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Abstract. We consider general cyclic representations of the six-vertex
Yang–Baxter algebra and analyze the associated quantum integrable sys-
tems, the Bazhanov–Stroganov model and the corresponding chiral Potts
model on finite size lattices. We first determine the propagator operator
in terms of the chiral Potts transfer matrices and we compute the scalar
product of separate states (including the transfer matrix eigenstates) as
a single determinant formulae in the framework of Sklyanin’s quantum
separation of variables. Then, we solve the quantum inverse problem and
reconstruct the local operators in terms of the separate variables. We
also determine a basis of operators whose form factors are characterized
by a single determinant formulae. This implies that the form factors of
any local operator are expressed as finite sums of determinants. Among
these form factors written in determinant form are in particular those
which will reproduce the chiral Potts order parameters in the thermo-
dynamic limit. The results presented here are the generalization to the
present models associated to the most general cyclic representations of
the six-vertex Yang–Baxter algebra of those we derived for the lattice
sine–Gordon model.

1. Introduction

In the article [1], we developed an approach in the framework of the quantum
inverse scattering method (QISM) [2–14] to achieve the complete solution of
lattice integrable quantum models by the exact characterization of their spec-
trum and the computation of the matrix elements of local operators in the
eigenstates basis. This approach is addressed to the large class of integrable
quantum models whose spectrum (eigenvalues and eigenstates) can be deter-
mined by implementing Sklyanin’s quantum separation of variables (SOV)
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method [15–17]. It can be considered as the generalization to this SOV frame-
work of the Lyon group method1 for the computation of matrix elements of
local operators in the algebraic Bethe ansatz settings. In [1], the approach has
been developed for the lattice quantum sine–Gordon model [5,14] associated
by QISM to particular cyclic representations [53] of the six-vertex Yang–Baxter
algebra. More in detail, in [54–56], the complete SOV spectrum characteriza-
tion has been constructed for the lattice quantum sine–Gordon model, while
in [1] the scalar product of separate states and the matrix elements of lo-
cal operators have been computed. In the present article, we implement this
approach for the quantum models associated by QISM to the most general
cyclic representations of the six-vertex Yang–Baxter algebra, i.e. the inhomo-
geneous Bazhanov–Stroganov model and subsequently the chiral Potts (chP)
model [57–76] by exploiting the well-known links between these two models
[57]. We first build our two central tools for computing matrix elements of
local operators, i.e. the expression of the scalar products of separate states in
terms of a determinant formula and the local fields reconstruction in terms of
quantum separate variables (by solving the so-called quantum inverse scatter-
ing problem). Then, we use these results to compute the form factors of local
operators on the transfer matrix eigenstates and to express them as sums of de-
terminants given by simple deformations of the ones giving the scalar product
of separate states.

1.1. Literature Summary

Let us first summarize some known results concerning these quantum inte-
grable models and that are relevant for our present work. In [57], the Bazhanov–
Stroganov model was introduced from its Lax operator built as a general solu-
tion to the Yang–Baxter equation associated to the six-vertex R-matrix. For
a specific subset of cyclic representations, in which the parameters lie on the
algebraic curves associated to the chP-model, the construction of the Bax-
ter Q-operator allowed for the analysis of the spectrum (eigenvalues). This
Q-operator was shown to coincide with the transfer matrix of the integrable
Zp chP-model [60–70]; in this way, a first remarkable connection between these
two apparently very different models2 was established. Additional functional

1 This method has been introduced in [18] for the spin-1/2 XXZ quantum chain [19–27]
with periodic boundaries and further developed in[28–40]. Its generalization to the higher
spin XXX quantum chains and to the open spin-1/2 XXZ quantum chains [46–52] with
diagonal boundary conditions has been, respectively, implemented in [41–45].
2 Note that in a two-dimensional statistical mechanics formulation, both models have Boltz-
mann weights which satisfy the star-triangle equations. However, while the weights of the
Bazhanov–Stroganov model satisfy the difference property in the rapidities, those of the
chP-model do not. In this respect, the link to classical integrable discrete models is quite
illuminating [71–73]. It is worth recalling that the first solutions of the star-triangle equa-
tions with this non-difference property were obtained in [74,75], while in [64,65] the general
solutions for the chP-model were derived.
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equations of fusion hierarchy type3 for commuting transfer matrices4 were
then exhibited in [58]. Bethe ansatz type equations play an important role
in the special sub-variety of the super-integrable chP-model as it was first
shown in [60–62]. The connection between the Bazhanov–Stroganov model
and the chP-model allowed to introduce rigorously [76] the description of
the super-integrable chP spectrum using algebraic Bethe ansatz. The Bethe
ansatz construction was applied to the transfer matrix τ2 of the Bazhanov–
Stroganov model, thus obtaining in a different way the Baxter results [68]
on the subset of the translation-invariant eigenvectors of the super-integrable
chP-model.5 More recently, the extension of the eigenvalue analysis of the
Bazhanov–Stroganov model to completely general cyclic representations was
done by Baxter [59]. The main tool used there was the construction of a gener-
alized Q-operator which satisfies the Baxter equation with the transfer matrix
τ2 and the extension to these representations of the functional relations of the
fused transfer matrices.

Another important feature of the chP-model which has been the subject
of recent attention is the spontaneous magnetization. This order parameter was
first described in [91] on the basis of perturbative calculations developed for the
special class of super-integrable representations.6 The first non-perturbative
derivation of this order parameter was achieved only recently by Baxter [92,
93] under some natural analyticity assumptions and the use of a technique
introduced by Jimbo et al. [94]. More classical techniques, such as the corner
transfer matrix [95], could not be used, mainly because of the very nature of
the chP-model [96]. The proof of the spontaneous magnetization formula [91]
starting from direct computations on the finite lattice of matrix elements of the
spin operators could only be achieved after the recent introduction by Baxter
[97,98] of a generalized version of the Onsager algebra for the special class of
super-integrable representations of chP-model. The matrix elements used for
this proof have been first analyzed by Au-Yang and Perk in a series of papers
[79,80,99–101] for the case of the super-integrable chP-model. Their factorized
form, first conjectured by Baxter [102], has been proven7 by Iorgov et al. [103]
and used to derive the spontaneous magnetization formula conjectured in [91].
Finally, it is worth recalling that, in the algebraic framework of generalized
Onsager algebra, Baxter has also first conjectured [106] and successively proven

3 The approach of fusion hierarchy of commuting transfer matrices was first introduced in
[77,78].
4 The transfer matrix of the Bazhanov–Stroganov model is the second element in this hier-
archy, this explains the name τ2 given some times to this model.
5 For further analysis of the eigenstates of super-integrable chP-model, see also [79–82]. It is
interesting to mention here also that in all these analysis the underlying Onsager algebra [83]
and realizations of the sl2 loop algebra [84], which are symmetries for these super-integrable
representations [64–66,85–90], have played fundamental roles.
6 This case both obeys Yang–Baxter integrability [64,65] and has an underlying Onsager
algebra [63].
7 Note that factorized formulas for the spin matrix elements exist also for the 2D Ising model
[104] and for the quantum XY -chain [105].
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in [107] a determinant formula for the spontaneous magnetization of the super-
integrable chP-model; this result is also used for a further derivation of the
known formula of the order parameter in the thermodynamical limit.

1.2. Motivations for the Use of SOV

Let us comment that in the literature we just recalled, the spectral analy-
sis has usually one or more of the following problems: there is no eigenstates
construction for the functional methods based only on the Baxter Q-operator
and the fusion of transfer matrices. The algebraic Bethe ansatz (ABA) ap-
plies only to very special representations of the Bazhanov–Stroganov model
and similarly the algebraic framework of the generalized Onsager algebra is
proven to exist only in the class of super-integrable representations of chi-
ral Potts model. The proof of the completeness of eigenstates is not ensured
by these methods and it was so far missing in the general p-state chP-model
and Bazhanov–Stroganov model. Existing results about this issue are mainly
restricted to the case of the 3-state super-integrable chP-model [108] and to
the reduction of the 3-state Potts model to the trivial algebraic curve case
[109], i.e. the Fateev–Zamolodchikov model [110], see also [111,112] for further
applications of this method.

The circumstance interesting for us is that, in the case of the cyclic rep-
resentations of the Bazhanov–Stroganov model for which the algebraic Bethe
ansatz does not apply, Sklyanin’s quantum SOV can be developed to analyze
the system. This means that, for most8 of the representations of this model, we
have the opportunity to use the SOV method, which appears quite promising
as it leads to both the eigenvalues and the eigenstates of the transfer matrix
of the Bazhanov–Stroganov model with a complete spectrum construction if
some simple conditions are satisfied. The SOV analysis of these representa-
tions was first introduced9 in [113] and further developed in [118]. Here, we
will use these SOV results as setup for the computation of the form factors
of local operators. Let us recall that in [118], the functional equation char-
acterization of the transfer matrix spectrum has been derived purely on the
basis of the SOV spectrum characterization10 together with a first proof of
the completeness of the system of equations of Bethe ansatz type11 for some

8 The values of the parameters of the representations for which ABA applies define a proper
sub-variety in the full space of the parameters of the representations of the Bazhanov–
Stroganov model.
9 There the eigenvector analysis developed in [114] was used to obtain the SOV represen-
tations of the Bazhanov–Stroganov model. See also the series of works [115–117] where the
form factors of local spin operators were computed by SOV for the special case (p = 2) of
the generalized Ising model.
10 Note that for cyclic representations, the SOV does not lead directly to the spectrum
characterization by functional equations and so, in particular, it does not lead to Bethe
equations.
11 For Bethe ansatz methods, as the coordinate Bethe ansatz [20,95,119], the algebraic

Bethe ansatz [3–5] and the analytic Bethe ansatz [120,121], a proof of the completeness was
achieved only for few integrable quantum models, see as concrete examples [122] for the
XXX Heisenberg model, [123] for the infinite XXZ spin chain with domain wall boundary
conditions and [124] for the nonlinear quantum Schroedinger model.
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classes of representations of Bazhanov–Stroganov model and chP-model and
the simplicity of these transfer matrix spectra in the inhomogeneous models.

Beyond these motivations on the spectrum analysis, the summary pre-
sented in the previous subsection makes clear that the computations of matrix
elements of local operators are so far mainly confined to the special class of
super-integrable representations of chP-model as they were derived in the alge-
braic framework of the generalized Onsager algebra. This stresses the relevance
of our approach using quantum SOV which leads to form factors of local op-
erators and applies to generic representations of Bazhanov–Stroganov model
and chiral Potts model to which the methods based on generalized Onsager
algebra do not apply up to now.

1.3. Paper Organization

To make the paper self-contained, we dedicate Sects. 2 and 3 to review the
material presented in [118] simultaneously integrating it with the presentation
of new results needed for our purposes. In particular, Sect. 2 provides the defi-
nition of the Bazhanov–Stroganov model and the main results of [118] on SOV,
while Sects. 2.3.1 and 2.4.2 contain new results on the SOV decomposition of
the identity and the characterization of the transfer matrix eigenstates. Section
3 provides the definition of the chiral Potts model and the main results ob-
tained by SOV method in [118]. The scalar products of separate states and the
decomposition of the identity w.r.t. the transfer matrix eigenbasis are derived
in Sect. 4. Section 5 contains the characterization of the propagator operator
of the Bazhanov–Stroganov model in terms of the chiral Potts transfer ma-
trices. The reconstruction of local operators in terms of separate variables is
given in Sect. 6, while their form factors are expressed in terms of finite size
determinants in Sect. 7. The last section addresses some comments on these
results and a comparison with the existing literature.

2. The Bazhanov–Stroganov Model

We use this section to give our notations and to briefly recall the main re-
sults derived in [118] on the spectrum description by SOV of the Bazhanov–
Stroganov model and chiral Potts model that are useful for our purposes.

2.1. The Bazhanov–Stroganov Model: Definitions and First Properties

We define in the N sites of the chain N local Weyl algebras Wn and denote by
un and vn their generators:

unvm = qδn,mvmun ∀n,m ∈ {1, . . . ,N}. (2.1)

The Lax operator of the Bazhanov–Stroganov model reads:12

Ln(λ)≡
(

λαnvn − βnλ−1v−1
n un

(
q−1/2anvn + q1/2bnv−1

n

)
u−1

n

(
q1/2cnvn + q−1/2dnv−1

n

)
γnvn/λ − δnλ/vn

)
, (2.2)

12 Up to different notations, this Lax operator coincides with the one introduced in [57].
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where αn, βn, γn, δn, an, bn, cn and dn are constants associated to the site
n of the chain subject to the relations:

αnγn = ancn, βnδn = bndn. (2.3)

The monodromy matrix of the model is defined in terms of the Lax operators
by:

M(λ) =
(

A(λ) B(λ)
C(λ) D(λ)

)
≡ LN(λ) . . . L1(λ). (2.4)

It satisfies the quadratic Yang–Baxter relation:

R(λ/μ) (M(λ) ⊗ 1) (1 ⊗ M(μ)) = (1 ⊗ M(μ)) (M(λ) ⊗ 1)R(λ/μ), (2.5)

driven by the six-vertex (standard) R-matrix:

R(λ) =

⎛
⎜⎜⎝

qλ − q−1λ−1

λ − λ−1 q − q−1

q − q−1 λ − λ−1

qλ − q−1λ−1

⎞
⎟⎟⎠ . (2.6)

Then, the elements of M(λ) generate a representation RN of the so-called
Yang–Baxter algebra. In particular, (2.5) yields the relation [B(λ),B(μ)] = 0,
for all λ and μ, and the mutual commutativity of the elements of the one
parameter family of transfer matrix operators:

τ2(λ) ≡ trC2M(λ) = A(λ) + D(λ). (2.7)

Let us introduce the operator:

Θ =
N∏

n=1

vn, (2.8)

which plays the role of a grading operator in the Yang–Baxter algebra:13

Lemma 2.1 (Lemma 1 of [118]). Θ commutes with the transfer matrix τ2(λ).
More precisely, its commutation relations with the elements of the monodromy
matrix are:

ΘC(λ) = qC(λ)Θ, [A(λ),Θ] = 0, (2.9)
B(λ)Θ = qΘB(λ), [D(λ),Θ] = 0. (2.10)

Besides, the Θ-charge allows to express the following asymptotics in both
λ → 0 and λ → ∞ of the leading operators of the Yang–Baxter algebras:

A(λ) =

(
λNΘ

N∏
a=1

αn + (−1)Nλ−NΘ−1
N∏

a=1

βa

)
+

N−1∑
i=1

Aiλ
N−2i, (2.11)

D(λ) =

(
λ−NΘ

N∏
a=1

γa + (−1)NλNΘ−1
N∏

a=1

δa

)
+

N−1∑
i=1

Diλ
N−2i, (2.12)

13 The proof of the lemma is given following the same steps of that of Proposition 6 of [54].
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with Ai and Di being operators, and so

lim
log λ→∓∞

λ±Nτ2(λ) =
(
Θ∓1a∓ + Θ±1d∓

)
, (2.13)

where limlog λ→−∞ means limλ→0, limlog λ→+∞ means limλ→∞ and:

a+ ≡
N∏

a=1

αa, a− ≡(−1)N
N∏

a=1

βa, d+ ≡(−1)N
N∏

a=1

δa, d− ≡
N∏

a=1

γa. (2.14)

We only consider here representations for which the Weyl algebra generators
un and vn are unitary operators; then, the following Hermitian conjugation
properties of the generators of Yang–Baxter algebra hold:

Lemma 2.2 (Lemma 2 of [118]). Let ε ∈ {+1,−1}, then under the following
constrains on the parameters:

cn = −εb∗
n, dn = −εa∗

n, βn = ε (a∗
nbn) /α∗

n, (2.15)

the generators of the Yang–Baxter algebra satisfy the following transformations
under Hermitian conjugation:

M(λ)† ≡
(

A†(λ) B†(λ)
C†(λ) D†(λ)

)
=
(

D(λ∗) −εC(λ∗)
−εB(λ∗) A(λ∗)

)
, (2.16)

which, in particular, imply the self-adjointness of the transfer matrix τ2(λ) for
real λ.

2.2. General Cyclic Representations

Here, we will consider general cyclic representations for which vn and un have
discrete spectra, and we will restrict our study to the case where q is a root of
unity:

q = e−iπβ2
, β2 =

p′

p
, p, p′ ∈ Z

>0, (2.17)

with p odd, p = 2l+1, and p′ even being two co-prime numbers so that qp = 1.
The condition (2.17) implies that the powers p of the generators un and vn

are central elements of each Weyl algebra Wn. In this case, we fix them to the
identity:

vp
n = 1, up

n = 1. (2.18)

We associate to any site n of the chain a p-dimensional linear space Rn ; we
can define on it the following cyclic representation of Wn:

vn|kn〉 ≡ qkn |kn〉, un|kn〉 ≡ |kn − 1〉, ∀kn ∈ {0, . . . , p − 1}, (2.19)

with the following cyclic condition:

|kn + p〉 ≡ |kn〉. (2.20)

The vectors |kn〉 give a vn-eigenbasis of the local space Rn. Let Ln be the
linear space dual of Rn and let 〈kn| be the vectors of the dual basis defined
by:

〈kn|k′
n〉 = (|kn〉, |k′

n〉) ≡ δkn,k′
n

∀kn, k′
n ∈ {0, . . . , p − 1}. (2.21)
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The generators un and vn being unitary, the covectors 〈kn| define a vn-
eigenbasis in the dual space Ln. This induces the following left representa-
tion of Weyl algebra Wn:

〈kn|vn = qkn〈kn|, 〈kn|un = 〈kn + 1|, ∀kn ∈ {0, . . . , p − 1}, (2.22)

with the cyclic condition:

〈kn| = 〈kn + p|. (2.23)

In the left and right linear spaces:

LN ≡ ⊗N
n=1Ln, RN ≡ ⊗N

n=1Rn, (2.24)

these representations of the Weyl algebras Wn determine left and right cyclic
representations of dimension pN of the monodromy matrix elements, and there-
fore of the Yang–Baxter algebra. In the following, we will denote with RS-adj

N

the sub-variety of the space of representations RN defined by the condition
(2.15).

2.2.1. Centrality of Operator Averages. We define the average value O of any
operator matrix element O of the monodromy matrix M(λ) by

O(Λ) =
p∏

k=1

O(qkλ), Λ = λp, (2.25)

then the commutativity of each family of operators A(λ), B(λ), C(λ) and D(λ)
implies that the corresponding average values are functions of Λ.

Proposition 2.1 (Proposition 1 of [118]).

(a) The average values of the monodromy matrix entries, A(Λ), B(Λ) , C(Λ),
D(Λ), are central elements. They also satisfy, in the case of self-adjoint
representations RS-adj

N , the following relations under complex conjugation:

(A(Λ))∗ ≡ D(Λ∗), (B(Λ))∗ ≡ −εC(Λ∗), (2.26)

(b) Let

M(Λ) ≡
(A(Λ) B(Λ)

C(Λ) D(Λ)

)
(2.27)

be the 2 × 2 matrix made of the average values of the elements of the
monodromy matrix M(λ), then it holds:

M(Λ) = LN(Λ)LN−1(Λ) . . . L1(Λ), (2.28)

where:

Ln(Λ) ≡
(

Λαp
n − βp

n/Λ qp/2(ap
n + bp

n)
qp/2(cp

n + dp
n) γp

n/Λ − Λδp
n

)
, (2.29)

is the 2 × 2 matrix made of the average values of the elements of the Lax
matrix Ln(λ).
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2.2.2. Quantum Determinant. The following linear combination of products
of the Yang–Baxter generators:

detqM(λ) ≡ A(λ)D(λ/q) − B(λ)C(λ/q), (2.30)

is called quantum determinant and it is central14 in this algebra. It admits the
following factorized form:

detqM(λ) =
N∏

n=1

detqLn(λ), (2.31)

in terms of the local quantum determinants:

detqLn(λ) ≡ (Ln(λ))11 (Ln(λ/q))22 − (Ln)12 (Ln)21 . (2.32)

In the Bazhanov–Stroganov model, it reads:

detqM(λ) =
N∏

n=1

kn

(
λ

μn,+
− μn,+

λ

)(
λ

μn,−
− μn,−

λ

)

= (−q)N
N∏

n=1

βnancn

αn

(
1
λ

+q−1bnαn

anβn
λ

)(
1
λ

+q−1dnαn

cnβn
λ

)
, (2.33)

where:

kn ≡ (anbncndn)1/2
, μn,h ≡

{
iq1/2 (anβn/αnbn)1/2

h = +,

iq1/2 (cnβn/αndn)1/2
h = −.

(2.34)

Moreover, for the representations that satisfy (2.15), the quantum determinant
reads:15

detqM(λ)=qN
N∏

n=1

|an|2|bn|2
|αn|2

(
1
λ

+εq−1 |αn|2
|an|2 λ

)(
1
λ

+εq−1 |αn|2
|bn|2 λ

)
. (2.35)

Let us define the following functions that will be crucial in the rest of the
paper:

ā(λ) ≡ α(λ)a(λ), d̄(λ) ≡ α−1(qλ) d(λ) (2.36)

where:

a(λ) ≡
N∏

n=1

(βnαn)1/2

(
λ

μn,+
− μn,+

λ

)
,

d(λ) ≡
N∏

n=1

(
anbncndn

αnβn

)1/2 (
qλ

μn,−
− μn,−

qλ

)
.

(2.37)

They always satisfy the condition:

detqM(λ) = ā(λ)d̄(λ/q), (2.38)

14 The centrality of the quantum determinant in the Yang–Baxter algebra was first discov-
ered in [125].
15 Remark that it depends on the parameters in Lax operators only through their modules.
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while the function α(λ) is defined by the requirement:
p∏

n=1

ā(λqn) +
p∏

n=1

d̄(λqn) = A(Λ) + D(Λ). (2.39)

Note that this last condition is a second-order equation in the average∏p
n=1 α(qnλ) and then we have only two possible choices for the averages

of the functions ā(λ) and d̄(λ):
p∏

n=1

ā(λqn) = Ωε (Λ) ,

p∏
n=1

d̄(λqn) = Ω−ε (Λ) , (2.40)

where ε = ∓ and Ω± are the two eigenvalues of the 2 × 2 matrix M(Λ)
composed by the averages of the Yang–Baxter generators.

2.3. SOV-Representations and the Yang–Baxter Algebra

The spectral problem of the transfer matrix τ2(λ) admits a separate variables
representation in the basis which diagonalizes the commutative family of op-
erators B(λ) as generally argued by Sklyanin [15–17]. In [118], it has been
proven:

Theorem 2.1 (Theorem 1 of [118]). For almost all the values of the parameters
of the representation, there exists a SOV representation for the Bazhanov–
Stroganov model; in this case, B(λ) is diagonalizable and has simple spectrum.

Let us recall here the left SOV-representations of the generators of the
Yang–Baxter algebra for the Bazhanov–Stroganov model. Let 〈ηk | be the
generic element of a basis of eigenvectors of B(λ):

〈ηk |B(λ) = ηN bηk
(λ) 〈ηk |, bηk

(λ) ≡
N−1∏
a=1

(
λ/η(ka)

a − η(ka)
a /λ

)
, (2.41)

and

ηk ∈ ZB ≡
{

(η(k1)
1 ≡ qk1η

(0)
1 , . . . , η

(kN)
N ≡ qkNη

(0)
N ) ; k ≡ (k1, . . . , kN) ∈ ZN

p

}
,

(2.42)

where η
(0)
a are fixed constants16 of the representations. For simplicity, whenever

possible we will omit the subscript k in 〈ηk | as well as the superscript ka in
η
(ka)
a . The action of the remaining generators of the Yang–Baxter algebra on

arbitrary states 〈η| ≡ 〈 η1, . . . , ηN| reads:

〈η |A(λ) = bη(λ)
[
λη

(+)
A 〈 q−δNη | + λ−1η

(−)
A 〈 qδNη |

]

+
N−1∑
a=1

∏
b�=a

λ/ηb − ηb/λ

ηa/ηb − ηb/ηa
a(SOV)(ηa) 〈 q−δaη |, (2.43)

16 Here, the simplicity of the spectrum of B(λ) is equivalent to the requirement
(
η
(0)
a

)p �=(
η
(0)
b

)p
for any a �= b ∈ {1, . . . , N − 1}.



Vol. 16 (2015) Form Factors of Local Operators 1113

〈η |D(λ) = bη(λ)
[
λη

(+)
D 〈 qδNη | + λ−1η

(−)
D 〈 q−δNη |

]

+
N−1∑
a=1

∏
b�=a

λ/ηb − ηb/λ

ηa/ηb − ηb/ηa
d(SOV)(ηa) 〈 qδaη |, (2.44)

where:

η
(±)
A = (±1)N−1a±

N−1∏
n=1

η±1
n , η

(±)
D = (±1)N−1d±

N−1∏
n=1

η±1
n , (2.45)

and the states 〈 q±δaη | are defined by:

〈 q±δaη | ≡ 〈 η1, . . . , q
±1ηa, . . . , ηN |. (2.46)

Finally, the quantum determinant relation defines uniquely C(λ). The expres-
sions (2.43) and (2.44) contain complex-valued coefficients a(SOV)(ηa) and
d(SOV)(ηa) which completely characterize the SOV representation. These co-
efficients have to be solution of the quantum determinant conditions:

detqM(ηr) = a(sov)(ηr)d(sov)(q−1ηr), ∀r = 1, . . . ,N − 1, (2.47)

and of the average conditions:

A(Zr) ≡
p∏

k=1

a(sov)(qkηr),

D(Zr) ≡
p∏

k=1

d(sov)(qkηr),

Zr ≡ ηp
r , ∀r ∈ {1, . . . ,N − 1}.

(2.48)

In a SOV representation, some freedom is left in the choice of a(sov)(ηr) and
d(sov)(ηr). It can be parametrized by the gauge transformation written in terms
of an arbitrary function f :

~a(sov)(ηr) = a(sov)(ηr)
f(ηrq

−1)
f(ηr)

, ~d(sov)(ηr) = d(sov)(ηr)
f(ηrq)
f(ηr)

; (2.49)

which just amounts to the following change of normalization for the states of
the B-eigenbasis:

〈η | →
N−1∏
r=1

f−1(ηr)〈η |. (2.50)

Similarly, we can construct a right SOV-representation of the Yang–Baxter
generators by the following actions:

B(λ)|η〉 = |η〉ηNbη(λ), (2.51)

A(λ)|η〉 =

[
|qδNη〉η(+)

A λ + |q−δNη〉η
(−)
A

λ

]
bη(λ)

+
N−1∑
a=1

|qδaη〉
∏
b�=a

(λ/ηb − ηb/λ)
(ηa/ηb − ηb/ηa)

ā(sov)(ηa), (2.52)
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D(λ)|η〉 =

[
|q−δNη〉η(+)

D λ + |qδNη〉η
(−)
D

λ

]
bη(λ)

+
N−1∑
a=1

|q−δaη〉
∏
b�=a

(λ/ηb − ηb/λ)
(ηa/ηb − ηb/ηa)

d̄(sov)(ηa), (2.53)

where |η〉 ∈ RN is the right B-eigenstate corresponding to the generic η ∈ ZB.
The coefficients ā(sov)(ηa) and d̄(sov)(ηa) are solutions of the same average
(2.48) and quantum determinant:

detqM(ηr) = d̄(sov)(ηr)ā(sov)(q−1ηr), ∀r = 1, . . . ,N − 1 (2.54)

conditions, while C(λ) is uniquely defined by the quantum determinant relation
(2.30).

2.3.1. SOV-Decomposition of the Identity. The diagonalizability of the Yang–
Baxter generator B(λ) and the simplicity of its spectrum imply the following
spectral decomposition of the identity I in terms of the B-eigenbasis:

I ≡
∑
k∈ZN

p

μk|ηk〉〈ηk|, (2.55)

where:

μk ≡ 〈ηk|ηk〉−1 ∀k ∈ Z
N
p , (2.56)

is the equivalent of the so-called Sklyanin’s measure.17 The non-Hermitian
character of the operator family B(λ) clearly implies that, for generic k ∈ Z

N
p ,

(|ηk〉)† and 〈ηk| are in general non-equal covectors in LN; then, μk is not a
standard positive definite measure in our cyclic representations. Nevertheless,
we will show that the above formula defines a proper orthogonal decomposition
of the identity operator.

Now, we compute18 this “measure” μk and we show that up to an overall
constant (i.e. a constant w.r.t. k ∈ Z

N
p ), it is completely fixed by the given left

and right SOV-representations of the Yang–Baxter algebras when the gauges
are fixed.

Proposition 2.2. The following identities hold:

〈ηk|ηh〉 = 〈ηh|ηh〉
N∏

j=1

δki,hi
, ∀k,h ∈ Z

N
p , (2.57)

μh =

∏
1≤a<b≤N−1

((
η
(ha)
a

)2

−
(
η
(hb)
b

)2
)

CN

∏N−1
a=1 ωa

(
η
(ha)
a

) , ∀h ∈ Z
N
p , (2.58)

17 Sklyanin’s measure has been first introduced by Sklyanin in his article [15] on quan-
tum Toda chain [127–129]; see also [130,131] for further discussions on the measure in the
quantum Toda chain and in the sinh–Gordon model, respectively.
18 Let us recall that this measure has been first derived in [115] for cyclic representations
of Bazhanov–Stroganov model [57–59] through the recursion in the construction of left and
right SOV-basis.
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where:

ωa(η(ha)
a ) ≡

(
η(ha)

a

)N−1
ha∏

la=1

a(sov)
(
η(la)

a

)
/ā(sov)

(
η(la−1)

a

)
(2.59)

are gauge-dependent parameters and CN in the formula for μh is a constant
w.r.t. h ∈ Z

N
p . Then, the SOV-decomposition of the identity explicitly reads:

I ≡
p∑

h1,...,hN=1

∏
1≤a<b≤N−1

((
η(ha)

a

)2

−
(
η
(hb)
b

)2
)

×

∣∣∣η(h1)
1 , . . . , η

(hN)
N 〉〈η(h1)

1 , . . . , η
(hN)
N

∣∣∣
CN

∏N−1
b=1 ωb(η

(hb)
b )

, (2.60)

Note that the constant CN can be put equal to one by a trivial (constant) gauge
transformation that does not affect the functions a(sov) and ā(sov).

Proof. Computing in two different ways 〈ηk|B(λ)|ηh〉, we get:

(bηk(λ) − bηh(λ))〈ηk|ηh〉 = 0 ∀λ ∈ C, ∀k,h ∈ Z
N
p (2.61)

and then the simplicity of the spectrum of B(λ) implies (2.57). To
compute μh, we compute the following matrix elements
θa ≡ 〈η(h1)

1 , . . . , η
(ha−1)
a , . . . , η

(hN)
N |A(η(ha−1)

a )|η(h1)
1 , . . . , η

(ha)
a , . . . , η

(hN)
N 〉, using

first the left action of A(η(ha−1)
a ), then the right action of A(η(ha−1)

a ) together
with (2.57) and finally equating the two results we get:〈

η
(h1)
1 , . . . , η

(ha)
a , . . . , η

(hN)
N |η(h1)

1 , . . . , η
(ha)
a , . . . , η

(hN)
N

〉
〈
η
(h1)
1 , . . . , η

(ha−1)
a , . . . , η

(hN)
N |η(h1)

1 , . . . , η
(ha−1)
a , . . . , η

(hN)
N

〉

= δa,N + (1 − δa,N)
a(sov)

(
η
(ha)
a

)

ā(sov)
(
η
(ha−1)
a

)

×
N−1∏

b�=a,b=1

(
η
(ha−1)
a /η

(hb)
b − η

(hb)
b /η

(ha−1)
a

)
(
η
(ha)
a /η

(hb)
b − η

(hb)
b /η

(ha)
a

) , (2.62)

from which (2.58) simply follows. �

2.4. SOV-Characterization of the Spectrum

Let us denote with Στ2 the set of eigenvalue functions t(λ) of the transfer
matrix τ2(λ). We have then:

Στ2 ⊂ Ceven[λ, λ−1]N for N even, Στ2 ⊂ Codd[λ, λ−1]N for N odd, (2.63)

where Cε[x, x−1]M denotes the linear space in the field C of the Laurent poly-
nomials of degree M in the variable x which are even or odd as stated in the
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index ε. The Θ-charge naturally induces the grading Στ2 =
⋃2l

k=0 Σk
τ2

, where:

Σk
τ2

≡
{

t(λ) ∈ Στ2 : lim
log λ→∓∞

λ±Nt(λ) =
(
q∓ka∓ + q±kd∓

)}
. (2.64)

This simply follows from the commutativity of τ2(λ) with Θ and from its
asymptotics. In particular, any tk(λ) ∈ Σk

τ2
is a τ2-eigenvalue corresponding

to simultaneous eigenstates of τ2(λ) and Θ with Θ-eigenvalue qk.

2.4.1. Eigenvalues and Wave-Functions. In the SOV representations, the spec-
tral problem for τ2(λ) is reduced to the following discrete system of Baxter-like
equations in the wave-function Ψt(η) ≡ 〈η | t 〉 of a τ2-eigenstate | t 〉:

t(ηr)Ψt(η) = a(sov)(ηr)Ψt(q−δrη) + d(sov)(ηr)Ψt(qδrη)
∀r ∈ {1, . . . ,N − 1}, (2.65)

plus the following equation in the variable ηN:

Ψt(qδNη) = q−kΨt(η), where q±δrη ≡ (η1, . . . , q
±1ηr, . . . , ηN), (2.66)

for t(λ) ∈ Σk
τ2

with k ∈ {0, . . . , 2l}. Let us introduce the one parameter family
D(λ) of p × p matrix:

D(λ) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t(λ) −d̄(λ) 0 . . . 0 −ā(λ)
−ā(qλ) t(qλ) −d̄(qλ) 0 . . . 0

...
. . .

...
... . . .

...
... . . .

...
...

. . .
...

0 . . . 0 −ā(q2l−1λ) t(q2l−1λ) −d̄(q2l−1λ)

−d̄(q2lλ) 0 . . . 0 − ā(q2lλ) t(q2lλ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.67)

then when we make the following choice of gauge for the left SOV-
representation:

a(sov)(λ) ≡ ā(λ), d(sov)(λ) ≡ d̄(λ), (2.68)

it holds:

Theorem 2.2 (Theorems 2, 3 and 4 of [118]). For almost all the values of the
parameters of a Bazhanov–Stroganov representation, the spectrum of τ2(λ) is
simple. Moreover:
(I) Στ2 coincides with the set of functions in (2.63) which are solutions of the

functional equation:

det
p

D(Λ) = 0, ∀Λ ∈ C. (2.69)

Then, up to an overall normalization, we can fix the τ2-eigenstate corre-
sponding to tk(λ) ∈ Σk

τ2
by:

Ψtk
(η) ≡ 〈 η1, . . . , ηN | tk 〉 = η−k

N

N−1∏
r=1

Qtk
(ηr), (2.70)
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where Qtk
(λ) is the only solution (up to quasi-constants) corresponding to

tk(λ) of the Baxter equation:

tk(λ)Qtk
(λ) = ā(λ)Qtk

(λ/q) + d̄(λ)Qtk
(qλ). (2.71)

(II) In the self-adjoint representations of the Bazhanov–Stroganov model under
the further constrains:

N∏
h=1

α∗
h

αh
=1,

bn

b∗
n

=
an

a∗
n

,
α∗

n+1α
∗
n

αn+1αn
=

b∗
n+1bn

bn+1b∗
n

, ∀n∈{1, . . . ,N}, (2.72)

the functions ā(λ) and d̄(λ) are gauge equivalent to the Laurent polyno-
mials [ε being defined as in Eq. (2.15)]:

a(λ) ≡ iN
N∏

n=1

βn

λ

(
1 − i(1+ε)/2q−1/2 |αn|

|an|λ
)(

1 − i(1+ε)/2q−1/2 |αn|
|bn|λ

)
,

d(λ) ≡ qNa(−λq), (2.73)

respectively, and for any tk(λ) ∈ Σk
τ2

, we can construct uniquely up to
quasi-constants a ε-real polynomial:19,20

Qtk
(λ) = λatk

2lN−(btk
+atk

)∏
h=1

(λh − λ), 0 ≤ atk
≤ 2l, 0 ≤ btk

+ atk
≤ 2lN,

(2.74)

which is a solution of the Baxter functional equation (2.71) in the gauge
(2.73) and:

atk
= ±k mod p, btk

= ±k mod p. (2.75)

2.4.2. Eigenvectors and Eigencovectors. The SOV-decomposition of the iden-
tity (2.60) and the results of the previous subsections imply that the state:

|tk〉 =
p∑

h1,...,hN=1

qkhN

p1/2

N−1∏
a=1

Qtk
(η(ha)

a )

×
∏

1≤a<b≤N−1

((
η(ha)

a

)2

− (η(hb)
b )2

) |η(h1)
1 , . . . , η

(hN)
N 〉∏N−1

b=1 ωb

(
η
(hb)
b

) , (2.76)

is, up to an overall normalization, the only right τ2-eigenstate associated to
tk(λ) ∈ Σk

T. Here, Qtk
(λ) is the only solution (up to quasi-constants) of the

Baxter equation:

tk(λ)Qtk
(λ) = ā(λ)Qtk

(λq−1) + d̄(λ)Qtk
(λq), (2.77)

19 I.e. it satisfies the following complex-conjugation conditions: (Qt(λ))∗ ≡ Qt(ελ∗) ∀λ ∈ C.
20 Note that Qt(λ) has been constructed in terms of the cofactors of the matrix D(Λ) in
Theorem 3 of [118].
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as defined in Theorem 2.2. Similarly, we can prove that the state:

〈tk| =
p∑

h1,...,hN=1

qkhN

p1/2

N−1∏
a=1

Q̄tk

(
η(ha)

a

)

×
∏

1≤a<b≤N−1

((
η(ha)

a

)2

− (η(hb)
b )2

) 〈η(h1)
1 , . . . , η

(hN)
N |∏N−1

b=1 ωb(η
(hb)
b )

, (2.78)

is, up to an overall normalization, the only left τ2-eigenstate associated to
tk(λ) ∈ Σk

T. Here, Q̄tk
(λ) is the only solution (up to quasi-constants) of the

Baxter equation:

tk(λ)Q̄tk
(λ) = d̄(λ/q)Q̄tk

(λ/q) + ā(λq)Q̄tk
(λq), (2.79)

when we make the following choice of gauge for the right SOV-representation:

ā(sov)(λ) ≡ ā(λq), d̄(sov)(λ) ≡ d̄(λ/q). (2.80)

3. The Inhomogeneous Chiral Potts Model

3.1. Definitions and First Properties

The connections between the integrable chiral Potts model and the Bazhanov–
Stroganov model restricted to parametrization by points on the algebraic
curves Ck were first remarked in [57]. We can summarize them as follows:
(I) the fundamental R-matrix intertwining the Bazhanov–Stroganov Lax op-

erator in the quantum space is given by the product of four chiral Potts
Boltzmann weights;

(II) the transfer matrix of the chiral Potts model is a Baxter Q-operator for
the Bazhanov–Stroganov model.

Let us recall here how the spectrum of the inhomogeneous chiral Potts transfer
matrix is characterized by SOV construction, thanks to the property (II). The
algebraic curve Ck of modulus k is by definition the locus of the points f ≡
(af , bf , cf , df ) ∈ C

4 which satisfy the equations:

xp
f + yp

f = k(1 + xp
fyp

f ), kxp
f = 1 − k

′
s−p

f , kyp
f = 1 − k

′
sp

f , (3.1)

where:

xf ≡ af/df , yf ≡ bf/cf , sf ≡ df/cf , tf ≡ xfyf , k2 + (k
′
)2 = 1. (3.2)

Let us introduce the following cyclic dilogarithm functions;21 here, we use the
notation:

Wgf (z(n))
Wgf (z(0))

=
(

sg

sf

)n n∏
k=1

yf − q−2kxg

yg − q−2kxf
,

W̄gf (z(n))
W̄gf (z(0))

= (sfsg)n
n∏

k=1

q−2xg − q−2kxf

yf − q−2kyg
,

(3.3)

21 They are the Boltzmann weights of the chiral Potts model [64,65], see also [131–142] for
the study of the properties of dilogarithm functions.
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where z(n) = q−2n, n ∈ {0, . . . , 2l}. They are solutions of the following recur-
sion relations:

Wgf (zq)
Wgf (zq−1)

= −z
sf

sg

xf

yf
q−1

1 − yg

xf
qz−1

1 − xg

yf
q−1z

,

W̄gf (zq)
W̄gf (zq−1)

= −qz−1

sfsg

yf

xf

1 − yg

yf
q−1z

1 − xg

xf
q−1z−1

.

(3.4)

If the points f and g belong to the curves Ck, they are well-defined functions
of z ∈ Sp ≡ {q2n; n = 0, . . . , 2l} which satisfy the cyclicity condition:

W̄gf (z(p))
W̄gf (z(0))

= 1,
Wgf (z(p))
Wgf (z(0))

= 1. (3.5)

Then, in the left and right un-eigenbasis, the transfer matrix TchP
λ of the inho-

mogeneous chiral Potts model22 [57] is characterized by the following kernel:

TchP
λ (z, z′) ≡ 〈z|TchP

λ |z ′〉 =
N∏

n=1

Wgnf (zn/z′
n)W̄rnf (zn/z′

n+1), (3.6)

where:

λ = t
−1/2
f c0, f, gn, rn ∈ Ck, c0 ∈ C, (3.7)

and z, z′ are the following multiple index z ≡ (z1, . . . , zN) and z′ ≡(z′
1, . . . , z

′
N).

Let us denote with RchP
N the sub-variety of the representations defined by the

following parametrization of the Bazhanov–Stroganov Lax operator in terms
of points of the curve:

αn = −b2
gn

/c0, bn = −dn/q = −agn
dgn

/q3/2, (3.8)

βn = −c0d
2
gn

, cn = −anq = bgn
cgn

q1/2, (3.9)

and gn ∈ Ck, k ∈ C. TchP
λ is then a Baxter Q-operator23 w.r.t. the transfer

matrix of the Bazhanov–Stroganov model in RchP
N :

τ2(λ)TchP
λ = aBS(λ)TchP

λ/q + dBS(λ)TchP
qλ , (3.10)

[τ2(λ),TchP
λ ] = 0, [Θ,TchP

λ ] = 0, [TchP
λ ,TchP

μ ] = 0 ∀λ, μ ∈ C, (3.11)

with aBS and dBS defined in (5.8) and (5.9) of [118].

22 For a direct comparison, see formula (4.12) of [97] with the following identifications:

zj ≡ q2σ′
j , z′

j ≡ q2σj ∀j ∈ {1, . . . , N}.

Note that TchP
λ is well defined, since the W -functions (3.3) are cyclic functions of their

arguments.
23 It is worth pointing out that while the Baxter equation (3.10) holds in the general inho-
mogeneous representations, the commutativity properties are proven only under the further
restrictions gn ≡ rn ∀n{1, . . . , N} under which is characterized RchP

N .
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3.2. SOV-Spectrum Characterization

Theorem 3.1 (Proposition 3, Theorem 5 and Lemma 13 of [118]). For almost
all the representations in RchP

N , the spectrum of the chiral Potts transfer matrix
TchP

λ is simple. Moreover:
(I) All right and left eigenstates of the chiral Potts transfer matrix TchP

λ

are eigenstates of τ2(λ) and they admit the SOV construction presented in
point (I) of Theorem 2.2. The solution Qt(λ) of the functional Baxter equa-
tion (2.71) is gauge equivalent to the corresponding TchP

λ -eigenvalue qchP
λ being

the coefficients aBS(λ) and dBS(λ) of (3.10) gauge equivalent to the SOV-ones:

aBS(λ) = hBS(λ)ā(λ) dBS(λ) = h−1
BS(λq)d̄(λ). (3.12)

Here, hBS(λ) is a function whose average value is 1 for any λ ∈ C.
(II) In the sub-variety RchP,S-adj

N ≡ RchP
N ∩ RS-adj

N , characterized by
(3.8)–(3.9) under the following constrains:

gn = (agn
, εqε0,na∗

gn
, ε0,nd∗

gn
, dgn

) ∈ Ck, ε0,n = ±1, k∗ = εk, (3.13)

the operator TchP
λ is normal and τ2(λ) is self-adjoint. Then, point (I) of The-

orem 2.2 allows to construct the full simultaneous (TchP
λ , τ2(λ),Θ)-eigenbasis

associating to any t(λ) ∈ Στ2 the corresponding eigenstate.

4. Decomposition of the Identity in the Transfer Matrix
Eigenbasis

4.1. Action of Left Separate States on Right Separate States

Here, we compute the action of covectors on vectors which in the left and
right SOV-basis have a separate form similar to that of the transfer matrix
eigenstates. To be more precise, let us give the following definition of a left
〈αk| and a right |βk〉 separate states characterized by the given arbitrary set
of functions αa and βa:

〈αk| =
p∑

h1,...,hN=1

qkhN

p1/2

N−1∏
a=1

αa

(
η(ha)

a

)

×
∏

1≤a<b≤N−1

((
η(ha)

a

)2

−
(
η
(hb)
b

)2
) 〈η(h1)

1 , . . . , η
(hN)
N |∏N−1

b=1 ωb

(
η
(hb)
b

) , (4.1)

|βk〉 =
p∑

h1,...,hN=1

q−khN

p1/2

N−1∏
a=1

βa

(
η(ha)

a

)

×
∏

1≤a<b≤N−1

((
η(ha)

a

)2

−
(
η
(hb)
b

)2
) |η(h1)

1 , . . . , η
(hN)
N 〉∏N−1

b=1 ωb

(
η
(hb)
b

) . (4.2)
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Proposition 4.1. The action of the left separate state 〈αk| of form (4.1) on the
right separate state |βh〉 of form (4.2) reads:

〈αk|βh〉 = δk,h det
N−1

∥∥∥M(α,β)
a,b

∥∥∥

M(α,β)
a,b ≡

(
η(0)

a

)2(b−1)
p∑

h=1

αa

(
η
(h)
a

)
βa

(
η
(h)
a

)

ωa

(
η
(h)
a

) q2(b−1)h.
(4.3)

Proof. The SOV-decomposition of these states implies:

〈αk|βh〉 =
p∑

hN=1

q(k−h)hN

p

p∑
h1,...,hN−1=1

V

((
η
(h1)
1

)2

, . . . ,
(
η
(hN−1)
N−1

)2
)

×
N−1∏
a=1

αa

(
η
(ha)
a

)
βa

(
η
(ha)
a

)

ωa

(
η
(ha)
a

) , (4.4)

where V (x1, . . . , xN) ≡ ∏
1≤a<b≤N−1(xa−xb) is the Vandermonde determinant.

Then, from the identity:

δk,h =
p∑

hN=1

q(k−h)hN

p
when q is a p-root of unit and h, k ∈ Zp (4.5)

and using the multilinearity of the determinant w.r.t. the rows, we prove the
proposition. �

It is worth remarking that the previous determinant formulae define also
scalar products for vectors in RN which have a separate form in the right
B-eigenbasis and in the dual of the left B-eigenbasis. Indeed, (〈αk|)† ∈ RN is a
separate vector in the basis of RN formed out of the (〈ηk|)† dual states of the
left B-eigenbasis. Then, these results represent the SOV analogue of the scalar
product formulae [18,126] computed for Bethe states in the framework of the
algebraic Bethe ansatz. Note that this formula is not restricted to the case in
which one of the two states is an eigenstate of the transfer matrix. It is also
interesting to remark that the previous scalar product formulae allow to prove
directly, as in the case of the sine–Gordon model, that the action of a transfer
matrix eigencovector on an eigenvector corresponding to different eigenvalue
is zero.

Corollary 4.1. Let th(λ) and t′h(λ) ∈ Σh
τ2

and 〈th| and |t′h〉 the τ2-eigenstates
defined in Sect. 2.4.2, then for th(λ) �= t′h(λ) the (N − 1) × (N − 1) matrix

M(th,t′
h)

a,b has rank equal or smaller than N−2. Indeed, the non-zero (N−1)×1

vector V(th,t′
h) defined by:

V(th,t′
h)

b ≡ c′
b − cb ∀b ∈ {1, . . . ,N − 1}, (4.6)
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where:

th(λ) =
∑

ε=±1

(
qεhaε + q−εhdε

)
λεN +

N−1∑
b=1

cbλ
−N−2+2b, (4.7)

t′h(λ) =
∑

ε=±1

(
qεhaε + q−εhdε

)
λεN +

N−1∑
b=1

c′
bλ

−N−2+2b, (4.8)

is an eigenvector of ||M(th,t′
h)

a,b || corresponding to the eigenvalue zero.

Proof. Note that under the choice (2.68) for the left gauge and (2.80) for the
right gauge, it holds:

ωa

(
η(h)

a

)
=
(
η(h)

a

)N−2

, (4.9)

and then by the definitions (4.6), (4.7) and (4.8) it holds:
N−1∑
b=1

M(th,t′
h)

a,b V(th,t′
h)

b =
2sa∑
h=0

Qt′
h
(η(h)

a )Q̄th
(η(h)

a )(t′h(η(h)
a ) − th(η(h)

a )). (4.10)

The desired result:
N−1∑
b=1

M(th,t′
h)

a,b V(th,t′
h)

b = 0 ∀a ∈ {1, . . . ,N − 1}, (4.11)

then follows as the Baxter equations (2.77) and (2.79) allow to write:

Qt′
h

(
η(k)

a

)
Q̄th

(
η(k)

a

)
(t′h

(
η(k)

a

)
− th

(
η(k)

a )
)

= (d̄
(
η(k+1)

a

)
Qt′

h

(
η(k+1)

a

)
+ ā

(
η(k−1)

a

)
Qt′

h

(
η(k−1)

a

)
)Q̄t

(
η(k)

a

)

−(ā
(
η(k)

a

)
Q̄th

(
η(k+1)

a

)
+ d̄

(
η(k)

a

)
Q̄th

(
η(k−1)

a

)
)Qt′

h

(
η(k)

a

)
, (4.12)

which substituted in (4.10) implies (4.11). �

4.2. Decomposition of the Identity in Transfer Matrix Eigenbasis

In the representations for which τ2(λ) is diagonalizable, the simplicity of its
spectrum plus the explicit characterizations of its left and right eigenstates
allows to write the following decomposition of the identity:

I =
p−1∑
k=0

∑
t(λ)∈Σk

τ2

|tk〉〈tk|
〈tk|tk〉 , (4.13)

where

〈tk|tk〉 = det
N−1

∥∥∥M(tk,tk)
a,b

∥∥∥

with M(tk,tk)
a,b ≡

(
η(0)

a

)2(b−1)
p∑

c=1

Qtk

(
η
(c)
a

)
Q̄tk

(
η
(c)
a

)

ωa

(
η
(c)
a

) q2(b−1)c, (4.14)
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is the action of the covector 〈tk| on the vector |tk〉, both defined in Sect. 2.4.2.
Note that in the representations which define a normal τ2(λ), the simplicity of
the spectrum implies the following identity:

(|tk〉)† ≡ αtk
〈tk| where αtk

=
‖|tk〉‖2

〈tk|tk〉 ∈ C (4.15)

for any eigenvector |tk〉 of τ2(λ). For these special representations, this stresses
the interest in computing the norm ‖|tk〉‖ as it allows to write left and right
τ2-eigenstates as one which is the exact dual of the other. Let us mention that
a similar decomposition of the identity was first proposed in the series of works
[113–117] in particular for the case p = 2.

5. Propagator for the Bazhanov–Stroganov Model

In this section, we construct the propagator operator along the chain of the
Bazhanov–Stroganov model for the representations parametrized by points on
the chP curves.

5.1. Fundamental R-matrix of the Bazhanov–Stroganov Model

In the next proposition, we report adapting to our notations a fundamental
result of the paper [57].

Proposition 5.1 [57]. Let S(g1,r1|g2,r2) be the operator defined on the tensor
product of two p-dimensional spaces by:〈

z1, z2|S(g1,r1|g2,r2)|z′
1, z

′
2

〉
≡ W̄g2g1

(z1/z′
2) Wr2g1

(z′
1/z′

2)W̄r2r1(z2/z′
1)Wg2r1(z2/z1), (5.1)

Then, S(g1,r1|g2,r2) is the fundamental R-matrix intertwining the Bazhanov–
Stroganov Lax operator in the quantum space, i.e. it holds:

L02(λ|g2, r2)L01(λ|g1, r1)S(g1,r1|g2,r2)

= S(g1,r1|g2,r2)L01(λ|g1, r1)L02(λ|g2, r2). (5.2)

Proof. Let us just point out that the proof can be obtained by proving it for
any matrix element (i1, i2)∈ {1, 2}×{1, 2}. Indeed, taking the matrix elements
on the quantum states 〈z1, z2| and |z′′

1 , z′′
2 〉, the proposition simply follows from

the identities:∑
z′
2,z′

2∈Sp,j=1,2

(L02)
i2,j
z2z′

2
(λ|g2, r2) (L01)

j,i1
z1z′

1
(λ|g1, r1)〈z′

1, z
′
2|S(g1,r1| q2,r2)|z′′

1 , z′′
2 〉

=
∑

z′
2,z′

2∈Sp,j=1,2

〈
z1, z2|S(g1,r1|g2,r2)|z′

1, z
′
2

〉

× (L01)
i1,j
z′
1z′′

1
(λ|g1, r1) (L02)

j,i2
z′
2z′′

2
(λ|g2, r2), (5.3)

once the elements of L0i are rewritten in terms of the points of Ck and we use
the definition of the functions W and W̄ . �
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5.2. Propagator for the Bazhanov–Stroganov Model

The first transfer matrix of the chP-model has been defined in (3.6 ), while
the second chP-transfer matrix reads:

T̂chP
λf ,(f |{gn,rn})(z, z

′) ≡
〈
z|T̂chP

λf ,(f |{gn,rn})|z′
〉

=
N∏

n=1

Wrnf (zn+1/z′
n)W̄gnf (zn/z′

n). (5.4)

Let us recall that the propagator operator Un along the Bazhanov–Stroganov
chain is defined by:

UnM1,...,N(λ)U−1
n ≡Mn,...,N,1,...,n−1(λ)≡Ln−1(λ) . . . L1(λ)LN(λ) . . . Ln(λ), (5.5)

then, we can prove:

Proposition 5.2. The propagator operator Um has the following representation
in terms of the chP-transfer matrices:

U−1
m ≡ TchP

λr1 ,(r1|{gn,rn})T̂
chP
λg1 ,(g1|{gn,rn}) . . . TchP

λrm−1 ,(rm−1|{gn,rn})

×T̂chP
λgm−1 ,(gm−1|{gn,rn}). (5.6)

Proof. The previous proposition implies that the operator S(g1,r1|g2,r2) satis-
fies the following equation

(
S(g1,r1|g2,r2)

)−1
L02(λ|g2, r2)L01(λ|g1, r1)S(g1,r1|g2,r2)

= L01(λ|g1, r1)L02(λ|g2, r2), (5.7)

then, it is simple to verify that:
(
S(g1,r1|g2,r2)S(g1,r1|g3,r3) . . . S(g1,r1|gN,rN)

)−1

L0N(λ|gN, rN) . . . L02(λ|g2, r2)L01(λ|g1, r1)
× (

S(g1,r1|q 2,r2)S(g1,r1|g3,r3) . . . S(g1,r1|gN,rN)

)
= L01(λ|g1, r1)L0N(λ|gN, rN) . . . L02(λ|g2, r2) (5.8)

Let us compute the matrix elements:〈
z|TchP

λr1 ,(r1|{ qn,rn})T̂
chP
λg1 ,(g1|{gn,rn})|z′′

〉

=
∑
z′

〈
z|TchP

λr1 ,(r1|{gn,rn})|z′〉〈z′|T̂chP
λg1 ,(g1|{gn,rn})|z′′

〉
(5.9)

Using the relations W̄f f (z/z′) = δz,z′ and Wf g(z)Wg f (z) = 1, we get:〈
z|TchP

λr1 ,(r1|{ qn,rn})T̂
chP
λg1 ,(g1|{gn,rn})|z′′

〉

=
∑
z′

δz1,z′
2
δz′

1,z′′
1

∏
n≥2

〈
z′
n, zn|S(g1,r1|gn,rn)|z′

n+1, z
′′
n

〉
(5.10)

=
〈
z1, . . . , zN|S(g1,r1|g2,r2) . . . S(g1,r1|gN,rN)|z′′

1 , . . . , z′′
N

〉
(5.11)
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Let us use the notation S̄i = TchP
λri

,(ri|{gn,rn})T̂
chP
λgi

,(gi|{gn,rn}), then (5.8) can
be rewritten as it follows:

S̄−1
1 L0N(λ|gN, rN) . . . L02(λ|g2, r2)L01(λ|g1, r1)S̄1

= L01(λ|g1, r1)L0N(λ|gN, rN) . . . L02(λ|g2, r2) (5.12)

and acting similarly with the others S̄n with n > 1 it holds:

S̄−1
n L0n−1(λ|gn−1, rn−1) . . . L01(λ|g1, r 1)L0N(λ|gN, rN)

. . . L0n+1(λ|gn+1, rn+1)L0n(λ|gn, rn)S̄n

= L0n(λ|gn, rn) . . . L01(λ|g1, r1)L0N(λ|gN, rN)
. . . L0n+2(λ|gn+2, rn+2)L0n+1(λ|gn+1, rn+1), (5.13)

from which defining:

U−1
n = S̄1S̄2 . . . S̄n−1 (5.14)

= TchP
λr1 ,(r1|{gn,rn})T̂

chP
λg1 ,(g1|{gn,rn})

. . . TchP
λrn−1 ,(rn−1|{gn,rn})T̂

chP
λgn−1 ,(gn−1|{gn,rn}), (5.15)

Un surely satisfies the Eq. (5.5) which defines the propagator. �
It is worth noticing that the eigenvalues of the two chP-transfer matrices

on the eigenstates of the τ2 transfer matrix are characterized according to
the discussion made in Sect. 3.2, then the eigenvalues of Um are also known.
Moreover, let us point out that:

λgn
= i

(
q
anβn

αnbn

)1/2

, λrn
= i

(
q
cnβn

αndn

)1/2

, (5.16)

i.e. we are computing the Q-operators, TchP
λrn

T̂chP
λgn

, in the zeros of the quantum
determinant of the τ2-model. In the case of self-adjoint representations on
trivial curves (like for sine–Gordon model), we have up to an overall constant:

U−1
m ≡ Qλr1

Qλ∗
g1

. . . Qλrm−1
Qλ∗

gm−1
. (5.17)

The case of Bethe ansatz representations corresponds to the case gn = rn, i.e.
the two zeros of the quantum determinant coincide up to p-roots of units. In
this case and in the homogeneous case, we reproduce the known result of [143]
for the propagator.

6. Representation of Local Operators by Separate Variables

The results on the scalar product formulae define one of the main steps to
compute matrix elements of local operators. The other one is to reconstruct
local operators using the generators of the Yang–Baxter algebra, namely to
invert the map from the local operators in the Lax matrices to the monodromy
matrix elements. This inverse problem solution makes possible to compute the
action of local operators on transfer matrix eigenstates in this way leading to
the determination of form factors of local operators, once the scalar product
formulae are used.
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In [18], the first solution of this inverse problem has been obtained for the
XXZ spin 1/2 chain and then in [28] it has been generalized to all fundamental
lattice models having isomorphic auxiliary and local quantum spaces charac-
terized by a Lax operator matrix coinciding with the permutation operator for
a special value of the spectral parameter. This reconstruction can be also used
for non-fundamental lattice models, as derived in [28] for the higher spin XXX
chains using the fusion procedure [77]. For the Bazhanov–Stroganov model, we
still do not know how to achieve this type of reconstruction and the known
results reduce to those given by Oota [144]. However, Oota’s results lead only
to reconstruct some local operators of the Bazhanov–Stroganov model. We
will explain in this section how to complete the Oota’s reconstruction for all
the local operators of the Bazhanov–Stroganov model associated to the most
general cyclic representations of the six-vertex Yang–Baxter algebra. The pro-
cedure developed here is the natural generalization to these representations of
the one for the special subclass presented in our previous paper [1]. The new
technical tools required to handle these general representations will be also
introduced in the next subsections.

6.1. Reconstruction of a Class of Local Operators

The results of Oota’s paper [144] are reproduced here for the more general
cyclic representations associated to the the Bazhanov–Stroganov model; this
leads to the reconstruction of a subclass of local operators. In terms of quantum
projectors, when computed in the zeros μn,± of the quantum determinant, the
Lax operator Ln(λ) has the following factorization:

Ln(μn,+) ≡
(

(Ln)12 u
−1/2
n fn

(Ln)21 u
1/2
n f−1

n

)(
u

−1/2
n fn u

1/2
n f−1

n

)
, (6.1)

Ln(μn,−) ≡
(

gnu
1/2
n

g−1
n u

−1/2
n

)(
gnu

1/2
n (Ln)21 g−1

n u
−1/2
n (Ln)12

)
, (6.2)

where (Ln)ij stays for the matrix element i, j of the Lax operator and:

fn ≡
(

−αnβn

anbn

)1/4

, gn ≡
(

−αnβn

cndn

)1/4

. (6.3)

These factorizations properties were used by Oota’s to reconstruct local oper-
ators as it follows:

Proposition 6.1. The following reconstructions of local operators hold:

u−1
n =

(
−anbn

αnβn

)1/2

UnB−1(μn,+)A(μn,+)U−1
n

=
(

−anbn

αnβn

)1/2

UnD−1(μn,+)C(μn,+)U−1
n , (6.4)

α0,n = UnA−1(μn,−)B(μn,−)U−1
n = UnC−1(μn,−)D(μn,−)U−1

n . (6.5)
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where we have defined:

α0,n ≡
( −cnb

2
n

αnβndn

)1/2 (1 + q−1(an/bn)v2
n

1 + q−1(cn/dn)v2
n

)
un. (6.6)

Reconstructions of local operators similar to (6.4)–(6.5) also appear in
[145] and were used in [117]. Oota’s formulae (6.4)–(6.5) clearly allow to recon-
struct all the powers u−k

n = Un

(
B−1(μn,+)A(μn,+)

)k
U−1

n ; however, the local
operators vk

n do not admit direct reconstructions as only rational functions like(
1 + q−1(an/bn)v2

n

)
/
(
1 + q−1(cn/dn)v2

n

)
are reconstructed.

6.2. Reconstruction of all Local Operators

Here, we solve the inverse problem for the local operators vk
n in this way com-

pleting the reconstruction of local operators. The cyclicity of the representa-
tions of the Bazhanov–Stroganov model will be the main property here used.
Let us define the following local operators:

βk,n ≡ (
UnA−1(μn,+)B(μn,+)U−1

n

)−k−1
α0,n

(
UnA−1(μn,+)B(μn,+)U−1

n

)k

(6.7)

then it holds:

Proposition 6.2. For the cyclic representations of the Bazhanov–Stroganov
model we consider, the local operators v2k

n have the following reconstructions:

v2k
n =

1
p

(
−dn

cn

)k 1 + (cn/dn)p

(bncn/andn)1/2 − (andn/bncn)1/2

p−1∑
a=0

qk(2a+1)βa,n.

(6.8)

Proof. By definition in our cyclic representations, the powers up
n and vp

n are
central elements of the algebra coinciding with 1. Then, it holds:

1 + (cn/dn)p

1 + q−2k−1(cn/dn)v2
n

=
p−1∑
i=0

(−q−2k−1(cn/dn)v2
n

)i
. (6.9)

The previous formula and the reconstruction (6.4)–(6.5) allow to rewrite βk,n

as the following finite sum in powers of v2
n:

βk,n =
(bncn/andn)1/2 + (andn/bncn)1/2(cn/dn)p

1 + (cn/dn)p

+
(bncn/andn)1/2 − (andn/bncn)1/2

1 + (cn/dn)p

p−1∑
a=1

(−1)aq−a(2k+1)

(
cn

dn

)a

v2a
n ,

(6.10)

then, taking a discrete Fourier transformation, the reconstruction (6.8) is ob-
tained together with the following sum rules
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p−1∑
a=0

βa,n = p
(bncn/andn)1/2 + (andn/bncn)1/2(cn/dn)p

1 + (cn/dn)p
. (6.11)

�

The formulae in (6.8) lead to the reconstruction of all the powers vk
n for

k ∈ {1, . . . , p− 1} as it follows from the identities vk
n = v2h

n , for k = 2h− p odd
integer smaller than p. Hence, as desired, all the local operators of the cyclic
representations of the Bazhanov–Stroganov model are reconstructed using the
above proposition and the Oota’s reconstructions.

6.3. Separate Variables Representations of all Local Operators

To compute the action of the local operators vk
n and uk

n on eigenstates of
the transfer matrix and then their form factors, we need to determine their
SOV-representations before. These SOV-representations are obtained from the
above solution of the inverse problem. To this aim, we first prove two lemmas
that are important to overcome the combinatorial problem associated to the
computation of the SOV-representations of the local operators (6.4)–(6.5).

Let us introduce, the coordinate operators η̂i for i ∈ {1, . . . ,N}, η̂
(±)
A and

η̂
(±)
D such that:

〈η|η̂i ≡ ηi〈η|, 〈η|η̂(±)
A ≡ η

(±)
A 〈η|, 〈η|η̂(±)

D ≡ η
(±)
D 〈η|, (6.12)

and the operator T±
i are defined on the left and right SOV-representations

by:24

〈η|T±
i ≡ 〈q±δiη|, T±

i |η〉 ≡ |q∓δiη〉 (6.13)

and clearly the commutation relations hold:

T±
i η̂j = q±δi,j η̂jT

±
i . (6.14)

Lemma 6.1. We have the expansion
(
Ω̂(f)

)k

=
∑

	α={α1...αN−1}∑
αi=k

[
k
�α

] N−1∏
i=1

×
⎛
⎝αi−1∏

h=0

f(q−hη̂i)
∏
j �=i

1
qαj−hη̂i/η̂j − q−αj+hη̂j/η̂i

⎞
⎠ N−1∏

i=1

(
T−

i

)αi

(6.15)

for the operator

Ω̂(f) =
N−1∑
a=1

∏
b�=a

1
η̂a/η̂b − η̂b/η̂a

f(η̂a)T−
a , (6.16)

24 It is worth remarking that from the definition of the SOV-representations of the generators
of the Yang–Baxter algebra, given in Sect. 2.3, and the definitions in (6.13), it follows that

the SOV-representation of the charge Θ coincides with the operator T−
N .
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with [
k
�α

]
≡ [k]!∏N−1

j=1 [αj ]!
, [k]! ≡ [k][k − 1] . . . [1], [a] ≡ qa − q−a

q − q−1
. (6.17)

Proof. The lemma holds for k = 1 and we prove it by induction for k > 1. Let
us take N − 1 integers αi:

N−1∑
i=1

αi = k, (6.18)

from which we define the set of integers I = {i ∈ {1, . . . ,N − 1} : αi �= 0} and
Ĉ(k)

	α as the operator coefficient of
∏

T−αi
i (put to the left) in the expansion of

the k-th power of Ω̂(f). By writing (Ω̂(f))k = (Ω̂(f))k−1Ω̂(f) and using the
induction hypothesis for the power k − 1 of Ω̂(f), we have:

Ĉ(k)
	α =

∑
a∈I

[
k − 1
�α − �δa

] N−1∏
j=1

αj−δa,j−1∏
h=0

×
⎛
⎝f(q−hη̂j) ×

N−1∏
i�=j,i=1

1
qαi−δa,i−hη̂j/η̂i − η̂i/qαi−δa,i−hη̂j

⎞
⎠

×f(η̂aq−αa+1)
∏

i∈I\{a}

1
qαa−αi−1η̂i/η̂a − η̂a/qαa−αi−1η̂i

, (6.19)

with �δa ≡ (δ1,a, . . . , δN,a). The first term in r.h.s. is the coefficient of∏
T

−αi+δa,i

i in (Ω̂(f))k−1 and the second is the coefficient of T−1
a in Ω̂(f)

once the commutations between
∏

T
−αi+δa,i

i and the η̂i have been performed.
Hence, we get:

Ĉ(k)
	α =

[k − 1]!∏
[αi]!

⎛
⎝N−1∏

j=1

αj−1∏
h=0

(
N−1∏

i�=j,i=1

1
qαi−hη̂j/η̂i − η̂i/qαi−hη̂j

)f(q−hη̂j)

⎞
⎠

×
∑
a∈I

⎛
⎝[αa]

∏
i∈I\{a}

qαa η̂i/η̂a − η̂a/qαa η̂i

qαa−αi η̂i/η̂a − η̂a/qαa−αi η̂i

⎞
⎠ , (6.20)

which leads to our result using the relation:
n∑

a=1

[αa]
∏
i�=a

qαaηi/ηa − ηa/qαaηi

qαa−αiηi/ηa − ηa/qαa−αiηi
=

[
n∑

a=1

αa

]
. (6.21)

Note that the above formula holds for any n, for any set of numbers ηi and
for any non-negative integers αi. This is proven by studying the analytical
properties of the function

g(z) =
1
z

∏ z − η2
i

z − q−2αiη2
i

. (6.22)

�
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Lemma 6.2. The SOV-representation of the powers of B−1(λ)A(λ) is given by(
B−1(λ)A(λ)

)m

=
∑

i+j+k=m

(−1)j

η̂m
N

(
λ

N−1∏
a=1

η̂a

)i−j

ai
+aj

−q
i(i−1)−j(j−1)

2

[
m

i, j, k

]
σ̂(λ)kTj−i

N

(6.23)

with

σ̂(λ) =
N−1∑
a=1

∏
b�=a

1
η̂a/η̂b − η̂b/η̂a

a(sov)(η̂a)
λ/η̂a − η̂a/λ

T−
a , (6.24)

where the powers of σ̂(λ) are given by the previous lemma.

Proof. Let â, b̂ and ĉ be three operators satisfying the relations

b̂â = q−2âb̂, ĉb̂ = q2b̂ĉ, ĉâ = q−2âĉ (6.25)

It is easy to prove by induction that(
â + b̂ + ĉ

)m

=
∑

i+j+k=m

qk(j−i)−ij

[
m

i, j, k

]
âib̂j ĉk (6.26)

The SOV-representation of B−1(λ)A(λ) is the sum of three main terms,

â =
∏N−1

i=1 η̂i

η̂N

λa+T−
N (6.27)

b̂ = −
∏N−1

i=1 η̂−1
i

η̂N

λ−1a−T+
N (6.28)

ĉ =
1

η̂N

N−1∑
a=1

∏
b�=a

1
η̂a/η̂b − η̂b/η̂a

a(sov)(η̂a)
λ/η̂a − η̂a/λ

T−
a (6.29)

Since they satisfy the commutation relations (6.25), the power of B−1(λ)A(λ)
can be computed using the formula ( 6.26), which ends the proof. �
Remark 1. The quantum multinomials have the property[

p
�α

]
=
{

1 if ∃i ∈ {1, . . . ,N − 1} : αi = pδa,i ∀a ∈ {1, . . . ,N − 1},
0 otherwise, (6.30)

This property yields that the power p of B−1(λ)A(λ) is a central element of
the Yang–Baxter algebra and it reads:

(B−1(λ)A(λ))p = B(Λ)−1A(Λ), (6.31)

result which is consistent with the commutation relations:

B−1(qλ)A(qλ) = A(λ)B−1(λ). (6.32)

The two previous lemmas allow to expand the SOV-representation of the
operators uk

n. However, they do not apply directly to the expansion of vn. The
aim of the following lemma is to transform the operators βk,n, whose linear
combination gives the powers of vn.
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Lemma 6.3. The operator βk,n has the following expansion:

βk,n =
B(μp

n,−)
A(μp

n,−)B(μp
n,+)

μn,+/μn,− − μn,−/μn,+

qkμn,+/μn,− − q−kμn,−/μn,+
B−1(μn,+)A(μn,+)

×
p−k∏
i=1

B(q−iμn,+)
(
B−1(μn,−)A(μn,−)

)p−1
p∏

i=p−k+1

B(q−iμn,+)

+
qk − q−k

qkμn,+/μn,− − q−kμn,−/μn,+
(6.33)

Proof. A simple induction on the Yang–Baxter relation B(λ)A(q−1λ) =
A(λ)B(q−1λ) shows that

(
A−1(λ)B(λ)

)k
=

k∏
i=1

B(q−iλ)
k∏

i=1

A−1(q−iλ) =
k−1∏
i=0

A−1(qiλ)
k−1∏
i=0

B(qiλ).

(6.34)

From the definition of the average values of operators, we get

(
A−1(λ)B(λ)

)k
= A(Λ)−1

p−k∏
i=1

A(q−iλ)
p∏

i=p−k+1

B(q−iλ), (6.35)

(
A−1(λ)B(λ)

)−k
= B(Λ)−1

p−k∏
i=1

B(q−iλ)
p∏

i=p−k+1

A(q−iλ). (6.36)

It also yields
(
A−1(λ)B(λ)

)p
= A−1(Λ)B(Λ) (6.37)

and

A−1(λ)B(λ) = A−1(Λ)B(Λ)
(
B−1(λ)A(λ)

)p−1
. (6.38)

Standard arguments give the relation

B(μn,−)
p−k∏
i=1

A(q−iμn,+)

=
qk − q−k

qkμn,+/μn,− − q−kμn,−/μn,+
A(μn,−)

p−k−1∏
i=1

A(q−iμn,+)B(qkμn,+)

+
μn,+/μn,− − μn,−/μn,+

qkμn,+/μn,− − q−kμn,−/μn,+

p−k∏
i=1

A(q−iμn,+)B(μn,−). (6.39)

Eventually, the use of these relations proves the lemma. �
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7. Form Factors of Local Operators

In this section, we present the main results of our paper on the form factors
of the local operators. One of the main peculiarities emerging in quantum
separate variables is a feature of universality in the representation of these
dynamical observables. In fact, the comparison between the results presented
here for the most general cyclic representations of the six-vertex Yang–Baxter
algebra and those previously derived in our paper [1] defines one peculiar and
evident instance of this universality.

7.1. Form Factors of u−1
n and α−1

0,n

The form factors of some local operators written as single determinants are
here provided.

Proposition 7.1. Let us denote with ϕ
(tk)
n and ϕ

(t′
k′ )

n the eigenvalues of the
shift operator Un, respectively, on the left 〈tk| and right |t′k′〉 eigenstates of the
transfer matrix τ2(λ), then the following determinant formula is verified:

〈tk|u−1
n |t′k′〉 =

(
−anbn

αnβn

)1/2
ϕ

(tk)
n

ϕ
(t′

k′ )
n

δk,k′−1 det
N−1

(||U (tk,t′
k′ )

a,b (μn,+)||). (7.1)

Here, ||U (tk,t′
k′ )

a,b (λ)|| is the (N − 1) × (N − 1) matrix defined by:

U (tk,t′
k′ )

a,b (λ) ≡ M(tk,t′
k′ )

a,b+1/2 for b ∈ {1, . . . ,N − 2}, (7.2)

U (tk,t′
k′ )

a,N−1 (λ)

≡ 1

η
(0)
N

p∑
h=1

(
η
(h)
a

)N−2

Qt′
k′

(
η
(h)
a

)

ωa

(
η
(h)
a

)
[

Q̄tk
(η(h+1)

a )

(λ/η
(h+1)
a − η

(h+1)
a /λ)

ā(sov)
(
η(h)

a

)

+ Q̄tk

(
η(h)

a

)(
a+λ

(
η(h)

a

)N−1

qk′ − a−
λ

(
η(h)

a

)−(N−1)

q−k′
)]

. (7.3)

Proof. The operator B−1(λ)A(λ) admits the following SOV-representation:

B−1(λ)A(λ) =
1

η̂N

(
λη̂

(+)
A T−

N +
η̂

(−)
A

λ
T+

N

)

+
N−1∑
a=1

T−
a

ā(sov)(η̂a)
η̂N(λ/η̂aq − η̂aq/λ)

∏
b�=a

1
(η̂a/η̂b − η̂b/η̂a)

. (7.4)

For brevity, we denote with [B−1(λ)A(λ)] the sum on the r.h.s. of (7.4). Then,
from the SOV-decomposition of the τ2-eigenstates, it holds:

〈tk|[B−1(λ)A(λ)]|t′k′〉

=

∑p
hN=1 q(k+1−k′)hN

pη
(0)
N

N−1∑
a=1

p∑
h1,...,hN−1=1

V (
(
η
(h1)
1

)2

, . . . ,
(
η
(hN−1)
N−1

)2

)
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×
N−1∏

b�=a,b=1

η
(hb)
b Qt′

k′

(
η
(hb)
b

)
Q̄tk

(
η
(hb)
b

)

ωb

(
η
(hb)
b

)((
η
(ha)
a

)2

−
(
η
(hb)
b

)2
)

×
Q̄tk

(
η
(h+1)
a

)
Qt′

k′

(
η
(ha)
a

)

ωa

(
η
(ha)
a

)
(
η
(ha)
a

)(N−2)

ā(sov)
(
η
(ha)
a

)

(λ/η
(0)
a qha+1 − η

(0)
a qha+1/λ)

, (7.5)

and so:

〈tk|[B−1(λ)A(λ)]|t′k′〉

=
δk,k′−1

η
(0)
N

N−1∑
a=1

p∑
h1,...,hN=1︷ ︸︸ ︷

ha is missing.

V̂a(
(
η
(h1)
1

)2
, . . . ,

(
η
(hN−1)
N−1

)2
)

︷ ︸︸ ︷
(The row a is removed.)

×
N−1∏

b�=a,b=1

η
(hb)
b Qt′

k′

(
η
(hb)
b

)
Q̄tk

(
η
(hb)
b

)

ωb

(
η
(hb)
b

)

×(−1)(N−1+a)
p∑

ha=1

Q̄tk(η
(0)
a qha+1)Qt′

k′

(
η
(ha)
a

)(
η
(ha)
a

)(N−2)
ā(sov)

(
η
(ha)
a

)

ωa

(
η
(ha)
a

)
(λ/η

(ha+1)
a − η

(ha+1)
a /λ)

,

(7.6)

inserting the sum over (h1, . . . , ĥa, . . . , hN−1) in the Vandermonde determinant
V̂a, the above expression reduces to the expansion of the following determinant:

〈tk|[B−1(λ)A(λ)]|t′k′〉 = δk,k′−1 det
N−1

(∥∥∥[U (tk,t′
k′ )

a,b (λ)
]∥∥∥) , (7.7)

where
[
U (tk,t′

k′ )
a,b (λ)

]
is just M(tk,t′

k′ )
a,b+1/2 for b ∈ {1, . . . ,N − 2}, while:

[
U (tk,t′

k′ )
a,N−1 (λ)

]
≡
(
η
(0)
a

)N−2

η
(0)
N

p∑
h=1

q(N−2)hQt′
k′

(
η
(h)
a

)
Q̄tk

(
η
(ha+1)
a

)

ωa

(
η
(h)
a

)
(λ/η

(ha+1)
a − η

(ha+1)
a /λ)

ā(sov)(η(h)
a ).

(7.8)

We compute now the matrix elements:

〈tk|η̂−1
N η̂

(±)
A T∓

N |t′k′〉

=
±a±q±k′ ∑p

hN=1 q(k+1−k′)hN

pη
(0)
N

p∑
h1,...,hN−1=1

V (
(
η
(h1)
1

)2

, . . . ,
(
η
(hN−1)
N−1

)2

)

×
N−1∏
b=1

(
η
(hb)
b

)±1

Qt′
k′

(
η
(hb)
b

)
Q̄tk

(η(hb)
b )

ωb

(
η
(hb)
b

) , (7.9)
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hence leading to:
〈
tk|η̂−1

N η̂
(±)
A T∓

N |t′k′

〉
=

±a±q±k′
δk,k′−1

η
(0)
N

det
N−1

(∥∥∥M(tk,t′
k′ )

a,b±1/2

∥∥∥) . (7.10)

Then, our result follows as the matrices of formula (7.7) and (7.10) have N− 2
common columns. Let us note that the above formula holds for any value
of λ. �

Remark 2. (I) The matrix elements 〈tk|α−1
0,n|t′k′〉 of the local operators α−1

0,n

are given by:

〈
tk|α−1

0,n|t′k′
〉

=
ϕ

(tk)
n

ϕ
(t′

k′ )
n

δk,k′−1 det
N−1

(∥∥∥U (tk,t′
k′ )

a,b (μn,−)
∥∥∥) . (7.11)

(II) In the case of general representations RN, the matrix elements
〈tk|un|t′k′〉 can be computed using the reconstruction:

un =
(

−αnβn

anbn

)1/2

UnC−1(μn,+)D(μn,+)U−1
n , (7.12)

in the SOV C-representation. Here, we do not make this explicitly as the result
will have the same type of form presented for 〈tk|u−1

n |t′k′〉; the difference will
be that all the quantities will be written in the SOV C-representation.

7.2. Determinant Representations of Form Factors for a Suitable Basis of
Operators

In this section, we construct an operator basis for which the form factors of
any operator in this basis are written by a one determinant formula. For this
reason, we will refer to it as the basis of elementary operators. The idea of the
construction goes back to the sine–Gordon case [1].

7.2.1. Introduction of the Basis of Elementary Operators.

Lemma 7.1. Let us define the operators:

Oa,k ≡
B
(
η
(p+k−1)
a

)
B(η(p+k−2)

a ) . . . B
(
η
(k+1)
a

)
A
(
η
(k)
a

)

pη̂p−1
N

∏N−1
b�=a,b=1(Za/Zb − Zb/Za)

with k ∈ {0, . . . , p − 1}, (7.13)

with Zr ≡ ηp
r as in (2.48), then they satisfy the following properties:

Oa,kOa,h is non-zero if and only if h = k − 1, (7.14)

and

Oa,kOa,k−1 . . . Oa,k+1−pOa,k−p =
A(Za)∏N−1

b�=a,b=1(Za/Zb − Zb/Za)
Oa,k. (7.15)

The following commutation relations are furthermore satisfied:

η̂
(±)
A Oa,k = q∓1Oa,kη̂

(±)
A , [η̂N,Oa,k] = [T−

N ,Oa,k] = 0, (7.16)
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and

Oa,kOb,h =

(
η
(k−h+1)
a /η

(0)
b − η

(0)
b /η

(k−h+1)
a

)
(
η
(k−h−1)
a /η

(0)
b − η

(0)
b /η

(k−h−1)
a

) Ob,hOa,k (7.17)

for a �= b ∈ {1, . . . ,N − 1}.
Proof. Since B(Za) = 0 with B(Λ), the average value of the operator B(λ), the
first is quite immediate. Moreover, the following identity:

〈η1, . . . , η
(h)
a , . . . , ηN|Oa,k =

a
(
η
(k)
a

)
δh,k∏N

b�=a,b=1

(
η
(k)
a /ηb − ηb/η

(k)
a

)

×〈η1, . . . , η
(k−1)
a , . . . , ηN|, (7.18)

is a direct consequence of the definition of the operators Oa,k so that the
second identity of the lemma follows. Now, using the following Yang–Baxter
commutation relation:

(λ/μ−μ/λ)A(λ)B(μ)=(λ/qμ−μq/λ)B(μ)A(λ) + (q − q−1)B(λ)A(μ) (7.19)

and moving the A(η(k)
a ) to the right through all the B(η(j)

b ), for j �= h, remark-
ing that only the first term of the r.h.s of (7.19) survives, and after moving
the A(η(h)

b ) to the left, we get the last identity of the lemma. �

Now, we define elementary operators by the following monomials:

E(α1,...,αr)
k,k0,(a1,k1),...,(ar,kr) ≡ η̂−k

N

(
η̂

(+)
A T−

N

)k0 O(α1)
a1,k1

. . . O(αr)
ar,kr

, (7.20)

where
∑r

h=1 αh ≤ p, k, ki ∈ {0, . . . , p − 1}, ai < aj ∈ {1, . . . ,N − 1} for
i < j ∈ {1, . . . ,N − 1} and:

O(α)
a,k ≡ Oa,kOa,k−1 . . . Oa,k+1−α, with α ∈ {1, . . . , p}. (7.21)

Lemma 7.2. Once the set of the elementary operators is dressed by the shift
operator Un as it follows:

UnE(α1,...,αr)
k,k0,(a1,k1),...,(ar,kr)U

−1
n , (7.22)

a basis is defined in the space of the local operators at the quantum site n,
∀n ∈ {1, . . . ,N}.
Proof. To prove the lemma, the local operators in site n generated by uk

n and
vk
n for k ∈ {1, . . . , p−1} have to be written as linear combinations of the dressed

elementary operators (7.20) and thanks to Proposition 6.2 this is equivalent
to prove the same statement for the following basis of local operators:

u−k
n = Un

(
B−1(μn,+)A(μn,+)

)k
U−1

n , (7.23)

β̃k,n = Un

(
B−1(μn,+)A(μn,+)

)k
B−1(μn,−)A(μn,−)

× (
B−1(μn,+)A(μn,+)

)p−1−k
U−1

n (7.24)
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The operator B−1(λ) is invertible for λp �= Za with a ∈ {1, . . . ,N − 1} so that
the centrality of the average values implies:

B−1(λ)A(λ) =
B(λqp−1)B(λqp−2) . . . B(λq)A(λ)

B(Λ)
. (7.25)

The monomial B(λqp−1)B(λqp−2) . . . B(λq)A(λ) is an even Laurent polynomial
of degree p(N − 1) + 1 in λ and so we can write:

B−1(λ)A(λ) =
1

η̂N

(
λη̂

(+)
A T−

N +
η̂

(−)
A

λ
T+

N

)
+

1
η̂N

N−1∑
a=1

p−1∑
k=0

Oa,k

(λ/η
(k)
a − η

(k)
a /λ)

.

(7.26)

It is then clear that the local operators u−k
n and β̃k,n are linear combinations

of the monomials:

Unη̂−h
N

(
η̂

(+)
A T−

N

)h0 Oa1,h1 . . . Oas,hs
U−1

n (7.27)

for s ≤ p, ai ∈ {1, . . . ,N−1} and h, hi ∈ {0, . . . , p−1}. The commutation rules
(7.17) allow to rewrite any monomial Oa1,h1 . . . Oas,hs

in a way that operators
with the same index a are adjacent and those with different a are ordered in
a way ai < aj for i < j ∈ {1, . . . ,N − 1}. Then, the rule (7.14) tells us if the
monomial is zero or non-zero. The property (7.15) finally implies:

O(p+α)
a,k =

A(Za)∏N
b�=a,b=1(Za/Zb − Zb/Za)

O(α)
a,k , (7.28)

and so that all the non-zero monomials Oa1,h1 . . . Oas,hs
are rewritable in the

form (7.20). �

7.2.2. Determinant Representation of Elementary Operator Form Factors.

Lemma 7.3. The elementary operators admit the following simple characteri-
zations for their form factors:〈

tk|E(α1,...,αr)
(h,h0,(a1,h1),...,(ar,hr)|t′k′

〉

=
δk,k′+hah0

+ qh0k′

(
η
(0)
N

)h
f(h0,{α},{a}) det

N−1+rp−g

(∥∥∥O(h0,{α},{a})
a,b

∥∥∥) . (7.29)

Here, 〈tk| and |t′k′〉 are two eigenstates of the transfer matrix τ2(λ) and
||O(h0,{α},{a})

a,b || is the (N − 1 + rp − g) × (N − 1 + rp − g) matrix of elements:

O
(h0,{α},{a})

a,
∑m−1

h=1 (p−αh+1)+jm
≡ (

η2
am

q2jm
)2(a−1)

for jm ∈ {0, . . . , p − αm}, m ∈ {1, . . . , r}, (7.30)

O
(h0,{α},{a})
a,
∑r

h=1(p−αh+1)+i ≡ M(t,t′)
bi,a+(h0+g)/2,

for i ∈ {1, . . . ,N − 1 − r}, g ≡
r∑

h=1

αh, (7.31)
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for any a ∈ {1, . . . ,N − 1 + rp − g}. Moreover, we have used the following
notations {b1, . . . , bN−1−r} ≡ {1, . . . ,N − 1}\{a1, . . . , ar} where the elements
are ordered by bi < bj for i < j,

f(h0,{α},{a})

≡
∏r

i=1 Qt′
(
ηai

q−αi
)

Q̄t

(
ηai

) (
ηh0+αi(N−1−r)

ai
/ωai

(
ηai

))∏αi−1
h=0 a

(
ηiq

−h
)

∏r
i=1

∏αi−1
h=0

∏i−1
j=1(q

αj −hηai
/ηaj

− ηaj
/qαj −hηai

)
∏r

j=i+1

(
ηai

/qhηaj
− ηaj

qh/ηai

)

×
(−1)

∑r
i=1(ai−i) ∏r

i=1 q−(N−1−r)αi(αi−1)/2V
(
η2

a1
, . . . , η2

ar

)
∏r

i=1

∏N−1−r
j=1 (Z2

ai
− Z2

bj
)V

(
η2

a1
, η2

a1
q2, . . . , η2

a1
q2(p−α1), . . . , η2

ar
, η2

ar
q2, . . . , η2

ar
q2(p−αr)

) ,

(7.32)

V (x1, . . . , xN) ≡ ∏
1≤a<b≤N(xa −xb) is the Vandermonde determinant and for

brevity:

ηam
≡ η(hm)

am
. (7.33)

Proof. The following actions hold:

〈tk|η̂−h
N

(
η̂

(+)
A T−

N

)h0
=

ah0
+ qh0(k−h)

(
η
(0)
N

)h

p∑
h1,...,hN=1

q(k−h)hN

p1/2

N−1∏
a=1

(
η(ha)

a

)h0
Q̄t

(
η(ha)

a

)

×
∏

1≤a<b≤N−1

((
η(ha)

a

)2 − (η
(hb)
b )2

) 〈η(h1)
1 , . . . , η

(hN)
N |∏N−1

b=1 ωb

(
η
(hb)
b

) .

(7.34)

From the formula (7.18), it follows:

〈η1, . . . , η
(f)
ai

, . . . , ηN|O(αi)
ai,hi

=
∏αi−1

h=0 a
(
ηai

q−h
)
δf,hi

〈η1, . . . , ηai
q−αi , . . . , ηN|∏N−1

b�=ai,b=1

∏αi−1
h=0 (ηai

q−h/ηb − ηb/ηai
q−h)

,

(7.35)

where ηai
is defined in (7.33). The action of O(α1)

a1,h1
. . . O(αr)

ar,hr
can be com-

puted now taking into account the order of the operators which appear in the
monomial, then using the scalar product formula we get:〈

tk|E(α1,...,αr)
(h,h0,(a1,h1),...,(ar,hr)|t′k′

〉

=
ah0
+ qh0(k−h)

(
η
(0)
N

)h

p∑
k1,...,kN=1

q[(k−h)−k′]kN

p

N−1∏
a=1

(
η(ha)

a

)h0

×
r∏

i=1

∏αi−1
h=0 a

(
ηai

q−h
)
δkai

,hi∏N−1−r
j=1

∏αi−1
h=0

(
ηai

q−h/η
(kbj

)

bj
− η

(kbj
)

bj
/ηai

q−h
)

×
r∏

i=1

αi−1∏
h=0

∏r
j=i+1(ηai

q−h/ηaj
− ηaj

/ηai
q−h)−1

∏i−1
j=1

(
ηai

qαj−h/ηaj
− ηaj

/ηai
qαj−h

)
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×
N−1−r∏

j=1

Qt′
(
η
(kbj

)

bj

)
Q̄t

(
η
(kbj

)

bj

)

ωbj

(
η
(kbj

)

bj

)
r∏

i=1

Qt′ (ηai
q−αi) Q̄t (ηai

)
ωai

(ηai
)

V

× (
η2
1 , . . . , η2

N−1

)
. (7.36)

The presence of the
∏r

i=1 δkai
,hi

reduces the sum
∑p

k1,...,kN=1 to δk,k′+h times
the sum

∑p
kb1 ,...,kbN−(r+1)

=1 where:

{a1, . . . , ar} ∪ {b1, . . . , bN−(r+1)} = {1, . . . ,N − 1}. (7.37)

We get our formula (7.29) multiplying each term of the sum by:

1 =
∏

ε=±1

r∏
i=1

N−1−r∏
j=1

−1∏
h=−p+αi

(
η2

ai
q−2h − (η

(kbj
)

bj
)2
)ε

×
(

V
(
η2

a1
, η2

a1
q2, . . . , η2

a1
q2(p−α1), . . . , η2

ar
, η2

ar
q2, . . . , η2

ar
q2(p−αr)

)
V
(
η2

a1
, . . . , η2

ar

)
)ε

.

(7.38)

Indeed, the power +1 leads to the construction of the Vandermonde determi-
nant:

V (η2
a1 , . . . , η

2
a1q

2(p−α1)︸ ︷︷ ︸
p−α1+1 columns

, . . . , η2
ar

, . . . , η2
ar

q2(p−αr)

︸ ︷︷ ︸
p−αr+1 columns

,
(
η
(kb1 )

b1

)2
, . . . ,

(
η
(kbb(N−1)−r

)

bb(N−1)−r

)2

︸ ︷︷ ︸
(N−1)−r columns

),

(7.39)

and the sum
∑p

kb1 ,...,kbN−(r+1)
=1 becomes sum over columns which can be

brought inside the determinant. �

7.3. The Chiral Potts Model Order Parameters

The results presented in the previous subsections are as well results for the
matrix elements of local operators in the inhomogeneous chiral Potts model.
In particular, let |tk〉 and |t′k′〉 be two eigenstates of the chiral Potts transfer
matrix, then the matrix elements:

〈tk|u−1
n |t′k′〉, 〈tk|α−1

0,n|t′k′〉 and
〈
tk|E(α1,...,αr)

(h,h0,(a1,h1),...,(ar,hr)|t′k′

〉

are given, respectively, by the formulae (7.1), (7.11) and (7.29). Furthermore,
in the representations RchP,S-adj

N , the formulae (7.1), (7.11) and (7.29 ) are
always matrix elements of the corresponding local operators on chiral Potts
eigenstates. As clarified below, some of these matrix elements generate the
chiral Potts order parameters under the homogeneous and thermodynamic
limits.
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7.3.1. Local Hamiltonians and Order Parameters. It is worth recalling that
the following local quantum Hamiltonians:

H ≡ H0 + kH1, H0 ≡
N∑

n=1

[
p−1∑
r=1

fr(θ)ur
nu−r

n+1

]
, H1 ≡

N∑
n=1

[
p−1∑
r=1

fr(θ̄)vr
n

]
,

(7.40)

fr(θ) ≡ ei(2r−p)θ/p

sin πr/p
, cos θ̄ =

cos θ

k
, ei(2θ−π)/p ≡ xgn

ygn

=
xrn

yrn

, (7.41)

first constructed by von Gehlen and Rittenberg [66], commute with the homo-
geneous Zp chP transfer matrices. Indeed, they are generated by derivative of
these transfer matrices w.r.t. the spectral parameter, see for example [60] for
a derivation. Then, the order parameters associated to the homogeneous Zp

chP models:

Mr ≡ 〈g.s.|ur
1|g.s.〉

〈g.s.|g.s.〉 , ∀r ∈ {1, . . . , p − 1} (7.42)

admit a natural interpretation as spontaneous magnetizations in terms of
the spin chain formulation associated to these local Hamiltonians. They have
been mainly analyzed in the special representations associated to the super-
integrable Zp chP model, characterized by the following constrains:

xp
gn

= yp
gn

= xp
rn

= yp
rn

=
1 + k′

k
, ∀n ∈ {1, . . . ,N} → θ̄ = θ = π/2. (7.43)

In these special representations, the Zp chP model also has an underlying
Onsager algebra [63] generated by the two components H0 and H1 of the local
quantum Hamiltonians. The following thermodynamic limits:

Mr = (1 − k2)
r(p−r)

2p2 , ∀r ∈ {1, . . . , p − 1} (7.44)

have been first argued by perturbative computations in [91] and then proven
with techniques25 which apply only starting from finite lattice computations
in the super-integrable case. Nevertheless, as argued in [100], the formulae
(7.44) should hold true for the general homogeneous Zp chP models. It is
then relevant pointing out that our approach should give us the possibility
to prove this statement for general representations without the need to be
restricted to the super-integrable case and our SOV results already provide
simple determinant formulae for the matrix elements associated to Mp−1 in
the finite size and inhomogeneous regime.

8. Conclusion and Outlook

8.1. Conclusions

In this article, we have considered general cyclic representations of the six-
vertex Yang–Baxter algebra on N-sites finite lattices and analyzed the asso-
ciated Bazhanov–Stroganov model and consequently the chiral Potts model.

25 See Sect. 1.1 for an historical recall.
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We have derived a reconstruction for all local operators in terms of standard
Sklyanin’s quantum separate variables and characterized by one determinant
formulae of N × N matrices the scalar products of separate states. These find-
ings imply that the action of any local operator on transfer matrix eigenstates
reduces to a finite sum of separate states which allows to characterize ma-
trix elements of any local operator as finite sum of determinants of the scalar
product type. Moreover, we have obtained: form factors of the local operators
u−1

n and α−1
0,n expressed by one determinant formulae obtained by modifying a

single row in the scalar product matrices; form factors of a basis of operators
expressed by one determinant formulae obtained by modifying the scalar prod-
uct matrices by introducing rows which coincide with those of Vandermonde’s
matrix computed in the spectrum of the separate variables.

Let us comment that it would be desirable to get also for the genera-
tors vn of the local Weyl algebras simple one determinant formulae as for the
generators un (at this moment we have expressed its form factors as finite
sums of determinants); this interesting issue is currently under investigation.
One important motivation to derive form factors of local operators by simple
determinant formulae is for their use as efficient tools for the computations
of correlation functions. The decomposition of the identity (4.13) allows to
write correlation functions in spectral series of form factors and so it allows to
analyze them numerically mainly by the same tools developed in [146] in the
ABA framework and used in the series of works26 [146–152]. Indeed, in our
SOV framework, we have determinant representations of the form factors and
eventually complete characterization of the transfer matrix spectrum in terms
of the solutions of a system of Bethe equations type. Let us mention that
in a recent series of papers [160–170], the problem to compute the asymp-
totic behavior of correlation functions has been successfully addressed27 with
a method which is, in principle, susceptible to be extended to any (integrable)
quantum model possessing determinant representations for the form factors of
local operators [169] and so also to the models analyzed by our approach in
the SOV framework.

To make this program operative, one important step to address is a strin-
gent analysis of the similarities and differences which appear in the character-
ization of the form factors obtained by us in the SOV approach and those
derived in the framework of the ABA. Indeed, these last characterizations
were the starting point for the asymptotic analysis of [160–170]. In particu-
lar, it is natural to compare the determinant formulae for the scalar products
appearing in the SOV and ABA frameworks. This should help understanding
the large size behavior of the determinant representations we obtained in the
present article. One important feature of the representation of scalar products

26 By this numerical approach, relevant physical observables (like the so-called dynamical
structure factors) were evaluated and successfully compared with the measurements acces-
sible by neutron scattering experiments [153–159].
27 These results have been also successfully compared with those obtained previously with a
method relying mainly on the Riemann–Hilbert analysis of related Fredholm determinants
[171–173].
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and form factors in the SOV framework is that they are written in a rather
uniform and universal way in terms of the Q operator eigenvalues. We be-
lieve this property to make the corresponding determinants suitable for their
thermodynamic limit analysis.

Finally, let us remark that the originality and interest of our current re-
sults are also due to the fact that so far the exact determination of matrix
elements was achieved only for some local operators and mainly confined to
the special class of super-integrable representations of Zp chiral Potts model.
As these representations can be obtained by taking well-defined limits on the
parameters of a generic (non-super-integrable) representation to which SOV
applies, it is then an interesting issue to investigate how from our form fac-
tor results one can reproduce also those known in the super-integrable case.
About this point it is worth mentioning that in the special case (p = 2) of
the generalized Ising model, it was already remarked in [103] that the matrix
elements of the local spin operators obtained in the SOV framework in [116]
admit factorized forms similar to those conjectured in [98] and proven in [103]
for the super-integrable Zp cases for general p ≥ 2.

In a future paper, we will analyze the homogeneous and thermodynamic
limits focusing the attention on the derivation of the order parameter formulae
for the general homogeneous Zp chiral Potts models. These formulae were
proven with techniques working only in the super-integrable case but they are
expected to be true [100] for the general homogeneous Zp chiral Potts models.
Our approach should give access to a proof of this statement from the finite
lattice in general representations and we find encouraging the fact that the
matrix element describing the order parameter:

Mp−1 ≡
〈
g.s.|u−1

1 |g.s.
〉

〈g.s.|g.s.〉 (8.1)

admits simple determinant formula in our approach.
Anyhow, it is worth admitting that in fact the novelty of the results

here derived can be also at the origin of some technical difficulties. Indeed,
in our SOV framework, we are obliged to start mainly from zero the analysis
of problems like the computation of thermodynamic limit of matrix elements
of local operators; problems which instead in the ABA framework have been
already largely analyzed in the literature and for which exact results are known
[30].

8.2. Outlook

It is worth recalling that in the literature of quantum integrable models, there
exist some results on form factors derived by different applications of sepa-
ration of variable methods. For a more detailed analysis of the most relevant
preexisting results and an explicit comparison with those obtained by our
method in SOV, we address the reader to [1]. Here, we want to just recall
the Smirnov’s results [130], in the case of the integrable quantum Toda chain
[15,127–129] and those of Babelon et al. [174,175], in the case of the restricted
sine–Gordon at the reflectionless points. In both these cases, form factors of
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local operators were argued28 to have a determinant form. A strong similarity
in the form of the results appears: the elements of the matrices whose determi-
nants give the form factors are expressed as “convolutions”, over the spectrum
of each separate variable, of the product of the corresponding separate com-
ponents of the wave functions times contributions associated to the action of
local operators. It is then remarkable that also our results fall in this general
form. This observation and the potential generality of the SOV method lead to
the expectation of an universality in the SOV characterization of form factors.

A natural project is then to develop explicitly our method for a set of
fundamental integrable quantum models providing determinant representa-
tions for form factors. This SOV method is not restricted to the case of cyclic
representation and applies to a large class of integrable quantum models which
were not tractable with other methods and in particular by algebraic Bethe
ansatz. There exist already several key integrable quantum models associated
by QISM to highest weight representations of the Yang–Baxter algebras and
generalization of it for which this program has been developed. In [180–185]
our approach has been, respectively, implemented for the spin-1/2 XXZ and
the spin-s XXX inhomogeneous quantum chains with antiperiodic boundary
conditions, for the spin-1/2 XXZ and XY Z open quantum chains with gen-
eral non-diagonal integrable boundary conditions [46–52] and finally for the
spin-1/2 representations of highest weight type of the dynamical six-vertex
Yang–Baxter algebra. In all these models, the universality we just discussed
in the structure of the matrix elements of local operator has been verified.
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