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Characterization of Bulk States
in One-Edge Quantum Hall Systems
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Abstract. We study magnetic quantum Hall systems in a half-plane with
Dirichlet boundary conditions along the edge. Much work has been done
on the analysis of the currents associated with states whose energy is lo-
cated between Landau levels. These edge states carry a non-zero current
that remains well-localized in a neighborhood of the boundary. In this ar-
ticle, we study the behavior of states with energies close to a Landau level.
Such states are referred to as bulk states in the physics literature. Since
the magnetic Schrödinger operator is invariant with respect to transla-
tions along the edge, it is a direct integral of operators indexed by a real
wave number. We analyse these fiber operators and prove new asymptot-
ics on the band functions and their first derivative as the wave number
goes to infinity. We apply these results to prove that the current carried
by a bulk state is small compared to the current carried by an edge state.
We also prove that the bulk states are small near the edge.

1. Introduction

Quantum Hall systems consist of independent electrons constrained to open
regions Ω in the plane R2 := {(x, y), x, y ∈ R} subject to a transverse magnetic
field B(x, y) = (0, 0, B(x, y)) = ∇×a, and possibly an electric potential V . The
quantum Hamiltonian is H(a, V ) = (−i∇ − a)2 + V acting on a dense domain
in L2(Ω) with self-adjoint boundary conditions. Several articles describe the
physics of such systems when Ω is bounded. The analysis distinguishes between
edge and bulk behavior for the states associated with the Hamiltonian, see
for example [2,15] and [21] for a longer review. This behavior is captured in
two model domains: the plane and a half-plane, modeling the interior or the
boundary of such a bounded system, respectively.

In the first case, the plane model is the Landau model Ω = R
2 with

constant magnetic field B(x, y) = B. When V = 0, the classical electron moves
in a closed circular orbit of radius the size of B−1/2. The spectrum of H(a, 0)
is pure point with infinitely degenerate eigenvalues at the Landau levels EnB,
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for n = 1, 2, . . ., where En = 2n − 1. In the terminology introduced below, all
of the states are bulk states.

In the second case of the half-plane, the restriction of the Landau model
to the half-plane x > 0 (with various boundary conditions along x = 0) has
profound consequences for the spectral and transport properties of the sys-
tem. From the classical viewpoint, the edge at x = 0 reflects the classical
orbits forming a new current along the edge. This classical current provides
the heuristic insight for quantum edge currents. Edge states for quantum Hall
systems restrained to a half-plane R

∗
+ × R := {(x, y), x > 0} with Dirichlet,

or other boundary conditions, at x = 0 have been analyzed by several authors
[9,13,19]. These states ϕ are constructed from wave packets with energy con-
centration between two consecutive Landau levels. The edge current carried
by these states is O(B1/2) and it is stable under a class of electric and mag-
netic perturbations of the Hamiltonian. Furthermore, these states are strongly
localized near x = 0.

In contrast to edge states, bulk states are built from wave packets with at
least one Landau level in their energy interval ([9], [21, Sect. 7]). This article
is devoted to the mathematical study of transport and localization properties
of bulk states. More specifically, we prove that one may construct bulk states
for which the strength of the current is much smaller than for edge states. In
addition, we prove that the bulk states are spatially localized away from the
edge. Both of these results are consequences of the fact that a bulk state has
its energy concentrated in the vicinity of a Landau level. These results are
consistent with the classical picture where the orbit of particles localized away
from the edge are closed and bounded.

Due to the translational invariance of the system in the y direction, the
magnetic Hamiltonian H admits a fiber decomposition and it is unitarily equiv-
alent to the multiplication operator by a family of real analytic functions either
called dispersion curves or band functions. The presence of an edge at x = 0
results in non-constant dispersion curves, each of them being a decreasing func-
tion in R (see Fig. 1). Namely, for all n ≥ 1, the nth band function decreases
from infinity to the Landau level En. This fact means that each Landau level
En is a threshold in the spectrum of H. These thresholds affect the transport
properties of H as determined from the behavior of the velocity operator, de-
fined as the multiplication operator by the family formed by the first derivative
of the band functions (see [30]). It is known that any quantum state with en-
ergy concentration between two consecutive Landau levels carries a non-trivial
current. The expectation of the velocity operator in such a state is bounded
from below by some positive constant depending on the energy interval I.

The condition that the energy lies between two consecutive Landau levels
guarantees in addition the existence of a Mourre inequality for H in I (see [14]).
Such an estimate does not hold anymore if, unlike the case discussed here, the
infimum of the derivative of the band function is zero, a situation occurring
when there is at least one Landau level in I. In this article we study the
quantum states localized in such an interval. We provide an accurate upper
bound on their current when their energy concentrates in an arbitrarily small
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Figure 1. The band functions k �→ λn(k) for 1 ≤ n ≤ 4 and
−2 ≤ k ≤ 4

interval near a Landau level. Moreover, for all n ≥ 1, the nth band function
approaches En as the quasi-momentum goes to infinity, but it does not reach
its limits. Hence, none of thresholds of this model is attained, and the set of
quasi-momenta associated with energy levels concentrated in the vicinity of any
threshold is subsequently unbounded. This has several interesting transport
and dynamical consequences, such as the delocalization of the corresponding
quantum states away from the edge x = 0. This result follows from the phase
space analysis carried out in this article.

Notice that the usual methods of harmonic approximation, requiring that
thresholds be critical points of the dispersion curves, do not apply to this pe-
culiar framework. The same is true for several magnetic models examined in
[5,9,12,24,30] where the band functions tend to finite limits. Nevertheless,
there is, to our knowledge, only a very small number of articles available in
the mathematical literature, studying magnetic quantum Hamiltonians at en-
ergy levels in the vicinity of these non-attained thresholds: we refer to [5] for
the same model (with either Dirichlet or Neumann boundary conditions) as
the one investigated in the present paper and to [6] for some 3-dimensional
quantum system with variable magnetic field. In these two articles, the number
of eigenvalues induced by some suitable electric perturbation, which accumu-
late below the first threshold of the system, is estimated. The method we
provide in this article to study bulk states can be easily adapted to other mag-
netic systems where band functions tend to finite limits, as Iwatsuka models
([10,11,20,24]) and 3D translationally invariant magnetic fields ([26,30]).
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1.1. Half-Plane Quantum Hall Hamiltonian

Fiber Decomposition and Band Functions. Put Ω := R
∗
+ ×R ⊂ R

2 and let the
potential a(x, y) := (0,−Bx) generate a constant magnetic field with strength
B > 0, orthogonal to Ω. We consider the quantum Hamiltonian in Ω with
magnetic potential a and Dirichlet boundary conditions at x = 0, i.e. the self-
adjoint operator acting on the dense domain C∞

0 (Ω) as H(B) := (−i∇ − a)2,
and then closed in L2(Ω). Since VBH(B)V∗

B = BH(1), where the transform

(VBψ)(x, y) := B−1/4ψ
(

x
B1/2 , y

B1/2

)
, (1.1)

is unitary in L2(Ω), we may actually chose B = 1 without limiting the general-
ity of the foregoing. Thus, writing H instead of H(1) for notational simplicity,
we focus our attention on the operator

H := −∂2
x + (−i∂y − x)2,

in the remaining part of this text.
Let Fy be the partial Fourier transform with respect to y, i.e.

ϕ̂(x, k) = (Fyϕ)(x, k) :=
1√
2π

∫

R

e−ikyϕ(x, y)dy, ϕ ∈ L2(Ω).

Due to the translational invariance of the operator H in the y-direction, we
have the direct integral decomposition

FyHF∗
y =

∫ ⊕

R

h(k)dk, (1.2)

where the 1D operator

h(k) := −∂2
x + V (x, k), V (x, k) := (x − k)2, x > 0, k ∈ R, (1.3)

acts in L2(R+) with Dirichlet boundary conditions at x = 0. The full definition
of the operator h(k), k ∈ R, can be found in Sect. 2. For all k ∈ R fixed,
V (., k) is unbounded as x goes to infinity, so h(k) has a compact resolvent. Let
{λn(k), n ∈ N

∗} denote the eigenvalues, arranged in non-decreasing order, of
h(k). Since all these eigenvalues λn(k) with n ∈ N

∗ are simple, then each k �→
λn(k) is a real analytic function in R. The dispersion curves λn, n ∈ N

∗, have
been extensively studied in several articles (see e.g. [9]). They are decreasing
functions of k ∈ R, obeying

lim
k→−∞

λn(k) = +∞ and lim
k→+∞

λn(k) = En, (1.4)

for all n ∈ N
∗, where En := 2n − 1 is the nth Landau level (see Fig. 1).

Remark 1.1. For further reference, we notice from (1.4) the following useful
property:

lim
n→+∞ inf

k∈R

λn(k) = +∞.

As a consequence the spectrum S(H) of H is S(H) = ∪n≥1λn(R) =
[1,+∞). The Landau levels En, n ∈ N

∗, are thresholds in the spectrum of H,
and they play a major role in the analysis carried out in the remaining part
of this paper.
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Fourier Decomposition. For n ∈ N
∗ and k ∈ R, we consider a normalized eigen-

function un(·, k) of h(k) associated with λn(k). It is well known that un(·, k)
depends analytically on k. We define the nth generalized Fourier coefficient of
ϕ ∈ L2(Ω) by

ϕn(k) := 〈Fyϕ(·, k), un(·, k)〉L2(R+) =
1√
2π

∫

R+

ϕ̂(x, k)un(x, k)dx, (1.5)

and denote by πn the orthogonal projection associated with the nth harmonic:

πn(ϕ)(x, y) :=
1√
2π

∫

R

eiykϕn(k)un(x, k)dk, (x, y) ∈ Ω. (1.6)

In light of (1.2) we have for all ϕ ∈ L2(Ω):

ϕ =
∑

n≥1

πn(ϕ), (1.7)

and the Parseval theorem yields

‖ϕ‖2
L2(Ω) =

∑

n≥1

‖ϕn‖2
L2(R). (1.8)

For any non-empty interval I ⊂ R, we denote by PI the spectral pro-
jection of H associated with I. We say that the energy of a quantum state
ϕ ∈ L2(Ω) is concentrated (or localized) in I if PIϕ = ϕ. With reference to
(1.2) and (1.5) this condition may be equivalently reformulated as

∀n ∈ N
∗, supp(ϕn) ⊂ λ−1

n (I). (1.9)

1.2. Edge Versus Bulk

Current Operator and Link with the Velocity. Let y denote the multiplier by
the coordinate y in L2(Ω). The time evolution of y is the Heisenberg variable
y(t) := e−itHyeitH , for all t ∈ R. Its time derivative is the velocity and is given
by dy(t)

dt = −i[H, y(t)] = −ie−itH [H, y]eitH . We define the current operator as
the self adjoint operator

Jy := −i[H, y] = −i∂y − x,

acting on Dom(H)∩Dom(y). The current carried by a state ϕ is 〈Jyϕ,ϕ〉L2(Ω).
Well-known computations based on the Feynman–Hellmann formula (see

also [9,11,24] for similar formulas involving the Iwatsuka models) yield

∀ϕ ∈ L2(Ω), 〈Jyπn(ϕ), πn(ϕ)〉L2(Ω) =
∫

R

λ′
n(k)|ϕn(k)|2dk, (1.10)

linking the velocity operator, defined as the multiplication operator in⊕
n∈N∗ L2(R) by the family of functions {λ′

n, n ∈ N
∗}, to the current op-

erator.

Remark 1.2. It is easy to see that (1.10) extends to any quantum state ϕ ∈
L2(Ω) satisfying the non-overlapping condition

∀m �= n, supp(ϕm) ∩ supp(ϕn) = ∅,
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as

〈Jyϕ,ϕ〉L2(Ω) =
∑

n≥1

∫

R

λ′
n(k)|ϕn(k)|2dk.

Edge States and Bulk States. For any bounded subinterval I ⊂ S(H), the
spectrum of H, it is physically relevant to estimate the current carried by a
state with energy concentration in I and to describe the support of such a
state.

Let ϕ ∈ RanPI be decomposed in accordance with (1.5)–(1.7). Since I
is bounded by assumption, then the set {n ∈ N

∗, I ∩ λn(R) �= ∅} is finite by
Remark 1.1, so the same is true for {n ∈ N

∗, πn(ϕ) �= 0}. As a consequence
the sum in the r.h.s. of (1.7) is finite. Notice that this fact is not a generic
property of fibered magnetic Hamiltonians (see e.g. [6,30]).

For all n ∈ N
∗ put

Xn,I := RanPI ∩ Ran πn,

so we have RanPI =
⊕

n≥1 Xn,I . We shall now describe the transport and
localization properties of functions in Xn,I . We shall see that, depending on
whether En lies inside or outside I, functions in Xn,I may exhibit radically
different behaviors.

Let us first recall the results of [9], corresponding to the case En /∈ I.
Put c−(n, I) := infI |λ′

n ◦ λ−1
n | and c+(n, I) := supI |λ′

n ◦ λ−1
n |. Since λn is a

decreasing function, (1.4) yields

∀k ∈ λ−1
n (I), 0 < c−(n, I) ≤ |λ′

n(k)| ≤ c+(n, I) < +∞.

As a consequence, the spectrum of the current operator restricted to Xn,I is
[−c+(n, I),−c−(n, I)] by (1.9)–(1.10). This entails that any state ψ ∈ Xn,I

carries a non-trivial current:

∀ψ ∈ Xn,I , |〈Jyψ,ψ〉L2(Ω)| ≥ c−(n, I)‖ψ‖2. (1.11)

Moreover, all quantum states ψ ∈ Xn,I are mainly supported in a strip S of
width O(1) along the edge.

Assume that there is no threshold in I, that is {En, n ∈ N
∗} ∩ I = ∅,

and pick ϕ ∈ RanPI . Since {n ∈ N
∗, πn(ϕ) �= 0} is finite and πn(ϕ) ∈ Xn,I

is mainly supported in S for each n ∈ N
∗, then the same is true for ϕ =∑

n∈N∗ πn(ϕ). This explains why it is referred to ϕ as an edge state. Moreover,
based on Remark 1.2, [9, Proposition 2.1] entails upon possibly shortening I,
that such a state ϕ carries a non-void edge current:

∃c(I) > 0, ∀ϕ ∈ RanPI , |〈Jyϕ,ϕ〉L2(Ω)| ≥ c(I)‖ϕ‖2. (1.12)

Let us now examine the case where En ∈ I for some n ∈ N
∗. For the

sake of clarity we assume in addition that there is no other threshold than En

lying in I, i.e. {m ∈ N
∗, Em ∈ I} = {n}. It is apparent that the general case

where several thresholds are lying in I may be easily deduced from the single
threshold situation by superposition principle.
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Figure 2. The band function k �→ λ1(k) for 1 ≤ k ≤ 2.5, the
energy interval I1(δ) and the frequency k1(δ), with δ = 0.05

Put I−
n := (−∞, En) and I+

n = I ∩ (En,+∞). Since λn(R) ∩ I−
n = ∅,

we have πn ◦ PI−
n

= 0, whence Xn,I = Xn,I+
n

. Thus it suffices to consider an
energy interval I of the form

In(δ) := (En, En + δ), δ ∈ (0, 2). (1.13)

For further reference we define kn(δ) as the unique real number satisfying

λn(kn(δ)) = En + δ. (1.14)

Its existence and uniqueness is guaranteed by (1.4) and the monotonicity of
the continuous function k �→ λn(k), see Fig. 2.

For all m �= n, it is clear from the above analysis that Xm,In(δ) is made en-
tirely of edge states. However, it is not true that the subspace Xn,In(δ) consists
entirely of edge states. Indeed, since infIn(δ) |λ′

n ◦ λ−1
n | = 0, c−(n, In(δ)) = 0,

the bottom of the spectrum of the current operator restricted to Xn,In(δ) is
zero. Consequently, there are states in Xn,In(δ) for which the only lower bound
in (1.11) is zero. As long as δ > 0, Xn,In(δ) contains states with part of their
support localized away from the edge, that carry an arbitrarily small edge cur-
rent. As δ ↓ 0, all the states in Xn,In(δ) acquire the properties ascribed to bulk
states: significant localization away from the edge x = 0 and vanishing small
edge current. This is quantified in Theorem 1.6, Remark 1.7 and Theorem 1.8.
We will call these states bulk states as in the physics literature. Therefore we
denote by Xb

n,δ = Xn,In(δ) the associated linear space.



44 P. D. Hislop et al. Ann. Henri Poincaré

We emphasize on the fact that our definition of a bulk space corresponds
to a linear space (characterized by a localization in energy) whose elements are
not all edge states (although there exist edge states in Xb

n,δ, see the remark
below). Our goal is to study the elements in Xb

n,δ which do not have a behavior
of edge states and to link them with the so-called bulk states. As we shall see,
our main tool is an asymptotic analysis of Xb

n,δ when δ ↓ 0: by this way, none
of the elements of the bulk space has characteristic of an edge state anymore,
and we may observe what we call pure bulk behavior.

Notice that a definition of bulk states based on another approach is pro-
posed in [9]: De Bièvre and Pulé say that a state ϕ is a bulk state associated
with the non-rescaled Hamiltonian H(B) when πn(ϕ) = ϕ and ϕn(k) is sup-
ported in an interval of the form (Bγ ,+∞) with γ > 1/2. After stating our
results we will come back in Sect. 1.4 to the non-rescaled Hamiltonian and we
will show that our approach is more general than the one of [9] and covers
their results.

Remark 1.3. It is worth mentioning that there are actual edge states lying
in Xb

n,δ. With reference to (1.5)–(1.7), this can be seen upon noticing that
any ϕ = πn(ϕ) ∈ Xb

n,δ such that ϕn is compactly supported in (kn(δ),+∞),
satisfies an inequality similar to (1.11).

Let us now stress that any ϕ ∈ Xb
n,δ expressed as

ϕ(x, y) =
∫ ∞

kn(δ)

eiykϕn(k)un(x, k)dk, (1.15)

where ϕn ∈ L2(kn(δ),+∞) is defined by (1.5) and satisfies

‖ϕ‖2
L2(Ω) =

∫ +∞

kn(δ)

|ϕn(k)|2dk, (1.16)

according to (1.8). Further, recalling (1.10), the current carried by ϕ ∈ Xn,δ

has the following expression:

〈Jyϕ,ϕ〉L2(Ω) =
∫ +∞

kn(δ)

λ′
n(k)|ϕn(k)|2dk. (1.17)

Main Goal. In view of exhibiting pure bulk behavior, we investigate Xb
n,δ as

δ goes to 0. We firstly aim to compute a suitable upper bound on the current
carried by quantum states lying in Xb

n,δ, as δ ↓ 0. Secondly we characterize
the region in the half-plane where such states are supported.

Since kn(δ) tends to ∞ as δ ↓ 0 from (1.4), it is apparent that the analysis
of (1.17) requires accurate asymptotic expansions of λn(k) and λ′

n(k) as k goes
to infinity.

Actually, it is well known from [9] or [12, Sect. 2] that each λn, for n ∈ N
∗,

decreases super-exponentially fast to En as k goes to +∞:

∀α ∈ (0, 1), ∃(kn,α, Cn,α) ∈ R
∗
+ × R

∗
+,

k ≥ kn,α =⇒ |λn(k) − En| ≤ Cn,αe−αk2/2.
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A similar upper bound on |λ′
n| can be found in [9], but it turns out that these

estimates are not as sharp as the one required by the analysis developed in
this paper. Notice that the asymptotics of λn(k) as k tends to infinity was
already investigated in [25, Chapter 1] and in the unpublished work [22] (the
asymptotics of the first derivative is derived as well in the last reference). All
the above-mentioned results are covered by the one obtained in this article.
Notice that the asymptotics of λ′

n(k) as k tends to infinity is obtained from
those calculated for the eigenfunctions associated with λn(k) as k → +∞.
Moreover these asymptotics on the eigenfunctions are useful when describing
the geometrical localization of bulk states when δ ↓ 0.

1.3. Main Results and Outline

Our first result is a precise asymptotics of the band functions and its derivative
when k → +∞:

Theorem 1.4. For every n ∈ N
∗ there is a constant γn > 0 such that the two

following estimates
(i) λn(k) = En + 22n−1γ2

nk2n−1e−k2
(1 + O(k−2)),

(ii) λ′
n(k) = −22nγ2

nk2ne−k2
(1 + O(k−2)),

hold as k goes to +∞.

Remark 1.5. Notice that the second part of Theorem 1.4 may actually be
recovered upon formally differentiating the first part with respect to k.

The method used in the derivation of Theorem 1.4 is inspired by the
method of quasi-modes used in [4, Sect. 5]. Moreover, as detailed in Sect. 2.5,
the computation of the asymptotics of λn(k) is closely related to the rather
tricky problem of understanding the eigenvalues of the Schrödinger operator
with double well −h2∂2

t + (|t| − 1)2 in the semi-classical limit h ↓ 0.
Let us now characterize bulk states with energy concentration near the

Landau level En, in terms of the distance δ > 0 of their energy to En. We
recall that Xb

n,δ denotes the linear space of quantum states with energy in the
interval (En, En + δ) and all Fourier coefficients uniformly zero, except for the
nth one.

Firstly we give the smallness of the current carried by bulk states when
δ goes to 0:

Theorem 1.6. For every n ∈ N
∗ we may find two constants μn > 0 and δn >

0, both of them depending only on n, such that for each δ ∈ (0, δn) and all
ϕ ∈ Xb

n,δ, we have

|〈Jyϕ,ϕ〉| ≤
(

2δ
√

| log δ| + μn
δ log | log δ|
√| log δ|

)

‖ϕ‖2
L2(Ω). (1.18)

Remark 1.7. Estimate (1.18) is accurate in the sense that for all 0 < δ1 < δ2 <
2 and any interval In := (En + δ1, En + δ2) avoiding En, we find by arguing
in the exact same way as in the derivation of Theorem 1.6 that

∀ϕ ∈ Xn,In
, cn(δ1)‖ϕ‖2

L2(Ω) ≤ |〈Jyϕ,ϕ〉| ≤ cn(δ2)‖ϕ‖2
L2(Ω), (1.19)
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provided δ1 and δ2 are sufficiently small. Here cn(δj), j = 1, 2, stands for
the constant obtained by substituting δj for δ in the prefactor of ‖ϕ‖2

L2(Ω)

in the right hand side of (1.18). Let us add that, since En /∈ In, the above
lower bound on the current (valid for all states in Xn,In

) is a refined case of
the general bounds for current provided in (1.11)–(1.12). In particular if δ1

is large enough, the edge current of quantum states with energy localized in
Xn,In

is no longer small. On the other hand, for fixed δ2 > 0, we can let δ1 ↓ 0
and recover the estimate (1.18) of Theorem 1.6. Thus, the upper and lower
bounds of (1.19) illustrate the transition from edge to bulk states as the energy
interval approaches the threshold at En.

Finally, we discuss the localization of the bulk states in Xb
n,δ. We prove

that when δ goes to 0, they are small in a strip of width
√| log δ|, showing

that they are not localized near the boundary.

Theorem 1.8. Fix n ∈ N
∗. Then for any ε ∈ (0, 1) there exists δn(ε) > 0, such

that for all δ ∈ (0, δn(ε)), the estimate
∫ (1−ε)

√
| log δ|

0

‖ϕ(x, ·)‖2
L2(R)dx ≤ Cnε2n−1δε2 | log δ| 2n−1

2 (1−ε2)‖ϕ‖2
L2(Ω)

(1.20)

holds for every ϕ ∈ Xb
n,δ and some positive constant Cn depending only on n.

Let ϕ(t) := e−itHϕ, for t ∈ R, be the time evolution of ϕ ∈ Xb
n,δ. Since

ϕ(t) ∈ Xb
n,δ for all t ∈ R it is apparent that Theorems 1.6 and 1.8 remain

valid upon substituting ϕ(t) for ϕ in (1.18)–(1.20). As a consequence, the
localization property and the upper bound on the current carried by a state
lying in Xb

n,δ survive for all times.
As noted above, the analysis of edge currents is robust. Certain pertur-

bations of the Hamiltonian may be treated since the positivity of the current
operator is related to a Mourre estimate, see, for example, [19, Sect. 2.3]. In
contrast, the analysis of the bulk states relies on the precise asymptotics of the
band functions given in Theorem 1.4. The band functions only survive pertur-
bations that are independent of y. It might be possible to apply the methods
of this paper to Iwatsuka-type models as studied, for example, in [10].

Bulk-like states also exist for two-edge geometries where the system is
restricted to a strip of width 2L > 0: (x, y) ∈ [−L,L] × R, with Dirichlet
boundary conditions along each edge. The band functions have a unique non-
degenerate minimum at k = 0 and satisfy lim|k|→∞ λn(k) = +∞. Unlike the
model studied in the present paper, the thresholds are the minima of each band
function and are attained at k = 0. It would be possible to use the methods of
the present paper to analyze the properties of the states with energies localized
near the minima for δ > 0 small and L > 0 large.

1.4. Influence of the Magnetic Field Strength

All our results are stated for the rescaled Hamiltonian H with unit magnetic
field strength B = 1. We discuss the corresponding results for the magnetic
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Hamiltonian H(B) associated with a constant magnetic field of strength B > 0.
Recall that VB is the unitary transformation defined in (1.1) implementing the
B1/2-scaling that allows us to normalized H(B). Let Jy(B) := −i∂y − Bx be
the non-rescaled current operator, then we have VBJy(B)V∗

B = B1/2Jy and

∀ϕ ∈ Dom(Jy(B)), 〈Jy(B)ϕ,ϕ〉 = B1/2 〈JyVbϕ,Vbϕ〉.
Moreover ϕ ∈ Xn,BIn(δ) if and only if VBϕ ∈ Xn,δ. Therefore, applying Theo-
rem 1.6 we get

∀ϕ ∈ Xn,BIn(δ),

|〈Jy(B)ϕ,ϕ〉| ≤ B1/2

(

2δ
√

| log δ| + μn
δ log | log δ|
√| log δ|

)

‖ϕ‖2
L2(Ω),

as soon as δ is small enough. Looking at quantum Hall systems with strong
magnetic field, it is then natural to consider B large and δ = δ(B) going to 0
as B goes to +∞ and one may use our result to describe the states of such a
system. It is now natural to provide another possible definition for edge and
bulk states associated with the non-rescaled Hamiltonian H(B), in relation
with the magnetic field strength: given an interval I ⊂ R, a state ϕ ∈ Xn,I is
an edge state if its current is of size B1/2, and it is a bulk state if its current
is o(B1/2) as B gets large.

We now compare our results with the analysis [9] of De Bièvre and Pulé.
They define a bulk state ϕ associated with the magnetic Hamiltonian H(B) as
a state satisfying πn(ϕ) = ϕ and such that ϕn(k) is supported in an interval
of the form (Bγ ,+∞) with γ > 1/2. Such a state is localized in energy in the
interval (BEn, Bλn(Bε)), where ε := γ−1/2. Using Theorem 1.4, we get when
B gets large that λn(Bε) − En ∼ e−2B2ε

. Therefore their approach is covered
by the one presented in this article by setting δ(B) := e−2B2ε

and letting B
going to +∞. For this particular choice of δ(B), Theorem 1.6 provides a better
estimate than in [9, Corollary 2.1]. Moreover our approach is more general, in
the sense that we do not restrict our analysis by a particular choice of δ.

Similarly, Theorem 1.8 implies that any state localized in energy in the
interval (BEn, BEn + δB) is small in a strip of width B−1/2 when δ becomes
small, with a control given by the right hand side of (1.20).

2. Asymptotics of the Band Functions

In this section, we prove the first part of Theorem 1.4 on the asymptotic ex-
pansion of the band functions λn(k) as k → ∞. The proof consists of four
steps. We first recall results on the harmonic oscillator and its eigenfunc-
tions. We next construct approximate eigenfunctions fn(x, k) of h(k) so that
h(k)fn(x, k) = Enfn(x, k) + Rn(x, k) and estimate the norm ‖Rn(·, k)‖L2(R∗

+).
We prove that the energy ηn(k) := 〈h(k)fn(·, k), fn(·, k)〉 of the approximate
eigenfunction fn is a good approximation to the Landau level En. Finally, we
use the Kato–Temple inequality to obtain the result.
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Here are some notations and definitions. Let us define the quadratic form

qk[u] :=
∫

R+

(|u′(x)|2 + (x − k)2|u(x)|2)dx,

Dom(qk) := {u ∈ H1
0 (R∗

+), xu ∈ L2(R∗
+)}.

(2.1)

Here H1
0 (R∗

+) is as usual the closure of C∞
0 (R∗

+) in the topology of the first
order Sobolev space H1(R∗

+). The operator h(k) (expressed in (1.3)) is the
Friedrichs extension of the above quadratic form and its domain is

Dom(h(k)) := {u ∈ H1
0 (R∗

+) ∩ H2(R∗
+), x2u ∈ L2(R∗

+)}. (2.2)

2.1. Getting Started: Recalling the Harmonic Oscillator

The harmonic oscillator

h := −∂2
x + x2, x ∈ R,

has a pure point spectrum made of simple eigenvalues {En := 2n−1, n ∈ N
∗},

the Landau levels. The associated L2(R)-normalized eigenfunctions are the
Hermite functions

Ψn(x) := Pn(x)e−x2/2, x ∈ R, n ∈ N
∗, (2.3)

where Pn stands for the nth Hermite polynomial obeying deg(Pn) = n − 1.
These functions satisfy Ψn(−x) = (−1)n−1Ψn(x). The explicit expression (2.3)
results in the two following asymptotic formulae (see [1] or [28])

Ψn(x) =
x→−∞ γn2n−1xn−1e−x2/2(1 + O(x−2)) (2.4)

and

Ψ′
n(x) =

x→−∞ γn2n−1xne−x2/2(−1 + O(x−2)), (2.5)

where γn := (2n−1(n − 1)!
√

π)−1/2 is a normalization constant. Next, put

Φn(x) := Ψn(x)
∫ x

0

|Ψn(t)|−2dt, x ∈ R, n ∈ N
∗, (2.6)

so {Ψn,Φn} forms a basis for the space of solutions to the ODE hf = Enf .
Then we get

Φn(x) =
x→−∞ (γn2n)−1 ex2/2

xn
(1 + O(x−2)) (2.7)

and

Φ′
n(x) =

x→−∞ (γn2n)−1 ex2/2

xn−1
(1 + O(x−2)), (2.8)

through elementary computations based on (2.4)–(2.6).
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2.2. Building Quasi-Modes for h(k) in the Large k Regime

Following the idea of [3,4] we now build quasi-modes for the operator h(k)
when the parameter k is taken sufficiently large. We look at vectors of the
form

fn(x, k) = α(k)Ψn(x − k) + β(k)χ(x, k)Φn(x − k), x > 0, k ∈ R, (2.9)

where Ψn and Φn are respectively defined by (2.3) and (2.6), and α, β are two
functions of k we shall make precise below. Bearing in mind that Φn(·, k) is
unbounded on R

∗
+, the cut-off function χ is chosen in such a way that fn(·, k) ∈

L2(R∗
+). Namely, we pick a non-increasing function χ0 ∈ C∞(R+, [0, 1]) such

that χ0(x) = 1 for x ∈ [0, 1
2 ] and χ(x) = 0 for x ∈ [34 ,+∞), and put

χ(x, k) := χ0

(x

k

)
, x > 0, k ∈ R.

We impose Dirichlet boundary condition at x = 0 on fn(·, k), getting

β(k) = −α(k)
Ψn(−k)
Φn(−k)

,

since Φn(−k) is non-zero for k sufficiently large, by (2.7). From this, (2.4) and
(2.7), it then follows that

β(k) = 22n−1γ2
nα(k)k2n−1e−k2

(1 + O(k−2)), (2.10)

which entails ‖fn(·, k)‖2
L2(R∗

+) = α(k)2(1 + O(k2n−1e−k2
)), through direct

computation. As a consequence we have

α(k) = 1 + O(k2n−1e−k2
) (2.11)

by compliance with the normalization condition ‖fn(·, k)‖L2(R∗
+) = 1, hence

β(k) = 22n−1γ2
nk2n−1e−k2

(1 + O(k−2)), (2.12)

according to (2.10).

2.3. Energy Estimation

Bearing in mind that fn(0, k) = 0 and fn(x, k) = α(k)Ψn(x− k) for x ≥ 3k/4,
it is clear from (2.2) that fn(·, k) ∈ Dom(h(k)), so the energy carried by the
state fn(·, k) is well defined by

ηn(k) := 〈h(k)fn(·, k), fn(·, k)〉L2(R∗
+). (2.13)

To estimate the error of approximation of En by ηn(k), we introduce

rn(x, k) := (h(k) − En)fn(x, k), x > 0, (2.14)

in such a way that ηn(k) − En = 〈rn(·, k), fn(·, k)〉L2(R∗
+). Integrating by parts

twice successively in this integral and remembering (2.9), we find that
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ηn(k) − En = β(k)〈(h(k) − En)(χ(·, k)Φn(· − k)), fn(·, k)〉L2(R∗
+)

= −β(k)Φn(−k)f ′
n(0, k) + β(k)〈χ(·, k)Φn(· − k), rn(·, k)〉L2(R∗

+).

(2.15)

Further, upon combining (2.9) and (2.14) with the commutator formula
[h(k), χ] = −χ′′ − 2χ′∂x, we get that

rn(x, k) = −β(k)χ′′(x, k)Φn(x − k) − 2β(k)χ′(x, k)Φ′
n(x − k), x > 0,

(2.16)

showing that rn(·, k) is supported in supp(χ′(·, k)), i.e.

supp(rn(·, k)) ⊂ [
k
2 , 3k

4

]
. (2.17)

Putting (2.7)–(2.8), (2.12) and (2.16) together, and taking into account that

‖χ′(·, k)‖L∞(R) = O(1/k) and ‖χ′′(·, k)‖L∞(R) = O(1/k2), (2.18)

we obtain for further reference that

‖rn(·, k)‖2
L2(R∗

+) = O
(
k2n−1e− 7k2

4

)
. (2.19)

Let us now prove that the interaction term −β(k)Φn(0, k)f ′
n(0, k) is the main

contribution to the r.h.s. of (2.15). Applying (2.7)–(2.8), we get

‖Φn(· − k)‖L∞( k
2 , 3k

4 ) = O(k−nek2/8)

and ‖Φ′
n(· − k)‖L∞( k

2 , 3k
4 ) = O(k−n+1ek2/8),

which, together with (2.10), (2.16) and (2.18), yields ‖rn(·, k)‖L∞(R∗
+) =

O(kn−1e− 7k2
8 ). From this, (2.12) and the estimate

|〈χ(·, k)φn(· − k), rn(·, k)〉L2(R∗
+)| ≤ k

4
‖rn(·, k)‖L∞(R∗

+)‖Φn(· − k)‖L∞( k
2 , 3k

4 ),

then it follows that β(k)〈χ(·, k)φn(· − k), rn(·, k)〉L2(R∗
+) = O(k2n−1e− 7k2

4 ).
Hence we have

ηn(k) − En = −β(k)f ′
n(0, k)Φn(−k) + O(k2n−1e− 7k2

4 ), (2.20)

by (2.15). In order to evaluate the remaining term −β(k)f ′
n(0, k)Φn(−k), we

take advantage of the fact that χk(0) = 1 and χ′
k(0) = 0, and derive from (2.5)

and (2.8)–(2.9) that

f ′
n(0, k) = α(k)Ψ′

n(−k) + β(k)Φ′
n(−k)=(−1)n−12nγnkne−k2/2(1 + O(k−2)).

(2.21)

Therefore we have −β(k)f ′
n(0, k)Φn(−k) = 22n−1γ2

nk2n−1e−k2
(1+O(k−2)) by

(2.7) and (2.12), so we end up getting

ηn(k) − En = 22n−1γ2
nk2n−1e−k2

(1 + O(k−2)), (2.22)

with the aid of (2.20).
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2.4. Asymptotic Expansion of λn(k)
Let us first introduce the error term

εn(k) := ‖(h(k) − ηn(k))fn(·, k)‖L2(R∗
+),

and combine the estimate εn(k) ≤ ‖rn(·, k)‖L2(R+) + |ηn(k) − En| arising from
(2.14), with (2.19) and (2.22). We obtain that

εn(k)2 = O(k2n−1e− 7k2
4 ). (2.23)

We are now in position to apply Kato–Temple’s inequality (see [17, Theo-
rem 2]), which can be stated as follows.

Lemma 2.1. Let A be a self-adjoint operator acting on a Hilbert space H. We
note a the quadratic form associated with A. Let ψ ∈ Dom(A) be H-normalized
and put η = a[ψ] and ε = ‖(A − η)ψ‖H. Let α < β and λ ∈ R be such that
S(A) ∩ (α, β) = {λ}. Assume that ε2 < (β − η)(η − α). Then we have

η − ε2

β − η
< λ < η +

ε2

η − α
.

Fix N ∈ N
∗. Since limk→+∞ λn(k) = En for all n ∈ N

∗, we may choose
kN > 0 so large that λn(k) ∈ (En, En + 1] for all k ≥ kN and n ∈ [|1, N + 1|].
This entails

|λn(k) − λp(k)| ≥ 1, k ≥ kN , p �= n, n ∈ [|1, N |]. (2.24)

Moreover, upon possibly enlarging kN , we have

|ηn(k) − (En ± 1)| ≥ 1
2 , k ≥ kN , n ∈ [|1, N |], (2.25)

in virtue of (2.22). Thus, applying Lemma 2.1 with η = ηn(k), α = En − 1,
β = En +1 and ε = εn(k) for each n ∈ [|1, N |] and k ≥ kN , there is necessarily
one eigenvalue of h(k) belonging to the interval (ηn(k)−2ε2n(k), ηn(k)+2ε2n(k)),
according to (2.25). Since the only eigenvalue of h(k), k ≥ kN , lying in
(En, En + 1] is λn(k), we obtain that

|λn(k) − ηn(k)| ≤ 2ε2n(k), k ≥ kN , n ∈ [|1, N |]. (2.26)

Putting this together with (2.22)–(2.23) we end up getting the first part of
Theorem 1.4.

2.5. Relation to a Semiclassical Schrödinger Operator and to the Iwatsuka
Model

In this section we exhibit the link between the asymptotics of the eigenpairs
of h(k) for large k and the semi-classical limit of a Schrödinger operator on R

with a symmetric double well potential.
Let us introduce the operator H(k) := −∂2

x + (|x| − k)2 acting on L2(R)
and denote by μn(k) its nth eigenvalue. The operator H(k) is the fiber of
the magnetic Laplacian associated with the Iwatsuka magnetic field B(x, y) =
sign(x) defined on R

2. This Hamiltonian has been studied in [10,27]. The
eigenfunction associated with μn(k) are even when n is odd and odd when n
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is even, therefore the restriction to R+ of any eigenfunction associated with
μ2n(k) is an eigenfunction for the operator h(k) associated with λn(k) and
we have μ2n(k) = λn(k). In the same way we prove that μ2n−1(k) is the nth
eigenvalue of the operator hN(k) := −∂2

x + (x − k)2 acting on L2(R+) with a
Neumann boundary condition.

We refer to [25, Proposition 1.1] or [10] for more details on the link
between H(k), h(k) and the operator hN(h).

Using the scaling t = kx we get that H(k) is unitary equivalent to the
operator

h−1(−h2∂2
t + (|t| − 1)2), t ∈ R

where we have set h = k−2. Therefore when k gets large we reduce the problem
to the understanding of the eigenvalues of the Schrödinger operator −h2∂2

t +
(|t| − 1)2 in the semi-classical limit h ↓ 0. The asymptotic expansion of the
eigenvalues of Schrödinger operators is well-known when the potential has a
unique non-degenerated minimum and uses the “harmonic approximation”, see
for example [29]. However in our case the potential (|t|−1)2 is even and have a
double well and one may expect a tunneling effect between the two wells t = 1
and t = −1. More precisely the eigenvalues cluster into pairs exponentially
close to the eigenvalue associated to the one-well problem that are the Landau
levels (see [7,16,18]).

The asymptotic behavior of the gap between eigenvalues in such a prob-
lem is given in [18] under the hypothesis that the potential is C∞(R). Helffer
and Sjöstrand use a BKW expansion of the eigenfunctions far from the wells.
The key point is a pointwise estimate of an interaction term involving among
others the high order derivatives of the potential at 0. Here it is not possible to
use their result since the potential (|t| − 1)2 is not C1 at 0. Our proof uses the
fact that the potential is piecewise analytic and the knowledge of the solutions
of the ODE associated to the eigenvalue problem.

Note that mimicking the above proof it is possible to get the asymp-
totic expansion of the eigenvalues of the operator hN(k) for large k as in [25,
Sect. 1.4].

3. Asymptotics of the Derivative of the Band Functions

In this section, we prove the asymptotic expansion of λ′
n(k), the second part

of Theorem 1.4.

3.1. Hadamard Formula

We turn now to establishing Part (ii) of Theorem 1.4. To this purpose we
introduce a sequence {un(·, k), n ∈ N

∗} of L2(R∗
+)-normalized eigenfunctions

of h(k), verifying
{

−u′′
n(x, k) + (x − k)2un(x, k) = λn(k)un(x, k), x > 0,

un(0, k) = 0.
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Since the operator h(k) is self-adjoint with real coefficients we choose all the
un(·, k) to be real. Due to the simplicity of λn(k), each un(., k) is thus uniquely
defined, up to the multiplicative constant ±1. We note Πn(k) : ϕ �→ 〈ϕ(·),
un(·, k)〉L2(R∗

+)un(·, k) the spectral projection of h(k) associated with λn(k)
and call Fn(k) the eigenspace spanned by un(·, k).

The proof of the asymptotic expansion of λ′
n stated in Theorem 1.4 relies

on the Hadamard formula (see [8, Chapter VI] or [23]):

λ′
n(k) = −u′

n(0, k)2, k ∈ R, (3.1)

and thus requires that u′
n(·, k) be appropriately estimated at x = 0. We proceed

as in the derivation of [18, Proposition 2.5].

3.2. H1-Estimate of the Eigenfunctions

The method boils down to the fact that the operator h(k) − λn(k) is a bound-
edly invertible on Fn(k)⊥. Hence (h(k) − λn(k))−1 is a bounded isomorphism
from Fn(k)⊥ onto Dom(h(k)) ∩ Fn(k)⊥ and there exists kn > 0 such that we
have

‖(h(k) − λn(k))−1‖L(Fn(k)⊥) ≤ 1, k ≥ kn,

in virtue of (2.24). From this and the identity

(h(k) − λn(k))(fn(·, k) − Πn(k)fn(·, k)) = rn(·, k) + (En − λn(k))fn(·, k),

arising from (2.14), it then follows that

‖fn(·, k) − Πn(k)fn(·, k)‖L2(R∗
+) ≤ ‖rn(·, k)‖L2(R∗

+) + |En − λn(k)|, k ≥ kn.

(3.2)

Moreover we have

qk[fn(·, k) − Πn(k)fn(·, k)]
= (qk − λn(k))[fn(·, k) − Πn(k)fn(·, k)] + λn(k)‖fn(·, k)

−Πn(k)fn(·, k)‖2
L2(R∗

+)

= (qk − λn(k))[fn(·, k)] + λn(k)‖fn(·, k) − Πn(k)fn(·, k)‖2
L2(R∗

+)

= ηn(k) − λn(k) + λn(k)‖fn(·, k) − Πn(k)fn(·, k)‖2
L2(R∗

+),

from (2.13), hence

qk[fn(·, k) − Πnfn(·, k)]1/2 = O(εn(k) + ‖rn(·, k)‖L2(R∗
+) + |En − λn(k)|),

(3.3)

according to (2.26) and (3.2). Since Dom(h(k)) (endowed with the natural
norm qk[·]1/2) is continuously embedded in H1(R∗

+), we may substitute
‖fn(·, k)−Πn(k)fn(·, k)‖H1(R∗

+) for qk[fn(·, k)−Πnfn(·, k)]1/2 in the left hand
side of (3.3). Thus we obtain

‖fn(·, k) − Πn(k)fn(·, k)‖H1(R∗
+) = O(kn− 1

2 e− 7k2
8 ), (3.4)
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with the help of (2.19) and Part (i) in Theorem 1.4. As a consequence we have

|1 − ‖Πn(k)fn(·, k)‖L2(R∗
+)|

≤ ‖fn(·, k) − Πn(k)fn(·, k)‖L2(R∗
+) = O(kn− 1

2 e− 7k2
8 ), (3.5)

whence
∥
∥
∥
∥
∥
fn(·, k) − Πn(k)fn(·, k)

‖Πn(k)fn(·, k)‖L2(R∗
+)

∥
∥
∥
∥
∥

H1(R∗
+)

= O(kn− 1
2 e− 7k2

8 ). (3.6)

Bearing in mind that

un(·, k) =
Πn(k)fn(·, k)

‖Πn(k)fn(·, k)‖L2(R∗
+)

, (3.7)

then upon possibly substituting (−un(·, k)) for un(·, k), it follows from (3.6)
that the quasi-mode fn(·, k) is close to the eigenfunction un(·, k) in the H1-
norm sense, provided k is large enough. We summarize these results in the
following proposition.

Proposition 3.1. For large k, the eigenfunction un(x, k) is well approximated
by the quasi-mode fn(x, k) in the sense that.

‖fn(·, k) − un(·, k)‖H1(R∗
+) = O(kn− 1

2 e− 7k2
8 ).

In terms of the quadratic form qk defined in (2.1), it follows that

qk[un(·, k) − fn(·, k)] = O(k2n−1e− 7k2
4 ). (3.8)

The proof of the second part of the proposition follows from (2.19), the
first part of Theorem 1.4, (3.3), (3.5) and (3.7).

3.3. H2-Estimate of the Eigenfunctions

The H1-estimate of Proposition 3.1 implies uniform pointwise approximation
of un(x, k) by fn(x, k). The Hadamard formula (3.1) requires a pointwise esti-
mate of u′

n(·, k). Consequently, we need to estimate un(·, k) in the H2-topology.
Actually, un(·, k) being an eigenfunction of h(k), it is enough to estimate the
H1-norm of x2un(·, k). The same problem was investigated in [4, Sect. 5] in
the context of a bounded interval so the authors could take advantage of the
fact that the multiplier by x2 is a bounded operator. Although this is not
the case in the framework of the present paper, this slight technical issue can
be overcome through elementary commutator computations performed in the
following subsection.

We start with the following straightforward inequality

‖u′′
n(·, k) − f ′′

n (·, k)‖L2(R∗
+) ≤ ‖h(k)[un(·, k) − fn(·, k)]‖L2(R∗

+)

+ ‖(x − k)2[un(·, k) − fn(·, k)]‖L2(R∗
+). (3.9)

Recall from (2.14) that rn(x, k) = (h(k) − En)fn(x, k). Then, since

h(k)[un(·, k) − fn(·, k)] = λn(k)un(·, k) − Enfn(·, k) + rn(·, k),
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the first term on the right hand side of (3.9) is bounded above by

‖h(k)[un(·, k) − fn(·, k)]‖L2(R∗
+)

≤ |λn(k) − En| + En‖un(·, k) − fn(·, k)‖L2(R∗
+) + ‖rn(·, k)‖L2(R∗

+).

The first part of Theorem 1.4, (2.19) and (3.7) then yield

‖h(k)[un(·, k) − fn(·, k)]‖L2(R∗
+) = O(kn− 1

2 e− 7k2
8 ). (3.10)

To treat the second term on the right in (3.9), we introduce

vn(x, k) := (x − k)un(x, k) and gn(x, k) := (x − k)fn(x, k),

and notice that gn(·, k) belongs to Dom(h(k)). Similarly, taking into account
that un(·, k) decays super-exponentially fast for x sufficiently large, since
limx→+∞ V (x, k) = +∞, we see that vn(·, k) belongs to Dom(h(k)) as well.
Therefore, we have

h(k)(vn(x, k) − gn(x, k))
= λn(k)vn(x, k) − Engn(x, k) − 2(u′

n(x, k) − f ′
n(x, k)) + (x − k)rn(x, k),

by straightforward computations, hence

qk[vn(·, k) − gn(·, k)] ≤ ‖r̃n(·, k)‖L2(R∗
+)‖vn(·, k) − gn(·, k)‖L2(R∗

+), (3.11)

where we have set

r̃n(x, k) : = λn(k)vn(x, k) − Engn(x, k) − 2(u′
n(x, k) − f ′

n(x, k))
+ (x − k)rn(x, k), x > 0. (3.12)

Evidently,

‖vn(·, k) − gn(·, k)‖2
L2(R∗

+) ≤ qk[un(·, k) − fn(·, k)], (3.13)

so, by (3.8), we are left with the task of estimating the L2-norm of r̃n(·, k).
In light of (3.12)–(3.13) and the basic estimate ‖u′

n(·, k) − f ′
n(·, k)‖2

L2(R∗
+) ≤

qk[un(·, k) − fn(·, k)], we find that

‖r̃n(·, k)‖L2(R∗
+) ≤ |λn(k) − En|‖gn(·, k)‖L2(R∗

+) + (2 + λn(k))

× qk[un(·, k) − fn(·, k)]1/2 + ‖(x − k)rn(·, k)‖L2(R∗
+).

(3.14)

Next, we pick kn > 0 so large that ηn(k) = qk[fn(·, k)] ≤ En +1 for all k ≥ kn,
according to (2.22), so we have

‖gn(·, k)‖L2(R∗
+) ≤ qk[fn(·, k)] ≤ En + 1, k ≥ kn. (3.15)

Bearing in mind that λn(k) ≤ λn(0) ≤ 4n − 1 for k ≥ 0, we deduce from
(3.14)–(3.15) that

‖r̃n(·, k)‖L2(R∗
+)

≤ cn(|λn(k) − En| + qk[un(·, k) − fn(·, k)]1/2) + ‖(x − k)rn(·, k)‖L2(R∗
+),

(3.16)
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for all k ≥ kn, where cn is some positive constant depending only on n. Last,
recalling (2.17) and (2.19), we get that

‖(x − k)rn(·, k)‖L2(R∗
+) = O(kn+ 1

2 e− 7k2
8 ).

From this, Part (i) in Theorem 1.4, (3.8) and (3.16) then it follows that

‖r̃n(·, k)‖L2(R∗
+) = O(kn+ 1

2 e− 7k2
8 ). (3.17)

Now, putting (3.8), (3.11), (3.13) and (3.17) together, we obtain

qk[vn(·, k) − gn(·, k)] = O(k2ne− 7k2
4 ). (3.18)

Further, since ‖(x−k)2un(·, k)−(x−k)2fn(·, k)‖2
L2(R∗

+) ≤ qk[vn(·, k)−gn(·, k)],
we deduce from (3.9)–(3.10) and (3.18) that ‖f ′′

n (·, k) − u′′
n(·, k)‖L2(R∗

+) =

O(kne− 7k2
8 ). We obtain the following proposition.

Proposition 3.2. For all n ∈ N
∗, there exists kn ∈ R and Cn > 0 such that we

have

∀k > kn, ‖fn(·, k) − un(·, k)‖H2(R∗
+) ≤ Cnkne− 7k2

8 . (3.19)

Since H2(R∗
+) is continuously embedded in W 1,∞(R∗

+), we deduce for
k ≥ kn:

‖f ′
n(·, k) − u′

n(·, k)‖L∞(R∗
+) ≤ Cnkne− 7k2

8 (3.20)

and

‖fn(·, k) − un(·, k)‖L∞(R∗
+) ≤ Cnkne− 7k2

8 . (3.21)

These results guarantee that any pointwise estimate of u′
n(·, k) on R+ is uni-

formly well approximated by the one of the quasi-mode f ′
n(·, k), provided k is

large enough. More precisely, we have

u′
n(0, k) = f ′

n(0, k) + O(kne− 7k2
8 ). (3.22)

Finally, plugging (2.21) into (3.22) and then applying (3.1), we obtain the
second part of Theorem 1.4.

Remark 3.3. Higher order expansions of λn(k) and λ′
n(k) may be derived

from sharper asymptotics of the Hermite functions than (2.4)–(2.5) (see [25,
Sect. 1.4]).

4. Characterization of Bulk States

This section is devoted to characterizing functions in the bulk space Xb
n,δ as

δ ↓ 0. This is achieved by means of the asymptotic analysis carried out in the
previous sections.

Remember from Sect. 1.1 that ϕ ∈ Xb
n,δ decomposes as in (1.15), that

kn(δ) is defined by (1.14), that ϕn ∈ L2(kn(δ),+∞) and that the current car-
ried by ϕ is given by (1.17). The asymptotic behavior of the quasi-momentum
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kn(δ) when δ ↓ 0 is derived in Sect. 4.1. Finally Sect. 4.2 (resp., Sect. 4.3)
contains the proof of Theorem 1.6 (resp., Theorem 1.8).

4.1. Estimates on Quasi-Momenta Associated with Bulk Components

We already know that kn(δ) goes to +∞ as δ ↓ 0. More precisely:

Lemma 4.1. We have the following asymptotics as δ ↓ 0:

kn(δ) =
√

| log δ| +
2n − 1

4

(
log | log δ|
√| log δ|

)

+ o

(
log | log δ|
√| log δ|

)

. (4.1)

Proof. Since limδ↓0 kn(δ) = +∞ by (1.4), we deduce from the first part of
Theorem 1.4 that

γ2
n22n−1kn(δ)2n−1e−kn(δ)2(1 + O(kn(δ)−2)) = δ.

Set γ̃n := log(γn22n−1). Taking the logarithm of both sides of this identity we
find

γ̃n + (2n − 1) log(kn(δ)) − kn(δ)2 = log δ + O(kn(δ)−2), (4.2)

showing that

kn(δ) ∼
δ↓0

√
| log δ|. (4.3)

Plugging this into (4.2), we get

k2
n(δ) = − log δ + (2n − 1) log

(√
| log δ| + o

(√
| log δ|

))
+ γ̃n + O(kn(δ)−2)

= − log δ +
2n − 1

2
log(− log δ) + γ̃n + o(1),

which entails (4.1). �

Notice that the first-order term in the above asymptotic expansion of
kn(δ) as δ ↓ 0, is independent of n.

4.2. Asymptotic Velocity and Proof of Theorem 1.6

In light of (4.1) we may estimate the asymptotics of λ′
n(k(δ)) as δ ↓ 0. We

combine both parts of Theorem 1.4, getting,
λ′

n(k)
λn(k) − En

= −2k(1 + O(k−2))

and then substitute kn(δ) (resp., the right hand side of (4.1)) for k in the left
hand side (resp., the right hand side) of this identity. Bearing in mind that
λn(kn(δ)) = En + δ, we obtain

λ′
n(kn(δ)) = −2δ

√
| log δ| − 2n − 1

2

(
δ log | log δ|
√| log δ|

)

+ o

(
δ log | log δ|
√| log δ|

)

.

Similarly to (4.1) it turns out that the first order term in this expansion does
not depend on the energy level n.

Let us now upper bound (−λ′
n(k)) in the interval (kn(δ),+∞) with the

following:
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Lemma 4.2. Let n ∈ N
∗. Then there are two constants δn > 0 and μn > 0,

such that the estimate

0 ≤ −λ′
n(k) ≤ 2δ

√
| log δ| + μn

δ log | log δ|
√| log δ| ,

holds for all δ ∈ (0, δn) and all k ≥ kn(δ).

Proof. From the second part of Theorem 1.4, we may find two constants k̃n > 0
and cn > 0, depending only on n, such that we have

∀k ≥ k̃n, 0 ≤ −λ′
n(k) ≤ 22nγ2

nk2ne−k2
(
1 +

cn

k2

)
. (4.4)

With reference to (4.3), we choose δn > 0 so small that kn(δn) ≥ k̃n. We get

∀δ ∈ (0, δn), ∀k ≥ kn(δ), 0 ≤ −λ′
n(k) ≤ 22nγ2

nk2ne−k2
(
1 +

cn

k2

)
, (4.5)

from (4.4). Further, k �→ 22nγ2
nk2ne−k2

(1 + cn/k2) being a decreasing func-
tion on [

√
n,+∞), it follows from (4.5), upon possibly shortening δn so that

kn(δn) ≥ √
n, that

∀δ ∈ (0, δn), ∀k ≥ kn(δ), 0 ≤ −λ′
n(k) ≤ 22nγ2

nkn(δ)2ne−kn(δ)2
(

1 +
cn

kn(δ)2

)
.

(4.6)

Due to the first part of Theorem 1.4 the right hand side of (4.6) is upper
bounded by 2kn(δ)(λn(kn(δ)) − En)(1 + c̃n/kn(δ)2) for some constant c̃n > 0
depending only on n. The desired result follows from this, (4.1) and the identity
λn(kn(δ)) − En = δ. �

Now Theorem 1.6 follows readily from (1.16), (1.17) and Lemma 4.2.

4.3. Proof of Theorem 1.8

For ε ∈ (0, 1) fixed, put an(δ) := (1− ε)kn(δ), where kn(δ) is defined in (1.14).
Let ϕ∈Xb

n,δ be a L2-normalized state and define En(δ) :=
∫ an(δ)

0
‖ϕ(x, ·)‖2

L2(R)dx.
Then we have

∫ (1−ε)
√

| log δ|

x=0

∫

R

|ϕ(x, y)|2dxdy ≤ En(δ), (4.7)

from (4.1), provided δ is small enough. In view of majorizing En(δ), we recall
from (1.15) that

‖ϕ(x, ·)‖L2(R) = ‖ϕ̂(x, ·)‖L2(R) = ‖ϕnun(x, ·)‖L2(kn(δ),+∞),

so we get that

En(δ) =
∫ ∞

kn(δ)

|ϕn(k)|2‖un(·, k)‖2
L2(0,an(δ))dk. (4.8)

Let fn(·, k) be the quasi-mode of h(k) introduced in Sect. 2.2. As

‖un(·, k)‖2
L2(0,an(δ)) ≤ 2(‖un(·, k) − fn(·, k)‖2

L2(R∗
+) + ‖fn(·, k)‖2

L2(0,an(δ))),
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we deduce from (1.16), (4.8) and Proposition 3.1 that for every δ > 0 small
enough, we have

En(δ) ≤ Cnkn(δ)2n−1e−7kn(δ)2/4‖ϕ‖2
L2(Ω) + 2Fn(δ), (4.9)

with Fn(δ) :=
∫ +∞

kn(δ)
|ϕn(k)|2‖fn(·, k)‖2

L2(0,an(δ))dk. Here and henceforth, Cn

is some positive constant, depending only on n. In virtue of (4.7) and (4.9),
we are thus left with the task of estimating Fn(δ) from above. To do that we
use the explicit form (2.9) of the quasi-mode fn, getting

Fn(δ) ≤ 2(ψn(δ) + φn(δ)), (4.10)

with

ψn(δ) :=
∫ ∞

kn(δ)

|α(k)|2|ϕn(k)|2‖Ψn(· − k)‖2
L2(0,an(δ))dk (4.11)

φn(δ) :=
∫ ∞

kn(δ)

|β(k)|2|ϕn(k)|2‖Φn(· − k)‖2
L2(0,an(δ))dk. (4.12)

Bearing in mind that kn(δ) tends to +∞ as δ ↓ 0, we treat each of the two
terms in the right hand side of (4.10) separately.

Performing the change of variable x̃ = x − k in the right hand side of
(4.11) and bearing in mind that kn(δ) tends to +∞ as δ ↓ 0, we deduce from
(2.11) that

ψn(δ) =
∫ +∞

k=kn(δ)

∫ −k+(1−ε)kn(δ)

x̃=−k

|α(k)|2|ϕn(k)|2|Ψn(x̃)|2dx̃dk

≤ Cn

∫ +∞

k=kn(δ)

∫ −k+(1−ε)kn(δ)

x̃=−k

|ϕn(k)|2|Ψn(x̃)|2dx̃dk

≤ Cn

∫ −εkn(δ)

x̃=−∞

∫ −x̃+(1−ε)kn(δ)

k=max(kn(δ),−x̃)

|ϕn(k)|2|Ψn(x̃)|2dkdx̃, (4.13)

for δ sufficiently small. Next, recalling the normalization condition (1.16), giv-
ing

∫
k∈R

|ϕn(k)|2dk = ‖ϕ‖2
L2(Ω) = 1, and taking δ > 0 so small that εkn(δ) is

sufficiently large in order to apply (2.4), we derive from (4.13) that

ψn(δ) ≤ Cn

∫ −εkn(δ)

x̃=−∞
x̃2ne−x̃2

dx̃.

Further, taking into account that
∫ L

−∞ x̃me−x̃2
dx̃ ∼ −Lm−1

2 e−L2
as L → −∞

for any m ∈ N, we may thus find δn(ε) > 0 so that we have

∀δ ∈ (0, δn(ε)), ψn(δ) ≤ Cnε2n−1kn(δ)2n−1e−ε2kn(δ)2 . (4.14)

Similarly, upon substituting φn, (2.12) and (4.12) for ψn, (2.11) and (4.11),
respectively, in the above reasoning, we find that for δ sufficiently small:

φn(δ) ≤ Cn

∫ −εkn(δ)

x̃=−∞

∫ −x̃+(1−ε)kn(δ)

k=max(kn(δ),−x̃)

k4n−2e−2k2 |ϕn(k)|2|Φn(x̃)|2dkdx̃.

(4.15)
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Thus, taking δ > 0 so small that k �→ k4n−2e−2k2
is decreasing for k ≥ kn(δ),

we deduce from (4.15) with the help of (1.16), that

φn(δ) ≤ Cn

(∫ −kn(δ)

x̃=−∞
x̃4n−2e−2x̃2 |Φn(x̃)|2dx̃

+
∫ −εkn(δ)

x̃=−kn(δ)

kn(δ)4n−2e−2kn(δ)2 |Φn(x̃)|2dx̃

)

Applying (2.7) we see that there exists δn(ε) > 0 so small that we have

∀δ ∈ (0, δn(ε)), φn(δ) ≤ Cnkn(δ)2n−3e−kn(δ)2 .

Putting this together with (4.9)–(4.10) and (4.14) we end up getting some
δn(ε) > 0 such that

∀δ ∈ (0, δn(ε)), En(δ) ≤ Cnε2n−1kn(δ)2n−1e−ε2kn(δ)2 .

Now, Theorem 1.8 follows from this, (4.1) and (4.7).
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[25] Popoff, N.: Sur l’opérateur de Schrödinger magnétique dans un domaine diédral.
PhD thesis, Université de Rennes 1 (2012)
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