdV �)−1R
� 1
2

31 (x − mη − y)K
1
2
1 (x − mη)R

1
2 �
13 (x − mη + y)K�

3(y)

× R
1
2m
12

(
2x −

(
m − 1

2

)
η

)
R�m

32

(
x +

η

2
+ y
)

× Km
2

(
x +

η

2

)
Rm�

23

(
x +

η

2
− y
)

(ιm ⊗ IdV �).

Now applying the reflection equation to the first line gives

(ιm ⊗ IdV �)−1
K�

3(y)R� 1
2

31 (x − mη + y)K
1
2
1 (x − mη)

× R
1
2 �
13 (x − mη − y)R

1
2m
12

(
2x −

(
m − 1

2

)
η

)
R�m

32

(
x +

η

2
+ y
)

× Km
2

(
x +

η

2

)
Rm�

23

(
x +

η

2
− y
)

(ιm ⊗ IdV �).

Applying the quantum Yang–Baxter equation to the second line leads to

(ιm ⊗ IdV �)−1K�
3(y)R� 1

2
31 (x − mη + y)R�m

32

(
x +

η

2
+ y
)

× K
1
2
1 (x − mη)R

1
2m
12

(
2x −

(
m − 1

2

)
η

)
Km

2

(
x +

η

2

)

× R
1
2 �
13 (x − mη − y)Rm�

23

(
x +

η

2
− y
)

(ιm ⊗ IdV �).

The fusion formulae for the R- and K-operators and the fact that Pm 1
2 jm = ιm

show that the last expression equals

K�
2(y)R�,m+ 1

2
21 (x + y)Km+ 1

2
1 (x)Rm+ 1

2 ,�
12 (x − y),

where the sublabels 1 and 2 stand for the first and second tensor component in
V m+ 1

2 ⊗V �. This completes the proof of the reflection equation for case (1). �

4.4. Reflection Equation and Coideal Subalgebras

Here, we briefly discuss the representation-theoretical meaning of reflection
equations, cf., e.g. [6–8]. Let A ⊆ Ûη be a left coideal subalgebra, i.e. it is a
unital subalgebra of Ûη satisfying Δ(A) ⊆ Ûη⊗A. If M is a Ûη-module, we write
M |A for the A-module obtained by restricting the action of Ûη on M to A.

Suppose that for k, � ∈ 1
2Z>0 we have A-intertwiners

Kk(x) : V k(x)|A → V k(−x)|A, K�(x) : V �(x)|A → V �(−x)|A. (4.9)

Then the left and right sides of the reflection equation (4.8) are A-intertwiners(
V k(x) ⊗ V �(y)

)
|A →

(
V k(−x) ⊗ V �(−y)

)
|A. Consequently, if

(
V k(x) ⊗

V �(y)
)
|A is an irreducible A-module for generic x and y, then Schur’s lemma

implies the reflection equation (4.8) up to a constant. Such examples of K-
operators have been constructed with A the q-Onsager algebra, cf., e.g. [6–9].

The fusion formula (4.7) is compatible with this representation-theoretic
perspective in the following sense. Assume that K

1
2 (x) : V

1
2 (x)|A → V

1
2 (−x)|A
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and Kk(x) : V k(x)|A → V k(−x)|A are A-intertwiners. Then the right-hand
side of (4.7), which can be written as

K
1
2
2 (x − kη)Ř

1
2k

(
2x −

(
k − 1

2

)
η

))
Kk

2

(
x +

η

2

)
ιkx

with Řk�(x) := P k�Rk�(x), is an A-intertwiner

V k+ 1
2 (x)|A →

(
V k
(
−x − η

2

)
⊗ V

1
2 (−x + kη)

)
|A.

It follows that the corresponding fused K-operator Kk+ 1
2 (x) : V k+ 1

2 → V k+ 1
2 ,

characterized by

jk
−xKk+ 1

2 (x) = K
1
2
2 (x − kη)Ř

1
2k

(
2x −

(
k − 1

2

)
η

))
Kk

2

(
x +

η

2

)
ιkx,

becomes an intertwiner

Kk+ 1
2 (x) : V k+ 1

2 (x)|A → V k+ 1
2 (−x)|A

of A-modules.

4.5. Diagonal K-Operators

Proposition 4.6. The K-operator Kξ,�(x) : V � → V � (� ∈ 1
2Z≥0) obtained by

recursively fusing Kξ(x) = Kξ, 12 (x) using (4.7) acts on the weight basis as

Kξ,�(x)v�
n = C�

n(x; ξ)v�
n, 1 ≤ n ≤ 2� + 1, (4.10)

where

C�
n(x; ξ) :=

n−1∏
j=1

sinh(ξ − x + (� + 1
2 − j)η)

sinh(ξ + x + (� + 1
2 − j)η)

(4.11)

for n ∈ Z>1 and C�
1(x; ξ) = 1.

Remark 4.7. The K-operators Kξ,�(x) coincide with an appropriate limit of
the explicit A-intertwiner V �(x)|A → V �(−x)|A for the q-Onsager coideal sub-
algebra A ⊂ Ûη derived in [9]. This is to be expected from the representation-
theoretic context of the fusion procedure of K-operators, cf. Sect. 4.4.

Proof of Proposition 4.6. By induction with respect to �. By the fusion formula
(4.7) for K-operators it suffices to show that

C
�+ 1

2
n (x; ξ)j�

(
v

�+ 1
2

n

)
= P

1
2 �K

ξ, 12
1 (x − �η)R

1
2 �

(
2x −

(
� − 1

2

)
η

)

× Kξ,�
2

(
x +

η

2

)
ι�
(
v

�+ 1
2

n

)
(4.12)

with Kξ,�(x) satisfying (4.10). Both sides can be computed using the the ex-
plicit actions of the maps on the standard bases. It follows that the desired
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identity (4.12) is equivalent to

C
�+ 1

2
n (x; ξ) =

sinh(2x + (2 − n)η)
sinh(2x + η)

C�
n

(
x +

η

2
; ξ
)

+
sinh((n − 1)η)
sinh(2x + η)

C�
n−1

(
x +

η

2
; ξ
)

,

C
�+ 1

2
n (x; ξ) =

sinh(ξ − x + �η)
sinh(ξ + x − �η)

(
sinh((2� + 2 − n)η)

sinh(2x + η)
C�

n

(
x +

η

2
; ξ
)

+
sinh(2x + (n − 1 − 2�)η)

sinh(2x + η)
C�

n−1

(
x +

η

2
; ξ
))

for 1 ≤ n ≤ 2�+1. These follow easily from the trigonometric identity (4.5). �

Definition 4.8. For � ∈ C define the linear operator Kξ,�(x) on M � by

Kξ,�(x)m�
n = C�

n(x; ξ)m�
n, n ≥ 1.

Here functions C�
n(x; ξ) are defined in (4.11).

Note that if k ∈ 1
2Z≥0 and prk : Mk → V k is the projection from the

Verma module to the corresponding finite-dimensional irreducible quotient V k,
then

prk ◦ Kξ,k(x) = Kξ,k(x) ◦ prk, (4.13)

where Kξ,k(x) : V k → V k is the K-operator obtained by fusion in the previous
subsection.

Proposition 4.9. Let ξ ∈ C then the operators Kξ,k(x) satisfy the reflection
equation:

Rk�(x − y)Kξ,k
1 (x)Rk�(x + y)Kξ,�

2 (y) = Kξ,�
2 (y)Rk�(x + y)Kξ,k

1 (x)Rk�(x − y)
(4.14)

for all k, � ∈ C.

Remark 4.10. From the observations in Sect. 4.1 it follows from Proposition
4.9 that for k ∈ 1

2Z≥0 and � ∈ C, the K-operators Kξ,k(x) and Kξ,�(x) satisfy
(4.2).

Proof of Proposition 4.9. For k, � ∈ 1
2Z≥0 denote by dk,�

n,r;s(e
x) the matrix ele-

ments of Rk�(x) in the weight basis:

Rk�(x)vk
n ⊗ v�

r =
∑

s

dk,�
n,r;s(e

x)vk
n−s ⊗ v�

r+s (4.15)

for 1 ≤ n ≤ 2k + 1, 1 ≤ r ≤ 2� + 1 and s ∈ Z such that 1 ≤ n − s ≤ 2k + 1
and 1 ≤ r + s ≤ 2� + 1. Similarly, we write for k, � ∈ C

Rk�(x)mk
n ⊗ m�

r =
∑

s

cn,r;s(ex; p2k, p2�)mk
n−s ⊗ m�

r+s, n, r ∈ Z>0 (4.16)

with the sum running over the integers s such that n − s, r + s ≥ 1. The
coefficients cn,r;s(ex; p2k, p2�) are rational functions in ex, p2k and p2�.
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Let n, r ∈ Z>0 satisfying n − s, r + s ∈ Z>0. Then we have

cn,r;s(ex; e2ηk, e2η�) = dk,�
n,r;s(e

x) (4.17)

for sufficiently large k, � ∈ 1
2Z>0 by (2.2).

Note furthermore that the dependence of Ck
n(x; ξ) on k is by a rational

dependence on p2k. To emphasize it, we write Cn(x; ξ; p2k) := Ck
n(x; ξ) for the

remainder of the proof.
The Eq. (4.14) we want to prove is equivalent to the following identities:

for all n, r ∈ Z>0 and t ∈ Z satisfying 1 − r ≤ t ≤ n − 1,
n−1∑

s=1−r

cn−s,r+s;t−s(ex−y; p2k, p2�)Cn−s(x; ξ; p2k)

× cn,r;s(ex+y; p2k, p2�)Cn(y; ξ; p2�)

=
n−1∑

s=1−r

Cr+t(y; ξ; p2�)cn−s,r+s;t−s(ex+y; p2k, p2�)

× Cn−s(x; ξ; p2k)cn,r;s(ex−y; p2k, p2�).

Since these identities depend rationally on p2k and p2�, it suffices to prove
them for k, � ∈ 1

2Z≥0 sufficiently large. But then they follow from (4.17) and
the “finite” reflection equations

Rk�(x − y)Kξ,k
1 (x)Rk�(xy)Kξ,�

2 (y) = Kξ,�
2 (y)Rk�(x + y)Kξ,k

1 (x)Rk�(x − y)

for k, � ∈ 1
2Z≥0. �

5. Boundary Monodromy Operators and Bethe Vectors

5.1. Monodromy Matrices

To formulate our (Jackson integral) solutions to the boundary qKZ equations
in M � = M �1 ⊗ · · · ⊗ M �N we need to introduce (off-shell) Bethe vectors for
the reflecting chain, which in turn are defined using boundary monodromy
operators. Boundary monodromy operators are linear operators acting on the
extended tensor product V

1
2 ⊗M �; the component V

1
2 is called auxiliary space

and the component M � state space. From now on we restrict our attention to
the case that the K-matrices are diagonal (cf. Sect. 4.5).

The definition of the boundary monodromy operators involves the L-
operators

L�(x) := L
1
2 �(x) : V

1
2 ⊗ M � → V

1
2 ⊗ M �

for � ∈ C. They provide the link between the integrable structure on the
auxiliary space and the integrable structure on the state space and satisfy the
RLL commutation relations (2.4) [with k = � = 1

2 and R
1
2

1
2 (x) the 6-vertex

R-operator] as well as the “mixed” reflection equations (4.2) [with k = 1
2 ,

K
1
2 (x) = Kξ(x) and K�(x) = Kξ,�(x)]. In addition,

Lk(x)L�(x + y)Rk�(y) = Rk�(x)L�(x + y)Lk(x) (5.1)
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as linear operators on V
1
2 ⊗ Mk ⊗ M �. The L-operators L�(x), together with

the integrable data Kξ(x) and R(x) on the auxiliary space, define an inte-
grable quantum spin chain with diagonal reflecting ends (see [29]). It is the
inhomogeneous Heisenberg XXZ spin chain with continuous spins.

Let SN be the symmetric group in N letters. For σ ∈ SN define the linear
operator Tσ(x; t) = T �

σ(x; t) on V
1
2 ⊗ M � by

Tσ(x; t) := L�σ(1)(x − tσ(1)) . . . L�σ(N)(x − tσ(N))

=
(

Aσ(x; t) Bσ(x; t)
Cσ(x; t) Dσ(x; t)

)
, (5.2)

where in the last equality we have written Tσ(x; t) as a End(M �)-valued

matrix with respect to the ordered basis (v
1
2
1 , v

1
2
2 ) of V

1
2 . The special case

T (x; t) := Te(x; t) with e ∈ SN the neutral element is the (A-type) mon-
odomy operator. We write the corresponding matrix coefficients as A(x; t) =
Ae(x; t), . . . , D(x; t) = De(x; t).

The operators Tσ(x; t) satisfy the commutation relations

R00′(x − y)Tσ,0(x; t)Tσ,0′(y; t) = Tσ,0′(y; t)Tσ,0(x; t)R00′(x − y) (5.3)

as linear operators on V
1
2 ⊗V

1
2 ⊗M �, where Tσ,0(x; t) is the operator Tσ(x; t)

acting on the first and third tensor leg and Tσ,0′(y; t) the operator Tσ(y; t) on
the second and third tensor leg, while R00′(x − y) is the action of R(x − y) on
the tensor product V

1
2 ⊗ V

1
2 of the auxiliary spaces only.

Similarly, for σ ∈ SN we define Uξ
σ(x; t) = Uξ,�

σ (x; t) by

Uξ
σ(x; t) := Tσ(x; t)−1Kξ(x)−1Tσ(−x; t)

=
(

Aξ
σ(x; t) Bξ

σ(x; t)
Cξ

σ(x; t) Dξ
σ(x; t)

)
(5.4)

as a linear operator on V
1
2 ⊗M � [here Kξ(x)−1 only acts on the auxiliary space

component of the tensor product]. Then Uξ(x; t) := Uξ
e (x; t) is the boundary

monodromy operator [29] associated to the K-operator Kξ. The operators
Uξ

σ(x; t) satisfy the commutation relations

R00′(y − x)Uξ
σ,0(x; t)R00′(−x − y)Uξ

σ,0′(y; t)

= Uξ
σ,0′(y; t)R00′(−x − y)Uξ

σ,0(x; t)R00′(y − x) (5.5)

as linear operators on V
1
2 ⊗ V

1
2 ⊗ M � with the same notational conventions

as for (5.3). One of the consequences of these commutation relations is the
commutativity of the operators Bξ

σ:
[
Bξ

σ(x; t),Bξ
σ(y; t)

]
= 0.

Remark 5.1. Boundary transfer operators were constructed in [29] in the con-
text of quantum integrable models with boundaries. In the present context the
boundary transfer operator is the linear operator on M � defined as
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T ξ+,ξ−(x; t) := Tr
V

1
2

(
Kξ+(x − η)Uξ−(x; t)

)

= Aξ−(x; t) +
sinh(ξ+ − x + η)
sinh(ξ+ + x − η)

Dξ−(x; t),

where ξ+, ξ− ∈ C. It is a commuting family of operators:

[T ξ+,ξ−(x; t), T ξ+,ξ−(y; t)] = 0.

In a similar way one can define boundary transfer operators acting on the same
state space M � but involving higher spin representations V k (k ∈ 1

2Z≥0) in the
auxiliary space, similar to the situation for periodic boundary conditions (see
for example, the lectures [26]). We will describe their properties in a separate
publication.

5.2. The Pseudo-Vacuum and the Bethe Vectors

We write

L�(x) =
(

A�(x) B�(x)
C�(x) D�(x)

)

with respect to the ordered basis (v
1
2
1 , v

1
2
2 ) of the auxiliary space. The matrix

coefficients are linear operators on M �. Explicitly they are given by

A�(x)m�
n =

sinh(x + (32 + � − n)η)
sinh

(
x + (12 + �)η

) m�
n,

B�(x)m�
n =

sinh(η)
sinh(x + (12 + �)η)

e(−�− 1
2+n)ηm�

n+1,

C�(x)m�
n =

sinh((n − 1)η) sinh((2� + 2 − n)η)
sinh(η) sinh(x + (12 + �)η)

e(�+
3
2−n)ηm�

n−1,

D�(x)m�
n =

sinh(x + (− 1
2 − � + n)η)

sinh(x + (12 + �)η)
m�

n,

(5.6)

where m�
0 should be read as zero. Note that

A�(x)m�
1 = m�

1, D�(x)m�
1 = ϑ�(−x)m�

1, C�(x)m�
1 = 0,

Rk�(x)(mk
1 ⊗ m�

1) = mk
1 ⊗ m�

1, Kξ,�(x)m�
1 = m�

1.

Here ϑ�(x) is defined in (2.9). Set

Ω := m�1
1 ⊗ m�2

1 ⊗ · · · ⊗ m�N
1 ∈ M �. (5.7)

Note that

Aσ(x; t)Ω = Ω, Dσ(x; t)Ω =

(
N∏

r=1

ϑ�r (tr − x)

)
Ω (5.8)

for all σ ∈ SN . The vector Ω will play the role of the pseudo-vacuum vec-
tor, from which off-shell Bethe vectors are generated by repeatedly applying
operators Bξ(xi; t), cf. [29].
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For convenience, to construct our solutions to the boundary qKZ equa-
tions we will use a different normalization for Bξ

σ(x; t):

Bξ

σ(x; t) :=

(
N∏

r=1

sinh(x − tr − �rη)
sinh(x − tr + �rη)

)
sinh(ξ − x − η

2 ) sinh(2x)
sinh(2x + η)

Bξ
σ

(
x +

η

2
; t
)

.

The change from B to B does not affect the commutativity:
[
Bξ

σ(x; t),Bξ

σ(y; t)
]

= 0.

Hence, the following operator is well-defined for all x = (x1, . . . , xS) with
S ∈ Z≥0:

Bξ,(S)

σ (x; t) :=
S∏

j=1

Bξ

σ(xj ; t).

We will write Bξ
(x; t) := Bξ

e(x; t) and Bξ,(S)
(x; t) := Bξ,(S)

e (x; t) when σ = e
is the identity element of SN . The associated off-shell Bethe vectors are the
vectors Bξ,(S)

(x; t)Ω ∈ M �.

6. Jackson Integral Solutions of the Boundary qKZ Equations

We recall the notion of mero-uniformly convergent sums for scalar-valued func-
tions (cf. [28]), which can be extended to M �-valued functions in an obvious
manner.

Definition 6.1. Let C ⊂ C
M be a discrete subset and w(x; t) (x ∈ C) a weight

function with values depending meromorphically on t ∈ C
N . Suppose that for

all t0 ∈ C
N , there exists an open neighbourhood Ut0 ⊂ C

N of t0 and a nonzero
holomorphic function vt0 on Ut0 such that

1. vt0(t)w(x; t) is holomorphic in t ∈ Ut0 for all x ∈ C,
2. the sum

∑
x∈C vt0(t)w(x; t) is absolutely and uniformly convergent for

t ∈ Ut0 .

Then there exists a unique meromorphic function f(t) in t ∈ C
N satisfying

vt0(t)f(t) =
∑
x∈C

vt0(t)w(x; t)

for t ∈ Ut0 and t0 ∈ C
N . We will write

f(t) =
∑
x∈C

w(x; t)

and we will say that the sum converges mero-uniformly.
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We are now in a position to present our main theorem. For a meromorphic
function h of one variable, write h(x ± y) = h(x + y)h(x − y).

Theorem 6.2. Let ξ+, ξ− ∈ C and let gξ+,ξ−(x), h(x) and F �(x) be meromor-
phic functions in x ∈ C satisfying the functional equations

gξ+,ξ−(x + τ) =
sinh(ξ− − x − η

2 ) sinh(ξ+ − x − τ
2 − η

2 )
sinh(ξ− + x + τ − η

2 ) sinh(ξ+ + x + τ
2 − η

2 )
gξ+,ξ−(x),

h(x + τ) =
sinh(x + τ) sinh(x + η)
sinh(x) sinh(x + τ − η)

h(x),

F �(x + τ) =
sinh(x + τ − �η)
sinh(x + τ + �η)

F �(x).

Fix generic x0 ∈ C
S and suppose that the M �-valued sum

f �
S(t) :=

∑
x∈x0+τZS

(
S∏

i=1

gξ+,ξ−(xi)

)( ∏
1≤i<j≤S

h(xi ± xj)

)

×
(

N∏
r=1

S∏
i=1

F �r (tr ± xi)

)
Bξ−,(S)

(x; t)Ω

converges mero-uniformly in t ∈ C
N . Then f �

S is a solution of the boundary
qKZ equations (1.3).

Theorem 6.2 generalizes the main result of [27] from two-dimensional rep-
resentations of quantum sl2 to arbitrary Verma modules. The proof of Theorem
6.2 follows roughly the line of reasoning of the spin-12 case [27], although con-
siderably more technical difficulties need to be overcome. The proof is given
in Sect. 7.

We now make the solutions concrete. We set q := eτ and we assume that

(τ) < 0, so that |q| < 1. Solutions gξ+,ξ− , h and F � of the resulting functional
relations can now be expressed in terms of q-Gamma functions or, equivalently,
in terms of q-shifted factorials

(
x; q
)

∞
:=

∞∏
i=0

(1 − qix).

We write
(
x1, . . . , xs; q

)
∞

:=
∏s

i=1

(
xi; q

)
∞

for products of q-shifted factori-
als. As solutions of the functional equations we take
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gξ+,ξ−(x) = e(
2(ξ−+ξ+−η)

τ +1)x

(
q2e2(x+ξ−)−η, qe2(x+ξ+)−η; q2

)
∞(

e2(x−ξ−)+η, qe2(x−ξ+)+η; q2
)

∞

,

h(x) = e− 2ηx
τ (1 − e2x)

(
q2e2(x−η); q2

)
∞(

e2(x+η); q2
)

∞

,

F �(x) = e
2�ηx

τ

(
q2e2(x+�η); q2

)
∞(

q2e2(x−�η); q2
)

∞

.

(6.1)

With these choices for the solutions of the functional equations and the as-
sumption that 
(τ) < 0, it is readily established (cf. [27, Subsections 3.4 and
3.5]) that the solution f �

S(t) defined in Theorem 6.2 converges mero-uniformly
in t ∈ C

N for generic x0 ∈ C
S when 
(η) ≥ 0 and



(
2ξ+ + 2ξ− + 2

(
2

N∑
r=1

�r − 1
)
η + τ

)
< 0. (6.2)

7. Proof of the Main Result

7.1. Preliminary Steps

Let SN be the symmetric group in N letters and σ ∈ SN . We view
L�σ(1)(x − tσ(1))L�σ(2)(x − tσ(2)) . . . L�σ(N−1)(x − tσ(N−1)) (7.1)

as a linear operator on V
1
2 ⊗ M � acting trivially on the tensor component of

M � labelled by σ(N). Write(
Âσ(x; t) B̂σ(x; t)
Ĉσ(x; t) D̂σ(x; t)

)

for the operator (7.1), written as a matrix with respect to the ordered basis

(v
1
2
1 , v

1
2
2 ) of V

1
2 . The operators Âσ(x; t), . . . , D̂σ(x; t) act on M �. They act

trivially on the σ(N)th tensor component of M � and do not depend on tσ(N).
For σ ∈ SN , J ⊆ {1, . . . , S} and ε ∈ {±}S we write

Yξ,ε,J
σ (x; t) :=

(
S∏

i=1

εi sinh
(
ξ − εixi − η

2

) N∏
r=1

sinh(εixi − tr − �rη)
sinh(εixi − tr + �rη)

)

×
( ∏

1≤i<j≤S

sinh(εixi + εjxj + η)
sinh(εixi + εjxj)

)
Y J

σ

((
−ε1x1 − η

2
, . . . ,−εSxS − η

2

)
; t
)

with

Y J
σ (x; t) :=

(∏
i∈J

sinh(xi − tσ(N) + (12 − �σ(N))η)
sinh(xi − tσ(N) + (12 + �σ(N))η)

) ∏
(i,j)∈J×Jc

sinh(xi − xj + η)
sinh(xi − xj)
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and Jc := {1, . . . , S}\J (empty products are equal to one). Similarly to the
spin- 12 case (see [27, Cor. 4.3]) we have the explicit expression

Bξ,(S)

σ (x; t)Ω =
∑

ε∈{±1}S

∑
J⊆{1,...,S}

Yξ,ε,J
σ (x; t)

×
( ∏

j∈Jc

B�σ(N)(−εjxj − η

2
−tσ(N))

)(∏
i∈J

B̂σ(−εixi−
η

2
; t)

)
Ω

of the Bethe vector (see [27, Cor. 4.3]). For r ∈ {1, . . . , N − 1} write sr ∈ SN

for the simple neighbouring transposition r ↔ r + 1. In [27, Lemma 5.4] the
condition that the function f �

S(t) with � = (12 , . . . , 1
2 ) satisfies the boundary

qKZ equations is re-written as a system of equations involving the weight
functions Yξ,ε,J

σ where σ = sr . . . sN−1 for some r ∈ {1, . . . , N}. This directly
generalizes to the following result in the current higher spin context.

Lemma 7.1. Provided mero-uniform convergence,

f �
S(t) :=

∑
x∈x0+τZS

w(S)(x; t; ξ+, ξ−)Bξ−,(S)
(x; t)Ω

satisfies the boundary qKZ equations (1.3) iff

∑
x,ε,J

w(S)(x; t; ξ+, ξ−)

(
S∏

i=1

sinh(±xi + tr + �rη)
sinh(±xi + tr − �rη)

)
Yξ−,ε,J

sr...sN−1
(x; ert)

× Kξ+,�r (tr +
τ

2
)

×
( ∏

j∈Jc

B�r(−εjxj − η

2
+ tr)

)(∏
i∈J

B̂sr...sN−1

(
− εixi − η

2
; t
))

Ω (7.2)

equals∑
x,ε,J

w(S)(x; t + τer; ξ+, ξ−)Yξ−,ε,J
sr...sN−1

(x; t + τer)

×
( ∏

j∈Jc

B�r

(
− εjxj − η

2
− tr − τ

))(∏
i∈J

B̂sr...sN−1

(
− εixi − η

2
; t
))

Ω

(7.3)

for r = 1, . . . , N , where the summations are over x ∈ x0 + τZS, ε ∈ {±}S and
over subsets J ⊆ {1, . . . , S} (recall that Jc = {1, . . . , S}\J).

We fix S ≥ 1 and suppress it from the notations. For d ∈ {0, . . . , S} set
L(d)

r (t) and R(d)
r (t) for (7.2) and (7.3), respectively, with the sums running

over x ∈ x0 + τZS , ε ∈ {±}S and over subsets J ⊆ {1, . . . , S} of cardinality
S − d. The strategy of the proof of Theorem 6.2 is to determine sufficients
conditions on the weight function w(S)(x; t; ξ+, ξ−) so that

L(d)
r (t) = R(d)

r (t) (7.4)

for all d ∈ {0, . . . , S} and r ∈ {1, . . . , N}. We will call d the depth.
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Remark 7.2. In the study [27] of Jackson integral solutions for the spin-12
representations the terms L(d)

r (t) and R(d)
r (t) are automatically zero if d ≥ 2,

cf. [27, Rem. 5.5]. When M �s are highest weight modules with �s ∈ C we have
to deal with the terms L(d)

r (t) and R(d)
r (t) for any depth d ∈ {0, . . . , S}.

7.2. Depth Zero

Completely analogous to the spin-12 case (see [27, §5.1]) we have the following
result.

Lemma 7.3. Suppose that

w(S)(x; t; ξ+, ξ−) =

(
N∏

r=1

S∏
i=1

F �r (tr ± xi)

)
G

(S)
ξ+,ξ−(x)

with G
(S)
ξ+,ξ−(x) independent of t. If

F �r (x + τ) =
sinh(x + τ − �rη)
sinh(x + τ + �rη)

F �r(x)

for r = 1, . . . , N then, provided mero-uniform convergence,

L(0)
r (t; ξ+, ξ−) = R(0)

r (t; ξ+, ξ−) (7.5)

for r = 1, . . . , N .

In the remainder of the section we assume that the weight function
w(S)(x; t; ξ+, ξ−) is of the form as specified in Lemma 7.3.

7.3. The Remaining Depths

We have the setup that

f �
S(t) =

∑
x∈x0+τZS

w(S)(x; t; ξ+, ξ−)Bξ−,(S)
(x; t)Ω

with the sum converging mero-uniformly in t ∈ C
N and with weight function

of the form

w(S)(x; t; ξ+, ξ−) =

(
N∏

r=1

S∏
i=1

F �r (tr ± xi)

)
G

(S)
ξ+,ξ−(x) (7.6)

with G
(S)
ξ+,ξ−(x) independent of t and with the F � satisfying

F �(x + τ) =
sinh(x + τ − �η)
sinh(x + τ + �η)

F �(x). (7.7)

We are now going to show that conditions on the weight factor G
(S)
ξ+,ξ−(x)

as stated in Theorem 6.2 imply that (7.4) is valid for d ∈ {1, . . . , S} and
r ∈ {1, . . . , N}. Combined with Lemmas 7.3 and 7.1, this will complete the
proof of Theorem 6.2.

Since the ξ± are fixed throughout this subsection, we will suppress ξ±
from the notations; in particular, we write w(S)(x; t) for w(S)(x; t; ξ+, ξ−). We
also suppress S ∈ Z≥1 from the notations.
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If J ⊆ {1, . . . , S}, ε ∈ {±}S and x ∈ x0+τZS then we write xJ := (xj)j∈J

and εJ := (εj)j∈J . Conversely, for given εJ and εJc the associated S-tuple of
signs will be denoted by ε (and similarly for x).

It is convenient to define the following weights.

Definition 7.4. For r ∈ {1, . . . , N}, ε ∈ {±}S and a subset J ⊆ {1, . . . , S} we
write

mε,J
r (x; t) :=

(
S∏

i=1

sinh(±xi − tr + �rη)
sinh(±xi − tr − �rη)

)
Yξ−,ε,J

sr...sN−1(x; t)∏
j∈Jc sinh(−εjxj − tr + �rη)

for x ∈ x0 + τZS .

It follows by a straightforward computation that

mε,J
r (x; t) =

⎛
⎜⎝
∏

j∈Jc

⎛
⎜⎝εj

sinh(ξ− − εjxj − η

2
)

sinh(−tr − εjxj − �rη)

N∏
s=1
s �=r

sinh(ts − εjxj + �sη)
sinh(ts − εjxj − �sη)

⎞
⎟⎠

⎞
⎟⎠

×
( ∏

(i,j)∈J×Jc

sinh(εjxj ± xi + η)
sinh(εjxj ± xi)

)⎛
⎜⎝
∏

i,i′∈J:
i<i′

sinh(εixi + εi′xi′ + η)
sinh(εixi + εi′xi′)

⎞
⎟⎠

×

⎛
⎜⎜⎝
∏

j,j′∈Jc:
j<j′

sinh(εjxj + εj′xj′ + η)
sinh(εjxj + εj′xj′)

⎞
⎟⎟⎠

×
∏
i∈J

⎛
⎜⎝εi sinh(ξ− − εixi − η

2
)

N∏
s=1
s �=r

sinh(ts − εixi + �sη)
sinh(ts − εixi − �sη)

⎞
⎟⎠ . (7.8)

Lemma 7.5. Fix d ∈ {1, . . . , S} and r ∈ {1, . . . , N}. Suppose that for all subsets
J ⊆ {1, . . . , S} of cardinality S − d and for all xJ and εJ ,

C�r

d+1

(
tr +

τ

2
; ξ+
) ∑

xJc ,εJc

w(S)(x; t; ξ+, ξ−)mε,J
r (x; ert)

=
∑

xJc ,εJc

w(S)(x; t; ξ+, ξ−)mε,J
r (x; t + τer).

Then L(d)
r (t) = R(d)

r (t).

Proof. Recall that

Kξ+,�r

(
tr +

τ

2

)
m�r

d+1 = C�r

d+1

(
tr +

τ

2
; ξ+
)

m�r

d+1,

see Definition 4.8. Since( ∏
j∈Jc

B�r

(
− εjxj − η

2
+ u
))

m�r
1 =

sinhd(η)eη( d2
2 −�rd)

∏
j∈Jc sinh(−εjxj + u + �rη)

m�r

d+1
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by (5.6) we thus have

Kξ+,�r

(
tr +

τ

2

)( ∏
j∈Jc

B�r

(
− εjxj − η

2
+ tr

))
m�r

1

=
sinhd(η)C�r

d+1(tr + τ
2 ; ξ+)eη( d2

2 −�rd)

∏
j∈Jc sinh(−εjxj + tr + �rη)

m�r

d+1,

( ∏
j∈Jc

B�r

(
− εjxj − η

2
− τ − tr

))
m�r

1

=
sinhd(η)eη( d2

2 −�rd)

∏
j∈Jc sinh(−εjxj − τ − tr + �rη)

m�r

d+1.

Taking the expressions (7.2) and (7.3) for L(m)
r (t) and R(m)

r (t) into account we
conclude that L(d)

r (t) = R(d)
r (t) if for all subsets J ⊆ {1, . . . , S} of cardinality

S − d and for all xJ and εJ ,

C�r

d+1

(
tr +

τ

2
; ξ+
) ∑

xJc ,εJc

w(S)(x; t; ξ+, ξ−)mε,J
r (x; ert)

=
∑

xJc ,εJc

w(S)(x; t + τer; ξ+, ξ−)

×
(

S∏
i=1

sinh(±xi − tr − τ − �rη)
sinh(±xi − tr − τ + �rη)

)
mε,J

r (x; t + τer).

The lemma now follows from the fact that

w(S)(x; t + τer; ξ+, ξ−) =

(
S∏

i=1

sinh(±xi − tr − τ + �rη)
sinh(±xi − tr − τ − �rη)

)
w(S)(x; t; ξ+, ξ−),

which is a direct consequence of the specific form (7.6), (7.7) of the weight
function w(S)(x; t). �

In the remainder of this subsection we fix d ∈ {1, . . . , S}, r ∈ {1, . . . , N},
a subset J ⊆ {1, . . . , S} of cardinality S − d, as well as xJ and εJ , which we
all suppress from the notations. Set for εJc ∈ {±}d,

Λr,εJc (t) :=
∑
xJc

w(S)(x; t; ξ+, ξ−)mε,J
r (x; ert),

Υr,εJc (t) :=
∑
xJc

w(S)(x; t; ξ+, ξ−)mε,J
r (x; t + τer).

In view of the previous lemma, the desired identity (7.4) follows if

C�r

d+1

(
tr +

τ

2
; ξ+
) ∑

εJc ∈{±}d

Λr,εJc (t) =
∑

εJc ∈{±}d

Υr,εJc (t). (7.9)
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We write mr(xJc ; t) for mε,J
r (x; t) with εJc the d-tuple (−,−, · · · ,−) of minus

signs,

mr(xJc ; t) = (−1)d

⎛
⎜⎝
∏

j∈Jc

⎛
⎜⎝ sinh(ξ− + xj − η

2 )
sinh(−tr + xj − �rη)

N∏
s=1
s �=r

sinh(ts + xj + �sη)
sinh(ts + xj − �sη)

⎞
⎟⎠

⎞
⎟⎠

×

⎛
⎝ ∏

(i,j)∈J×Jc

sinh(xj ± xi − η)
sinh(xj ± xi)

⎞
⎠
⎛
⎜⎝
∏

i,i′∈J:
i<i′

sinh(εixi + εi′xi′ + η)
sinh(εixi + εi′xi′)

⎞
⎟⎠

×

⎛
⎜⎜⎝
∏

j,j′∈Jc:
j<j′

sinh(xj + xj′ − η)
sinh(xj + xj′)

⎞
⎟⎟⎠

×

⎛
⎜⎝
∏
i∈J

⎛
⎜⎝εi sinh(ξ− − εixi − η

2
)

N∏
s=1
s �=r

sinh(ts − εixi + �sη)
sinh(ts − εixi − �sη)

⎞
⎟⎠

⎞
⎟⎠ .

(7.10)

Lemma 7.6. Suppose that for all i ∈ {1, . . . , S},

Gξ+,ξ−(x − τei) =
sinh(ξ− + xi − η

2 ) sinh(ξ+ + xi − τ
2 − η

2 )
sinh(ξ− − xi + τ − η

2 ) sinh(ξ+ − xi + τ
2 − η

2 )

×

⎛
⎜⎝

S∏
i′=1
i′ �=i

sinh(xi ± xi′ − τ) sinh(xi ± xi′ − η)
sinh(xi ± xi′ − τ + η) sinh(xi ± xi′)

⎞
⎟⎠Gξ+,ξ−(x).

(7.11)

Then

Λr,εJc (t) = (−1)#Jc
+
∑
xJc

w(S)(x; t; ξ+, ξ−)qJc
+
(xJc ; tr)mr(xJc ; ert),

Υr,εJc (t) = (−1)#Jc
+
∑
xJc

w(S)(x; t; ξ+, ξ−)qJc
+
(xJc ;−tr − τ)mr(xJc ; t + τer)

with Jc
+ := {j ∈ Jc | εj = +}, Jc

− := Jc\Jc
+ and

qJc
+
(xJc ; tr) :=

⎛
⎜⎜⎝
∏

j,j′∈Jc
+:

j<j′

sinh(xj + xj′ − τ − η)
sinh(xj + xj′ − τ + η)

⎞
⎟⎟⎠

×
( ∏

j∈Jc
−

∏
j′∈Jc

+

sinh(xj′ − xj − η) sinh(xj′ + xj − τ)
sinh(xj′ − xj) sinh(xj′ + xj − τ + η)

)

×
( ∏

j∈Jc
+

sinh(ξ+ + xj − τ
2 − η

2 ) sinh(tr + xj + �rη)
sinh(ξ+ − xj + τ

2 − η
2 ) sinh(tr − xj + τ + �rη)

)
.
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Proof. The formula for Λr,εJc (t) is correct if εJc is the d-tuple (−,− · · · ,−)
of minus signs since q∅(xJc ; tr) = 1 (empty products are equal to one by
convention).

Fix εJc ∈ {±}d and I ⊂ Jc
+. Write εI,−

Jc for the d-tuple of signs obtained
from εJc by replacing εi = + by − for all i ∈ I. Similarly, we write εI,− for
the S-tupe of signs obtained from ε by replacing εi = + by − for all i ∈ I.

Fix k ∈ Jc
+ and rewrite Λr,εJc (t) as

Λr,εJc (t) =
∑
xJc

w(S)(x − τek; t; ξ+, ξ−)mε,J
r (x − τek; ert).

By the assumptions on w(S)(x; t) we have

w(S)(x − τek; t; ξ+, ξ−) = βk(x; t)w(S)(x; t; ξ+, ξ−)

with

βk(x; t) :=

(
N∏

s=1

sinh(ts + xk + �sη) sinh(ts − xk + τ − �sη)
sinh(ts + xk − �sη) sinh(ts − xk + τ + �sη)

)

×
sinh(ξ− + xk − η

2 ) sinh(ξ+ + xk − τ
2 − η

2 )
sinh(ξ− − xk + τ − η

2 ) sinh(ξ+ − xk + τ
2 − η

2 )

×

⎛
⎜⎝

S∏
k′=1
k′ �=k

sinh(xk ± xk′ − τ) sinh(xk ± xk′ − η)
sinh(xk ± xk′ − τ + η) sinh(xk ± xk′)

⎞
⎟⎠ .

In addition, by a direct computation using (7.8),

βk(x; t)mε,J
r (x − τek; ert) = −γεJc

k (xJc ; tr)mε{k},−,J
r (x; ert)

with

γεJc

k (xJc ; tr) :=

( ∏
j∈Jc\{k}

sinh(xk + εjxj − η) sinh(xk − εjxj − τ)
sinh(xk + εjxj) sinh(xk − εjxj − τ + η)

)

×
sinh(ξ+ + xk − τ

2 − η
2 ) sinh(tr + xk + �rη)

sinh(ξ+ − xk + τ
2 − η

2 ) sinh(tr − xk + τ + �rη)
.

Hence

Λr,εJc (t) = −
∑
xJc

w(S)(x; t; ξ+, ξ−)γεJc

k (xJc ; tr)mε{k},−,J
r (x; ert).

This in particular proves the desired expression of Λr,εJc (t) if εk = + and
εj = − for j ∈ Jc\{k}.
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The formula for arbitrary εJc ∈ {±}d follows by an induction argument
with respect to #Jc

+ using the following observation. For a subset I ⊆ Jc
+ set

q̃I(xJc ; tr) :=

⎛
⎜⎝
∏

i,i′∈I:
i<i′

sinh(xi + xi′ − τ − η)
sinh(xi + xi′ − τ + η)

⎞
⎟⎠

×
(∏

i∈I

sinh(ξ+ + xi − τ
2 − η

2 ) sinh(tr + xi + �rη)
sinh(ξ+ − xi + τ

2 − η
2 ) sinh(tr − xi + τ + �rη)

)

×
∏

(i,j)∈I×Jc\I

sinh(xi + εjxj − η) sinh(xi − εjxj − τ)
sinh(xi + εjxj) sinh(xi − εjxj − τ + η)

.

Then q̃∅(xJc ; tr) = 1, q̃Jc
+
(xJc ; tr) = qJc

+
(xJc ; tr) and for a subset I ⊂ Jc

+ and
k ∈ Jc

+\I,

q̃I∪{k}(xJc ; tr)
q̃I(xJc − τek; tr)

= γ
εI,−

Jc

k (xJc ; tr).

The alternative expression for Υr,εJc (t) follows from a similar computa-
tion, now using the observation that for k ∈ Jc

+,

βk(x; t)mε,J
r (x − τek; t+τer) =−γεJc

k (xJc ;−tr − τ)mε{k},−,J
r (x; t + τer).

�
Note that (7.11) is satisfied if

Gξ+,ξ−(x) =

(
S∏

i=1

gξ+,ξ−(xi)

) ∏
1≤i<i′≤S

h(xi ± xi′)

with gξ+,ξ− and h as in Theorem 6.2.
By the explicit expression (7.10) of mr(xJc ; t) we have

m̃r(xJc ; t) : = mr(xJc ; ert)
∏

j∈Jc

sinh(tr + xj − �rη)

= mr(xJc ; t + τer)
∏

j∈Jc

sinh(−tr − τ + xj − �rη). (7.12)

Combined with Lemma 7.6, it follows that (7.9) is equivalent to
∑
xJc

w(S)(x; t; ξ+, ξ−)m̃r(xJc ; t)C�r

d+1(tr +
τ

2
; ξ+)

×
∑

εJc ∈{±}d

(−1)#Jc
+qJc

+
(xJc ; tr)∏

j∈Jc sinh(tr + xj − �rη)

=
∑
xJc

w(S)(x; t; ξ+, ξ−)m̃r(xJc ; t)
∑

εJc ∈{±}d

(−1)#Jc
+qJc

+
(xJc ;−tr − τ)∏

j∈Jc sinh(−tr − τ + xj − �rη)
.

Substituting the explicit expression (4.11) of C�
n(x; ξ), this is a direct conse-

quence of the following lemma.
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Lemma 7.7. Let J ⊆ {1, . . . , S} be a subset of cardinality S−d and εJc ∈ {±}d.
Then the finite sum(

d∏
n=1

sinh
(
ξ+ − tr− τ

2
+
(
�r +

1
2

− n
)
η
)) ∑

εJc ∈{±}d

(−1)#Jc
+qJc

+
(xJc ; tr)∏

j∈Jc sinh(tr + xj − �rη)

is invariant under the exchange of tr by −tr − τ .

The proof of the lemma is given in the next subsection. It completes the
proof of the main theorem (Theorem 6.2).

7.4. Proof of Lemma 7.7

Let J ⊆ {1, . . . , S} be a subset of cardinality S −d and εJc ∈ {±}d. Choose an
identification of the fixed subset Jc of cardinality d with {1, . . . , d}. The choice
of signs εJc ∈ {±}d then is identified with choosing a subset I ⊆ {1, . . . , d} by
the rule

I := {i ∈ {1, . . . , d} | εi = +}.

Write ξ = ξ+ − η
2 and x = (x1, . . . , xd). Then the statement in Lemma 7.7 is

easily seen to be equivalent to the claim that

F (x; t) :=

(
d∏

i=1

sinh(ξ − t − τ

2
+ (� + 1 − i)η)

sinh(t + xi − �η)

)

×
∑

I⊆{1,...,d}

⎧
⎪⎪⎨
⎪⎪⎩

(−1)#I

⎛
⎜⎜⎝
∏

i,j∈I
i<j

sinh(xi + xj − τ − η)
sinh(xi + xj − τ + η)

⎞
⎟⎟⎠

×
(∏

i∈I

sinh(ξ + xi − τ

2
) sinh(t + xi + �η)

sinh(ξ − xi +
τ

2
) sinh(t − xi + τ + �η)

)

×
( ∏

(i,j)∈I×Ic

sinh(xi − xj − η) sinh(xi + xj − τ)
sinh(xi − xj) sinh(xi + xj − τ + η)

)
⎫
⎪⎪⎬
⎪⎪⎭

(7.13)

satisfies
F (x;−t − τ) = F (x; t). (7.14)

By substituting xi → xi + τ
2 (i = 1, . . . , d) and t → t− τ

2 and clearing denomi-
nators in (7.14), we obtain a trigonometric polynomial identity independent of
τ . More precisely, for i ∈ {1, . . . , d} and I ⊆ {1, . . . , d} write ε

(I)
i = + if i ∈ I

and ε
(I)
i = − if i �∈ I; also, write x

(I)
i = xi − ε

(I)
i

η
2 . For I ⊆ {1, . . . , d} we define

QI(x; t) := (−1)#I

(
d∏

i=1

sinh
(
ξ + ε

(I)
i xi

)
sinh

(
t + ε

(I)
i xi + �η

))

∏
1≤i<j≤d

sinh
(
x
(I)
i ± x

(I)
j

)



Vol. 17 (2016) Boundary Quantum KZ Equations 169

and write

V (x; t) :=

(
d∏

i=1

sinh(ξ − t + (� − i + 1)η)

) ∑
I⊆{1,...,d}

QI(x; t).

Then (7.14) is equivalent to

V (x; t) = V (x;−t). (7.15)

The identity (7.15) is a direct consequence of the following multivariate gen-
eralization of the trigonometric identity (4.5).

Lemma 7.8. We have
∑

I⊆{1,...,d}
QI(x; t) =

( ∏
1≤i<j≤d

sinh(xi ± xj)

)
d∏

i=1

sinh(2xi)

×(−1)d
d∏

i=1

sinh(ξ + t + (� − i + 1)η). (7.16)

Proof. Write V(x; t) for the left-hand side of (7.16). It is easy to see that

V(x; t) ∈ C[e±2x1 , . . . , e±2xd ],

since each term QI(x; t) is a Laurent polynomial in e2x1 , . . . , e2xd . We now
first show that V(x; t) is anti-invariant with respect to the natural action of
the Weyl group W of type Cd on C[e±2x1 , . . . , e±2xd ].

Let W = 〈s1, . . . , sd〉 be the Weyl group of type Cd, with the simple
reflections si (i = 1, . . . , d) acting on C

d by permutations and sign flips: for
1 ≤ i < d the simple reflection si acts on (x1, . . . , xd) ∈ C

d by permuting xi

and xi+1, and sd acts by sending xd to −xd. The Weyl group W also acts on
the power set of {1, . . . , d} by

siI =

⎧
⎪⎨
⎪⎩

(I\{i}) ∪ {i + 1}, if i ∈ I, i + 1 �∈ I,

(I\{i + 1}) ∪ {i}, if i �∈ I, i + 1 ∈ I,

I, otherwise

for 1 ≤ i < d, and

sdI =

{
I\{d}, if d ∈ I,

I ∪ {d}, if d �∈ I.

Note that the action of W on the power set of {1, . . . , d} is transitive, and that
the stabilizer subgroup of the empty set ∅ is equal to the symmetric group
Sd := 〈s1, . . . , sd−1〉 in d letters.

By a direct computation we obtain the invariance property

QI(wx; t) = (−1)l(w)Qw−1I(x; t), w ∈ W, (7.17)

where l(w) is the length of w ∈ W . It follows that

V(x; t) =
1
d!

∑
w∈W

(−1)l(w)Q∅(w−1x; t),
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in particular V(x; t) ∈ C[e±2x1 , . . . , e±2xd ] is W -anti-invariant. Thus,

V(x; t) = Z(x; t)δ(x) (7.18)

with the Weyl denominator

δ(x) :=

( ∏
1≤i<j≤d

sinh(xi ± xj)

)
d∏

i=1

sinh(2xi)

and with Z(x; t) ∈ C[e±2x1 , . . . , e2xd ] W -invariant. A standard argument com-
paring degrees on both sides of (7.18) shows that Z(x; t) is independent of x.
So

V(x; t) = Z(t)δ(x) (7.19)

for some constant Z(t). We compute Z(t) by evaluating both sides of (7.19)
in

y := (−ξ + (d − 1)η,−ξ + (d − 2)η, . . . ,−ξ).

By the explicit expression

Q∅(x; t)=

(
d∏

i=1

sinh(ξ − xi) sinh(t−xi+�η)

) ∏
1≤i<j≤d

sinh(xi−xj) sinh(xi + xj +η)

it follows that Q∅(w−1y; t) = 0 for w ∈ W unless w ∈ Sd. Hence

V(y; t) =
1
d!

∑
w∈Sd

(−1)l(w)Q∅(w−1y; t) =
1
d!

∑
w∈Sd

Qw∅(y; t) = Q∅(y; t),

and consequently

Z(t) =
Q∅(y; t)

δ(y)
= (−1)d

d∏
i=1

sinh(ξ + t + (� − i + 1)η),

where the last equality follows from a straightforward computation. �

8. Fusion for the Boundary qKZ Equations and Their Solutions

In this section we will show that, for � ∈ 1
2Z

N
≥0, the solutions f �

S(t) exhib-
ited in Theorem 6.2 can be directly obtained using a fusion process from the

spin-half solution
(
pr

1
2

)⊗N(
f
( 1
2 ,..., 12 )

S (t)
)

constructed before in [27]. More-
over, as we will see, arbitrary solutions of the boundary qKZ equations (1.3)
in M (�1,...,�s−1) ⊗ V k ⊗ V

1
2 ⊗ M (�s+1,...,�N ) can be naturally fused to obtain

solutions in M (�1,...,�s−1) ⊗ V k+ 1
2 ⊗ M (�s+1,...,�N ).
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8.1. Notations

In this section, we will slightly abuse notation when considering operators
acting on a “mixed” N -fold tensor product made up of finite- and infinite-
dimensional modules V k (k ∈ 1

2Z≥0) and M � (� ∈ C). For example, if �s ∈
1
2Z≥0, there is a unique linear operator Ξ̃�

r(t; ξ+, ξ−; τ) on M (�1,...,�s−1)⊗V �s ⊗
M (�s+1,...,�N ) determined by

Ξ̃�
r(t; ξ+, ξ−; τ)

(
Id

M(�1,...,�s−1) ⊗ pr�s ⊗ Id
M(�s+1,...,�N )

)

=
(
Id

M(�1,...,�s−1) ⊗ pr�s ⊗ Id
M(�s+1,...,�N )

)
Ξ�

r(t; ξ+, ξ−; τ);

we will denote the resulting operator Ξ̃�
r(t; ξ+, ξ−; τ) on M (�1,...,�s−1) ⊗ V �s ⊗

M (�s+1,...,�N ) simply by Ξ�
r(t; ξ+, ξ−; τ) as long as it is clear from context which

tensor component we have projected onto its finite-dimensional quotient.
We will use this mild abuse of notation also when discussing the operators

T �(x; t), Uξ,�(x; t), Bξ,�(x; t), Bξ,�
(x; t) and Bξ,(S),�

(x; t). Similarly, we will
use the notations Ω� and f �

S(t) for those elements of M (�1,...,�s−1) ⊗ V �s ⊗
M (�s+1,...,�N ) that are actually given by pr�sΩ� and pr�sf �

S(t), respectively.
To fuse the boundary qKZ transport operators Ξ�

r(t) := Ξ�
r(t; ξ+, ξ−; τ),

it is convenient to use the injection jk = P
1
2kιk : V k+ 1

2 ↪→ V k ⊗ V
1
2 instead of

ιk. Let k ∈ 1
2Z≥0 and � ∈ C. The following “local” fusion relations in terms of

jk follow straightforwardly from Proposition 3.3 and (4.7), respectively,

(jk ⊗ IdM�)Lk+ 1
2 ,�(x − y) = L

1
2 �
23 (x − kη − y)Lk�

13

(
x +

η

2
− y
)

(jk ⊗ IdM�),

(8.1)

jkKk+ 1
2 (x)=K

1
2
2 (x−kη)Rk 1

2

(
2x−

(
k− 1

2

)
η

)
Kk

1

(
x +

η

2

)
jk. (8.2)

Furthermore, in a similar way as we derived Proposition 3.3 and (8.1),

(jk ⊗ IdM�)Lk+ 1
2 ,�(x − y) = Lk�

13

(
x − η

2
− y
)

L
1
2 �
23 (x + kη − y)(jk ⊗ IdM�).

(8.3)

Given s = 1, . . . , N and k ∈ 1
2Z≥0, denote

jk
s := IdM(�1,...,�s−1) ⊗ jk ⊗ IdM(�s+1,...,�N ) ,

an injective map from M (�1,...,�s−1) ⊗ V k+ 1
2 ⊗ M (�s+1,...,�N ) to M (�1,...,�s−1) ⊗

V k ⊗ V
1
2 ⊗ M (�s+1,...,�N ).

For the rest of this section, given 1 ≤ s ≤ N and � ∈ C
N such that

�s = k + 1
2 for k ∈ 1

2Z≥0, we write

�′ =
(

�1, . . . , �s−1, k,
1
2
, �s+1, . . . , �N

)
∈ C

N+1,

t′ =
(
t1, . . . , ts−1, ts +

η

2
, ts − kη, ts+1, . . . , tN

)
,

(8.4)

while t = (t1, . . . , ts−1, ts, ts+1, . . . , tN ) and � = (�1, . . . , �N ) with �s = k + 1
2 .
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8.2. Fusion of Transport Operators

Proposition 8.1. Let 1 ≤ s ≤ N and � ∈ C
N such that �s = k+ 1

2 for k ∈ 1
2Z≥0.

For 1 ≤ r ≤ N we have

jk
s Ξ�

r(t) =

⎧
⎪⎨
⎪⎩

Ξ�′
r (t′)jk

s , r < s,

Ξ�′
s+1(t

′ + esτ)Ξ�′
s (t′)jk

s , r = s,

Ξ�′
r+1(t

′)jk
s , r > s,

(8.5)

as linear operators M (�1,...,�s−1) ⊗ V �s ⊗ M (�s+1,...,�N ) → M (�1,...,�s−1) ⊗ V k ⊗
V

1
2 ⊗ M (�s+1,...,�N ).

Proof. For the cases where r �= s, simply by judiciously applying (8.1-8.3)
to the right-hand side of (8.5) [see (1.4) for the definition of the transport
operators]. For r = s, the product of factors in Ξ�′

s+1(t
′ + esτ)Ξ�′

s (t′) can first
be simplified using unitarity of the R-operator and the RLL-relations (2.4),
yielding

Ξ�′
s+1(t

′ + esτ)Ξ�′
s (t′)

=

(
N∏

j=s+1

L
1
2 �j (ts − tj + τ − kη)Lk�j

(
ts − tj + τ +

η

2

))

× Kξ+, 12

(
ts+

τ

2
−kη

)
Rk 1

2

(
2
(
ts+

τ

2

)
− (k − 1

2
)η
)

Kξ+,k
(
ts +

τ

2
+

η

2

)

×

⎛
⎜⎜⎝

1∏
j=N
j �=s

L
1
2 �j (tj + ts − kη)Lk�j (tj + ts +

η

2
)

⎞
⎟⎟⎠

× Kξ−, 12 (ts − kη)R
1
2k

(
2ts −

(
k − 1

2

)
η

)
Kξ−,k

(
ts +

η

2

)

×
(

s−1∏
j=1

L
1
2 �j (ts − tj − kη)Lk�j

(
ts − tj +

η

2

))
,

where the ordering of the products over j is as prescribed. Now applying (8.1–
8.2) yields (8.5) for the case r = s. �

8.3. Fusion of Solutions

Proposition 8.2. Let 1 ≤ s ≤ N and � ∈ C
N such that �s = k + 1

2 for k ∈
1
2Z≥0. Suppose that f : CN+1 → M (�1,...,�s−1) ⊗ V k ⊗ V

1
2 ⊗ M (�s+1,...,�N ) is a

meromorphic solution of the boundary qKZ equations,

Ξ�′
r (z)f(z) = f(z + τer), 1 ≤ r ≤ N + 1, (8.6)

where �′ is given by (8.4). Suppose that f restricts to a meromorphic function
on the hyperplane

H :=
{
z ∈ C

N+1|zs − zs+1 =
(

k +
1
2

)
η

}
.
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Then there exists a unique meromorphic function

Fus�
s(f) : CN → M (�1,...,�s−1) ⊗ V k+ 1

2 ⊗ M (�s+1,...,�N )

satisfying

jk
s Fus�

s(f)(t) = f(t′), (8.7)

with t′ given by (8.4). Furthermore, Fus�
s(f) is a meromorphic solution of the

boundary qKZ equations (1.3) with values in M (�1,...,�s−1)⊗V k+1
2⊗M (�s+1,...,�N ),

Ξ�
r(t)Fusk

s(f)(t) = Fusk
s(f)(t + τer), 1 ≤ r ≤ N. (8.8)

Proof. It follows from (8.6) with r = s that f(z) = Ξ�′
s (z − τes)f(z − τes).

By assumption the left-hand side restricts to a meromorphic vector valued
function on H. By the explicit expressions (1.4) for the transport operators,
the operator Ξ�′

s (z− τes) restricts to a meromorphic operator valued function
on H, and

Ξ�′
s (· − τes)|H = Rk 1

2

((
k +

1
2

)
η

)
Z(·)

for some meromorphic operator valued function Z on H. Hence f |H takes
its values in the subspace Im(Rk 1

2 ((k + 1
2 )η)) of M (�1,...,�s−1) ⊗ V k ⊗ V

1
2 ⊗

M (�s+1,...,�N ). By Lemma 3.2 we have Im(Rk 1
2 ((k + 1

2 )η)) ⊆ Im(jk
s ). Since jk

s

is injective, we conclude that there exists a unique meromorphic function

Fus�
s(f) : CN → M (�1,...,�s−1) ⊗ V k+ 1

2 ⊗ M (�s+1,...,�N )

satisfying (8.7).
It remains to show that Fus�

s(f) satisfies the boundary qKZ equations
(8.8). Since jk is an injection, it suffices to prove that, for r = 1, . . . , N ,

jk
s Ξ�

r(t)Fus�
s(f)(t) = jk

s Fus�
s(f)(t + τer). (8.9)

For r < s we have

jk
s Ξ�

r(t)Fus�
s(f)(t) = Ξ�′

r (t′)f(t′) = f(t′ + τer) = jk
s Fus�

s(f)(t + τer),

owing to (8.5), (8.7), the boundary qKZ equations (8.6) and (8.7) again. The
case r > s of (8.9) is proven similarly. Finally, for r = s we have

jk
s Ξ�

s(t)Fus�
s(f)(t) = Ξ�′

s+1(t
′ + τes)Ξ�′

s (t′)f(t′)

= Ξ�′
s+1(t

′ + τes)f(t′ + τes)

= f(t′ + τes + τes+1) = jk
s Fus�

s(f)(t + τes),

where we have applied (8.5), (8.7), (8.6) twice, and finally (8.7) again. �
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8.4. Fusion of the Jackson Integral Solutions

The special Jackson integral solutions of the boundary qKZ equations (see
Theorem 6.2) are compatible with fusion in the following sense.

Proposition 8.3. Let 1 ≤ s ≤ N and � ∈ C
N such that �s = k + 1

2 with
k ∈ 1

2Z≥0. Let �′ ∈ C
N+1 be given by (8.4). Let

f �
S : CN → M (�1,...,�s−1) ⊗ V k+ 1

2 ⊗ M (�s+1,...,�N )

and

f �′
S : CN+1 → M (�1,...,�s−1) ⊗ V k ⊗ V

1
2 ⊗ M (�s,...,�N )

be the Jackson integral solutions of the boundary qKZ equations as given in
Theorem 6.2, with f �

S and f �′
S having the same base point x0 ∈ C

S, the same
weight factors gξ+,ξ− , h and F �j (j ∈ {1, . . . , N}\{s}) and with the remaining
weight factors F k+ 1

2 , F k and F
1
2 satisfying the compatibility condition

F k+ 1
2 (x) = F k

(
x +

η

2

)
F

1
2 (x − kη). (8.10)

Then

f �
S = Fus�

s

(
f �′

S

)
.

Remark 8.4. Note that (8.10) is compatible with the difference equations that
F �(x) satisfies (see Theorem 6.2). Note furthermore that the explicit choice
(6.1) of F �(x) (� ∈ C) satisfies (8.10).

Proof. By virtue of the fusion formulae (8.3) and (8.1), we have [cf. (5.2)]

jk
s T �(x; t) = T �′

(x; t′)jk
s , jk

s T �(x; t)−1 = T �′
(x; t′)−1jk

s ,

where we use the notations (8.4). Hence, owing to (5.4) we also have

jk
s Uξ,�(x; t) = Uξ,�′

(x; t′)jk
s . (8.11)

The above three identities are as operators V
1
2 ⊗ M (�1,...,�s−1) ⊗ V k+ 1

2 ⊗
M (�s+1,...,�N ) → V

1
2 ⊗ M (�1,...,�s−1) ⊗ V k ⊗ V

1
2 ⊗ M (�s+1,...,�N ). Taking the

appropriate matrix coefficients in (8.11) with respect to the auxiliary space,
we obtain

jk
s Bξ,�(x; t) = Bξ,�′

(x; t′)jk
s

as operators M (�1,...,�s−1) ⊗ V k+ 1
2 ⊗ M (�s+1,...,�N ) → M (�1,...,�s−1) ⊗ V k ⊗ V

1
2 ⊗

M (�s+1,...,�N ).
Writing

sinh(x − ts − (k + 1
2 )η)

sinh(x − ts + (k + 1
2 )η)

=
sinh(x − (ts + η

2 ) − kη)
sinh(x − (ts + η

2 ) + kη)
sinh(x − (ts − kη) − η

2 )
sinh(x − (ts − kη) + η

2 )

it follows that

jk
s Bξ,�

(x; t) = Bξ,�′
(x; t′)jk

s

and hence
jk
s Bξ,(S),�

(x; t) = Bξ,(S),�′
(x; t′)jk

s . (8.12)
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Since jk
s Ω� = Ω�′

(see Proposition 3.1) it now follows from (8.10) that

jk
s f �

S(t) = f �′
S (t′) = jk

s Fus�
s

(
f �′

S

)
(t)

as meromorphic M (�1,...,�s−1) ⊗ V k ⊗ V
1
2 ⊗ M (�s,...,�N ) valued functions in t ∈

C
N , which proves the result. �

Remark 8.5. Note that
∑N

r=1 �r =
∑N+1

r=1 �′
r for � ∈ C

N with �s = k and with
�′ given by (8.4). Hence the region of meromorphic convergence (6.2) for the
solutions f �

S and f �′
S with weight factors (6.1) is compatible with fusion.
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