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Jack Polynomials with Prescribed Symmetry
and Some of Their Clustering Properties

Patrick Desrosiers and Jessica Gatica

Abstract. We study Jack polynomials in N variables, with parameter α,
and having a prescribed symmetry with respect to two disjoint subsets
of variables. For instance, these polynomials can exhibit a symmetry of
type AS, which means that they are antisymmetric in the first m vari-
ables and symmetric in the remaining N − m variables. One of our main
goals is to extend recent works on symmetric Jack polynomials (Baratta
and Forrester in Nucl Phys B 843:362–381, 2011; Berkesch et al. in Jack
polynomials as fractional quantum Hall states and the Betti numbers of
the (k + 1)-equals ideal, 2013; Bernevig and Haldane in Phys Rev Lett
101:1–4, 2008) and prove that the Jack polynomials with prescribed sym-
metry also admit clusters of size k and order r, that is, the polynomials
vanish to order r when k + 1 variables coincide. We first prove some
general properties for generic α, such as their uniqueness as triangular
eigenfunctions of operators of Sutherland type, and the existence of their
analogues in infinity many variables. We then turn our attention to the
case with α = −(k + 1)/(r − 1). We show that for each triplet (k, r, N),
there exist admissibility conditions on the indexing sets, called super-
partitions, that guaranty both the regularity and the uniqueness of the
polynomials. These conditions are also used to establish similar properties
for non-symmetric Jack polynomials. As a result, we prove that the Jack
polynomials with arbitrary prescribed symmetry, indexed by (k, r, N)-
admissible superpartitions, admit clusters of size k = 1 and order r ≥ 2.
In the last part of the article, we find necessary and sufficient condi-
tions for the invariance under translation of the Jack polynomials with
prescribed symmetry AS. This allows to find special families of super-
partitions that imply the existence of clusters of size k > 1 and order
r ≥ 2.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-014-0376-7&domain=pdf
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1. Introduction

1.1. Quantum Sutherland System

In this article, we study properties of polynomials in many variables that
provide the wave functions for the Sutherland model with exchange term,
which is a famous quantum mechanical many-body problem in mathematical
physics. This model describes the evolution of N particles interacting on the
unit circle.

To be more explicit, let φj ∈ T = [0, 2π) be the variable that describes
the position of the jth particle in the system. Let also the operator Ki,j act on
any multivariate function of φ1, . . . , φN by interchanging the variables φi and
φj . Finally, suppose that g is some positive real. Then, the Sutherland model,
with coupling constant g and exchange terms Ki,j , is defined via the following
Schrödinger operator acting on L2(TN ) [6,28]:

H = −
N∑

i=1

∂2

∂φ2
i

+
1
2

∑

i�=j

1

sin2(φi−φj

2 )
g(g − Ki,j). (1.1)

When acting on symmetric functions, the operators Ki,j can be replaced by the
identity and the standard Sutherland model is recovered [31,32]. The latter is
intimately related to Random Matrix Theory [17]. For Ki,j �= 1, the operator
H was used for describing systems of particles with spin (see for instance
[21,29]).

Up to a multiplicative constant, there is a unique eigenfunction Ψ0 of H
with minimal eigenvalue E0 [20]. Explicitly, defining α = g−1 and xj = eiφj ,
where i =

√−1, we have

Ψ0 =
∏

1≤i<j≤N

|xi − xj |1/α, E0 =
N(N2 − 1)

12α2
. (1.2)

The operator H admits eigenfunctions of the form Ψ(x) = Ψ0(x)P (x), where
P (x) is a polynomial eigenfunction of the operator D = Ψ−1

0 ◦ (H − E0) ◦ Ψ0,
that is,

D =
N∑

i=1

(
xi

∂

∂xi

)2

+
2
α

∑

1≤i<j≤N

xixj

xi − xj

(
∂

∂xi
− ∂

∂xj

)

− 2
α

∑

1≤i<j≤N

xixj

(xi − xj)2
(1 − Ki,j) +

N − 1
α

N∑

i=1

xi
∂

∂xi
. (1.3)

1.2. Symmetric Jack Polynomials and their Clustering

Let S{1,...,N} denote the ring of symmetric polynomials in N variables with
coefficients in the field of rational functions in the formal parameter α, here
denoted by C(α). Any homogenous element of degree n in S{1,...,N} can be
indexed by a partition of n, which is sequence λ = (λ1, . . . , λN ) such that
λ1 ≥ · · · ≥ λN ≥ 0 and λ1 + · · · + λN = n. Note that in general, we only
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write the non-zero elements of the partition. Partitions are often sorted with
the help of the following partial order, called the dominance order:

λ ≥ μ ⇐⇒
k∑

i=1

λi ≥
k∑

i=1

μi, ∀ k, (1.4)

where it is assumed that both partitions have the same degree n. A convenient
way to write a symmetric polynomial consists in giving its linear expansion in
the basis of monomial symmetric functions {mλ}λ, where

mλ = xλ1
1 · · · xλN

N + distinct permutations. (1.5)

Since Stanley’s seminal work [30], we know that the symmetric Jack poly-
nomial, denoted Pλ = Pλ(x;α), is the unique symmetric eigenfunction of (1.3)
that is monic and triangular in the monomial basis, where the triangularity is
taken with respect to the dominance ordering. In symbols, Pλ is the unique
element of S{1,...,N} that satisfies the following two properties:

(A1) Pλ = mλ +
∑

μ<λ

cλ,μ(α)mμ,

(A2) DPλ = ελ(α)Pλ,

where ελ(α) is the eigenvalue and will be given later in Lemma 2.1. For
instance,

P(4) = m(4) +
6 (α + 1) m(2,2)

(2α + 1) (3α + 1)

+
4m(3,1)

3α + 1
+

12m(2,1,1)

(2α + 1) (3α + 1)
+

24m(1,1,1,1)

(2α + 1) (3α + 1) (α + 1)
(1.6)

and

P(2,2) = m(2,2) + 2
m(2,1,1)

α + 1
+ 12

m(1,1,1,1)

(α + 2) (α + 1)
. (1.7)

It is worth stressing that uniqueness of the polynomial satisfying (A1) and
(A2) remains valid if we suppose that α is a positive real or an irrational (see
Sect. 2.1). However, when α is a negative rational, the uniqueness is generally
lost. Worse, as the examples above clearly show, the Jack polynomials have
poles for negative rational values of α.

Nevertheless, Feigin et al. [16] showed that for certain classes of partitions,
called admissible partitions, the Jack polynomial are not only regular at certain
negative fractional values of α but also exhibit remarkable vanishing properties
when some variables coincide.

Definition 1.1 (Admissibility). Let k and r − 1 be positive integers such that
gcd(k + 1, r − 1) = 1. A partition λ = (λ1, . . . , λN ) is said to be (k, r,N)-
admissible if

λi − λi+k ≥ r ∀ 1 ≤ i ≤ N − k. (1.8)
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Proposition 4.1 in [16] states the following: if λ is (k, r,N)-admissible and
α is equal to

αk,r = −k + 1
r − 1

, (1.9)

then Pλ(x;α) is regular and vanishes when k + 1 variables coincide, that is,
Pλ(x;αk,r)|xN−k=···=xN

= 0. Bernevig and Haldane [7,8] later used the above
vanishing property for modeling fractional quantum Hall states with Jack poly-
nomials. They moreover conjectured that the Jack polynomials indexed by
(k, r,N)-admissible partitions satisfy the following clustering property, which
gives a more precise statement about how the polynomials vanish.

Definition 1.2 (Clustering property). Let k, r ∈ Z+. A symmetric polynomial
P admits a cluster of size k and order r if it vanishes to order at least r when
k + 1 of the variables are equal, that is,

P (x1, . . . , xN−k,

k times︷ ︸︸ ︷
z, . . . , z) =

N−k∏

j=1

(xj − z)rQ(x1, . . . , xN−k, z) (1.10)

for some polynomial Q in N − k + 1 variables.

Let us illustrate how the clustering property works by returning to the
examples given in (1.6) and (1.7). Clearly, the partition (4) can be admissi-
ble only for N = 2 and in fact, it is both (1, 2, 2)-admissible and (1, 4, 2)-
admissible. There are two possible values for α: α1,2 = −2 and α1,4 = −2/3.
One can check that as expected, P(4) admits clusters of size k = 1 whose
respective order is r = 2 and r = 4:

P(4)(x1, z;−2) =
1
5

(x1 − z)2
(
5x1

2 + 6x1z + 5z2
)

and P(4)(x1, z;−2/3) = (x1 − z)4.

The partition (2, 2) is (2, 2, 4)-admissible and one easily sees that the associated
Jack polynomial admits a cluster of size k = 2 and order r = 2:

P(2,2)(x1, x2, z, z;−3) = (x1 − z)2(x2 − z)2.

Note that for the above examples and contrary to the general case (e.g., see
the introduction of [13]), the order of vanishing is exactly equal to r.

Baratta and Forrester [4] proved that the Jack polynomials (along with
other symmetric polynomials such as Hermite and Laguerre) indexed with
(1, r,N)-admissible partitions follow Eq. (1.10) at α1,r.1 The same authors
also proved clustering properties for k > 1 in the case of partitions associated
to translationally invariant Jack polynomials [19]. Very recently, Berkesch,
Griffeth, and Sam proved the general k ≥ 1 clustering property for Jack poly-
nomials [5]. Their method was based on the representation theory of the ratio-
nal Cherednik algebra. In fact, reference [5] also contains the proof for more
general vanishing properties in the case of many clusters, some of them having
been conjectured earlier in [7,8].

1 The proof in [4] is not entirely complete, since an implicit assumption about the uniqueness
of the solution to (A1) and (A1) was made. See Remark 3.18.
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1.3. Jack Polynomials with Prescribed Symmetry

The operator D obviously has polynomial eigenfunctions of different symmetry
classes. First, as explained earlier, there are the symmetric Jack polynomials
Pλ(x;α). Second, there are the non-symmetric Jack polynomials, which were
introduced by Opdam [27]. These polynomials, denoted by Eη(x;α), where η is
a composition, can be defined as the common eigenfunctions of the commuting
set {ξj}N

j=1, where each ξj is a first-order differential operator, often called a
Cherednik operator [see Eq. (2.4)].

However, as first shown by Baker and Forrester [2], we can use the lat-
ter polynomials to construct orthogonal eigenfunctions of D whose symme-
try property interpolates between the completely symmetric Jack polynomi-
als, Pλ(x;α), and the completely antisymmetric ones, sometimes denoted by
Sλ(x;α). In other words, there exist eigenfunctions that are symmetric in some
given subsets of {x1, . . . , xN} and antisymmetric in other subsets, all subsets
of variables being mutually disjoint. Such eigenfunctions are called Jack poly-
nomials with prescribed symmetry and were studied in [1–3,14,15,18,22]. Here
we limit our study to the case of two subsets.

Before given the precise definition of the Jack polynomials with pre-
scribed symmetry, let us introduce some more notation. For a given set
K = {k1, . . . , kM} ⊆ {1, . . . , N}, let AsymK and SymK , respectively, denote
the antisymmetrization and the symmetrization operators with respect to the
variables xk1 , . . . , xkM

. If f(x) is an element of V = C(α)[x1, . . . , xN ], then
SymKf(x) belongs to SK , the submodule of V whose elements are symmet-
ric polynomials in xk1 , . . . , xkM

. Similarly, AsymKf(x) belongs to AK , the
submodule of antisymmetric polynomials in xk1 , . . . , xkM

.

Definition 1.3. For a given positive integer m ≤ N , set I = {1, . . . , m} and
J = {m+1, . . . , N}.2 Moreover, let λ = (λ1, . . . , λm) and μ = (μ1, . . . , μN−m)
be partitions. The monic Jack polynomial with prescribed symmetry of type
antisymmetric-symmetric (AS for short) and indexed by the ordered set Λ =
(λ1, . . . , λm;μ1, . . . , μN−m) is defined as follows:

PAS
Λ (x;α) = cAS

Λ AsymISymJEη(x;α), (1.11)

where η is a composition equal to (λm, . . . , λ1, μN−m, . . . , μ1) while the nor-
malization factor cAS

Λ is such that the coefficient of xλ1
1 · · · xλm

m xμ1
m+1 · · · xμN−m

N

in PAS
Λ (x;α) is equal to one. Other types of Jack polynomials are defined sim-

ilarly:

PAA
Λ (x;α) = cAA

Λ AsymIAsymJEη(x;α),

P SA
Λ (x;α) = cSA

Λ SymIAsymJEη(x;α),

P SS
Λ (x;α) = cSS

Λ SymISymJEη(x;α).

The coefficients cΛ are given in Eqs. (2.17)–(2.20).

2 The above definition could be obviously generalized by considering I = {i1, . . . , im} and
J = {j1, . . . , jN−m} as two general disjoint sets such that I ∪ J = {1, . . . , N}. However,
this would make the presentation more intricate. One easily goes from one definition to the
other by permuting the variables.
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The above polynomials, respectively, belong to AI ⊗ SJ , AI ⊗ AJ ,
SI ⊗ AJ , SI ⊗ SJ , which are all vector spaces over C(α). These spaces are
spanned by monomials, denoted by mΛ, each of them being indexed by an
ordered pair of partitions Λ = (λ1, . . . , λm;μ1, . . . , μN−m). Analogously to the
Jack polynomials with prescribed symmetry, the monomials are defined by the
action of AsymK and SymK , where K is either I or J , on the non-symmetric
monomial xλ1

1 · · · xλm
m xμ1

m+1 · · · xμN−m

N . See Sect. 2.3 for more details.
The case AS is very special since the polynomials PAS

Λ (x;α) can be used
to solve the supersymmetric Sutherland model [10], which is a generalization
of the above model that also involves Grassmann variables. In this context,
the indexing set Λ = (λ1, . . . , λm;μ1, . . . , μN−m) is called a superposition—
equivalently, it could be called an overpartition (see [9])—and is such that the
partition λ = (λ1, . . . , λm) is strictly decreasing. The correct diagrammatic
representation of superpartitions, first given in [11], proved to be very useful.
It allowed, for instance, the derivation of a very simple evaluation formula for
PAS

Λ (x;α) [12], which in turn led to the first results regarding the clustering
properties of these polynomials [13]. We adopt here a slightly more general
point of view for superpartitions.

Definition 1.4 (Superpartitions and diagrams). The ordered set

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN )

is a superpartition Λ of bi-degree (n|m) if it satisfies the following conditions:

Λ1 ≥ · · · ≥ Λm ≥ 0 Λm+1 ≥ · · · ≥ ΛN ≥ 0
N∑

i=1

Λi = n.

If (Λ1, . . . ,Λm) is moreover strictly decreasing, then Λ is called a strict super-
partition. Equivalently, we can write the superpartition Λ as a pair of partitions
(Λ�,Λ∗) such that

Λ� = (Λ1 + 1, . . . ,Λm + 1,Λm+1, . . . ,ΛN )+

Λ∗ = (Λ1, . . . ,Λm,Λm+1, . . . ,ΛN )+,

where + indicates the operation that reorder the elements of a composition in
decreasing order. The diagram of Λ is obtained from that of Λ� by replacing
the boxes belonging to the skew diagram Λ�/Λ∗ by circles. The dominance
order for superpartitions is defined as follows:

Λ > Ω ⇐⇒ Λ∗ > Ω∗ or Λ∗ = Ω∗ and Λ� > Ω�.

For instance, the ordered set Λ = (4, 3, 0; 4) is a strict superpartition of
bi-degree (11|3). It can be written as a pair (Λ�,Λ∗), where Λ� = (4 + 1, 3 +
1, 0 + 1, 4)+ = (5, 4, 4, 1) and Λ∗ = (4, 4, 3, 0). The diagram associated to Λ is
obtained as follows:
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Λ� = Λ∗ =

=⇒ Λ�/Λ∗ = =⇒ Λ =

�

�
�

Similarly, Ω = (5, 3, 1; 2) and Γ = (3, 1, 0; 5, 2) are superpartitions of the same
bi-degree. The associated diagrams are, respectively,

Ω =

�
�

�

and Γ =

�

�
�

One easily verifies that Ω > Γ, while Λ is comparable with neither Ω nor Γ.

1.4. Main Results

Our first aim is to give a very simple characterization of Jack polynomials with
prescribed symmetry that generalizes Properties (A1) and (A2). For this, we
use differential operators of Sekiguchi type:

S∗(u) =
N∏

i=1

(u + ξi) and S�(u, v) =
m∏

i=1

(u + ξi + α)
N∏

i=m+1

(v + ξi), (1.12)

where u and v are formal parameters. Note we will often set v = u since
this case leads to simpler eigenvalues. It is a simple exercise to show that
the symmetric Jack polynomial Pλ(x;α) is an eigenfunction of S∗(u), with
eigenvalue

ελ(α, u) =
N∏

i=1

(u + αλi − i + 1). (1.13)

The same polynomial cannot be an eigenfunction of S�(u, v), since the latter
does not preserve S{1,...,N}. In fact, S∗ and S� together preserve the spaces
AI ⊗SJ , AI ⊗AJ , SI ⊗AJ , and SI ⊗SJ . They moreover serve as generating
series for the conserved quantities of the Sutherland model with exchange
terms:

S∗(u) =
N∑

d=0

uN−dHd, S�(u, v) =
m∑

d=0

N−m∑

d′=0

um−dvN−m−d′Id,d′ ,

where all the operators Hd and Id,d′ commute among themselves and preserve
the spaces mentioned above. Amongst them, the most important are

H = H2 =
N∑

i=1

ξi
2, I = I1 =

m∑

i=1

ξi. (1.14)
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Note that the operator D introduced in (1.3) is related to the operators H1

and H2 via

H2 + (N − 1)H1 = α2D +
N(N − 1)(2N − 1)

6
.

Theorem 1.5 (Uniqueness at generic α). Let Λ be a superpartition of bi-degree
(n|m). Suppose that α is a formal parameter or a complex number that is
neither zero nor a negative rational. Then, the Jack polynomial with prescribed
symmetry PΛ is the unique polynomial satisfying

(B1) PΛ = mΛ +
∑

Γ<Λ

cΛ,ΓmΓ, cΛ,Γ ∈ C(α);

(B2) H PΛ = dΛ PΛ and I PΛ = eΛ PΛ.

for some cΛ,Γ, dΛ, eΛ ∈ C(α). Moreover, the eigenvalues dΛ and eΛ can be
computed explicitly; they are given in Eqs. (2.22) and (2.23), respectively.

Our second aim is to prove clustering properties for Jack polynomials with
prescribed symmetry. These properties appear only for negative fractional val-
ues of α. As explained in Sect. 3, Theorem 1.5 is no longer valid for such
α, so we must restrict ourselves to polynomials indexed by admissible super-
partitions. In the case of strict superpartitions, the appropriate admissibility
condition was first given in [13]—below, this is called the weak admissibility.
When we symmetrize with respect to the first set of variables, then a more
restrictive definition of the admissibility is required.

Definition 1.6 (Admissibility). Let k and r − 1 be positive integers such that
gcd(k + 1, r − 1) = 1. The superpartition Λ is weakly (k, r,N)-admissible if
and only if

Λ�
i − Λ∗

i+k ≥ r ∀ i ≤ N − k,

while it is moderately (k, r,N)-admissible if and only if

Λ�
i − Λ�

i+k ≥ r ∀ i ≤ N − k,

and it is strongly (k, r,N)-admissible if and only if

Λ�
i − Λ�

i+k ≥ r ∀ i ≤ N − k and Λ∗ is (k + 1, r,N)-admissible

When Λ is said to be (k, r,N)-admissible, without specifying weakly, moder-
ately or strongly, it is understood that either Λ is strongly (k, r,N)-admissible
or Λ is both strict and weakly (k, r,N)-admissible.

Theorem 1.7 (Uniqueness and regularity at αk,r). Let Λ be a superpartition
of bi-degree (n|m) and (k, r,N)-admissible. Then, the Jack polynomial with
prescribed symmetry obtained from (B1) and (B2) is regular at α = αk,r.
Moreover, it is the unique polynomial satisfying

(C1) PΛ = mΛ +
∑

Γ<Λ

cΛ,ΓmΓ, cΛ,Γ ∈ C,
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(C2) S∗(u)
∣∣
α=αk,r

PΛ = εΛ∗(αk,r, u)PΛ

S�(u, u)
∣∣
α=αk,r

PΛ = εΛ�(αk,r, u)PΛ.

The eigenvalues are given in (1.13).

In the case k = 1, a similar theorem holds for the non-symmetric Jack
polynomials indexed by a composition of the form (Λ1, . . . ,Λm,Λm+1, . . . ,ΛN ),
where the entries Λi belong to the admissible superpartition of the previous
theorem. Combining this result with Definition 1.3 allows us to prove that
the general k = 1 clustering property for Jack polynomials with prescribed
symmetry. In the AS case, this property was first conjectured in [13].

Proposition 1.8 (Clustering property for k = 1). Let Λ be (1, r,N)-admissible,
where r is even. For the symmetry types AS, SS, and SA, let K, respectively,
stand for J , J , and I. Then,

PΛ(x;α1,r) =
∏

i,j∈K
i<j

(xi − xj)rQ(x),

while for the symmetry type AA,

PΛ(x;α1,r) =
∏

1≤i<j≤N

(xi − xj)r−1Q(x).

The precise form of Q(x) will be given in Sect. 3.6.

We have not been able to prove the natural generalization of the above
proposition: All Jack polynomials with prescribed symmetry, indexed by
(k, r,N)-admissible superpartitions, admit a cluster of size k and order r at
α = αk,r. However, following an idea of Baratta and Forrester [4], we know
that if a polynomial is invariant under translation and satisfies basic factor-
ization and stability properties (see Lemma 2.7 and Proposition 2.9), then the
polynomial can admit clusters of size k > 1. In the last part of the article,
we thus turn our attention to the translationally invariant Jack polynomials
with prescribed symmetry. Exploiting a result obtained in the context of the
supersymmetric Sutherland model, so only valid for the AS case, we find all
strict and admissible superpartition that lead to invariant polynomials.

Theorem 1.9 (Translation invariance). Let Λ be a strict and weakly (k, r,N)-
admissible superpartition. Then, the Jack polynomial with prescribed symmetry
PAS

Λ (x;αk,r) is invariant under translation if and only if one of the following
two conditions is satisfied:
(D1) all corners (circles or boxes) of Λ are located at the upper corner of a

hook of type Bk,r, B̃k,l, Ck,r, or C̃k,l, except for one corner, which must
be located at the point (N − k, r);

(D2) all corners of Λ are circles such that if they are not interior, they are
located at the upper corner of a hook of type Ck,r or C̃k,l, except for at
most one non-interior corner (i, j), which is such that i = N+1−k̄(k+1)
y j = k̄(r − 1) + 1 for some k̄.
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. . .

...

r−1

k

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

. . .

...

r−1

k + 1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

. . .

...

r

k

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

. . .

...

r

k + 1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Figure 1. Types of hooks. From left to right, Ck,r, C̃k,r, Bk,r

and B̃k,r

Types of hooks are given in Fig. 1. Interior and non-interior corners are defined
in Definition 4.4.

Proposition 1.10 (Clustering property for k ≥ 1). Let Λ be a strict and weakly
(k, r,N)-admissible superpartition of bi-degree (n|m). Suppose moreover that
Λ satisfies (D1) or (D2) and has a length 
 not greater than N − k. Then, for
some polynomial Q,

PAS
Λ (x1, . . . , xN−k,

k times︷ ︸︸ ︷
z . . . , z;αk,r) =

N−k∏

j=m+1

(xj − z)rQ(x1, . . . , xN−k, z).

2. Basic Theory for Generic α

In this section we develop the basic theory of the Jack polynomials with pre-
scribed symmetry. We assume here that α is generic, which means in the
present context that α is either a formal parameter or a complex number that
is not zero nor a negative rational.

2.1. Compositions, Partitions, and Superpartitions

We recall that a composition is an ordered list of non-negative integers. We
say that η = (η1, . . . , ηN ) is a composition of n, or has degree n, if

|η| :=
N∑

i=1

ηi = n.

A partition λ = (λ1, . . . , λN ) of n is a composition of n whose elements
are decreasing: λ1 ≥ · · · ≥ λN ≥ 0. The number of non-zero elements in a
partition λ is called the length and it is usually denoted by 
 or 
(λ). Each
partition is associated with a diagram that contains 
 rows. The highest row,
which is considered as the first one, contains λ1 boxes, the second row, which
is just below the first one, contains λ2 boxes, and so on, all boxes being left
justified. The box located in the ith row and the jth is denoted by (i, j).
Such coordinates are also called cells. Given a partition λ, its conjugate λ′ is
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obtained by reflecting λ’s diagram in the main diagonal. Given a cell s = (i, j)
in the diagram associated to λ, we let

aλ(s) = λi − j a′
λ(s) = j − 1 lλ(s) = λ′

j − i l′λ(s) = i − 1.

The quantities aλ(s), a′
λ(s), lλ(s), l′λ(s) are, respectively, called the arm-length,

arm-colength, leg-length, and leg-colength of s in λ’s diagram.
Note that throughout the article, we compare the partitions by using the

dominance order, which is defined in (1.4).
The following lemma will be used later in the article. For α a formal

parameter, it was first stated without proof in Stanley’s article [30].

Lemma 2.1. For any partition λ, let

b(λ) =
�∑

i=1

(i − 1)λi and ελ(α) = αb(λ′) − b(λ).

Suppose that α is generic. Then,

λ > μ =⇒ ελ(α) �= εμ(α).

Proof. Let us first define the lowering operators as follows:

Li,j(. . . , λi, . . . , λj , . . .)

=

{
(. . . , λi − 1, . . . , λj + 1, . . .) if i < j and λi − λj > 1
(. . . , λi, . . . , λj , . . .) otherwise.

(2.1)

Note that in general, if λ is a partition, then Li,jλ is a composition. However,
from [26, Result (1.16)], one easily deduces that

μ < λ ⇐⇒ μ = Lik,jk
◦ · · · ◦ Li1,j1λ (2.2)

for some sequence ((i1, j1), . . . , (ik, jk)) such that Lik′ ,jk′ ◦ · · · ◦ Li1,j1λ is a
partition for all 1 ≤ k′ ≤ k.

Now, let us suppose that λ̄ = Li,jλ is a partition for some i < j. Then,
b(λ̄) − b(λ) = j − i > 0. This last result together with Eq. (2.2) proves the
following:

μ < λ =⇒ b(μ) > b(λ).

Moreover, as is well known [26, Result (1.11)], λ > μ if and only if μ′ > λ′.
Consequently,

ελ(α) − εμ(α) = α
(
b(λ′) − b(μ′)

)
+ b(μ) − b(λ) = αp + q,

where p and q are positive integers. Therefore, ελ(α) − εμ(α) = 0 only if α is
a negative rational, and the lemma follows. �

To each composition η corresponds a unique partition η+, which is
obtained from η by reordering the elements of η in decreasing order:

η+ = (η+
1 , . . . , η+

N ) ⇐⇒ η+
i = ησ(i)

for some σ ∈ SN such that η+
1 ≥ · · · ≥ η+

N .
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This allows to define the dominance order between compositions as follows:

η  μ ⇐⇒ η+ > μ+ or η+ = μ+ and
k∑

i=1

ηi ≥
k∑

i=1

μi ∀ k,

where it is also assumed that η �= μ and of the same degree.
According to Definition 1.4, there are two useful ways of writing a super-

partition Λ as a pair of partitions. On the one hand, there is the representation
that provides the correct indices for the polynomials with prescribed symme-
try:

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN )
where Λ1 ≥ · · · ≥ Λm ≥ 0 and Λm+1 ≥ · · · ≥ ΛN ≥ 0.

On the other hand, there is the representation naturally associated with the
diagrams:

Λ = (Λ�,Λ∗) where Λ�
i ≥ Λ�

i+1, Λ∗
i ≥ Λ∗

i+1, Λ�
i − Λ∗

i = 0, 1.

The elements of Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) all come from those of Λ∗:
Λ1 is the first elements of Λ∗ such that Λ�

i −Λ∗
i = 1 for some i, Λ2 is the second,

and so on, till Λm, which is the smallest elements of Λ∗ such that Λ�
i −Λ∗

i = 1
for some i; Λm+1 is the first elements of Λ∗ such that Λ�

i − Λ∗
i = 0 for some

i, Λm+2 is the second, and so on till ΛN , which is the smallest elements of Λ∗

such that Λ�
i − Λ∗

i = 0 for some i. Conversely,

Λ� = (Λ1 + 1, . . . ,Λm + 1,Λm+1, . . . ,ΛN )+

and Λ∗ = (Λ1, . . . ,Λm,Λm+1, . . . ,ΛN )+.

Let γ = (γ1, . . . , γN ) be a composition of n. Fix a positive integer m not
greater than N . We define the map ϕm as

ϕm(γ) = (Γ∗,Γ�), Γ∗ = (γ1, . . . , γN )+,

Γ� = (γ1 + 1, . . . , γm + 1, γm+1, . . . , γN )+.

In other words, ϕm maps the composition γ to the superpartition Γ = (Γ∗,Γ�)
of bi-degree (n|m), which is equivalent to

Γ =
(
(γ1, . . . , γm)+; (γm+1, . . . , γN )+

)
.

Lemma 2.2. Let Λ = ϕm(λ) and Γ = ϕm(γ), where λ and γ are compositions
of the same degree. If λ  μ, then Λ > Γ.

Proof. There are two possible cases:

(1) Suppose that λ+ > μ+. Then, obviously, Λ∗ > Γ∗.
(2) Suppose that (i) λ+ = μ+ and (ii)

∑k
i=1 λi ≥ ∑k

i=1 μi, ∀ k. Equation (i)
implies that Λ∗ = Γ∗. Equation (ii) implies that μ is a permutation of λ
that can be written as

μ = sil,jl
◦ · · · ◦ si1,j1λ,
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where each si,j is a transposition such that

si,j(λ1, . . . λi, . . . , λj , . . . , λN )

=

{
(λ1, . . . λj , . . . , λi, . . . , λN ) if i < j and λi > λj

(λ1, . . . λi, . . . , λj , . . . , λN ) otherwise.
(2.3)

Now, if 1 ≤ i < j ≤ m or m + 1 ≤ i < j ≤ N , then ϕm(si,jλ) = Λ.
This means that si,j induces, via the map ϕm, a nontrivial action on the
superpartition Λ only if i ∈ I = {1, . . . , m} and j ∈ J = {m + 1, . . . , N}.
To be more explicit, let i′ and j′ be such that ϕm maps λi to Λi′ and λj

to Λj′ , respectively. Then,

ϕm(si,jλ) = ŝi′,j′ϕm(λ) = ŝi′,j′Λ,

where ŝi′,j′Λ is equal to
(
(Λ1, . . . ,Λj′ , . . . ,Λm)+; (Λm+1, . . . ,Λi′ , . . . ,ΛN )+

)

whenever if i′ ∈ I, j′ ∈ J and Λi′ > Λj′ , while ŝi′,j′Λ = Λ otherwise.
Therefore, Λ∗ = Γ∗ and

Γ = ϕm(μ) = ϕm(sil,jl
◦ · · · ◦ si1,j1λ) = si′

l,j
′
l
◦ · · · ◦ si′

1,j′
1
Λ,

which implies that Γ� < Λ�, as expected. �

Lemma 2.3. For any superpartition Λ, let

εΛ =
∑

s∈Λ�/Λ∗

(
α a′

Λ�(s) − l′Λ�(s)
)
.

Suppose that α is generic. Then,

Λ∗ = Ω∗ and Λ� > Ω� =⇒ εΛ(α) �= εΩ(α).

Proof. Let Ω be a superpartition be such that Ω∗ = Λ∗ and Ω� = Li,jΛ� for
some i < j, where Li,j is the lowering operator defined in Eq. (2.1). Note that
this assumption makes sense only if Λ∗

i > Λ∗
j . Then, the diagram of Ω� differs

from that of Λ� only in rows i and j, so that
∑

s∈Λ�/Λ∗
a′
Λ�(s) −

∑

s∈Ω�/Ω∗
a′
Ω�(s) = Λ∗

i − Λ∗
j > 0,

and
∑

s∈Λ�/Λ∗
l′Λ�(s) −

∑

s∈Ω�/Ω∗
l′Ω�(s) = i − j < 0.

Finally, recalling (2.2), we find that

εΛ(α) − εΩ(α) = αp + q, where p, q ∈ Z+.

Clearly, if α is not a negative rational, then εΛ(α)−εΩ(α) �= 0, as expected. �
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2.2. Non-Symmetric Jack Polynomials

There are many ways to define the non-symmetric Jack polynomial [27] (see
also [23]). The most natural for us is to characterize them as triangular eigen-
functions of commuting difference-differential, first found in physics in [6], and
later generalized to other root systems by Cherednik. We define these operators
as follows:

ξj = αxj∂xj
+

∑

i<j

xj

xj − xi
(1 − Kij) +

∑

i>j

xi

xj − xi
(1 − Kij) − (j − 1), (2.4)

where the operators Ki,j give the action of the symmetric group on functions
of N variables, i.e.,

Ki,jf(x1, . . . , xi, . . . , xj , . . . , xN ) = f(x1, . . . , xj , . . . , xi, . . . , xN ).

Note that we will use the following shorthand notation:

Ki = Ki,i+1.

Let η be a composition and let α be formal parameter or a non-zero
complex number not equal to a negative rational. Then, the non-symmetric
Jack polynomial Eη(x;α), where η is a composition, is the unique polynomial
satisfying

(A1′) Eη(x;α) = xη +
∑

ν≺η

cη,νxν , cη,ν ∈ C(α),

(A2′) ξjEη = ηjEη ∀j = 1, . . . , N,

where the eigenvalues are given by

ηj = αηj − #{i < j|ηi ≥ ηj} − #{i > j|ηi > ηj}. (2.5)

One important property of the non-symmetric Jack polynomials is their
stability with respect to the number of variables (see [23, Corollary 3.3]). To be
more precise, let η = (η1, . . . , ηN ) and η− = (η1, . . . , ηN−1) be compositions.
Then,

Eη(x1, . . . , xN )
∣∣
xN=0

=

{
0 if ηN > 0,

Eη−(x1, . . . , xN−1) if ηN = 0.
(2.6)

We now prove a closely related property that will help us to establish the
stability of the Jack polynomials with prescribed symmetry.

Lemma 2.4. Let λ = (λ1, . . . , λm) and μ = (μm+1, . . . , μN−1) be partitions.
Let also

η = (λm, . . . , λ1, 0, μN−1, . . . , μm+1) and η− = (λm, . . . , λ1, μN−1, . . . , μm+1).

Finally assume that μm+1 > 0. Then,

Eη(x1, . . . , xm, xN , xm+1, . . . , xN−1)
∣∣
xN=0

= Eη−(x1, . . . , xm, xm+1, . . . , xN−1).
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Proof. We first note that

Eη(x1, . . . , xm, xN , xm+1, . . . , xN−1)
= KN−1 . . . Km+1Eη(x1, . . . , xm, xm+1, . . . , xN−1, xN ).

Now, the action of the symmetric group on the non-symmetric Jack polyno-
mials is such that (see [2, Eq. (2.21)])

KiEη =

⎧
⎪⎪⎨

⎪⎪⎩

1
δi,η

Eη + (1 − 1
δ2

i,η
)EKi(η), ηi > ηi+1

Eη, ηi = ηi+1

1
δi,η

Eη + EKi(η), ηi < ηi+1,

(2.7)

where δi,η = ηi − ηi+1. In our case, given that we are using a composition in
increasing order, we can use successively the third line of (2.7) and get

Eη(x1, . . . , xm, xN , xm+1, . . . , xN−1) = EKN−1...Km+1(η)(x1, . . . , xN )

+
∑

γ

cλ,γEγ(x1, . . . , xN ).

In the last equation, the sum is taken over the compositions γ of the form

γ = (λm, . . . , λ1, ω(0, μN−1, . . . , μm+1)),

where ω is a permutation given by the composition by a strict subsequence
of the transpositions KN−1, . . . ,Km+1, and the coefficients cλ,γ are products
of 1/δi,j . The important point here is that for any such γ, we have γN �= 0.
Moreover,

KN−1 . . . Km+1(η) = (λm, . . . , λ1, μN−1, . . . , μm+1, 0).

Then, applying the stability property (2.6), we find Eγ(x1, . . . , xN )
∣∣
xN=0

= 0
and EKN−1...Km+1(η)(x1, . . . , xN ) = Eη−(x1, . . . , xN ), which completes the
proof. �

Lemma 2.5. Let γ be a composition. Then, Eγ(x;α) is an eigenfunction of the
operators S∗(u) and S�(u, v) defined in (1.12). Moreover, let Γ = ϕm(γ) be
the associated superpartition to γ. Then,

S∗(u)Eγ = εΓ∗(α, u)Eγ S�(u, u)Eγ = εΓ�(α, u)Eγ ,

where the eigenvalue ελ(α, u) is defined in (1.13).

Proof. The fact that the non-symmetric Jack polynomials are eigenfunctions
of the Sekiguchi operators immediately follows from ξiEγ = γ̄iEγ . Explicitly,

S∗(u)Eγ =
∏

i=1

(u + γ̄i)Eγ ,

S�(u, v)Eγ =
m∏

i=1

(u + γ̄i + α)
N∏

i=m+1

(v + γ̄i)Eγ .

In order to express the eigenvalues in terms of partitions rather than
composition, we need to consider permutations on words with N symbols.
Amongst all the permutations w such that γ = w(γ+), there exists a unique
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one, denoted by wγ , of minimal length. Equivalently, wγ is the smallest element
of SN satisfying

γwγ(i) = γ+
i (2.8)

Now, let δ− = (0, 1, . . . , N − 1). As is well known, the eigenvalue γ̄i is equal to
the ith element of the composition (αγ − wγδ−), which means that

γ̄i = αγ+

w−1
γ (i)

− δ−
w−1

γ (i)

or equivalently

γ̄w(i) = αγ+
i − (i − 1).

In our case, γ+ = Γ∗, so that
∏

i=1

(u + γ̄i) =
∏

i=1

(u + αΓ∗
i − i + 1),

which is the first expected eigenvalue. For the second Sekiguchi operator, we
note that the shifted composition (γ1 + 1, . . . , γm + 1, γm+1, . . . , γN ) is equal
to wγ(Γ�). Consequently,

m∏

i=1

(u + γ̄i + α)
N∏

i=m+1

(u + γ̄i) =
N∏

i=1

(u + αΓ�
i − i + 1),

and the lemma follows. �

2.3. Jack Polynomials with Prescribed Symmetry

For any subset K of {1, . . . , N}, let SK denote the subgroup of the permutation
group of {1, . . . , N} that leaves the complement of K invariant. The antisym-
metrization and symmetrization operators for K are defined as follows:

AsymKf(x) =
∑

σ∈SK

(−1)σf(xσ(1), . . . , xσ(N)) and

SymKf(x) =
∑

σ∈SK

f(xσ(1), . . . , xσ(N)).

Thus, for any pair (i, j) of elements K, we have

Ki,j AsymKf(x) = −AsymKf(x) and Ki,j SymKf(x) = SymKf(x).

Note that in the following paragraphs, the set K will be replaced by either
I = {1, . . . , m} or J = {m + 1, . . . , N}.

The vector space AI ⊗SJ |n is composed of all polynomials of total degree
n that are antisymmetric with respect to the set of variables {x1, . . . , xm}, and
symmetric with respect to {xm+1, . . . , xN}. It is spanned by all polynomials
of the form AsymISymJxη, where η is a composition of n. However, by con-
sidering the symmetry of the polynomials, we see that AI ⊗ SJ |n is spanned
by the following set of linearly independent polynomials:

{mAS
Λ |Λ is a strict superpartition of bi-degree (n|m)},
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where the monomial mΛ is defined as

mAS
Λ (x) = aλ(x1, . . . , xm)mμ(xm+1, . . . , xN ),
λ = (Λ1, . . . ,Λm), μ = (Λm+1, . . . ,ΛN ).

We recall that in the last equation, aλ and mμ, respectively, denote the anti-
symmetric and symmetric monomial functions.

Similarly, the following sets provide bases for the vector spaces AI ⊗AJ |n,
SI ⊗ AJ |n, SI ⊗ SJ |n, respectively:

{mAA
Λ |Λ is a strict superpartition of bi-degree (n|m) such that

Λm+1 > · · · > ΛN}, (2.9)

{mSA
Λ |Λ is a superpartition of bi-degree (n|m) such that Λm+1 > · · · > ΛN},

(2.10)

{mSS
Λ |Λ is a superpartition of bi-degree (n|m)}, (2.11)

where

mAA
Λ (x) = aλ(x1, . . . , xm)aμ(xm+1, . . . , xN ), (2.12)

mSA
Λ (x) = mλ(x1, . . . , xm)aμ(xm+1, . . . , xN ), (2.13)

mSS
Λ (x) = mλ(x1, . . . , xm)mμ(xm+1, . . . , xN ). (2.14)

We recall that the Jack polynomials with prescribed symmetry AS, AA,
SA, SS have been introduced in Definition 1.3. They are indexed by a super-
partition Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) and are defined as follows:

PΛ(x;α) = cΛ OI,JEη, (2.15)

where OI,J stands for the appropriate composition of antisymmetrization
and/or symmetrization operators, and

η = (Λm, . . . ,Λ1,ΛN , . . . ,Λm+1). (2.16)

Moreover, the coefficient cΛ is such that the polynomial PΛ is monic, i.e., the
coefficient of mΛ in PΛ is exactly one. However, our definition is such that only
the non-symmetric monomial OI,Jxη contributes to the coefficient of mΛ, so
it is an easy exercise to extract the normalization coefficient:

cAS
Λ =

(−1)m(m−1)/2

fμ
, (2.17)

cAA
Λ = (−1)m(m−1)/2(−1)(N−m)(N−m−1)/2, (2.18)

cSA
Λ =

(−1)(N−m)(N−m−1)/2

fλ
, (2.19)

cSS
Λ =

1
fλfμ

, (2.20)

where λ = (Λ1, . . . ,Λm), μ = (Λm+1, . . . ,ΛN ), fλ =
∏

i nλ(i)!, and nλ(i) is
the multiplicity of i in λ.



2416 P. Desrosiers and J. Gatica Ann. Henri Poincaré

We now list some properties of the Jack polynomials with prescribed
symmetry that immediately follow from their Definition (2.15).

Lemma 2.6 (Regularity for generic α). PΛ(x;α) is singular only if α is zero
or a negative rational.

Proof. All the dependence upon α comes from the non-symmetric Jack poly-
nomials, so it is sufficient to consider the possible singularities of the latter.
Let us now recall a fundamental result of Knop and Sahi [23]: There is a
vη(α) ∈ N[α] such that all the coefficients in vη(α)Eη(x;α) also belong to
N[α]. Thus, the only singularities of Eη(x;α) are poles, which can occur at
α = 0 or α ∈ Q−. �
Lemma 2.7 (Simple product). For any superpartition

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ),

let

Λ+ = (Λ1 + 1, . . . ,Λm + 1;Λm+1 + 1, . . . ,ΛN + 1).

Then,

x1 · · · xN PΛ(x;α) = PΛ+(x;α).

Proof. First, as is well known, x1 · · · xNEη(x;α) = E(η1+1,...,ηN+1)(x;α). Sec-
ond, x1 · · · xN commutes with any OI,J . Thus,

x1 · · · xN PΛ(x;α) = cΛ OI,JE(η1+1,...,ηN+1)(x;α) =
cΛ

cΛ+

PΛ+(x;α).

Finally, one easily verifies from Eqs. (2.17)–(2.20) that cΛ = cΛ+ . �
Proposition 2.8 (Triangularity). PΛ = mΛ +

∑
Γ<Λ cΛ,ΓmΓ.

Proof. By definition, PΛ = cΛOI,JEη, where η is given by (2.16) and Eη =
xη +

∑
ν≺η cη,νxν . We already know that cΛ guarantees the monocity, i.e.,

cΛOI,Jxη = mΛ. It remains to check that if ν ≺ η, then OI,Jxν is proportional
to mΩ for some Ω < Λ. Now, OI,Jxν is proportional to mΩ, where Ω = ϕm(ν).
Moreover, we know from Lemma 2.2 that ν ≺ η, then ϕm(ν) < ϕm(λ). This
completes the proof. �
Proposition 2.9 (Stability for types AS and SS). Let Λ = (Λ1, . . . ,Λm; Λm+1,
. . . ,ΛN ) be a superpartition and let Λ− = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN−1).
Then, the Jack polynomial with prescribed symmetry AS or SS satisfies

PΛ(x1, . . . , xN ;α)
∣∣
xN=0

=

{
0, ΛN > 0,

PΛ−(x1, . . . , xN−1;α), ΛN = 0.

Proof. The cases AS and SS being similar, we only give the proof for AS.
Let λ = (Λ1, . . . ,Λm), μ = (Λm+1, . . . ,ΛN ), λ− = (Λm, . . . ,Λ1),

μ− = (ΛN , . . . ,Λm+1). Let also η = (λ−, μ−) and η− = (λ−, μ−
−), where

μ−
− = (ΛN−1, . . . ,Λm+1). By definition,

PAS
Λ (x) =

(−1)m(m−1)/2

fμ
AsymISymJEη(x;α)
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The symmetrization operator can be decomposed as

SymJ = SymJ−(1 + Km+1,N + Km+2,N + · · · + KN−1,N ),

where J− = {m + 1, . . . , N − 1}.

It is more convenient to rewrite the transpositions on the LHS in terms of the
elementary transpositions:

Ki,N = KiKi+1 . . . KN−2KN−1KN−2 . . . Ki+1Ki

By making use of the stability property (2.6) and the action of the symmetric
group on the non-symmetric Jack polynomials given in (2.7), we then find that

KN−1KN−2 . . . Ki+1KiEη

∣∣
xN=0

=

{
0, ηi > 0,

Eη−(x1, . . . , xN−1), ηi = 0.

Thus, SymJEη(x1, . . . , xN )
∣∣
xN=0

= 0 when ΛN > 0, while

SymJEη(x1, . . . , xN )
∣∣
xN=0

= SymJ−

( ∑

i∈{m+1,...,N−1}
μ−

i =0

KiKi+1 . . . KN−2

)
Eη−(x1, . . . , xN−1)

= nμ(0) SymJ−Eη−(x1, . . . , xN−1)

when ΛN = 0, and the proposition follows. �

Proposition 2.10 (Stability for types SA and SS). Let

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN )

be a superpartition and let

Λ− = (Λ1, . . . ,Λm−1; Λm+1, . . . ,ΛN ).

Then, the Jack polynomial with prescribed symmetry SA or SS satisfies

PΛ(x1, . . . , xm, . . . , xN ;α)
∣∣
xm=0

=

{
0, Λm > 0,

PΛ−(x1, . . . , xm−1, xm+1, . . . , xN ;α), Λm = 0.

Proof. The cases SA and SS are almost identical, so we only prove the first.
Below, we essentially follow the method used for proving Proposition 2.9,
except that we use Lemma 2.4 rather than Eq. (2.6).

Let λ = (Λ1, . . . ,Λm), μ = (Λm+1, . . . ,ΛN ), λ− = (Λm, . . . ,Λ1), μ− =
(ΛN , . . . ,Λm+1). Let also η = (λ−, μ−) and η− = (λ−, μ−

−), where μ−
− =

(ΛN−1, . . . ,Λm+1). By definition,

PSA
Λ (x) =

(−1)(N−m)(N−m−1)/2

fλ
SymIAsymJEη(x;α)

Note that SymI and AsymJ commute. The symmetrization operator can be
decomposed as

SymI = SymI−(1 + K1,m + K2,m + · · · + Km−1,m),
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C = and C̃ =

Figure 2. Operators C and C̃

where I− = {1, . . . , m − 1} and

Ki,m = KiKi+1 . . .Km−2Km−1Km−2 . . . Ki+1Ki

Now, recalling (2.7) and the second stability property for the non-symmetric
Jack polynomials, given in Lemma 2.4, we conclude that

Km−1Km−2 . . . Ki+1KiEη

∣∣
xm=0

=

{
0, ηi > 0,

Eη−(x1, . . . , xN−1), ηi = 0.

Thus, SymIEη(x1, . . . , xN )
∣∣
xm=0

= 0 when Λm > 0, while

SymIEη(x1, . . . , xN )
∣∣
xm=0

= SymI−

( ∑

i∈{1,...,m−1}
λ−

i =0

KiKi+1 . . . Km−2

)
Eη−(x1, . . . , xm−1, xm+1, . . . , xN )

= nλ(0) SymI−Eη−(x1, . . . , xm−1, xm+1, . . . , xN ),

when Λm = 0, and the proposition follows. �

The next proposition relates Jack polynomials with prescribed symmetry
of different bi-degrees. It uses two basic operation on superpartitions. The first
one is the removal of a column:

C(Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) = (Λ1 − 1, . . . ,Λm − 1; Λm+1 − 1, . . . ,ΛN − 1)
if Λi > 0 ∀ 1 ≤ i ≤ N.

The second one is the removal of a circle:

C̃(Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) = (Λ1, . . . ,Λm−1; Λm+1, . . . ,ΛN ) if Λm = 0.

The operators C and C̃ are illustrated in Fig. 2

Proposition 2.11 (Removal of a column or a circle). Let

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN )

be a superpartition and let

PΛ(x1, . . . , xm, . . . , xN ;α)

be the associated Jack polynomial with prescribed symmetry AA, AS, SA,
or SS.

If Λi > 0 for all 1 ≤ i ≤ N , then

PΛ(x1, . . . , xm, . . . , xN ;α) = (x1 · · · xN )PCΛ(x1, . . . , xm, . . . , xN ;α).
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If Λm = 0, then

PΛ(x1, . . . , xm, . . . , xN ;α)
∣∣∣
xm=0

= εmPC̃Λ(x1, . . . , xm−1, xm+1, . . . , xN ;α),

where εm = (−1)m(m−1)/2 for types AA and AS, while εm = 1 for types SA
and SS.

Proof. The removal of a column follows immediately from Lemma 2.7. For
types SA and SS, the removal of a circle follows from the stability property
given in Proposition 2.10.

It remains to prove the removal of a circle for types AA and AS. Only
the AS case is detailed below. Let λ = (Λ1, . . . ,Λm), μ = (Λm+1, . . . ,ΛN ),
λ− = (Λm, . . . ,Λ1), μ− = (ΛN , . . . ,Λm+1). Let also η = (λ−, μ−) and η− =
(λ−

−, μ−), where λ−
− = (Λm−1, . . . ,Λ1). By definition,

PAS
Λ (x) =

(−1)(m)(m−1)/2

fμ
AsymISymJEη(x;α)

Note that AsymI and SymJ commute. The symmetrization operator can be
decomposed as

AsymI = AsymI−(1 − K1,m − K2,m − . . . − Km−1,m),

where I− = {1, . . . , m − 1} and

Ki,m = KiKi+1 . . .Km−2Km−1Km−2 . . . Ki+1Ki

Now, recalling Eq. (2.7) and the second stability property for the non-
symmetric Jack polynomials, given in Lemma 2.4, we conclude that

Km−1Km−2 . . . Ki+1KiEη

∣∣
xm=0

=

{
0, ηi > 0,

Eη−(x1, . . . , xN−1), ηi = 0.

From the previous line, we can see that the only nonzero contribution comes
from the permutation Km−1Km−2 . . . K2K1. Thus

AsymIEη(x1, . . . , xN )
∣∣
xm=0

= AsymI−(K1K2 . . . Km−2Eη−(x1, . . . , xm−1, xm+1, . . . , xN ))

= (−1)m−2AsymI−Eη−(x1, . . . , xm−1, xm+1, . . . , xN )

and the proposition follows. �

Proposition 2.12 (Eigenfunctions). The Jack polynomial with prescribed sym-
metry, PΛ = PΛ(x;α), is an eigenfunction of the Sekiguchi operators S∗(u)
and S�(u, v) defined in Eq. (1.12). Moreover,

S∗(u)PΛ = εΛ∗(α, u)PΛ S�(u, u)PΛ = εΛ�(α, u)PΛ,

where the eigenvalues are given by Eq. (1.13).

Proof. This lemma immediate follows from the following three basic facts:
(1) PΛ is proportional to OI,JEλ for any composition λ such that Λ = ϕm(λ);
(2) The operators S∗ and S� commute with OI,J .
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(3) By virtue of Lemma 2.5, Eλ is an eigenfunction of S∗(u) and S�(u, v).
Moreover, if ϕm(λ) = Λ, then S∗(u)Eλ = εΛ∗(α, u)Eλ and S�(u, u)
Eλ = εΛ�(α, u)Eλ. �

Proof of Theorem 1.5. We want to prove that the Jack polynomials with pre-
scribed symmetry are the unique unitriangular eigenfunctions of H =

∑N
i=1 ξ2

i

and I =
∑m

i=1 ξi. However, according to Propositions 2.8 and 2.12, we already
know that the Jack polynomial with prescribed symmetry PΛ satisfies

(B1) PΛ = mΛ +
∑

Γ<Λ

cΛ,ΓmΓ;

(B2) H PΛ = dΛ PΛ and I PΛ = eΛ PΛ.

Thus, it remains to prove that there is no other polynomial that satisfies (B1)
and (B2).

First, we need to determine precisely the eigenvalues dΛ and eΛ. We
recall that mΛ is proportional to OI,Jxη, where η = (Λm, . . . ,Λ1,ΛN , . . . ,
Λm+1). Now, as is well known (e.g., see conditions (A1’) and (A2’) in Sect. 2.2),

ξix
η = η̄ix

η +
∑

γ≺η

fη,γxγ .

Then, for any polynomial g such that g(ξ1, . . . , ξN ) commutes with OI,J , we
have

g(ξ1, . . . , ξN )mΛ ∝ OI,Jg(ξ1, . . . , ξN )xη

= OI,J

(
g(η̄1, . . . , η̄N )xη +

∑

γ≺η

f ′
η,γxγ

)
∝ g(η̄1, . . . , η̄N )mΛ

+
∑

Γ<Λ

f ′′
Λ,Ω mΩ (2.21)

Consequently, a triangular polynomial, QΛ = mΛ +
∑

Γ<Λ c′
Λ,ΓmΓ, can be an

eigenfunction of g(ξ1, . . . , ξN ) only if its eigenvalue is equal to g(η̄1, . . . , η̄N ).
In our case, Q is an eigenfunction of H and I, with respective eigenvalues dΛ

and eΛ, only if

dΛ =
N∑

i=1

η̄2
i and eΛ =

m∑

i=1

η̄i.

Now, as explained in Lemma 2.5,
∑N

i=1 η̄2
i =

∑n
i=1

(
αΛ∗

i − (i − 1)
)2. By com-

paring the latter equation with the explicit expression for the quantity εΛ(α),
introduced in Lemma 2.1, we get

dΛ = 2α εΛ∗(α) + α2|Λ∗| +
N(N − 1)(2N − 1)

6
. (2.22)

Returning to the second eigenvalue, we note that because η = (Λm, . . . ,Λ1,
ΛN , . . . ,Λm+1), we can write

m∑

i=1

η̄i =
m∑

i

(αΛi − #{j |Λj ≥ Λi}) .
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From the comparison of the latter expression with the quantity εΛ(α), given
in Lemma 2.3, we then conclude that

eΛ = εΛ(α). (2.23)

Second, we suppose that there is another QΛ = mΛ +
∑

Γ<Λ c′
Λ,ΓmΓ such

that (i) PΛ − QΛ �= 0, (ii) H QΛ = dΛ QΛ, and (iii) I QΛ = eΛ QΛ. Condition
(i) implies that there is superpartition Ω such that Ω < Λ and

PΛ − QΛ = aΩmΩ +
∑

Γ<Λ
Γ<tΩ

aΩ,ΓmΓ,

where <t denotes some total order compatible with the dominance order. The
substitution of the last equation into conditions (ii) and (iii) then leads to

H
(
aΩmΩ +

∑

Γ<Λ
Γ<tΩ

aΩ,ΓmΓ

)
= dΛ

(
aΩmΩ +

∑

Γ<Λ
Γ<tΩ

aΩ,ΓmΓ

)
(2.24)

I
(
aΩmΩ +

∑

Γ<Λ
Γ<tΩ

aΩ,ΓmΓ

)
= eΛ

(
aΩmΩ +

∑

Γ<Λ
Γ<tΩ

aΩ,ΓmΓ

)
. (2.25)

However, according to Eq. (2.21), we have HmΩ = dΛmΛ + · · · and ImΩ =
eΛmΛ + · · · , where the ellipsis . . . stand for linear combinations of monomial
indexed by superpartitions strictly smaller than Ω in the dominance order.
Consequently, Eqs. (2.24) and (2.25) can be rewritten as

dΩ aΩ mΩ + independent terms = dΛ aΩ mΩ + independent terms,
eΩ aΩ mΩ + independent terms = eΛ aΩ mΩ + independent terms,

which is possible only if

dΛ = dΩ and eΛ = eΩ

On the one hand, using Lemma 2.1 and Λ > Ω, we conclude that the first
equality is possible only if Λ∗ = Ω∗. On the other hand, Lemma 2.3 and
Λ > Ω imply that, the second equality is possible only if Λ∗ > Ω∗. We thus
have a contradiction. Therefore, there is no polynomial QΛ satisfying (i), (ii),
and (iii). We have proved the uniqueness of the polynomial satisfying (B1) and
(B2). �

3. Regularity and Uniqueness Properties at
α = −(k + 1)/(r − 1)

As mentioned in the Introduction, regularity and uniqueness are obvious prop-
erties only when α is generic, which means when α is a complex number
that is neither zero nor a negative rational. On the one hand, non-symmetric
Jack polynomials may have poles only for non-generic values of α, and when
poles occur, then there is non-uniqueness. Indeed, following the argument [16,
Lemma 2.4], one easily sees that if the non-symmetric Jack polynomial Eη

has a pole at some given value of α0, then there exits a composition ν ≺ η
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such that εη+(α0, u) = εν+(α0, u). On the other hand, for non-generic val-
ues of α, non-uniqueness may be observed even for regular polynomials. As
a basic example, consider the compositions η = (2, 0) and ν = (1, 1), which
satisfy η  ν. One can verify that Eη(x1, x2;α) and Eν(x1, x2;α) are reg-
ular at α = 0. These polynomials nevertheless share the same eigenvalues,
i.e., ηj |α=0 = νj |α=0 for j = 1, 2.. Hence, at α = 0, any polynomial of the
form Eη(x1, x2;α) + aEν(x1, x2;α) complies with conditions (A1′) and (A2′)
of Sect. 2.2, so uniqueness is lost.

Here we find sufficient conditions that allow to preserve both the regu-
larity and the uniqueness. We indeed prove that if α = −(k + 1)/(r − 1) and
Λ is (k, r,N)-admissible, then the associated Jack polynomial with prescribed
symmetry is regular and can be characterized as the unique triangular eigen-
function to differential operators of Sekiguchi type. Similar results hold for the
non-symmetric Jack polynomials. We use them at the end of the section to
prove the clustering properties for k = 1.

3.1. More on Admissible Superpartitions

Lemma 3.1. Let Λ be a weakly (k, r,N)-admissible and strict superpartition.
Then both Λ∗ and Λ� are (k + 1, r,N)-admissible.

Proof. According to the weak admissibility condition, we have Λ�
i+1 − Λ∗

i+1+k

≥ r, so that Λ∗
i − Λ∗

i+1+k ≥ Λ∗
i+1 − Λ∗

i+1+k ≥ r − 1. Now, the equality Λ∗
i+1 −

Λ∗
i+1+k = r − 1 holds if and only if Λ�

i+1 = Λ∗
i+1 + 1. However, in the latter

case, Λ∗
i ≥ Λ�

i+1 > Λ∗
i+1. We, therefore, have Λ∗

i − Λ∗
i+k+1 ≥ r.

Similarly, we have Λ�
i − Λ�

i+k ≥ r − 1. The equality Λ�
i − Λ�

i+k = r − 1
occurs if and only if Λ�

i+k = Λ∗
i+k +1, but in this case, Λ�

i+k > Λ∗
i+k > Λ�

i+k+1.
Therefore, Λ�

i − Λ�
i+k+1 ≥ r. �

Lemma 3.2. If Λ is (k, r,N)-admissible, then

Λ�
i+1 − Λ∗

i+ρ(k+1) ≥ ρr, 1 ≤ i ≤ N − ρ(k + 1), ρ ∈ Z+, (3.1)

or equivalently,

Λ�
i−ρ(k+1) − Λ∗

i−1 ≥ ρr, ρ(k + 1) ≤ i − 1 ≤ N, ρ ∈ Z+. (3.2)

In particular, if Λ is moderately (k, r,N)-admissible, then Eqs. (3.1) and (3.2)
hold.

Proof. The moderately and strongly admissible cases are trivial. We thus sup-
pose that Λ is strict and weakly (k, r,N)-admissible. First, note that the case
ρ = 1 corresponds to Λ�

i+1−Λ∗
i+k+1 ≥ r, which is an immediate consequence of
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weak admissibility condition. Second, suppose that Eq. (3.1) is true for some
ρ ≥ 1. Then,

Λ�
i+1 − Λ∗

i+(ρ+1)(k+1) = Λ�
i+1 − Λ∗

i+ρ(k+1) + Λ∗
i+ρ(k+1) − Λ∗

i+(ρ+1)(k+1)

≥ ρr + Λ∗
i+ρ(k+1) − Λ∗

i+(ρ+1)(k+1).

However, according to the previous lemma, Λ∗
i+ρ(k+1) − Λ∗

i+(ρ+1)(k+1) ≥ r.
Consequently,

Λ�
i+1 − Λ∗

i+(ρ+1)(k+1) ≥ ρr + r,

and the lemma follows by induction. �

3.2. Regularity for Non-Symmetric Jack Polynomials

To demonstrate that some non-symmetric Jack polynomials have no poles, it
is necessary to introduce some notation. Let η be a composition. For each cell
s = (i, j) in η’s diagram, we define

aη(s) = ηi − j

l1η(s) = #{k = 1, . . . , i − 1|j ≤ ηk + 1 ≤ ηi}
l2η(s) = #{k = i + 1, . . . , N |j ≤ ηk ≤ ηi}
lη(s) = l1η(s) + l2η(s)

dη(s) = α(aη(s) + 1) + lη(s) + 1.

According to the results given in [23], we know that
(∏

s∈η dη(s)
)

Eη

belongs to N[α, x1, . . . , xN ]. Then, if we want to show that Eη(x;α) has no
poles at α = αk,r is sufficient to prove that

∏

s∈η

dη(s) �= 0 if α = αk,r

Note that in what follows, λ+ = (λ+
1 , . . . , λ+

m) and μ+ = (μ+
1 , . . . , μ+

N−m)
denote partitions. This notation is used to avoid confusion between partitions
and compositions. Moreover, we denote the composition obtained by the con-
catenation of λ+ and μ+, which is (λ+

1 , . . . , λ+
m, μ+

1 , . . . , μ+
N−m), as follows:

η = (λ+, μ+). (3.3)

Lemma 3.3. Let η be as in (3.3) and let Λ = ϕm(η) be its associated super-
partition. Moreover, let BF(Λ) be the set of cells belonging simultaneously to
a bosonic row (without circle) and a fermionic column (with circle). Then,

∏

s∈η

dη(s) =
∏

s′∈BF(Λ)

(α(aΛ∗(s′) + 1) + lΛ�(s′) + 1)

×
∏

s′∈Λ∗/BF(Λ)

(α(aΛ∗(s′) + 1) + lΛ∗(s′) + 1)
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Proof. Given a cell s = (i, j) in η, let s′ = (i′, j) be the associated cell in Λ.
We want to express dη(s) as a function of the arm-length and leg-length of the
cell s′ in Λ. For each cell s = (i, j) in η, we have aη(s) = aΛ∗(s′), while we can
rewrite lη(s) as

lη(s) = #{k = 1, . . . , i − 1|j = ηk + 1}
+#{k = 1, . . . , i − 1|j ≤ ηk ≤ ηi − 1}
+#{k = i + 1, . . . , N |j ≤ ηk ≤ ηi}. (3.4)

The two last terms can be easily expressed lη(s) with the help of the leg-length
of the cell s′:

#{k = 1, . . . , i − 1|j ≤ ηk ≤ ηi − 1} + #{k = i + 1, . . . , N |j ≤ ηk ≤ ηi}
= lΛ∗(s′). (3.5)

However, for the first term, we have to distinguish two cases:
(i) If s = (i, j) is such that j = ηk +1 for some 1 ≤ k ≤ i− 1, then it is clear

that s′ ∈ BF (Λ). Moreover,

#{k = 1, . . . , i − 1|j = ηk + 1} = #{k = 1, . . . , m|j = λk + 1}.

Since #{k = 1, . . . ,m|j = λk + 1} counts the number of circles that
appear in the column j in Λ—more specifically, in the leg-length of the
cell s′—we conclude that lη(s) = lΛ�(s′). Thus,

dη(s) = α(aΛ∗(s′) + 1) + lΛ�(s′) + 1. (3.6)

(ii) If s = (i, j) is such that j �= ηk + 1 for each k = 1, . . . , i − 1, then it is
clear that s′ ∈ Λ∗/BF(Λ) and also lη(s) = lΛ∗(s′). Hence, we conclude
that

dη(s) = α(aΛ∗(s′) + 1) + lΛ∗(s′) + 1. (3.7)

The substitution of Eqs. (3.5)–(3.7) into (3.4) completes the proof. �

Lemma 3.4. Let η be as in (3.3) and let Λ = ϕm(η) be its associated superpar-
tition. If Λ is strict and weakly (k, r,N)-admissible or if moderately (k, r,N)-
admissible, then Eη(x;α) does not have poles at α = αk,r.

Proof. As we have mentioned earlier (see [23]), to prove that Eη(x;α) has no
poles at α = αk,r, it is sufficient to show that

∏
s∈η dη(s) �= 0 if α = αk,r.

Let us suppose that
∏

s∈η dη(s) = 0 when α = αk,r. From the equality
obtained in Corollary 3.3, we have

∏
s∈η dη(s) = 0 iff

∏

s∈BF(Λ)

(α(aΛ∗(s) + 1) + lΛ�(s) + 1) = 0

or
∏

s∈Λ∗/BF(Λ)

(α(aΛ∗(s) + 1) + lΛ∗(s) + 1) = 0.

Now, this is possible iff there exists a cell s ∈ BF(Λ) such that α(aΛ∗(s)+1)+
lΛ�(s)+1 = 0 or if there exists a cell s ∈ Λ∗/BF(Λ) such that α(aΛ∗(s)+1)+
lΛ∗(s) + 1 = 0.
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First, we suppose that s = (i, j) ∈ BF(Λ). Now α(aΛ∗(s)+1)+lΛ�(s)+1 =
0 iff there exists a ρ ∈ Z+ such that aΛ∗(s) + 1 = ρ(r − 1) and lΛ�(s) + 1 =
ρ(k+1). Using both relations and expressing them in terms of the components
of Λ, we get

Λ∗
i − Λ�

i+ρ(k+1)−1 + 1 = ρ(r − 1).

Moreover, we have by hypothesis, Λ∗
i = Λ�

i (bosonic row), so that the previous
line can be rewritten as

ρ(r − 1) − 1 = Λ�
i − Λ�

i+ρ(k+1)−1.

However, using Lemma 3.2, we also get

Λ�
i − Λ�

i+ρ(k+1)−1 ≥ ρr − 1,

which contradicts the previous equality.
Second, we suppose that there is a cell s = (i, j) ∈ Λ∗/BF(Λ) such that

α(aΛ∗(s) + 1) + lΛ∗(s) + 1 = 0. This is possible iff there exists a ρ ∈ Z+ such
that aΛ∗(s) + 1 = ρ(r − 1) and lΛ∗(s) + 1 = ρ(k + 1). As in the previous case,
using both relations and expressing them in terms of the components of Λ, we
obtain

ρ(r − 1) − 1 ≥ Λ∗
i − Λ∗

i+ρ(k+1)−1 ≥ ρr − 1

which is in contradiction with the admissibility condition of Λ (see Lemma
3.2).

Therefore, whenever α = αk,r and Λ is (k, r,N)-admissible, we have∏
s∈η dη(s) �= 0, as expected. �

3.3. Regularity for Jack Polynomials with Prescribed Symmetry

We recall that λ+ = (λ+
1 , . . . , λ+

m) and μ+ = (μ+
1 , . . . , μ+

N−m) are partitions.
Similarly, λ− = (λ+

m, . . . , λ+
1 ) and μ− = (μ+

N−m, . . . , μ+
1 ) denote compositions

whose elements are written in increasing order. The concatenation of λ− and
μ− is given by

(λ−, μ−) = (λ+
m, . . . , λ+

1 , μ+
N−m, . . . , μ+

1 ).

As shown below, the regularity for Jack polynomials with prescribed
symmetry cannot be established directly from Definition 1.3. Indeed, a non-
symmetric Jack polynomials indexed by a composition η of the form (λ−, μ−)
is in general singular at α = αk,r, even if η is associated with an admissi-
ble superpartition. We thus need to use another normalization for the Jack
polynomials with prescribed symmetry.

Proposition 3.5. Let η = (λ+, μ+) and Λ = ϕm(η). Suppose that α is generic.
Then

PAS
Λ (x;α) =

cAS
Λ

CAS
Λ

AsymISymJEη , P SS
Λ (x;α) =

cSS
Λ

CSS
Λ

SymISymJEη ,

P SA
Λ (x;α) =

cSA
Λ

CSA
Λ

SymIAsymJEη , PAA
Λ (x;α) =

cAA
Λ

CAA
Λ

AsymIAsymJEη ,
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where

CAS
Λ = (−1)m(m−1)/2

∏

s∈FF∗(Λ)

αaΛ�(s) + lΛ�(s) − 1

αaΛ�(s) + lΛ�(s)

×
∏

s=(i,j)∈BRDB

0≤γ≤#{t>i|Λ�
t −Λ∗

t =0, Λ∗
t =i}−1

αaΛ∗(s) + lΛ∗(s) − γ + 1

αaΛ∗(s) + lΛ∗(s) − γ
,

CSS
Λ =

∏

s=(i,j)∈FF∗(Λ)

0≤γ≤#{t>i|Λ�
t −Λ∗

t =1, Λ�
t =i}−1

αaΛ�(s) + lΛ�(s) − γ + 1

αaΛ�(s) + lΛ�(s) − γ

×
∏

s=(i,j) BRDB

0≤γ′≤#{t>i|Λ�
t −Λ∗

t =0, Λ∗
t =i}−1

αaΛ∗(s) + lΛ∗(s) − γ′ + 1

αaΛ∗(s) + lΛ∗(s) − γ′ ,

CSA
Λ = (−1)(N−m)(N−m−1)/2

∏

s=(i,j)∈FF∗(Λ)

0≤γ≤#{t>i|Λ�
t −Λ∗

t =1, Λ�
t =i}−1

αaΛ�(s) + lΛ�(s) − γ + 1

αaΛ�(s) + lΛ�(s) − γ

×
∏

s∈BRDB

αaΛ∗(s) + lΛ∗(s) − 1

αaΛ∗(s) + lΛ∗(s)
,

CAA
Λ = (−1)m(m−1)/2(−1)(N−m)(N−m−1)/2

∏

s∈FF∗(Λ)

αaΛ�(s) + lΛ�(s) − 1

αaΛ�(s) + lΛ�(s)

×
∏

s∈BRDB

αaΛ∗(s) + lΛ∗(s) − 1

αaΛ∗(s) + lΛ∗(s)
.

Note that FF(Λ) denotes the set of cells belonging to a fermionic row and a
fermionic column, while FF∗(Λ) = FF(Λ) \ {s|s ∈ Λ�/Λ∗}. The set BRDB
contains all cells (i, j) such that i is a bosonic row, j is the length of some
other bosonic row i′ satisfying Λ∗

i > Λ∗
i′ .

Sketch of proof. Let η− = (λ−, μ−). The proof consists in calculating the con-
stant of proportionality CΛ such that

OI,JEη = CΛOI,JEη− .

Our method follows general arguments that are independent of the symmetry
type of the polynomials, so we give the general idea of the proof only for the
polynomials of type AS.

We first note that we can recover η from η− through the following
sequence of transpositions:

η = τ2 . . . τm−1τmωm+2 . . . ωN (η−),

where τr = Kr−1Kr−2 . . . K1 and ωr = Kr−1Kr−2 . . . Km+1, except that in
ωr, we do not consider transpositions Ki such that μi = μi+1. Thus, we have

Eη = Eτ2...τm−1τmωm+2...ωN (η−)

Now, given that we are considering η− a composition in increasing order, we
can use successively the third line of (2.7). This yields an expression of the
form
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Eτ2...τm−1τmωm+2...ωN (η−) = O′
IO′

JωNEη− ,

where the operators O′
I and O′

J are such that

AsymIO′
I = C ′

I , SymJO′
I = O′

ISymJ ,

SymJO′
J = C ′

J , AsymIO′
J = O′

JAsymJ .

The coefficients C ′
I and C ′

J are obtained by considering all possible combina-
tions of differences of eigenvalues Λi − Λj with i < j, i, j ∈ {1, . . . , m} and
Λi �= Λj or i, j ∈ {m + 1, . . . , N} and Λi �= Λj . More specifically,

C ′
I = (−1)m(m−1)/2

∏

i<j,Λi �=Λj

i,j∈{1,...,m}

(
1 − 1

Λi − Λj

)
,

while

C ′
J =

∏

i<j,Λi �=Λj

i,j∈{m+1,...,N}

(
1 +

1
Λi − Λj

)

Rewriting the product C ′
I ·C ′

J in a more compact form finally gives the desired
expression for CAS

Λ . �

Lemma 3.6. Let η = (λ+, μ+) and Λ = ϕm(η).
(i) If Λ is strict and weakly (k, r,N)-admissible, then CAS

Λ has neither zeros
nor singularities at α = αk,r.

(ii) If Λ is moderately (k, r,N)-admissible, then CSS
Λ has neither zeros nor

singularities at α = αk,r.
(iii) If Λ is moderately (k, r,N)-admissible, then CSA

Λ has neither zeros nor
singularities at α = αk,r.

(iv) If Λ is strict and weakly (k, r,N)-admissible, then CAA
Λ has neither zeros

nor singularities at α = αk,r.

Sketch of proof. This follows almost immediately from the explicit formulas
for the coefficient CΛ given above. All cases are similar. The only noticeable
differences are the type of admissibility for each symmetry type and the addi-
tional parameter γ, which can be controlled with admissibility condition. Once
again, we restrict our demonstration to symmetry type AS.

Consider CAS
Λ and suppose that it has poles at α = αk,r. This happens iff

there exists a cell s ∈ FF∗ such that αaΛ�(s)+ lΛ�(s) = 0 or a cell s ∈ BRDB
such that αaΛ∗(s) + lΛ∗(s) − γ = 0 for some 0 ≤ γ ≤ #{t > i|Λ∗

t = Λ∗
i }.

First, assume that s = (i, j) ∈ FF∗. Note that αaΛ�(s) + lΛ�(s) = 0 iff
there exists a positive integer ρ such that aΛ�(s) = ρ(r−1) and lΛ�(s) = ρ(k+
1). Using these two relations and expressing them in terms of the components
of Λ, we find

Λ�
i − Λ�

i+ρ(k+1) = ρ(r − 1). (3.8)

Now, the weak admissibility condition and Lemma 3.1 imply that

ρ(r − 1) = Λ�
i − Λ�

i+ρ(k+1) ≥ ρr. (3.9)
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Eqs. (3.8) and (3.9) are contradictory. Hence, the first factor of CAS
Λ does not

have singularities.
Now, assume s ∈ BRDB. Following a similar argument, we conclude that

the second factor has no singularity.
In the same way, one can show that CΛ has no zero. �

Proposition 3.7 (Regularity). Let Λ be a (k, r,N)-admissible superpartition.
Then, PΛ(x1, . . . , xN ;α) is regular at α = αk,r.

Proof. Let η = (λ+, μ+) and Λ = ϕm(η). According to Proposition 3.5, for
any symmetry type, there are coefficients cΛ and CΛ such that

PΛ(x;α) =
cΛ

CΛ
OI,JEη(x;α)

The coefficient cΛ is independent of α, so it is trivially regular α = αk,r.
Given that Λ is admissible, Lemma 3.6 implies that C−1

Λ is also regular at
α = αk,r. Finally, by Lemma 3.4, the non-symmetric Jack polynomial Eη(x;α)
is regular at α = αk,r. Therefore, limit

lim
α→αk,r

cΛ

CΛ
OI,JEη(x;α)

is well defined and the proposition follows. �

3.4. Uniqueness for Jack Polynomials with Prescribed Symmetry

Lemma 3.8. Let Λ be weakly (k, r,N)-admissible and strict. Suppose that for
some σ ∈ SN , the superpartition Γ satisfies

Γ∗
i = Λ∗

σ(i) +
r − 1
k + 1

(σ(i) − i),

Then,

Λ∗
i < Γ∗

i =⇒ σ(i) < i, Λ∗
i = Γ∗

i =⇒ σ(i) = i, Λ∗
i > Γ∗

i =⇒ σ(i) > i.

Moreover,

σ(i) =

{
i − k − 1 if Λ∗

i < Γ∗
i and Λ∗

i−1 ≥ Γ∗
i−1

i + k + 1 if Λ∗
i > Γ∗

i and Λ∗
i+1 ≤ Γ∗

i+1.

Proof. Obviously, the equality Γ∗
i = Λ∗

σ(i) + r−1
k+1 (σ(i) − i) holds only if there

is ρ ∈ Z such that σ(i) = i + ρ(k + 1).
First, we assume that Λ∗

i = Γ∗
i . Then, Λ∗

i = Λ∗
i±ρ(k+1) ± ρ(r − 1) for

some ρ ≥ 0. Lemma 3.1 implies, however, that Λ∗
i − Λ∗

i+ρ(k+1) ≥ ρr and
Λ∗

i−ρ(k+1) −Λ∗
i ≥ ρr. Combining the last relations, we get ρ(r−1) ≥ ρr, which

implies ρ = 0. Consequently, Λ∗
i = Γ∗

i only if σ(i) = i.
Next, we assume that Λ∗

i > Γ∗
i . We have three possible cases:

1. σ(i) = i. This implies that Λ∗
i = Γ∗

i , which contradicts our assumption.
2. σ(i) = i − ρ(k + 1) for some positive integer ρ. We then have Λ∗

i >
Λ∗

i−ρ(k+1) − ρ(r − 1). However, according to Lemma 3.2, we have
Λ�

i−ρ(k+1) − Λ∗
i ≥ ρr, so that Λ∗

i−ρ(k+1) − Λ∗
i ≥ ρr − 1. Combining these

equations, we get ρ(r−1) > ρr−1, which contradicts the fact that ρ ≥ 1.
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3. σ(i) = i + ρ(k + 1) for some positive integer ρ. In this case, we do not
obtain a contradiction. Hence, σ(i) > i.
Similar arguments can be used to prove that if Λ∗

i < Γ∗
i , then σ(i) < i.

To prove the second part of proposition, we suppose that Λ∗
i > Γ∗

i while
Λ∗

i+1 ≤ Γ∗
i+1. Now, we know that Γ∗

i+1 ≤ Γ∗
i , where Γ∗

i+1 = Λ∗
i+1 + δ for some

δ ≥ 0, and Γ∗
i = Λ∗

i+ρ(k+1) + ρ(r − 1) for some ρ ∈ Z+. Combining these
inequalities, we get Λ∗

i+1 + δ ≤ Λ∗
i+ρ(k+1) + ρ(r − 1). However, Λ∗

i+1 = Λ�
i+1 − ε

where ε = 0, 1. Thus, Λ�
i+1 − Λ∗

i+ρ(k+1) ≤ ρ(r − 1) − δ + ε. By making use of
Lemma 3.2, we get ρr ≤ ρ(r − 1) − δ + ε, which implies that ε = 1, δ = 0 and
ρ = 1. Therefore, Λ∗

i > Γ∗
i and Λ∗

i+1 ≤ Γ∗
i+1 imply σ(i) = i − k − 1. The case

where Λ∗
i < Γ∗

i and Λ∗
i+1 ≥ Γ∗

i+1 is proved analogously. �
Lemma 3.9. Let Λ be moderately or strongly (k, r,N)-admissible. Suppose that
for some ω ∈ SN , the superpartition Γ satisfies

Γ�
i = Λ�

ω(i) +
r − 1
k + 1

(ω(i) − i),

Then,

Λ�
i < Γ�

i =⇒ ω(i) < i, Λ�
i = Γ�

i =⇒ ω(i) = i, Λ�
i > Γ�

i =⇒ ω(i) > i.

Moreover,

ω(i) =

{
i − k − 1 if Λ�

i < Γ�
i and Λ∗

i−1 ≥ Γ∗
i−1

i + k + 1 if Λ�
i > Γ�

i and Λ∗
i+1 ≤ Γ∗

i+1.

Proof. One essentially follows the same steps as in the proof of Lemma 3.8. �
Lemma 3.10. Let Λ be a (k, r,N)-admissible superpartition and let Γ satisfy

Γ∗
i = Λ∗

σ(i) +
r − 1
k + 1

(σ(i) − i), Γ�
i = Λ�

ω(i) +
r − 1
k + 1

(ω(i) − i)

for some σ, ω ∈ SN . Then, σ = ω.

Proof. The cases for which Λ is a strict and weakly (k, r,N)-admissible super-
partition or for which Λ is strongly (k, r,N)-admissible superpartition are
almost identical, so we only prove the first. We deduce from the hypothesis that
σ(i) ≡ i mod (k +1) and ω(i) ≡ i mod (k +1), so that ω(i) = σ(i)+ t(k +1)
for some t ∈ Z.

First, we suppose that σ(i) < ω(i), which implies that ω(i) = σ(i)+ t(k+
1) for some t ∈ Z+. Then,

Γ�
i − Γ∗

i = Λ�
σ(i)+t(k+1) − Λ∗

σ(i) + t(r − 1).

By Lemma 3.1, we know that Λ∗ is (k + 1, r,N)-admissible, which means that
Λ∗

σ(i) − Λ∗
σ(i)+t(k+1) ≥ tr and Λ∗

σ(i) − Λ�
σ(i)+t(k+1) ≥ tr − 1. Combining the

inequalities previously obtained, we get

0 ≤ Γ�
i − Γ∗

i ≤ 1 − tr + t(r − 1) = 1 − t.

This inequality is possible only if t = 1. We have thus shown that

(i) Γ�
i = Γ∗

i (ii) ω(i) = σ(i) + k + 1 (iii) Λ∗
σ(i) − Λ�

ω(i) = r − 1.
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Note that if Λ�
σ(i) = Λ∗

σ(i), then Λ�
σ(i) − Λ�

σ(i)+k+1 = r − 1 ≥ r, which is a
contradiction. Similarly, one gets a contradiction by supposing Λ�

ω(i) = Λ∗
ω(i).

Thus, we also have

(iv) Λ�
σ(i) = Λ∗

σ(i) + 1 (v) Λ�
ω(i) = Λ∗

ω(i) + 1.

Second, we suppose that σ(i) > ω(i), which implies that σ(i) = ω(i) +
t(k + 1) for some t ∈ Z+. Then

Γ�
i − Γ∗

i = Λ�
ω(i) − Λ∗

ω(i)+t(k+1) − t(r − 1).

By Lemma 3.2 we know that Λ�
ω(i) − Λ∗

ω(i)+t(k+1) ≥ tr, so that

1 ≥ Γ�
i − Γ∗

i ≥ tr − t(r − 1) = t.

The latter inequality holds only if t = 1. We have thus proved that

(vi) Γ�
i = Γ∗

i + 1 (vii) σ(i) = ω(i) + k + 1 (viii) Λ�
ω(i) − Λ∗

σ(i) = r.

Moreover, we deduce from (vi) and the admissibility condition, that

(ix) Λ�
ω(i) = Λ∗

ω(i) (x) Λ�
σ(i) = Λ∗

σ(i).

Now, assume that σ and ω do not coincide. Then, there exists a positive
integer i such that ω(i) > σ(i), which by virtue of the above discussion, implies
that ω(i) = σ(i)+k+1. Let j be such that ω(i) = σ(i)+k+1 = σ(j). Obviously,
i �= j and σ(j) �= ω(j). Then, according to conclusions (ii) and (vii) above,
only two cases can occur: ω(j) = σ(i) + k + 1 ± (k + 1).

• Suppose that ω(j) = σ(i) + 2(k + 1) and let j2 be such that σ(j2) =
σ(i) + 2(k + 1), so that j2 �= j. Then, conclusions (ii) and (vii) above
imply that ω(j2) = σ(i) + 2(k + 1) ± (k + 1). However, only the case
ω(j2) = σ(i)+3(k +1) is possible, since the equality ω(j2) = σ(i)+k +1
implies the contradiction j2 = i. Similarly, if j3 is such that σ(j3) =
σ(i) + 3(k + 1), then ω(j3) = σ(i) + 4(k + 1). Continuing in this way,
one eventually finds a positive integer 
 < N such that ω(
) > N , which
clearly contradicts the fact that ω is a permutation of {1, . . . , N}.

• Suppose that ω(j) = σ(i). Recall that by definition, σ(j) = σ(i) + k + 1.
Hence, ω(j) = σ(j) − k − 1 < σ(j). Conclusion (viii) above then implies
that Λ�

ω(j) −Λ∗
σ(j) = r, which is equivalent to Λ�

σ(i) −Λ∗
ω(i) = r. However,

conclusion (iv) implies that Λ�
σ(i) = Λ∗

σ(i) + 1. Combination of the last
two equations finally leads to

r − 1 = Λ∗
σ(i) − Λ∗

ω(i) = Λ∗
σ(i) − Λ∗

σ(i)+k+1.

This equation contradicts Lemma 3.1.
Therefore, the permutations σ and ω must coincide, as expected. �

Theorem 3.11 (Uniqueness at α = αk,r). Let Λ be a (k, r,N)-admissible super-
partition. Assume moreover that α = αk,r. Then, the Jack polynomial with
prescribed symmetry, here denoted by PΛ, is the unique polynomial satisfying

1. PΛ = mΛ +
∑

Γ<Λ

cΛ,ΓmΓ, cΛ,Γ ∈ C,
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2. S∗ PΛ = εΛ∗(α, u)PΛ and S� PΛ = εΛ�(α, u)PΛ.

Proof. Proceeding as in Theorem 1.5, we know that there are more than one
polynomials satisfying (1) and (2) only if we can find a superpartition of type
T, say Γ, such that Λ > Γ, εΓ∗(α, u) = εΛ∗(α, u), and εΓ�(α, u) = εΛ�(α, u).
Consequently, to prove the uniqueness, it is sufficient to show that if Γ < Λ,
then εΓ∗(α, u) �= εΛ∗(α, u) or εΓ�(α, u) �= εΛ�(α, u).

Let us assume that we are given a superpartition Γ < Λ such that
εΓ∗(α, u) = εΛ∗(α, u) and εΓ�(α, u) = εΛ�(α, u). Obviously, the last two equal-
ity hold if and only if there are σ, ω ∈ SN such that

Γ∗
i = Λ∗

σ(i) +
r − 1
k + 1

(σ(i) − i), Γ�
i = Λ�

ω(i) +
r − 1
k + 1

(ω(i) − i) ∀ i.

(3.10)

According to Lemma 3.10, Eq. (3.10) holds only if σ = ω. Now, we recall
that by hypothesis, either Γ∗ < Λ∗ or Γ∗ = Λ∗ and Γ� < Λ�. Only the former
case is nontrivial, however. Indeed, Lemma 3.8 implies that if Λ∗

i = Γ∗
i for all i,

then σ is the identity, and so is ω. In short, whenever Eq. (3.10) and Γ∗ = Λ∗

hold, we have Γ� = Λ�, which is in contradiction with Γ� < Λ�. Thus, we
must assume that Γ∗ < Λ∗, which implies that there exist integers j > 1 and
ε > 0 such that

Γ∗
j = Λ∗

j + ε and Γ∗
i ≤ Λ∗

i , ∀ i < j. (3.11)

As a consequence of (3.10) and Lemma 3.10, there is a permutation σ such
that σ(j) �= j,

Γ∗
j = Λ∗

σ(j) +
r − 1
k + 1

(σ(j) − j), Γ�
j = Λ�

σ(j) +
r − 1
k + 1

(σ(j) − j), (3.12)

which is possible only if σ(j) = j mod (k + 1).
1. If σ(j) = j + ρ(k + 1) for some positive integer ρ, then Γ∗

j = Λ∗
j +

ε = Λ∗
j+ρ(k+1) + ρ(r − 1). However, the latter equation contradicts the

hypothesis ε > 0 and Lemma 3.2, according to which Λ∗
j − Λ∗

j+ρ(k+1) ≥
ρr − 1.

2. If σ(j) = j − ρ(k + 1) for some positive integer ρ, then Γ∗
j = Λ∗

j−ρ(k+1) −
ρ(r − 1). Moreover, we know that Γ∗

j−1 = Λ∗
j−1 − δ, for some δ ≥ 0,

and that Γ∗
j−1 ≥ Γ∗

j . Combining these equations, we get ρ(r − 1) ≥
δ+Λ∗

j−ρ(k+1) −Λ∗
j−1. But by definition, Λ∗

j−ρ(k+1) = Λ�
j−ρ(k+1) − ε̃, where

ε̃ = 0, 1. The use of Lemma 3.2 then leads to ρ(r − 1) ≥ δ + ρr − ε̃. Hence
δ = 0, ε̃ = 1, and ρ = 1. In short, we have shown that

Γ∗
j = Λ∗

j−k−1 − r + 1, Γ�
j = Λ�

j−k−1 − r + 1, Γ∗
j−1 = Λ∗

j−1

Γ�
j−1 = Λ�

j−1, Λ�
j−k−1 = Λ∗

j−k−1 + 1.

Now, if Λ is strict and weakly (k, r;N)-admissible, then Γ�
j = Γ∗

j + 1
implies Γ∗

j−1 = Λ∗
j−1 ≥ Γ�

j . Combining the previous equations, we get
Λ∗

j−1 ≥ Λ�
j−k−1−r+1, which contradicts the weak admissibility condition.
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On the other hand, if Λ is strongly (k, r;N)-admissible, then Γ�
j−1

= Λ�
j−1 ≥ Γ�

j implies Λ�
j−1 ≥ Λ�

j−k−1 − r + 1, which contradicts the
strong admissibility condition.

Therefore, whenever Λ is (k, r,N)-admissible, we cannot find a superpartition
Γ < Λ such that εΓ∗(α, u) = εΛ∗(α, u) and εΓ�(α, u) = εΛ�(α, u). �

3.5. Uniqueness for Non-Symmetric Jack Polynomials

Definition 3.12. Let λ = (λ1, . . . , λN ) be a composition and let Λ = ϕm(λ) be
its associated superpartition. We say that λ is weakly, moderately, or strongly
(k, r,N |m)-admissible if and only if Λ is, respectively, weakly, moderately, or
strongly (k, r,N)-admissible.

Theorem 3.13 (Uniqueness for k = 1: weak admissibility). Let λ =
(η1, . . . , ηm, μ1, . . . , μN−m) be a composition formed by the concatenation of
the partitions η = (η1, . . . , ηm) and μ = (μ1, . . . , μN−m). Assume that λ is
weakly (1, r,N |m)-admissible and η is strictly decreasing. Assume moreover
that α = α1,r. Then, the non-symmetric Jack polynomial Eλ is the unique
polynomial satisfying

1. Eλ = xλ +
∑

γ≺λ

cλ,γxγ , cλ,γ ∈ C,

2. ξi Eλ = λ̄i Eλ ∀ 1 ≤ i ≤ N ,
where the λ̄i’s denote the eigenvalues introduced in (A2′) and (2.5).

Proof. There are more than one polynomials satisfying (1) and (2) only if
there are compositions γ such that γ ≺ λ and (γ̄1, . . . , γ̄N ) = (λ̄1, . . . , λ̄N ).
We can thus establish the uniqueness by showing show that the latter equal-
ity is impossible. Our task will be simplified by working with the associated
superpartitions

Λ = ϕm(λ), Γ = ϕm(γ).

We indeed know that Γ < Λ whenever γ ≺ λ. Moreover, according to
Lemma 2.5, the equality (γ̄1, . . . , γ̄N ) = (λ̄1, . . . , λ̄N ) holds only if εΓ∗(α, u) =
εΛ∗(α, u), and εΓ�(α, u) = εΛ�(α, u).

Let us now assume that we are given a superpartition Γ such that
εΓ∗(α, u) = εΛ∗(α, u) and εΓ�(α, u) = εΛ�(α, u). The last two equalities hold
if and only if there are permutations σ and ω such that

Γ∗
i = Λ∗

σ(i) +
r − 1

2
(σ(i) − i), Γ�

i = Λ�
ω(i) +

r − 1
2

(ω(i) − i) ∀ i.

(3.13)

We recall that by hypothesis, Λ is strict and (1, r,N)-admissible and Γ < Λ,
which means that either Γ∗ < Λ∗ or Γ∗ = Λ∗ and Γ� < Λ�.

The simplest case is when Γ∗ = Λ∗ and Γ� < Λ�. Indeed, Γ∗
i = Λ∗

i

for all i implies σ = id, while Lemma 3.10 yields σ = ω, so that ω = id
and Γ� = Λ�. This contradicts the assumption Λ �= Γ. Thus, the equations
Γ∗ = Λ∗, Γ� < Λ�, εΓ∗(α, u) = εΛ∗(α, u), and εΓ�(α, u) = εΛ�(α, u) cannot
be satisfied simultaneously if Λ is strict and (1, r,N)-admissible.
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We now assume that Γ∗ < Λ∗. This condition implies that there exists
an integer j > 1 such that

Γ∗
j > Λ∗

j and Γ∗
i ≤ Λ∗

i , ∀ i < j.

According to Lemma 3.8, satisfying the first equality in (3.13) is possible only
if σ(j) = j − 2. Thus

Γ∗
j = Λ∗

j−2 − r + 1

Now, Λ�
j−2 = Λ∗

j−2 + ε for some 0 ≤ ε ≤ 1, and Γ∗
j = Λ∗

j−1 − δ for some δ ≥ 0.
Hence,

ε + r = Λ�
j−2 − Λ∗

j−1 + δ + 1,

which is compatible with the admissibility only if ε = 1 and δ = 0. Combining
all the previous results, we get

(i) Γ∗
j = Λ∗

j−2 − r + 1 (ii) Γ∗
j = Γ∗

j−1 = Λ∗
j−1 (iii) Λ�

j−2 = Λ∗
j−2+1

By making use of Lemma 3.8 together with Λ∗
j−2 ≥ Γ∗

j−2 and (ii), we also
conclude that either σ(j − 2) = j − 2 or σ(j − 2) = j. The first case is
obviously impossible since it contradicts σ(j) = j −2. The second case implies
Γ∗

j−2 = Λ∗
j + r − 1. Lemma 3.10 and (i) imply that Γ�

j = Λ�
j−2 − r + 1. Then,

combining this equation with (iii), we get

(iv) Γ�
j = Γ∗

j + 1.

Moreover, Lemma 3.10 and (ii) imply that Γ�
j−1 = Λ�

j−1. From this and result
(iv), we get Γ�

j−1 = Γ∗
j−1 + 1, i.e. the row j − 1 in Γ also contains a circle.

Combining Γ∗
j−2 ≥ Γ∗

j−1, the admissibility condition and Γ∗
j−2 = Λ∗

j + r − 1
we obtain Γ∗

j−2 = Γ∗
j−1. Finally, Lemma 3.10 and the last equation yield

Γ�
j−2 = Γ∗

j−2 + 1. Consequently,

(v) Γ∗
j−2 = Γ∗

j−1 = Γ∗
j (vi) Λ∗

j−2 = Λ∗
j−1 + r − 1 = Λ∗

j + 2(r − 1).

Let us recapitulate what we have obtained so far. We have shown that
there exist compositions λ and γ as in the statement of the theorem such that
their associated superpartitions Λ = ϕm(λ) and Γ = ϕm(γ) satisfy εΓ∗(α, u) =
εΛ∗(α, u) and εΓ�(α, u) = εΛ�(α, u). However, this occurs only if the equations
(i) to (vi) are also satisfied. We will now make use of this information to
prove that the equality (γ̄1, . . . , γ̄N ) = (λ̄1, . . . , λ̄N ) is incompatible with the
admissibility of λ.

Before doing so, we need to recall how relate the eigenvalues λ̄i and γ̄i to
the elements of the superpartitions Λ and Γ. Let wγ be the smallest permuta-
tion such that γ = wγ(γ+) = wγ(Γ∗). Then, γ̄i is equal to the ith element of
the composition (αγ − wγδ−). More explicitly, γ̄i = (wγ(αΓ∗ − δ−))i or equiv-
alently, γ̄wγ(i) = αΓ∗

i − (i − 1). Similarly, there is a minimal permutation wλ

such that λ = wλ(Λ∗), so that λ̄wλ(i) = αΛ∗
i − (i − 1). We stress that in our

case Λ∗ �= Γ∗, which implies that wλ �= wγ .
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Now, let j be the largest integer such that Γ∗
j > Λ∗

j and Γ∗
j−1 ≤ Λ∗

j−1.
Let also l = wγ(j). Then, according to the above discussion,

γ̄l = αΓ∗
j − (j + 1).

From (i) and (vi) above, we deduce that the last equation can be rewritten as

γ̄l = α(Λ∗
j + r − 1) − (j − 1). (3.14)

Moreover, let j′ be defined as w−1
λ (l). This implies that

λ̄l = αΛ∗
j′ − (j′ − 1). (3.15)

Combining Eqs. (3.14) and (3.15), we get

λ̄l − γ̄l = α(Λ∗
j′ − Λ∗

j − r + 1) + j − j′. (3.16)

We are going to use the last equation and prove λ̄l − γ̄l �= 0. Three cases must
be analyzed separately:

(1) λl = Λ∗
j . Then, λ̄l − γ̄l = −α(r − 1), which is clearly different from 0.

(2) λl < Λ∗
j . Then, Λ∗

j′ < Λ∗
j and j′ > j. By the admissibility condition, we

have Λ∗
j −Λ∗

j′ ≥ ρ(r−1), where ρ = j′−j. Thereby, Λ∗
j −Λ∗

j′ = ρ(r−1)+δ
for some δ ≥ 0. Now,

λ̄l − γ̄l = −α((ρ + 1)(r − 1) + δ) − ρ.

Substituting α = α1,r = −2/(r − 1) into the last equation, we see that
it is equal to zero if and only if 2((ρ + 1)(r − 1) + δ) = ρ(r − 1). This is
impossible.

(3) λl > Λ∗
j . Then, Λ∗

j′ > Λ∗
j and j′ < j. Let ρ = j − j′. The admissibility

condition implies that Λ∗
j′ −Λ∗

j ≥ ρ(r−1). Thereby, Λ∗
j′ −Λ∗

j = ρ(r−1)+δ

for some δ ≥ 0. Thus,

λ̄l − γ̄l = α((ρ − 1)(r − 1) + δ) + ρ.

The last equation is zero when α = α1,r = −2/(r − 1) if and only if
2((ρ−1)(r−1)+δ) = ρ(r−1), which is equivalent to (ρ−2)(r−1)+2δ = 0.
It is clear that if ρ > 2, we have λ̄l �= γ̄l. Therefore, we have only to
analyze the cases for which ρ = 1 and ρ = 2.

On the one hand, if ρ = 1, then j′ = j − 1 and Λ∗
j′ = Λ∗

j−1. Substi-
tuting the last equality and (vi) into (3.16), we get λ̄l − γ̄l = 1.

On other hand, if ρ = 2, then j′ = j −2 and Λ∗
j′ = Λ∗

j−2. Using once
again (vi) and (3.16), we find

λ̄l − γ̄l = α(r − 1) + 2.

Replacing α by α1,r = − 2
r−1 into the last equation, we get λ̄l − γ̄l = 0.

Thus, we have not reached the desired conclusion yet. However, given
that in the present case, we have λl−1 > λl = Λ∗

j−2 and γl−1 = γl = Γ∗
j =

Γ∗
j−1 = Γ∗

j−2, we know that w−1
λ (l−1) = j̄ < j−2, so that Λ∗

j > Λ∗
j−2. Let
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ρ := j−2−j. The admissibility condition then gives Λ∗
j −Λ∗

j−2 ≥ ρ(r−1),
which is equivalent to Λ∗

j = Λ∗
j−2 + ρ(r − 1) + ε for some ε ≥ 0. Then

λ̄l−1 − γ̄l−1 = α(Λ∗
j−2 + ρ(r − 1) + ε) − (j − 1) − αΓ∗

j−1 + (j − 2)

= α(Λ∗
j−2 + ρ(r − 1) + ε) − α(Λ∗

j−2 − (r − 1)) + ρ + 1

= α((ρ + 1)(r − 1) + ε) + ρ + 1

Finally, the substitution of α = α1,r = −2/(r − 1) into the last equation
implies that λ̄l−1 = γ̄l−1 iff 2(ρ + 1)(r − 1) + 2ε = (ρ + 1)(r − 1), which
is impossible.
We have thus shown that there could exist compositions, λ and γ, such

that Λ is (1, r,N)-admissible, Γ∗ < Λ∗ and εΓ∗(α, u) = εΛ∗(α, u). However,
when it happens, we also have (λ̄1, . . . , λ̄N ) �= (γ̄1, . . . , γ̄N ) and the theorem
follows. �

Theorem 3.14 (Uniqueness for k = 1: moderate admissibility). Let λ =
(η1, . . . , ηm, μ1, . . . , μN−m) be a composition formed by the concatenation of
the partitions η = (η1, . . . , ηm) and μ = (μ1, . . . , μN−m). Assume that λ is
moderately (1, r,N |m)-admissible. Assume moreover that α = α1,r. Then, the
non-symmetric Jack polynomial Eλ is the unique polynomial satisfying

1. Eλ = xλ +
∑

γ≺λ

cλ,γxγ , cλ,γ ∈ C,

2. ξi Eλ = λ̄i Eλ ∀ 1 ≤ i ≤ N ,
where the λ̄i’s denote the eigenvalues introduced in (A2’) and (2.5).

Proof. We proceed as in Theorem 3.13. We start by introducing the associated
superpartitions Λ = ϕm(λ) and Γ = ϕm(γ). We then assume that we are given
a superpartition Γ such that εΓ∗(α, u) = εΛ∗(α, u) and εΓ�(α, u) = εΛ�(α, u),
which is possible if and only if Eq. (3.13) is satisfied for some σ, ω ∈ SN .
We recall that by hypothesis, Λ is moderately (1, r,N)-admissible and Γ < Λ,
which means that either Γ∗ < Λ∗ or Γ∗ = Λ∗ and Γ� < Λ�.

First, we assume that Γ∗ = Λ∗ and Γ� < Λ�. This obviously implies not
only that Γ∗

i = Λ∗
i for all i, but also that there exists an integer j > 1 such

that

Γ∗
j = Λ∗

j = Λ�
j , Γ�

j = Λ�
j + 1 and Γ�

i = Λ�
i − δi, δi = 0, 1 ∀ i < j.

By making use of Lemma 3.9, Λ�
j < Γ�

j and Γ∗
j−1 = Λ∗

j−1, we conclude that
ω(j) = j − 2. This implies Γ�

j = Λ�
j−2 − r + 1 and Γ�

j = Λ�
j + 1, so we get

Λ�
j−2 − Λ�

j = r, which is in contradiction with the admissibility.
Second, we assume that Γ∗ < Λ∗, which implies that there exists a j > 1

such that

Γ∗
j > Λ∗

j and Γ∗
i ≤ Λ∗

i , ∀ i < j.

According to Lemma 3.8, the first equality in (3.13) is possible when i = j
only if σ(j) = j − 2. Thus

Γ∗
j = Λ∗

j−2 − r + 1
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Now Λ�
j−2 = Λ∗

j−2 + ε for some 0 ≤ ε ≤ 1, and Γ∗
j = Λ∗

j−1 − δ for some δ ≥ 0.
Hence,

ε + r = Λ�
j−2 − Λ∗

j−1 + δ + 1,

which is compatible with the admissibility only if ε = 1 and δ = 0. Combining
all the previous results, we get

(i) Γ∗
j = Λ∗

j−2 − r + 1 (ii) Γ∗
j = Γ∗

j−1 = Λ∗
j−1

(iii) Λ�
j−2 = Λ∗

j−2 + 1 (iv) Λ�
j−1 = Λ∗

j−1.

We now turn our attention to second equality in (3.13) when i = j. By
assumption we know that Γ∗

j > Λ∗
j , so that Γ�

j ≥ Λ�
j . By making use of Lemma

3.9, we get the following two options:

1. If Γ�
j = Λ�

j , then ω(j) = j. However, by assumption, Γ∗
j = Λ∗

j + ε which
implies Γ�

j = Λ�
j = Λ∗

j + 1 and Γ∗
j = Λ∗

j + 1, and then Γ�
j = Γ∗

j . Now, as
Γ∗

j = Λ�
j−2 − r we get Λ�

j−2 − r = Λ�
j , which is clearly in contradiction

with the admissibility.
2. If Γ�

j > Λ�
j , then ω(j) < j. Now, from Γ�

j > Λ�
j and (ii), we know using

Lemma 3.9, that ω(j) = j − 2, i.e. Γ�
j = Λ�

j−2 − r + 1. Thus, the row j in
Γ contains a circle. This in turn implies that Γ�

j−1 = Γ∗
j−1 + 1, and also

that the row j − 1 in Γ contains a circle.
So far, considering the row j, we have obtained

(v) Γ�
j = Γ∗

j + 1 (vi) Γ�
j−1 = Γ∗

j−1 + 1.

Now, considering (ii), (iv) and (vi), we obtain Γ�
j−1 > Λ�

j−1. Moreover,
from Γ∗

j−2 ≤ Λ∗
j−2 and Lemma 3.9, we get ω(j − 1) = j − 3 and Γ�

j−1 =
Λ�

j−3 − r + 1. However, (ii), (iv), and (vi) imply that Γ�
j−1 = Λ�

j−1 + 1.
Combining these equations, we conclude that Λ�

j−3 − Λ�
j−1 = r. This

violates our assumptions, because the moderate admissibility condition
implies that Λ�

j−3 − Λ�
j−1 ≥ 2r.

We have shown that whenever Λ > Γ and Λ is moderately (1,r,N)-
admissible, then (λ̄1, . . . , λ̄N ) �= (γ̄1, . . . , γ̄N ), and the proof is complete. �

3.6. Clustering Properties for k = 1
We start by establishing k = 1 clustering properties for the non-symmetric
Jack polynomials. We then use these results and prove similar properties for
the Jack polynomials with prescribed symmetry.

Definition 3.15. Let Λ be a superpartition and let λ be a partition. We formally
define the superpartition Ω = Λ + λ where Ω = (Ω∗,Ω�) as Ω∗ = Λ∗ + λ and
Ω� = Λ� + λ. In terms of the diagrams, Ω is interpreted as the associated
superpartition to the diagram obtained by adding diagram Λ and λ.
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Let us illustrate the last definition by computing Λ + λ when Λ =
(5, 3, 1, 0; 4, 2, 1) and λ = δ7 = (6, 5, 4, 3, 2, 1, 0). Obviously, we have

Λ =

�

�

�

�

⇒ Λ∗ = and Λ� =

Then,

Λ∗ + λ =

and Λ� + λ =

Thus, the diagram obtained by adding the diagrams associated with Λ and λ
is given by

Λ + δ =

�

�

�

�

which is equivalent to say that Λ + δ = (11, 7, 3, 0; 9, 5, 2).

Proposition 3.16. Let r be even and positive. Let also κ = (λ+, μ+), where
λ+ is a partition with m parts while μ+ is a strictly decreasing partition with
N − m parts. Then

Eκ+(r−1)δ′(x1, . . . , xN ;−2/(r − 1))

∝
∏

1≤i<j≤N

(xi − xj)r−1Eκ(x1, . . . , xN ; 2/(r − 1)).

In the above equation, δ′ = ωκ(δ), where δ = (N − 1, N − 2, . . . , 1, 0) and ωκ

is the smallest permutation such that κ = ωκ(κ+).

Proof. In what follows, we set Λ = ϕm(κ) and use the shorthand notation
ΔN =

∏
1≤i<j≤N (xi − xj).
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First, we consider the action of ξj on the polynomial Δ(r−1)
N Eκ(x; 2/

(r − 1)):

ξj(Δ
(r−1)
N Eκ(x; 2/(r − 1))) = α(r − 1)Δ(r−1)

N

N∑

i=1,i �=j

xj

xj − xi
Eκ(x; 2/(r − 1))

+αΔ(r−1)
N xj∂xj

Eκ(x; 2/(r−1))+Δ(r−1)
N

∑

i<j

xj

xj − xi
(1+Kij)Eκ(x; 2/(r−1))

+Δ(r−1)
N

∑

i>j

xi

xj − xi
(1+Kij)Eκ(x; 2/(r−1))−(j−1)Δ(r−1)

N Eκ(x; 2/(r−1)).

Second, we restrict ξj by imposing α = −2/(r − 1), which gives

ξj |α=−2/(r−1)(Δ
(r−1)
N Eκ(x; 2/(r − 1)))

= − 2
r − 1

Δ(r−1)
N xj∂xj

Eκ(x; 2/(r − 1))

− Δ(r−1)
N

N∑

i=1,i �=j

xj

xj − xi
(1 − Kij)Eκ(x; 2/(r − 1))

− Δ(r−1)
N

∑

i>j

KijEκ(x; 2/(r − 1)) − (N − 1)Δ(r−1)
N Eκ(x; 2/(r − 1)).

By reordering the terms, we also get

ξj |α=−2/(r−1)(Δ
(r−1)
N Eκ(x; 2/(r − 1)))

= −Δ(r−1)
N

(
ξj |α=2/(r−1) + 2(N − 1)

)
Eκ(x; 2/(r − 1)).

Now, the use of (A2′) allows us to write

ξj |α=−2/(r−1)(Δ
(r−1)
N Eκ(x; 2/(r − 1)))

= − (
κj |α=2/(r−1) + 2(N − 1)

)
Δ(r−1)

N Eκ(x; 2/(r − 1)). (3.17)

We have proved that (Δ(r−1)
N Eκ(x; 2/(r − 1))) is an eigenfunction of

ξj |α=−2/(r−1) for each j. The eigenvalue can be reorganized as follows. On
the one hand, we know from Eq. (2.5) that the eigenvalues associated to
Eκ(x; 2/(r − 1)) restricted to α = 2/(r − 1) are given by

κj |α=2/(r−1) =
2

r − 1
κj − #{i < j|κi ≥ κj} − #{i > j|κi > κj}.

Now, given κj in κ, we know that to κj corresponds a cell in diagram of κ
and moreover, this cell has an associated cell s in diagram of Λ. Then, we can
express the eigenvalues κj in terms of arm-colength and leg-colength of cell s
in Λ. Given that

a′
Λ∗(s) = κj − 1 and l′Λ∗(s) = #{i < j|κi ≥ κj} + #{i > j|κi > κj},

we can rewrite the eigenvalue as

κj |α=2/(r−1) =
2

r − 1
(a′

Λ∗(s) + 1) − l′Λ∗(s). (3.18)
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On the other hand, from Eq. (2.5) and considering the composition κ+(r−1)δ′,
we have

(κ + (r − 1)δ′)j = α(κj +(r − 1)δ′
j) − #{i < j|κi+(r − 1)δ′

i ≥κj +(r − 1)δ′
j}

−#{i > j|κi + (r − 1)δ′
i > κj + (r − 1)δ′

j}.

However, we can simplify this expression if we rewrite the eigenvalue in terms
of Λ′ := Λ + (r − 1)δ the associated superpartition to κ + (r − 1)δ′. The same
way as before, given (κ+(r − 1)δ′)j in the composition κ+(r − 1)δ′, we know
that to (κ + (r − 1)δ′)j corresponds a cell in diagram of κ + (r − 1)δ′ and
moreover, this cell has a cell s′ associated in diagram of Λ′. So, we have

a′
Λ′∗(s′) = κj − 1 + (r − 1)δ′

j

l′Λ′∗(s′) = #{i < j|κi + (r − 1)δ′
i ≥ κj + (r − 1)δ′

j}
+ #{i > j|κi + (r − 1)δ′

i > κj + (r − 1)δ′
j}

Hence,

(κ + (r − 1)δ′)j |α=−2/(r−1) = − 2
(r − 1)

(a′
Λ′∗(s′) + 1) − l′Λ′∗(s′). (3.19)

Now, comparing the arm-colength and leg-colength of Λ and Λ′, we get

a′
Λ′∗(s′) = a′

Λ∗(s) + N − l′Λ′∗(s) − 1 and l′Λ′∗(s′) = l′Λ∗(s) (3.20)

Hence, by combining the Eqs. (3.17), (3.18), (3.19) and (3.20), we conclude
that

Eκ+(r−1)δ′(x;−2/(r − 1)) and Δr−1
N Eκ(x; 2/(r − 1))

have the same eigenvalues for each ξj with j = 1, . . . , N .
In brief, we have proved that (Δ(r−1)

N Eκ(x; 2/(r −1))) as the same eigen-
values than Eκ+(r−1)δ′(x;−2/(r − 1)). Little work also shows that both poly-
nomials exhibit triangular with dominant term xκ+(r−1)δ′

. Moreover, because
of the form of κ, the composition κ+(r−1)δ′ is weakly (1, r,N |m)-admissible.
Therefore, we can make use of Theorem 3.13 and conclude that

Eκ+(r−1)δ′(x1, . . . , xN ;−2/(r − 1))

∝
∏

1≤i<j≤N

(xi − xj)r−1Eκ(x1, . . . , xN ; 2/(r − 1)),

i.e., the polynomials are equal up to a multiplicative numerical factor. �

Corollary 3.17. Let r > 0 be even and let λ be a partition with 
(λ) ≤ N . Then

Eλ+(r−1)δN
(x1, . . . , xN ;−2/(r − 1))

=
∏

1≤i<j≤N

(xi − xj)r−1Eλ(x1, . . . , xN ; 2/(r − 1)).
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Remark 3.18. The clustering property corresponding to Corollary 3.17 was
first obtained in [4, Proposition 2]. The proof given in the latter reference used
the characterization of the non-symmetric Jack polynomials as the unique
polynomials satisfying (A1’) and (A2’). However, the problem of the validity
of this characterization at α = αk,r was not addressed by the authors. Our
results about the regularity and uniqueness, respectively, given in Proposition
3.4 and Theorem 3.13, now firmly establish the demonstration proposed in [4].

Before stating the clustering properties for the polynomials with pre-
scribed, we recall two useful formulas. For this, let

I = {i1, i2, . . . , in}, J = {j1, j2, . . . , jm},

ΔI =
∏

i,j∈I
i<j

(xi − xj), ΔJ =
∏

i,j∈J
i<j

(xi − xj).

Then, obviously,

SymI

(
ΔIf(x1, . . . , xN )

)
= ΔIAsymI

(
f(x1, . . . , xN )

)
,

AsymJ

(
ΔJf(x1, . . . , xN )

)
= ΔJSymJ

(
f(x1, . . . , xN )

)
.

(3.21)

Proposition 3.19 (Clustering k = 1). Let r be positive and even. Let also Λ be
a superpartition of bi-degree (n|m) with 
(Λ) ≤ N .

(i) If Λ is strict and weakly (1, r,N)-admissible, then

PAS
Λ (x1, . . . , xN ;−2/(r − 1)) =

∏

m+1≤i<j≤N

(xi − xj)rQ(x1, . . . , xN ).

(ii) If Λ is moderately (1, r,N)-admissible, then

P SS
Λ (x1, . . . , xN ;−2/(r − 1))

=
∏

1≤i<j≤m

(xi − xj)r
∏

m+1≤i<j≤N

(xi − xj)rQ(x1, . . . , xN ).

(iii) If Λ is moderately (1, r,N)-admissible and it is such that Λm+1 > . . . >
ΛN , then

P SA
Λ (x1, . . . , xN ;−2/(r − 1)) =

∏

1≤i<j≤m

(xi − xj)rQ(x1, . . . , xN ).

(iv) If Λ is strict and weakly (1, r,N)-admissible, and it is such that Λm+1 >
. . . > ΛN , then

PAA
Λ (x1, . . . , xN ;−2/(r − 1)) =

∏

1≤i<j≤N

(xi − xj)r−1Q(x1, . . . , xN ).

In the above equations, Q(x1, . . . , xN ) denotes some polynomial, which varies
from one symmetry type to another.

Proof. Once again, all cases are similar, so we only provide the demonstration
for the symmetry type AS, which corresponds to (i) above.
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As before, we set I = {1, . . . , m} and J = {m + 1, . . . , N}. According to
Definition 1.3 and Proposition 3.5, there is a composition η, obtained by the
concatenation of two partitions, such that

PAS
Λ (x1, . . . , xN ;α) ∝ AsymISymJ(Eη(x1, . . . , xN ;α)).

Given that Λ is (1, r,N)-admissible, then η has the form κ + (r − 1)δ′ where
κ = (λ+, μ+) is the composition obtained from η after subtraction of the com-
position (r − 1)δ′. Moreover, since Λ is strict and weakly (1, r,N)-admissible,
we know that κ is such that μ+ is strictly decreasing. Thus,

PAS
Λ (x1, . . . , xN ;−2/(r − 1))
∝ AsymISymJ (Eκ+(r−1)δ′(x1, . . . , xN ;−2/(r − 1))). (3.22)

Now, by Proposition 3.16, we also have

Eκ+(r−1)δ′(x1, . . . , xN ;−2/(r − 1))

∝
∏

1≤i<j≤N

(xi − xj)r−1Eκ(x1, . . . , xN ; 2/(r − 1)). (3.23)

The substitution of (3.23) into (3.22), followed by the use of (3.21), leads to

PAS
Λ (x1, . . . , xN ;−2/(r − 1)) ∝ (ΔJ )(r−1)(ΔI)(r−1)

×SymI

⎛

⎝
m∏

i=1

N∏

j=m+1

(xi − xj)(r−1)AsymJEκ(x1, . . . , xN ; 2/(r − 1))

⎞

⎠

Now, we know that AsymJEκ(x1, . . . , xN ; 2/(r − 1)) is antisymmetric with
respect to the set of variables indexed by J , so we can factorize the antisym-
metric factor

∏
m+1≤i<j≤N (xi − xj). Exploiting once again (3.21), we finally

obtain

PAS
Λ (x1, . . . , xN ;−2/(r − 1)) ∝

∏

m+1≤i<j≤N

(xi − xj)rQ(x1, . . . , xN ),

where

Q(x1, . . . , xN ) =
∏

1≤i<j≤m

(xi − xj)r−1
m∏

i=1

N∏

j=m+1

(xi − xj)(r−1)

×SymI

(
AsymJEκ(x1, . . . , xN ; 2/(r − 1))∏

m+1≤i<j≤N (xi − xj)

)
. (3.24)

�

Remark 3.20. The case (i) was first conjectured in [13] in the context of sym-
metric polynomials in superspace. All other cases are new.

Corollary 3.21. Let α = − 2
r−1 and let r be positive and even. Moreover, for

any positive integer ρ, let

ρδN =
(
ρ(N − 1), ρ(N − 2), . . . , ρ, 0

)
.
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Then, the antisymmetric Jack polynomial satisfies

S(r−1)δN
(x1, . . . , xN ;α) =

∏

1≤i<j≤N

(xi − xj)(r−1),

while the symmetric Jack polynomial satisfies

PrδN
(x1, . . . , xN ;α) =

∏

1≤i<j≤N

(xi − xj)r.

Proof. We recall that if 
(λ) = N , then

Sλ(x;α) = PAS
(λ;∅)(x;α) and Pλ(x, α) = PAS

(∅; λ)(x, α).

The first result then follows from Proposition 3.19 and Eq. (3.24) for the case
with m = N and κ = ∅. The second result also follows from Proposition 3.19
and Eq. (3.24), but this time, with m = 0 and κ = δN . �

4. Translation Invariance and Some Clustering Properties
for k ≥ 1

In this section, we first generalize the work of Luque and Jolicoeur about trans-
lationally invariant Jack polynomials [19]. We indeed find the necessary and
sufficient conditions for the translational invariance of the Jack polynomials
with prescribed symmetry AS. To be more precise, let

PΛ = PAS
Λ (x1, . . . , xN ;α), (4.1)

and suppose that

α = αk,r, (4.2)

Λ is a strict and weakly (k, r,N)-admissible superpartition. (4.3)

Then, as was stated in Theorem 1.9, PΛ is invariant under translation if and
only if conditions (D1) and (D2) are satisfied. The latter conditions concern
the corners in the diagram of Λ. The proof relies on combinatorial formulas
obtained in [13] that generalize Lassalle’s results [24,25] about the action of
the operator

L+ =
N∑

i=1

∂

∂xi
. (4.4)

We then apply the result about the translationally invariant polynomials and
prove that certain Jack polynomials with prescribed symmetry AS admit clus-
ters of size k and order r.

4.1. Generators of Translation

The action of L+ on a Jack polynomial with prescribed symmetry AS,
PAS

Λ (x;α), is in general very complicated. However, it can be decomposed in
terms of two basic operators, Q� and Q�. Their respective action on PAS

Λ (x;α)
can be translated into simple transformations of the diagram of Λ, namely the
removal of a circle and the conversion of a box into a circle.



Vol. 16 (2015) Jack Polynomials with Prescribed Symmetry 2443

Now, let I = {1, . . . , m}, I+ = {1, . . . , m + 1}, I− = {1, . . . , m − 1},
J = {m + 1, . . . , N}, J+ = {m, . . . , N}, and J− = {m + 2, . . . , N}. We define
Q� and Q� as follows: For 1 ≤ m ≤ N ,

Q� : AI ⊗ SJ −→ AI− ⊗ SJ+ ; f �−→
(

1 +
N∑

i=m+1

Ki,m

)
f,

while for 0 ≤ m ≤ N − 1,

Q� : AI ⊗ SJ −→ AI+ ⊗ SJ− ; f �−→
(

1 −
m∑

i=1

Ki,m+1

)
◦ ∂f

∂xm+1
.

Note that for the extreme case m = 0, we set Q� = 0. Similarly, for m = N ,
we set Q� = 0.

Lemma 4.1. On the space AI ⊗ SJ , we have Q� ◦ Q� + Q� ◦ Q� = L+.

Proof. Let f be an element of AI ⊗ SJ , which means that f is a polynomial
in the variables x1, . . . , xN that is antisymmetric with respect to x1, . . . , xm

and symmetric with respect to xm+1, . . . , xN . We must show that

(Q� ◦ Q�)(f) + (Q� ◦ Q�)(f) =
N∑

i=1

∂f

∂xi
. (4.5)

On the one hand,

(Q� ◦ Q�)(f) =
∂f

∂xm+1
−

m∑

i=1

Ki,m+1
∂f

∂xm+1

+
N∑

j=m+2

Kj,m+1
∂f

∂xm+1
−

N∑

j=m+2

Kj,m+1

m∑

i=1

Ki,m+1
∂f

∂xm+1
.

(4.6)

However, the symmetry properties of f imply

N∑

j=m+2

Kj,m+1
∂f

∂xm+1
=

N∑

j=m+2

∂f

∂xj

and
N∑

j=m+2

Kj,m+1

m∑

i=1

Ki,m+1
∂f

∂xm+1
=

m∑

i=1

N∑

j=m+2

∂

∂xi
(Ki,jf). (4.7)

By substituting the last equalities into (4.6), we obtain

(Q� ◦ Q�)(f) =
∂f

∂xm+1
+

N∑

j=m+2

∂f

∂xj
−

m∑

i=1

N∑

j=m+1

∂

∂xi
(Ki,jf). (4.8)
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On the other hand,

(Q� ◦ Q�)(f) =
∂f

∂xm
+

N∑

j=m+1

∂

∂xm
(Kj,mf)

−
m−1∑

i=1

Ki,m
∂f

∂xm
−

m−1∑

i=1

Ki,m
∂

∂xm

⎛

⎝
N∑

j=m+1

Kj,mf

⎞

⎠ . (4.9)

Once again, the symmetry properties of f allow to simplify this equation.
Indeed,

m−1∑

i=1

Ki,m
∂f

∂xm
= −

m−1∑

i=1

∂f

∂xi

and
m−1∑

i=1

Ki,m
∂

∂xm

⎛

⎝
N∑

j=m+1

Kj,mf

⎞

⎠ = −
m−1∑

i=1

N∑

j=m+1

∂

∂xi
(Ki,jf).

Then,

(Q� ◦ Q�)(f) =
∂f

∂xm
+

m−1∑

i=1

∂f

∂xi
+

m∑

i=1

N∑

j=m+1

∂

∂xi
(Ki,jf). (4.10)

We finally sum Eqs. (4.8) and (4.10). This yields Eq. (4.5), as expected.
�

The explicit action of Q� and Q� on the polynomial PAS
Λ (x;α) can be

read off from Proposition 9 of [13]. Indeed, this proposition is concerned with
the action of differential operators—related to the super-Virasoro algebra—on
the Jack superpolynomials, denoted by PΛ(x; θ;α), which contain Grassmann
variables θ1, . . . , θN . Among the operators studied in [13], there are

Q⊥ =
∑

i

∂

∂θi
and q =

∑

i

θi
∂

∂xi
.

Now, a Jack superpolynomial of degree m in the variables θi, can be decom-
posed as follows [10]:

PΛ(x; θ;α) =
∑

1≤j1<···<jm≤N

θj1 · · · θjm
f j1,...,jm(x;α),

where f j1,...,jm(x;α) belongs to the space A{j1,...,jm} ⊗S{1,...,N}\{j1,...,jm} and
is an eigenfunction of the operator D defined in (1.3). This means in particular
that f1,...,m(x;α) is exactly equal to our PAS

Λ (x;α). It is then an easy exercise
to show that the formula for the action of Q⊥ on PΛ(x; θ;α) provides the
formula for the action of Q� on PAS

Λ (x;α). Similarly, qPΛ(x; θ;α) is related to
Q�PAS

Λ (x;α). Note that the formulas obtained in [13] are given in terms of the
following upper and lower-hook lengths:
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h
(α)
Λ (s) = lΛ�(s) + α(aΛ∗(s) + 1)

h(Λ)
α (s) = lΛ∗(s) + 1 + α(aΛ�(s))

(4.11)

Proposition 4.2. [13] The action of the operators Q� and Q� on the Jack
polynomial with prescribed symmetry PΛ = PAS

Λ (x;α) is

Q�(PΛ) =
∑

Ω

(−1)#Ω◦
(

∏

s∈rowΩ◦

h
(Ω)
α (s)

h
(Λ)
α (s)

)
(N+1 − i+α(j − 1))PΩ (4.12)

Q�(PΛ) =
∑

Ω

(−1)#Ω◦
(

∏

s∈rowΩ◦

h
(α)
Λ (s)

h
(α)
Ω (s)

)
PΩ, (4.13)

where the sum is taken in (4.12) over all Ω′s obtained by removing a circle
from Λ; while the sum is taken in (4.13) over all Ω′s obtained by converting
a box of Λ into a circle. Also, in each case Λ and Ω differ in exactly one cell
which we call the marked cell and whose position is denoted in the formulas by
(i, j). The symbol #Ω◦ stands for the number of circles in Ω above the marked
cell. The symbol rowΩ◦ stands for the row of Ω and Λ to the left of the marked
cell.

Remark 4.3. Let Λ be a superpartition such that in the corresponding diagram,
all corners are boxes. Then, in Eq. (4.12), we cannot remove any circle from
the diagram of Λ and we are forced to conclude that Q�PΛ = 0. This is
coherent with the fact that in such case, PAS

Λ (x;α) is a symmetric polynomial
and according with our convention, Q�f = 0 for all f ∈ S{1,...,N}.

Similarly, let Λ be a superpartition such that in its diagram, all corners
are circles. Then, we cannot transform a box in the diagram of Λ into a cir-
cle. This complies with our convention. Indeed, in such case, PAS

Λ (x;α) is an
antisymmetric polynomial and we have set Q�f = 0 for all f ∈ A{1,...,N}.

4.2. General Invariance

We will determine whether a Jack polynomial with prescribed symmetry is
translationally invariant by looking at the shape of the diagram associated
with the indexing superpartition. We will pay a special attention to the corners
in the diagram.

Definition 4.4. Let D be the diagram associated with the superpartition Λ.
The cell (i, j) ∈ D is a corner if (i + 1, j) /∈ D and (i, j + 1) /∈ D. We say that
the corner (i, j) is an outer corner if the row i − 1 and the column j − 1 do
not have corners. On the contrary, the corner (i, j) is an inner corner if the
row i − 1 and the column j − 1 have corners. A corner that neither outer nor
inner is a bordering corner. Note that in the above definitions, it is assumed
that each point of the form (0, j) or (i, 0) is a corner.

Lemma 4.5. Let D′ be the diagram obtained by removing the corner (i, j) from
diagram D, which contains c corners. Then, the number of corners in D′ is
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• c − 1 if (i, j) is an inner corner;
• c if (i, j) is a bordering corner;
• c + 1 if (i, j) is an outer corner.

Proof. This follows immediately from the above definitions. �

Lemma 4.6. Assume (4.1), (4.2), and (4.3). Then, Q�(PΛ) = 0 if and only if
Λ is such that all the corners in its diagram are circles.

Proof. According to Proposition 4.2, Q�(PΛ) vanishes if and only if each corner
of Λ is either a circle or a box located at (i, j′) such that for some j < j′, we
have

h
(αk,r)
Λ (i, j) = lΛ�(i, j) + αk,r(aΛ∗(i, j) + 1) = 0

Now, h
(αk,r)
Λ (i, j) = 0 only if for some positive integer k̄, we have

aΛ∗(i, j) + 1 = k̄(r − 1) and lΛ�(i, j) = (k + 1)k̄. This implies

Λ�
i − Λ∗

i+k̄(k+1) ≤ k̄r − k̄. (4.14)

On the other hand, Lemma 3.2 implies that Λ�
i+1 − Λ∗

i+k̄(k+1)
≥ k̄r.

Moreover, Λ�
i ≥ Λ�

i+1, so that Λ�
i −Λ∗

i+k̄(k+1)
≥ k̄r. This inequality contradicts

(4.14).
Therefore, if Λ is a (k, r,N)-admissible superpartition, Q�(PΛ) vanishes

if and only if all the corners in Λ are circles. �

The conditions for the vanishing of the action of Q� on a Jack polynomial
with prescribed symmetry are more involved. They require a finer characteri-
zation of the different types of hooks formed from the corners of the diagrams.

Definition 4.7. Let D be the diagram associated with the superpartition Λ.
Let (i, j) ∈ D be a circled corner. We say that (i, j) is the upper corner of a
hook of type:

(a) Ck,r if the box (i, j−r) ∈ D and it satisfies lΛ∗(i, j−r) = lΛ�(i, j−r) = k;
(b) C̃k,r if the box (i, j − r) ∈ D and it satisfies lΛ∗(i, j − r) = k together

with lΛ�(i, j − r) = k + 1.

Similarly, when (i, j) ∈ D is a boxed corner, we say (i, j) is the upper corner
of a hook of type:

(c) Bk,r if the box (i, j−r) ∈ D and it satisfies lΛ∗(i, j−r) = lΛ�(i, j−r) = k.
(d) B̃k,r if the box (i, j − r) ∈ D and it satisfies lΛ∗(i, j − r) = k together

with lΛ�(i, j − r) = k + 1.

The hooks are illustrated in Fig. 1.

Let us consider a concrete example. For this we fix k = 4, r = 3 and
N = 18. The following diagram is associated with a strict and weakly (k, r,N)-
admissible superpartition:
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��

��

�
�

�

Each cell marked with a star is the upper corner of one of the four types of
hooks. The first one, located at the position (1, 11), is the upper corner of a
hook of type C̃4,3. The one, located at the position (6, 8), belongs to a hook
of type C4,3. Similarly, the third and the fourth corners are the upper corners
of hooks of type B̃4,3 and B4,3, respectively.

Lemma 4.8. Assume (4.1), (4.2), and (4.3). Then, Q�(PΛ) = 0 if and only if
each corner in the diagram of Λ is either

(i) a box;
(ii) a circle and the upper corner of a hook of type Ck,r or C̃k,r;
(iii) a circle with coordinates (i, j) such that i = N + 1 − k̄(k + 1) and j =

k̄(r − 1) + 1 for some positive integer k̄.

Note that there is at most one corner (i, j) satisfying the criterion (iii).

Proof. According to Proposition 4.2, Q�(PΛ) = 0 iff, each corner (i, j) satisfies
at least one of the following criteria:

1. the cell (i, j) is a box;
2. the cell (i, j) is a circle and there is a j′ < j such that h

(Ω)
α (i, j′) = 0,

where h
(Ω)
α (i, j′) = lΩ∗(i, j′) + 1 + αk,r(aΩ�(i, j′)) and Ω is the diagram

obtained from Λ by removing the circle in (i, j);
3. the cell (i, j) is a circle and it is such that N + 1 − i + αk,r(j − 1) = 0.

The first criterion being trivial, we turn to the second. Obviously, h
(Ω)
α (i, j′) =

0 iff there exists a positive integer k̄ such that aΩ�(i, j′) = k̄(r − 1) and
lΩ∗(i, j′) = k̄(k + 1) − 1. The first condition is equivalent to j − j′ = k̄(r −
1) − 1. The second is equivalent to say that Λ∗

i+k̄(k+1)−1
≥ j′ and that the cell

(i+ k̄k + k̄, j′) is empty or a circle. Suppose further that k̄ = 1. Then, we have
shown that h

(Ω)
α (i, j′) = 0 iff j′ = j − r + 2, Λ∗

i+k ≥ j′ and Λ∗
i+k+1 < j′ (i.e.,

Λ�
i+k+1 < j′ or Λ�

i+k+1 = j′ ); this corresponds to the two hooks given above.
Now, suppose k̄ = 2. On the one hand, we have Λ∗

i+2k+1 ≥ j′ = j−2(r−1)+1 =
Λ�

i − 2(r − 1) + 1, i.e.,
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Λ�
i − Λ∗

i+2k+1 ≤ 2r − 3. (4.15)

On the other hand, the admissibility requires Λ�
i −Λ∗

i+k ≥ r and Λ∗
i+k−Λ∗

i+2k ≥
r − 1. Then,

Λ�
i − Λ∗

i+2k+1 ≥ Λ�
i − Λ∗

i+2k ≥ 2r − 1. (4.16)

Inequalities (4.15) and (4.16) are contradictory, so we conclude that k̄ cannot
be equal to 2. In the same way, one easily shows that k̄ cannot be greater
than 2.

Now consider the third criterion. As N +1− i > 0, the factor N +1− i+
αk,r(j−1) vanishes iff j = k̄(r−1)+1 and N = i+k̄(k+1)−1, for some positive
integer k̄. Now suppose there is another corner (i′, j′) such that N + 1 − i′ +
αk,r(j′ −1). Then, j′ = k̄′(r −1)+1 y N = i′ + k̄′(k +1)−1, for some positive
integer k̄′. Without loss of generality, we can assume i < i′, which implies
j > j′, i.e., k̄ > k̄′. Let n = k̄ − k̄′. Then, j − j′ = Λ�

i − Λ�
i′ = n(r − 1), which

implies Λ�
i −Λ∗

i′ = n(r−1)+1. Using N = i+ k̄(k +1)−1 = i′ + k̄′(k +1)−1,
we get i′ = i + n(k + 1). Also, Λ�

i − Λ∗
i+n(k+1) > Λ�

i − Λ∗
i+nk; thus

Λ�
i − Λ∗

i+nk ≤ n(r − 1). (4.17)

However, using the admissibility and the fact that

Λ�
i − Λ∗

i+nk =Λ�
i − Λ∗

i+k + Λ∗
i+k − Λ∗

i+2k + Λ∗
i+2k+· · ·+Λ∗

i+(n−1)k−Λ∗
i+nk,

(4.18)

one easily shows that

Λ�
i − Λ∗

i+nk ≥ r + (n − 1)(r − 1) = nr − n + 1. (4.19)

Obviously, Eqs. (4.17) and (4.19) are contradictory. Therefore, no more than
one corner is such that N + 1 − i + αk,r(j − 1) = 0. �

Corollary 4.9. Assume (4.1), (4.2), and (4.3). Suppose moreover that the last
corner in Λ’s diagram is a circle. Let (
, j) the coordinates of the last corner.
Then, Q�(PΛ) = 0 only if N = 
 + k and j = r.

Proof. According to the previous proposition, as (
, j) cannot be the upper
corner of a hook, Q�(PΛ) = 0 only if the condition (iii) is met for the corner
(
, j). This means that Q�(PΛ) = 0 only if 
 = N + 1 − k̄(k + 1) and j =
k̄(r − 1) + 1 for some positive integer k̄. Now, the admissibility condition
requires 
 + k ≥ N , i.e.,

N + 1 − k̄(k + 1) + k ≥ N.

This is true iff k̄ = 1. Thus, Q�(PΛ) = 0 only if 
 = N − k and j = r. �

Proposition 4.10. Assume (4.1), (4.2), and (4.3). Then, PΛ is invariant under
translation if and only if Q�(Q�PΛ) = 0 and Q�(Q�PΛ) = 0.

Proof. Clearly, PΛ is translationally invariant iff L+(PΛ) = 0. Moreover, we
know from Lemma 4.1 that L+(PΛ) = Q�(Q�PΛ) + Q�(Q�PΛ). Thus, if
Q�(Q�P ) = 0 and Q�(Q�P ) = 0 then L+P = 0.
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It remains to show that if L+P = 0, then Q�(Q�PΛ) = 0 and
Q�(Q�PΛ) = 0. In fact, we are going to prove the contrapositive: if
Q�(Q�PΛ) �= 0 or Q�(Q�PΛ) �= 0 then L+P �= 0. However, if Q�(Q�PΛ) �= 0
and Q�(Q�PΛ) = 0, or if Q�(Q�PΛ) = 0 and Q�(Q�PΛ) �= 0, then automat-
ically L+PΛ �= 0. Consequently, we need to prove the following statement:

Q�(Q�PΛ) �= 0 and Q�(Q�PΛ) �= 0 =⇒ Q�Q�(PΛ) + Q�Q�(PΛ) �= 0.

(4.20)

We assume that Q�(Q�PΛ) �= 0 and Q�(Q�PΛ) �= 0. Then, Q�PΛ �= 0
and Q�PΛ �= 0. According to Lemma 4.8, the first equation implies that there
is at least one circle in the diagram of Λ that does not satisfy the conditions (ii)
and (iii). Let (i, j) denote the position of such a circle. Moreover, according to
Lemma 4.6, the second equation implies that there must be at least one boxed
corner in the diagram of Λ. Let (̄i, j̄) be its position.

Let Υ be the superpartition obtained from Λ by removing the circle (i, j)
and by converting a box (̄i, j̄) into a circle. There is only one way to get
PΥ by acting with Q�Q� on PΛ by acting with Q�Q� on PΛ. Thus, it is
enough to verify that the coefficients of the polynomial PΥ in the expansions
of Q�(Q�PΛ) and Q�Q�(PΛ) are not the same (up to a sign).

Let Ω1 be the superpartition obtained from Λ by removing the circle in
(i, j). Clearly, the coefficient of PΥ in Q�(Q�PΛ) is equal to the product of two
coefficients: cΛ,Ω1 , the coefficient of PΩ1 in Q�(PΛ), and bΩ1,Υ, the coefficient of
PΥ in Q�(PΩ1). Similarly, if Ω2 denotes the superpartition obtained from Λ by
converting the box (̄i, j̄) into a circle, then the coefficient of PΥ in Q�(Q�PΛ)
is the product of the two following coefficients: bΛ,Ω2 , the coefficient of PΩ2 in
Q�PΛ, and cΩ2,Υ, the coefficient of PΥ in Q�(PΩ2). In short,

Q�Q�(PΛ) = cΛ,Ω1 bΩ1,Υ PΥ + · · · (4.21)

Q�Q�(PΛ) = bΛ,Ω2 cΩ2,Υ PΥ + · · · , (4.22)

where · · · indicates terms linearly independent from PΥ. We recall that the
coefficients b and c can be read off the equations in Proposition 4.2.

Now, we need to distinguish two cases: (1) the box is located above the
circle in the diagram of Λ, which means ī < i, and (2) the box is located under
the circle in the diagram of Λ, which means ī > i.

Suppose first that the box is located above the circle, i.e., ī < i. Obviously,
bΛ,Ω2 is not zero. Moreover, cΩ2,Υ is equal to cΛ,Ω1 . This can be understood as
follows. These coefficients depend only on N , the coordinates of the marked
cell, which are (i, j) in both cases, and on ratios of hook-lengths for the cells
in the row to the left of the marked cell. Given that the marked cell is below
the cell (̄i, j̄), the hook-lengths involved in the coefficients are not affected by
any prior transformation Λ → Ω2, so the coefficients are equal. The situation
is not so simple for bΛ,Ω2 and bΩ1,Υ, so explicit formulas for these coefficients
are required. Up to a sign, they are
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dΛ,Ω2 =

⎛

⎝
∏

1≤l≤j̄−1

h
(α)
Λ (̄i, l)

h
(α)
Ω2 (̄i, l)

⎞

⎠ , dΩ1,Υ =

⎛

⎝
∏

1≤l≤j̄−1

h
(α)
Ω1 (̄i, l)

h
(α)
Υ (̄i, l)

⎞

⎠ (4.23)

It is important to note that

h
(α)
Λ (̄i, l) = h

(α)
Ω1 (̄i, l) ∀ 1 ≤ l ≤ j̄ − 1, l �= j

and for l = j we have

h
(α)
Λ (̄i, j) = (i − ī) + α(j̄ − j + 1)

h
(α)
Ω1 (̄i, j) = (i − ī − 1) + α(j̄ − j + 1)

(4.24)

Also, for l �= j,

h
(α)
Ω2 (̄i, l) = h

(α)
Υ (̄i, l) ∀ 1 ≤ l ≤ j̄ − 1,

while for l = j,

h
(α)
Ω2 (̄i, j) = (i − ī) + α(j̄ − j)

h
(α)
Υ (̄i, j) = (i − ī − 1) + α(j̄ − j).

(4.25)

After having made basic calculations, we see that the coefficients bΛ,Ω2 and
bΩ1,Υ are equal iff α = 0. We thus conclude that bΛ,Ω2 �= ±bΩ1,Υ, which in
turn implies that cΛ,Ω1 bΩ1,Υ ± bΛ,Ω2 cΩ2,Υ �= 0.

The second case, for which the square is located under the circle in the
Λ diagram, is very similar to the case just analyzed. The only difference for
the second case is that bΛ,Ω2 = ±bΩ1,Υ and cΩ2,Υ �= ±cΛ,Ω1 . Nevertheless, this
implies once again that cΛ,Ω1 bΩ1,Υ ± bΛ,Ω2 cΩ2,Υ �= 0.

In conclusion, we have proved Eq. (4.20) and the proposition follows. �

Proof of Theorem 1.9. In what follows, PΛ = PΛ(x1, . . . , xN ;αk,r), where Λ is
as in (4.3). We suppose moreover that the diagram of Λ contains exactly m
circles.

According to Proposition 4.10, PΛ is invariant under translation iff it
belongs simultaneously to the kernel of Q� ◦ Q� and that of Q� ◦ Q�.

Consider first Q� ◦ Q�(PΛ) = 0. It is clear that Q� ◦ Q�(PΛ) = 0 iff
Q�(PΛ) = 0 or, according to Lemma 4.6, Q�(PΛ) generates Jack polynomials
indexed by superpartitions whose corners are all circles. On the one hand,
Q�(PΛ) = 0 iff Λ belongs to the set B formed by all superpartitions satisfying
conditions (i), (ii) and (iii) of Lemma 4.8. On the other hand, Q�(PΛ) �= 0
and Q� ◦ Q�(PΛ) = 0 iff each corner of Λ is a circle such that if we delete it,
we obtain a new superpartition whose corners are all circles, except possibly
some that satisfy the conditions (ii) or (iii) of Lemma 4.8 (by assumption
not all circles of Λ satisfy these conditions). We call C the set of all such
superpartitions. Now, by Lemma 4.5, the elimination of a circle does not create
a corner with box iff the circle is an inner corner. Then, C is given by the
set of all superpartitions whose corners are all inner circles except possibly
some that satisfy the conditions (ii) or (iii). It is interesting to note that the
only superpartition having only circled inner corners is the staircase δm =
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(m−1,m−2, . . . , 1, 0; ∅), which is (k, r,N)-admissible if N ≤ k, or N > k and
k ≥ r − 1. Therefore, Q� ◦Q�(PΛ) = 0 iff Λ belongs to the set B, or the set C.

So far, we have shown that Q� ◦ Q�(PΛ) = 0 iff Λ ∈ B ∪ C. It remains to
determine the subset A ⊂ B∪C such that Λ ∈ A =⇒ L+(PΛ) = 0. The simplest
case is Λ ∈ C. Indeed, since all corners of Λ are circles, we automatically have
Q�(PΛ) = 0, which implies Q� ◦ Q�(PΛ) = 0 and L+(PΛ) = 0.

We now suppose that Λ ∈ B. We want to determine the necessary and
sufficient criteria for Q� ◦ Q�(PΛ) = 0. On the one hand, we know that
Q�(PΛ) = 0 iff all corners of Λ are circles. Therefore, Q�(PΛ) = 0 and Λ ∈ B
iff all corners are circles that satisfy conditions (ii) and (iii) of Lemma 4.8.
Now, if Λ ∈ B and has at least one boxed corner in (i, j), then Q�(PΛ) does
not vanish and generates PΩ, where Ω is the superpartition obtained from Λ
by converting the box (i, j) into a circle. Now, Q�(PΩ) vanishes iff all corners
of Ω satisfy any of the three conditions of Lemma 4.8. Since by hypothesis
Λ already complies with these conditions, Q�(PΩ) = 0 iff (i, j) in Ω is the
upper corner of the hook Ck,r or C̃k,r, or it is such that i = N + 1 − k̄(k + 1)
and j = k̄(r − 1) + 1 for some positive integer k̄ (what is possible only once).
Applying this result to each boxed corner of Λ, we get Q�(Q�(PΛ)) = 0 iff
each boxed corner of Λ is the upper corner of a hook Bk,r or B̃k,r, or it is
such that i = N + 1 − k̄(k + 1) and j = k̄(r − 1) + 1 for some positive
integer k̄.

Finally, let (
, j′) the coordinates of the last corner Λ ∈ B. Obviously,
if there is a circle in (
, j′), this circle also corresponds to the last corner of
any superpartition Ω indexing the Jack polynomials generated by Q�(PΛ).
According to Corollary 4.9, we know that Q� ◦ Q�(PΛ) = 0 only if 
 = N − k
and j = r. On the other hand, if the last corner Λ is a box, it is known that
Q�(PΛ) generates a PΩ such that the last corner of Ω is a circle, so we have
once again that Q� ◦ Q�(PΛ) = 0 only if 
 = N − k and j = r.

In summary, Q� ◦ Q�(PΛ) = 0 and Q� ◦ Q�(PΛ) = 0 iff: (1) all corners
of Λ are circles, which are inner corners, except possibly for some circles that
satisfy the conditions (ii) and (iii) of Lemma 4.8; or (2) the last corner of Λ is
located in (N − k, r) and all other corners of Λ are the upper corners of hooks
type Bk,r, B̃k,r, Ck,r or C̃k,r. �

4.3. Special Cases of Invariance

The previous theorem clearly shows that for n, m, k, r, and N , the number of
ways to construct superpartitions that lead to invariant polynomials could be
enormous. In general such superpartitions do not have a explicit and compact
form. There are two notable exceptions, however: (1) when we are dealing
with conventional partitions (no circle in the diagrams), and (2) when the
maximal length N of the superpartition is limited as N ≤ 2k. The first case was
studied by Jolicoeur and Luque [19]. Below, we rederive very simply one of their
results. For the second case, we identify three simple forms of superpartitions
associated with invariant polynomials.
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r

N − k

Figure 3. Form (F1)

Corollary 4.11. Let Pλ = Pλ(x1, . . . , xN ;αk,r), where λ is a (k, r,N)-
admissible partition. The polynomial Pλ is invariant under translation if and
only if

λ =
(
((β + 1)r)l, (βr)k, . . . , rk

)
,

where 0 < β, 0 ≤ l ≤ k, and N = k(β + 1) + l.

Proof. As a consequence of Theorem 1.9, we have that Pλ is invariant under
translation iff the last corner of λ’s diagram is located at position (N−k, r) and
all remaining corners are upper corners of hooks Bk,r. Thus, Pλ is invariant
iff λ = (((β + 1)r)l, (βr)k, . . . , rk) with 0 < β. The admissibility condition
requires 0 ≤ l ≤ k. Finally, the condition on the position for the last corner
imposes N = k(β + 1) + l. �
Corollary 4.12. Assume (4.1), (4.2), and (4.3). Suppose moreover that Λ’s
diagram contains m circles and that N ≤ 2k. Then, PΛ is invariant under
translation if and only if Λ has one of the following forms:
(F1) Λ = (∅; rN−k);
(F2) Λ = (m − 1,m − 2, . . . , 1, 0; ∅), where m ≤ N ≤ k or N − 1 ≥ k ≥

N − m + r − 1;
(F3) Λ = (r + f − 1, r + f − 2, . . . , r − 1, g − 1, g − 2, . . . , 1, 0; rN−k−m) where

m = f + g + 1, 0 ≤ f ≤ N − k − 1, 0 ≤ g ≤ min(k, r − 1) and
f ≥ g + N − 2k − 1.

These forms are, respectively, illustrated in Figs. 3, 4, 5 below.

Proof. Let us start with the sufficient condition. According to Theorem 1.9,
if Λ is of the form (F1), (F2) or (F3), then PΛ is invariant under translation.
Indeed, (F1) trivially satisfies (D1); the only corners in (F2) are inner circles,
so (F2) satisfies (D2); in (F3), all corners are inner circles, except one circle
located at (N − k, r), so it satisfies (D2) with k̄ = 1.

We now tackle the non-trivial part of the demonstration, which is the
necessary condition. For this, let (
, j) be the last corner of the Λ diagram.
There are two obvious cases, depending on whether (
, j) is an inner corner or
not.

First, we suppose that (
, j) is a bordering corner or an outer corner.
According to Theorem 1.9, PΛ is invariant under translation only if N + 1 −

+αk,r(j−1) = 0, where αk,r = −(k+1)/(r−1). Since N +1−
 > 0, we must
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Figure 4. Form (F3) with g = 0

. . .

. . .
...m

Figure 5. Form (F2)

assume that j−1 = j̄(r−1), where j̄ is a positive integer. Then, the invariance
condition requires N = 
 + j̄(k + 1) − 1. However, by hypothesis, N ≤ 2k, so
j̄ = 1 (i.e., j = r). Therefore, the invariance condition and N ≤ 2k impose
j = r and 
 = N − k ≤ k, which is compatible with the admissibility. Now, let
(i, 
′) be the first corner of Λ diagram. Once again, two cases are possible:

1. (i, 
′) is a box. Suppose (i, 
′) �= (
, j). According to Theorem 1.9, PΛ can
be invariant only if we can form a hook Bk,r or B̃k,r whose respective
lengths are either k+1 or k+2, which is impossible because 
 ≤ k. Then,
the only possible squared corner is the last corner. Thus, the invariance
and admissibility conditions impose that the diagram is made of N − k
rows with r boxes, corresponding to the first form of the proposition.

2. (i, 
′) is a circle. Referring again to Theorem 1.9 and recalling that

 ≤ k, we see that PΛ is invariant under translation only if (i, 
′) =
(
, j) or if (i, 
′) is a inner circled corner. The first condition imposes
Λ = (r − 1; rN−k−1). The second imposes that only criterion (D2) can
be considered, so all remaining corners must be circled inner corners.
Consequently, Λ = (r + m − 2, r + m − 3, . . . , r, r − 1; rN−k−m) for some
1 ≤ m ≤ N − k. This is illustrated in Fig. 4
Second, we suppose that (
, j) is an inner corner. This implies that j = 1

and as a consequence, criterion (D1) of Theorem 1.9 cannot be satisfied. Thus,
the only option is that the last corner is a circle and criterion (D2) must
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Figure 6. Form (F3)

be satisfied: all other corners must be inner circles, except for at most one
corner, which can be a bordering or outer circle, located at (̄ı, j̄), and such that
ı̄ = N +1−k̄(k+1) and j̄ = k̄(r−1)+1 for some positive integer k̄. However, we
know that ı̄ < 
 ≤ 2k, so that k̄ = 1. In short, if (
, j) is an inner corner, then
all corners are inner circles, except for at most one non-inner corner, which
could be a circle located at (N − k, r). If all corners are inner ones, without
exception, then the only possible superpartition is

Λ = (m − 1,m − 2, . . . , 1, 0; ∅), m ≤ N,

which is the form (F2) illustrated in Fig. 5. Finally, if there is one exceptional
corner, then all possible superpartitions can be written as

Λ = (r + f − 1, r + f − 2, . . . , r, r − 1, g − 1, g − 2, . . . , 0; rN−k−f ),

where

f + g + 1 = m, g < r, g ≤ k, f < N − k.

This is the last possible form and it is illustrated in Fig. 6. Note that the
admissibility imposes some additional restrictions on the forms (F2) and (F3).
The form (F2) is admissible whenever N ≤ k, while for N > k, it is admissible
if N + r − m − 1 ≤ k. In the case of (F3), the admissibility also requires
f ≥ g + N − 2k − 1.

We have demonstrated that only three forms of admissible superpartitions
lead to invariant polynomials when N ≤ 2k. �

4.4. The Clustering Condition for k > 1
Baratta and Forrester have shown that if symmetric Jack polynomials are also
invariant under translation, then they almost automatically admit clusters [4].
In what follows, we generalize their approach to the case of Jack polynomials
with prescribed symmetry.
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Proposition 4.13. Let PΛ(x1, . . . , xN ;αk,r) be a Jack polynomial with prescribed
symmetry AS, where Λ is as in (4.3) and of bi-degree (n|m) and such that
N ≥ k + m + 1. Suppose moreover that Λ is such that PΛ(x1, . . . , xN ;αk,r) is
translationally invariant.

(i) If 
(Λ) > N − k then

PΛ(x1, . . . , xN ;αk,r)
∣∣∣
xN−k+1=···=xN=z

= 0.

(ii) If 
(Λ) = N − k then

PΛ(x1, . . . , xN ;αk,r)
∣∣∣
xN−k+1=···=xN=z

=
N−k∏

i=m+1

(xi − z)rQ(x1, . . . , xN−k, z)

for some polynomial Q of degree n − (N − k − m)r.

Proof. From the admissibility condition, we know that PΛ(x;αk,r) is well
defined. Moreover, the condition N ≥ k + m + 1 ensures that the special-
ization of the k variables takes place in the set of variables in which PΛ is
symmetric. In other words, if α is not a negative rational nor zero, then

PΛ(x;α)
∣∣∣
xN−k+1=···=xN=z

�= 0.

Thus, property (i) is not trivial. However, if we suppose that PΛ(x;αk,r) is
translationally invariant, then

PΛ(x1, . . . , xN ;αk,r)
∣∣∣
xN−k+1=···=xN=z

(4.26)

= PΛ(x1 − z, . . . , xN−k − z, 0, . . . , 0;αk,r) (4.27)

Now, by the stability property given in Lemma 2.9, the last equality can rewrit-
ten as

PΛ(x1, . . . , xN ;αk,r)
∣∣∣
xN−k+1=···=xN=z

= PΛ(x1−z, . . . , xN−k−z;αk,r). (4.28)

From this point, two cases are possible:
(i) If 
(Λ) > N − k, Lemma 2.9 also implies that the RHS of (4.28) is zero,

as expected.
(ii) If 
(Λ) = N − k, then the RHS of (4.28) is not zero. From the triangu-

larity property of the Jack polynomials with prescribed symmetry in the
monomial basis, we can write

PΛ(x1 − z, . . . , xN−k − z;αk,r)

= mΛ(x1 − z, . . . , xN−k − z) +
∑

Γ<Λ

cΛ,ΓmΓ(x1 − z, . . . , xN−k − z).

Moreover, according to Theorem 1.9 and Lemma 4.9, the last corner in
Λ′s diagram is located at (N −k, r). This fact, together with 
(Γ) = N −k
and N ≥ k + m + 1, impose that

ΛN−k ≥ r and ΓN−k ≥ r for all Γ < Λ.
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Hence,
∏N−k

i=m+1(xi − z)r divides mΓ for each mΓ such that Γ < Λ. This
finally implies that

∏N−k
i=m+1(xi−z)r divides PΛ(x1−z, . . . , xN−k−z;αk,r),

and the proposition follows. �
The last proposition establishes the clustering properties conjectured in

[13] in the case of translationally invariant polynomials. The next proposi-
tion shows that in this case, it is also possible to get more explicit clustering
properties involving only Jack polynomials and not some an indeterminate
polynomials Q as before. Note that in some instances, we only form cluster
of order r − 1. We stress that this is not in contradiction with the previous
proposition. Indeed, more variables could be collected to get order r, but this
factorization would not allow us to write explicit formulas in terms of Jack
polynomials with prescribed symmetry.

Proposition 4.14. Let PΛ(x1, . . . , xN ) be a Jack polynomial with prescribed
symmetry AS at α = αk,r, where Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) is as in
(4.3) and of length 
 ≤ N . Suppose that the partition (Λm+1, . . . ,ΛN ) contains
f0 parts equal to 0. Suppose moreover that Λ is such that ΛN−f0 = r and
PΛ(x, . . . , xN ) is translationally invariant.

(i) If Λm ≥ r or m = 0, then

PΛ(x, . . . , xN )
∣∣∣
xN−f0+1=···=xN=z

=
N−f0∏

i=1

(xi − z)r · PΛ−r�(x1 − z, . . . , xN−f0 − z).

(ii) If Λm = r − 1, then

PΛ(x1, . . . , xN )
∣∣∣
xN−f0+1=···=xN=z

=
N−f0∏

i=1

(xi − z)r−1 · PΛ−(r−1)�(x1 − z, . . . , xN−f0 − z).

(iii) If Λm = 0, then

PΛ(x1, . . . , xN )
∣∣∣
xm=xN−f0+1=···=xN=z

=
∏

1≤i≤N−f0
i�=m

(xi − z)v · PΛ̃(x1 − z, . . . , xm−1

−z, xm+1 − z, . . . , xN−f0 − z),

where

v = min(r,Λm−1), Λ̃ = C̃Λ − v(�−1)

and

C̃Λ = (Λ1, . . . ,Λm−1; Λm+1, . . . ,ΛN ).
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Proof. Proceeding as in the proof of the previous proposition, we use the trans-
lation invariance and the stability of the Jack polynomials with prescribed
symmetry, and find

PΛ(x1, . . . , xN )
∣∣∣
xN−f0+1=···=xN=z

= PΛ(x1 − z, . . . , xN−f0 − z). (4.29)

(i) If ΛN−f0 = r and m = 0 or m > 0 and Λm ≥ r, then we can decompose
the superpartition Λ as

Λ = Λ̃ + r�,

where Λ̃ is some other superpartition, which could be empty, and r�

denotes the partition (r, . . . , r) of length 
. This allows us to use Lemma
2.7 and factorize the RHS of (4.29). This yields, as expected,

PΛ(x1, . . . , xN )
∣∣∣
xN−f0+1=···=xN=z

=
N−f0∏

i=1

(xi − z)r · PΛ̃(x1 − z, . . . , xN−f0 − z).

(ii) If ΛN−f0 = r and Λm = r − 1, then Λ can be decomposed as

Λ = Λ̃ + (r − 1)�,

where, this time, Λ̃ is a non-empty superpartition of length 
 and such
that Λ̃m = 0. Using once again Lemma 2.7, we can factorize RHS of
(4.29) and get the desired result:

PΛ(x1, . . . , xN )
∣∣∣
xN−f0+1=···=xN=z

=
N−f0∏

i=1

(xi − z)r−1 · P
(α)

Λ̃
(x1 − z, . . . , xN−f0 − z).

(iii) Finally, we suppose ΛN−f0 = r, Λm = 0, and v = min(r,Λm−1). In
equation (4.29), we set xm = z. This yields

PΛ(x1, . . . , xN )
∣∣∣
xm=xN−f0+1=···=xN=z

= PΛ(x1 − z, . . . , xm−1 − z, 0, xm+1 − z, . . . , xN−f0 − z).

According to Lemma 2.11, the RHS of the last equation can be simplify as
follows:

PΛ(x1, . . . , xN )
∣∣∣
xm=xN−f0+1=···=xN=z

= PC̃Λ(x1 − z, . . . , xm−1 − z, xm+1 − z, . . . , xN−f0 − z). (4.30)

Now, we can decompose C̃Λ as

C̃Λ = Λ̃ + v�−1,
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for some superpartition Λ̃ whose length is smaller or equal to 
−1. This allows
us to exploit Lemma 2.7 and rewrite the RHS of (4.30) as

m−1∏

i=1

(xi − z)v ·
N−f0∏

i=m+1

(xi − z)v

·P (α)

Λ̃
(x1 − z, . . . , xm−1 − z, xm+1 − z, . . . , xN−f0 − z),

which is the desired result. �
Let us consider a non-trivial example in relation with the last proposition.

We choose k = 2, r = 3 and N = 8. Let Λ = (8, 7, 5; 6, 3, 3), i.e.

Λ =

�
�

�

Clearly PΛ(x;−3/2) is translationally invariant. Proposition 4.14 then yields

PΛ(x1, . . . , x8;−3/2)
∣∣∣
x7=x8=z

=
6∏

i=4

(xi − z)3P (−3/2)

Λ̃
(x1 − z, . . . , x6 − z),

where Λ̃ = (5, 4, 2; 3), i.e.,

Λ̃ =

�
�

�

Moreover, PΛ̃(x;−3/2) is also translationally invariant in Ñ = N − k = 6
variables, so that

P
Λ̃
(x1 − z, . . . , x6 − z;−3/2) = P

Λ̃
(x1, . . . , x6;−3/2).

Therefore,

PΛ(x1, . . . , x8;−3/2)
∣∣∣
x7=x8=z

=
6∏

i=4

(xi − z)3P
Λ̃
(x1, . . . , x6;−3/2)

The last example is very special because it involves a pair of superpar-
titions satisfying the following bi-invariance property: Λ and Λ̃ = Λ − r� are
such that both PΛ(x1, . . . , xN ;αk,r) and PΛ̃(x1, . . . , xN−k;αk,r) are invariant
under translation. By using Theorem 1.9, one can check that the diagrams
given below define a large family of pairs of superpartitions satisfying this
bi-invariance property.
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Appendix A. Examples of Admissible and Invariant
Superpartitions

In this appendix, for the triplet (k, r,N) given below, we display all small-
est possible (k, r,N)-admissible superpartitions that lead to Jack polynomials
with prescribed symmetry AS that are translationally invariant and, as a con-
sequence, admit clusters of size k and order r. The word “smallest” refers to
the least number of boxes in the corresponding diagrams.

Let (k, r,N) = (4, 3, 15). Suppose first that the number m of circle is
zero. Then, according to Corollary 4.11, the smallest possible partition that is
(k, r,N)−admissible and indexes an invariant polynomial is λ = (93, 64, 34).
For higher values of m, one obtains the smallest superpartitions by deleting
some squared corners in λ and adding circles while keeping conditions C1 and
C2 satisfied. All smallest superpartitions for (k, r,N) = (4, 3, 15) are given
below.
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