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Overlapping Resonances
in Open Quantum Systems
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Abstract. An N -level quantum system is coupled to a bosonic heat reser-
voir at positive temperature. We analyze the system–reservoir dynamics
in the following regime: the strength λ of the system–reservoir coupling is
fixed and small, but larger than the spacing σ of system energy levels. For
vanishing σ there is a manifold of invariant system–reservoir states and
for σ > 0 the only invariant state is the joint equilibrium. The manifold
is invariant for σ = 0 but becomes quasi-invariant for σ > 0. Namely,
on a first time-scale of the order 1/λ2, initial states approach the mani-
fold. Then, they converge to the joint equilibrium state on a much larger
time-scale of the order λ2/σ2. We give a detailed expansion of the system–
reservoir evolution showing the above scenario.

1. Introduction and Main Results

We consider an open quantum system consisting of a small, finite-dimensional
part interacting with a heat bath, modelled by a spatially infinitely extended
free Bose gas in thermal equilibrium. The analysis of such systems, and espe-
cially of their dynamics, has a long tradition. The reduced dynamics of the
small system alone is described in the theoretical physics literature primarily
using master equation techniques, which rely on approximations that are not
controlled mathematically, but are very popular and successful nevertheless
[8,18,21,30,33]. A rigourous approach is the van Hove, or weak coupling limit
[2,10,11]. It describes the dynamics of the small system for times up to the
order of λ−2, where λ is the strength of the system–environment coupling.
Given a fixed λ, the time-asymptotics, t → ∞, cannot be resolved with the
weak coupling method. It is shown in [15] however that, for a class of open
systems, if the conditions for the weak coupling limit are satisfied, then the
small subsystem converges to a final state in the long time limit.

The analysis of the total system—the small system plus the reservoir—is
more delicate than that of the small subsystem alone. Over the last decade
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and a half, a perturbation theory based on quantum resonance methods has
been developed to deal with this problem, see [5,14,17,19,20,23,25–27]. It
is implemented in various forms, using spectral deformation, positive com-
mutator and renormalization group techniques and permits a mathematically
rigourous treatment of the full dynamics (system plus reservoir), for fixed,
small coupling λ and for all times t ≥ 0. Other than the spectral approach of
the above references, the polymer expansion method of [15] allows the analysis
of the total system as well, see [16].

The techniques of the above works are based on a perturbation theory
in the system–reservoir coupling parameter λ. The latter is assumed to be
small relative to the spacing σ > 0 between the energy levels of the small
system: |λ| << σ. This is the isolated resonances regime. However, there are
many physical systems for which this condition is not valid. For instance in
complex open systems, the small system itself is composed of many individual
parts (particles) and the energy level spacing may become very small. Take the
Hamiltonian of a system of N spins, having 2N eigenvalues. The total energy
of the spins is of the order of N . The generic energy spacing is thus of the
order of σ ∼ N/2N , which is exponentially small in N . For such systems, the
condition |λ| << σ is not reasonable.

In the present work, we develop the resonance method in the overlapping
resonances regime σ << |λ|. We study here the simplest case, in which all the
system energies lie close together relative to |λ|. Our results hold for a fixed,
finite (but arbitrary) dimension N of the small system and for small coupling
constants, |λ| ≤ λ0, for some λ0 > 0.

The N -level system coupled to a thermal reservoir is described by the
Hamiltonian

HΛ(σ, λ) = σHS + HΛ
R + λG ⊗ ΦΛ(g),

acting on the Hilbert space C
N ⊗ F(L2(Λ,d3x)), where the second factor is

the Fock space over the one-particle Hilbert space of wave functions localized
in a finite box Λ ⊂ R

3. The system Hamiltonian HS is an arbitrary self-adjoint
operator on C

N . The reservoir Hamiltonian HΛ
R is the second quantization of

the single Boson energy, the self-adjoint Laplace operator with periodic bound-
ary conditions. The system–reservoir interaction is the product of a self-adjoint
G acting on the system and the field operator ΦΛ(g) = 1√

2
(a∗(g)+a(g)), where

a∗, a are the creation and annihilation operators on F(L2(Λ,d3x)), smoothed
out with the form factor g supported in Λ. The Hamiltonian contains the two
parameters σ ≥ 0 and λ ∈ R: the system energy level splitting parameter and
the interaction strength, respectively. The bosonic field is initially in its ther-
mal equilibrium state at positive temperature 1/β, given by the density matrix
ρΛ
R,β ∝ e−βHΛ

R . To have a true open system, one performs the infinite-volume
limit of the reservoir, in which the box Λ grows to all of R3. More precisely,
the expectation values of observables (Weyl operators) of the reservoir, in the
thermal state, have a limit as Λ → R

3. This defines the infinite-volume equilib-
rium state ωR,β by its expectation values ωR,β(W (f)) on the Weyl operators.
A Hilbert space on which that state is represented by a vector can then be
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reconstructed using the Gelfand–Naimark–Segal (GNS) construction [4]. This
procedure leads to the description of the coupled system as a W ∗-dynamical
system [3,7]. It consists of a Hilbert space

H = HS ⊗ HR, (1.1)

of a von Neumann algebra of observables

M = MS ⊗ MR, (1.2)

and of a Heisenberg dynamics of M,

A �→ αt
σ,λ(A) = eitL(σ,λ)Ae−itL(σ,λ), A ∈ M. (1.3)

The Liouvillian L(σ, λ) is a self-adjoint operator on H. The small system is
an N -level system having a Hamiltonian HS. In the GNS representation, the
Hilbert space is HS = C

N ⊗C
N and the algebra of observables is given by MS =

B(CN ) ⊗ 1CN (bounded linear operators). The dynamics is implemented as

AS �→ eitLS(AS ⊗ 1CN )e−itLS , AS ∈ B(CN ), (1.4)

where
LS = HS ⊗ 1CN − 1CN ⊗ CHSC (1.5)

is the self-adjoint system Liouville operator. Here, C is the operator taking the
complex conjugate of components of vectors represented in the orthonormal
eigenbasis {ϕa}N

a=1 of the interaction operator,

Gϕa = gaϕa, a = 1, . . . , N. (1.6)

The procedure of doubling of the Hilbert space is well known in the physics
literature, also called the ‘Liouville Representation’, see e.g. [29, Chapter 3].

The reservoir state is the thermodynamic (infinite volume) limit of a
free Bose gas in equilibrium at inverse temperature β. Its Hilbert space rep-
resentation has first been constructed in [4] and a unitarily equivalent rep-
resentation, suitable for the use of spectral translation techniques, has been
given in [19]. The GNS Hilbert space is HR = F(L2(R × S2,du × dϑ)

)
=

⊕n≥0L
2
symm((R × S2)n, (du × dϑ)n), the symmetric Fock space over the one-

particle function space L2(R × S2,du × dϑ). Here, dϑ is the uniform measure
on S2. The thermal field operator is given by

Φ(fβ) =
1√
2

(
a∗(fβ) + a(fβ)

)
, (1.7)

where a∗(fβ) =
∫
R×S2 fβ(u, ϑ)a∗(u, ϑ) dudϑ is the creation operator acting on

the Fock space HR and a(fβ) is its adjoint, smoothed out with fβ ∈ L2(R ×
S2,du × dϑ) defined by

fβ(u, ϑ) :=
√

u

1 − e−βu
|u|1/2

{
f(u, ϑ), if u ≥ 0,

f(−u, ϑ), if u < 0.
(1.8)

Here, f ∈ L2(R3,d3k) is represented in polar coordinates (and in Fourier
space). The thermal Weyl CCR algebra MR ⊂ B(HR) is the von Neumann
algebra generated by the unitary Weyl operators W (fβ) := eiΦ(fβ). The
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dynamics on MR is given by the Bogoliubov transformation t �→ W (eitufβ) =
eitLRW (fβ)e−itLR . It is implemented by the self-adjoint reservoir Liouvillian

LR = dΓ(u) :=
∫

R×S2

u a∗(u, ϑ)a(u, ϑ)dudϑ, (1.9)

the second quantization of the operator of multiplication by u ∈ R. The vac-
uum vector ΩR ∈ HR represents the β-KMS state w.r.t. the dynamics gener-
ated by (1.9).

The Liouville operator L(σ, λ) determining the full dynamics, (1.3), has
the form

L(σ, λ) = L0(σ) + λV, (1.10)

with a free part
L0(σ) = σLS + LR (1.11)

[see (1.5), (1.9)] and where the system–reservoir interaction is

λV = λG ⊗ 1CN ⊗ Φ(gβ). (1.12)

Here, σ and λ are two real parameters, G is a self-adjoint matrix on C
N and

gβ ∈ L2(R× S2) is obtained from a form factor g ∈ L2(R3) using the relation
(1.8). It is well known that L(σ, λ) is self-adjoint for all λ, σ ∈ R (this can be
proven by the Glimm–Jaffe–Nelson commutator theorem, see e.g. [23, Theorem
A.2]). We assume the following regularity of the form factor.

Assumption A1 (Analyticity). There is a θ0 > 0 such that θ �→ gβ(u + θ, ϑ)
has an analytic extension to the domain {θ ∈ C : |θ| < θ0}, as a map
from C to L2(R × S2,du × dϑ).

Assumption A2 (Ultra-violet decay). There is an ε > 0 such that ea|k|g(k) ∈
L2(R3,d3k) for an a > (1/2 + ε)β, where β is the inverse temperature.

Examples of form factors satisfying this condition are g(r, ϑ) = rpe−arm

g1(ϑ) (polar coordinates in R
3), where p = −1/2 + n, n = 1, 2, . . ., m = 1, 2,

and g1(ϑ) ∈ R (see also [17] for more general classes of admissible g). More
generally, we characterize the infrared behaviour of the form factor by p ≥ − 1

2

satisfying 0 < lim|k|→0
|g(k)|
|k|p = C < ∞. The value of p depends on the physical

model considered. For quantum optical systems, p = 1/2, for the quantized
electromagnetic field, p = −1/2. We define the complex numbers

δa,b = −1
2
(g2

a − g2
b )
〈
g, |k|−1g

〉
+ i

π

2
(ga − gb)2

{
0 if p > −1/2
ξ(0) > 0 if p = −1/2 , (1.13)

for a, b = 1, . . . , N and where

ξ(0) = lim
ε↓0

1
π

∫

R3

coth
(

β|k|
2

)
|g(k)|2 ε

|k|2 + ε2
d3k. (1.14)

The λ2δa,b are the resonance energies for σ = 0, see Theorem 2.3 below. The
following assumption simplifies the presentation of our results.
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Assumption A3 (Non-degeneracy). The spectrum {ga}N
a=1 of G is such that

all non-zero δa,b are distinct.

Our analysis is readily generalized to the case of degenerate resonances
(see the proof of Theorem 2.5). Indeed, we do this for the spin-boson model,
in which the two non-zero resonances are given by δ1,2 = δ2,1 = iπ

2 ξ(0).
The following is a well-coupledness condition which we will assume for

some results. It implies that the coupled system has a unique stationary state
(the coupled equilibrium).

Assumption A4 (Fermi Golden Rule Condition). For all a, b, a �= b, we have
Imδa,b > 0 and 〈ϕa,HSϕb〉 �= 0.

We show in Appendix A that the manifold of normal αt
0,λ-invariant states

on M is the convex span of the states ωa = ωS,a⊗ωR,a, a = 1, . . . , N . Here, ωS,a

is given by the rank-one density matrix |ϕa〉〈ϕa| (spectral projection associated
to G), and ωR,a is a normal perturbation of the reservoir equilibrium state,
explicitly given in (A.1). When σ > 0 is small, then there is a unique (normal)
αt

σ,λ-invariant state on M, namely, the coupled system–reservoir equilibrium
state ωβ,σ,λ, which is an (αt

σ,λ, β)-KMS state.
Our main result, summarized in Theorem 1.1 below, concerns the dynam-

ics of initial conditions and observables taken from sets S0 and M0, respec-
tively. S0 is a set of bounded linear functionals on M [defined in (2.45)], dense
in the set of all states of M. All states of the form ωS ⊗ ωR,β are in S0, where
ωS is an arbitrary state on MS and ωR,β is the equilibrium state of the reser-
voir. M0 is the collection of translation analytic elements of M, a dense set
in M, see (2.46). All observables A = AS ⊗ 1R of the system alone are in
M0. To express the details of the evolution, we introduce the following. For
a, b = 1, . . . , N , a �= b, set

ηa,b(σ, λ) = λ2δa,b + σ
(
[HS]a,a − [HS]b,b

)

−σ2

λ2

( ∑

c=1,...,N ;c �=a

|[HS]a,c|2
δc,b − δa,b

+
∑

c=1,...,N ;c �=b

|[HS]b,c|2
δa,c − δa,b

)
, (1.15)

where [HS]b,c = 〈ϕb,HS ϕc〉 are the matrix elements of the system Hamilton-
ian. For a = 1, . . . , N , set

ηa,a(σ, λ) = 2i
σ2

λ2
ξa, (1.16)

where ξa ≥ 0 are the eigenvalues of the real symmetric N × N matrix T with
matrix elements

[T ]a,b =

⎧
⎪⎨

⎪⎩

− Imδa,b

|δa,b|2 |[HS]a,b|2, if a �= b

∑
c=1,...,N ;c �=a

Imδa,c

|δa,c|2 |[HS]a,c|2, if a = b.

(1.17)

The vector 1√
N

(1, . . . , 1) is in the null space of T . We enumerate the eigenvalues
of T s.t. ξ1 = 0. Under Assumption A4, zero is a simple eigenvalue of T [see
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after (2.44) for a proof]. We show in Theorem 2.5 that, for σ << |λ|, the
resonances are given by

εa,b(σ, λ) = ηa,b(σ, λ) + O
(
σ2|λ|−1

)
+ Oλ(σ3) (1.18)

εa(σ, λ) = 2i
σ2

λ2
ξa + O

(
σ2|λ|−1

)
+ Oλ(σ3). (1.19)

Here, Oλ(σ3) is a term f(λ, σ) satisfying lim supσ→0 σ−3‖f(λ, σ)‖ = Cλ < ∞.

Theorem 1.1 (Dynamics in the overlapping resonances regime). Assume A1–
A4. There is a constant λ0 > 0, such that for 0 < |λ| < λ0, the following holds.
There is a σ0 > 0 (depending on λ) such that for 0 ≤ σ < σ0 and for any
ω0 ∈ S0, A ∈ M0, t ≥ 0, we have

ω0

(
αt

σ,λ(A)
)

= ωβ,σ,λ(A) +
N∑

a=2

eitεa(σ,λ)χa(A)

+
N∑

a,b=1
a�=b

eitεa,b(σ,λ)χa,b(A) + O(e−γt). (1.20)

The χa, χa,b in (1.20) are linear functionals on M0. They depend on σ, λ and
the initial condition ω0, but not on t. The decay rate γ > 0 is independent of
λ, σ and satisfies γ > max{Imεa, Imεa,b}.
Discussion. The imaginary parts Imεa,b ∝ λ2 and Imεa ∝ σ2/λ2 (to leading
order) have the associated decay times t1 ∝ λ−2 << t2 ∝ λ2/σ2. The represen-
tation (1.20) thus paints the following picture. In the non-degenerate situation,
σ > 0, the remainder term becomes negligible very quickly, for t > t0 = 1/γ.
Then, for t > t1 the sum over the χa,b becomes small as well. Finally, for
t > t2, the first sum becomes negligible and in the limit t → ∞, the system
is in the coupled equilibrium ωβ,σ,λ. In the degenerate situation, σ = 0, the
remainder term is small again after times t > t0, and again after times t > t1,
the second sum in (1.20) is negligible. However, since εa(0, λ) = 0, the first
sum is independent of time and does not decay. The initial state ω0 (applied to
M0) converges thus to the final state ω∞ = ωβ,0,λ +

∑
a≥2 χa. The final state

ω∞ depends on the initial state ω0. It belongs to the manifold of αt
0,λ-invariant

states on M, i.e., it is a convex combination
∑

a μa(ω0)ωS,a ⊗ωR,a, with initial
state-dependent mixing parameters μa.

Therefore, two time-scales emerge for the dynamics of systems in the over-
lapping resonances regime. On a time-scale t1 ∝ λ−2, which is very short with
respect to t2 ∝ λ2/σ2, the initial state approaches a quasi-stationary manifold
given by the first two terms on the r.h.s. of (1.20). For σ = 0, this manifold
is exactly stationary, but for σ > 0 small, it is only approximately stationary
and decays (into the single equilibrium) for times exceeding t2 ∝ λ2/σ2.

The appearance of different time-scales in open systems (albeit in some-
what different situations) has been observed before. The paper [12] examines
the dynamics of a particle attracted by two widely separated potential wells
and interacting with an infinite reservoir. The spacing of the wells, 1/μ, and
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the particle–reservoir interaction λ are related by μ = λβ . It is shown that
the dynamics of the particle in the weak coupling limit exists. The interaction
between the wells has no effect for times of order 1/λ2 for β > 2. However, for
0 < β < 2 it has a direct effect on the particle dynamics and modifies the decay
induced by the reservoir alone. The set of invariant states in the two regimes
for β is different. In [1], various master equations for the dynamics of a non-
linear oscillator interacting with a reservoir are investigated. It is found that
different generators yield more accurate descriptions of the reduced oscillator
dynamics for different time-scales. In particular, different generators should be
used for times shorter than, and longer than, the inverse of the system level-
spacing. We mention that our analysis is valid for the total system–reservoir
dynamics and for all times t ≥ 0.

Reduced dynamics. Consider initial states of the form ω0 = ωS,0⊗ωR,β , where
ωS,0 is a state given by an arbitrary density matrix ρ0 on C

N , ωS,0(A) =
TrS(ρ0A). The reduced density matrix ρt of the system at time t ≥ 0 is defined
by

TrS(ρtA) = ωS,0 ⊗ ωR,β

(
αt

σ,λ(A)
)
, ∀A ∈ B(CN ),

where the trace is taken over the system space C
N . We denote the reduced

evolution of the system by
Tσ,λ(t)ρ0 = ρt,

and the manifold of initial system states which are invariant under the evolu-
tion by

Mσ,λ = {ρ0 : Tσ,λ(t)ρ0 = ρ0 ∀t ≥ 0}.

For σ = 0 one can find the dynamics of the reduced density matrix exactly
[27,28,31] [see (2.17)]. The manifold M0,λ is the set of all system density
matrices which are diagonal in the eigenbasis of the interaction operator G.
Moreover, we show in Appendix A that there is a constant C such that for all
initial system states ρ0 and all times t ≥ 0,

dist
(M0,λ, T0,λ(t)ρ0

) ≤ Ce−λ2γGΓ(t)dist
(M0,λ, ρ0

)
. (1.21)

The distance dist(M0,λ, ρ) = inf{‖τ − ρ‖1 : τ ∈ M0,λ} is measured in trace
norm, ‖x‖1 = Tr

√
xx∗ for linear operators x on C

N . Here, Γ(t) ≥ 0 is the
decoherence function [see (2.19)] and γG = min{(ga − gb)2 : a �= b}, where
{ga}N

a=1 is the spectrum of G. Relation (1.21) shows that the manifold M0,λ

is orbitally stable, meaning that a state initially close to M0,λ remains so for
all times. If γG > 0 and Γ(t) → ∞ as t → ∞, then the system undergoes
full decoherence in the eigenbasis of G (off-diagonal density matrix elements
converge to zero as t → ∞). In this case, (1.21) shows that the manifold M0,λ

is dynamically attractive, or asymptotically stable. One shows that for suitable
infra-red behaviour of the interaction form factor g(k), the decoherence func-
tion satisfies limt→∞ Γ(t)/t = Γ∞, with Γ∞ > 0. The manifold M0,λ is then
approached exponentially quickly, at the rate λ2γGΓ∞. We give further detail
in Appendix A.
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As the degeneracy is lifted, for small σ > 0, the manifold of invariant
initial system states becomes empty, Mσ,λ = ∅. All initial states approach
a single asymptotic state, which is the reduction to the small system of the
joint system–reservoir equilibrium state (which is not a product state, see
Appendix A). In the regime σ << |λ| << 1, the approach of the asymptotic
state, and hence the dissolution of the manifold M0,λ, takes place at a rate
proportional to σ2/λ2, as we now show.

The density matrix elements of the small system are given by

[ρt]a,b ≡ 〈ϕa, ρt ϕb〉, a, b = 1, . . . , N. (1.22)

Theorem 1.2 (Reduced dynamics). Assume A1–A4. There is a λ0 > 0 such
that for fixed λ satisfying 0 < |λ| < λ0, the following holds. There is a σ0 > 0
(depending on λ) s.t. if 0 ≤ σ < σ0, then we have, uniformly in t ≥ 0:
• For a, b = 1, . . . , N , a �= b,

[ρt]a,b = eitεb,a(σ,λ)[ρ0]a,b + Oλ(σ) + O(λ). (1.23)

• For a = 1, . . . , N ,

[ρt]a,a =
1
N

+
N∑

b=2

Da,b(t)[ρ0]b,b + Oλ(σ) + O(λ). (1.24)

Let {ϕT
a }N

a=1 be an orthonormal basis of eigenvectors of T , with TϕT
a = ξaϕT

a

and denote by [ϕT
a ]c, c = 1, . . . , N , the components of ϕT

a (in the canonical
basis). Then

Da,b(t) =
N∑

c=2

eitεc,c(σ,λ) [ϕT
c ]b [ϕT

c ]a.

Discussion. 1. The resonance energies governing the dynamics of off-diagonals
are of the form [see (1.18)]

εa,b(σ, λ) = λ2δa,b + σra,b +
σ2

λ2
za,b + O

(
σ2

λ

)
+ Oλ(σ3).

We have the following interpretation:
• λ2δa,b is a resonance energy for σ = 0. The imaginary part of δa,b is pro-

portional to (ga − gb)2. All off-diagonal density matrix elements tend to
zero (modulo an error term) as t → ∞ if ga �= gb for a �= b and infra-red
behaviour p = −1/2. The system exhibits then decoherence in the eigenba-
sis of G, regardless of whether the system energy is degenerate or not. The
contribution to the decoherence rate of this term is proportional to λ2.

• The term linear in σ is real, with ra,b = [HS]a,a − [HS]b,b. The decay rates
of matrix elements do not depend on the first order in the energy splitting
parameter σ.

• The second-order term in σ has generally non-vanishing real and imaginary
parts. The complex za,b are determined by the ratio of matrix elements
[HS]c,d and differences of δc,d [see (1.15)]. The factor 1/λ2 is due to the
presence of the reduced resolvent in second-order perturbation theory in σ
(here, the ‘non-degenerate energies’ are λ2δa,b). The sign of Im za,b can be
positive or negative, depending on the model.
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2. The resonance energies driving the dynamics of the diagonal density
matrix elements have the form

εc,c(σ, λ) = 2i
σ2

λ2
ξc + O

(
σ2

λ

)
+ Oλ(σ3).

The ξc, c = 2, . . . , N , are strictly positive if, for instance, [HS]a,bImδa,b �= 0
for all a, b with a �= b [see after (2.44)]. Then Da,b(t) decays exponentially
quickly in time. Contrary to the off-diagonals, the diagonal entries of the den-
sity matrix evolve as a group: the value of a given diagonal entry depends on
the initial condition of all of them. While the convergence rate of off-diagonals
is proportional to λ2, that of the diagonal is proportional to σ2/λ2. Hence the
convergence of the diagonal, the part of the density matrix in the manifold
M0,λ, is driven by the level splitting, while that of the off-diagonals is driven
by the system–reservoir interaction.

Transition between regimes for the spin-boson model. We consider the small
system to be a spin with Hamiltonian and interaction operator given by

HS = Sz ≡ 1
2

(
1 0
0 −1

)
and G = Sx ≡ 1

2

(
0 1
1 0

)
,

respectively. The parameters σ, λ are now considered to be small but inde-
pendent of each other. We analyze the decoherence properties of the spin in
the energy basis. Let φz

± be the normalized energy eigenvectors, satisfying
HSφz

± = ± 1
2φz

±, and denote the spin density matrix elements in this basis by
[ρt]z+,− :=

〈
φz

+, ρtφ
z
−
〉

(and similarly for other matrix elements). We show in
Sect. 2.7 that

[ρt]z+,+
.=

1
2

+
1
2
eitw2([ρ0]z+,+ − [ρ0]z−,−),

[ρt]z+,−
.=

r

r2 + 1
(
(1 + r)eitw3 + (1/r − 1)eitw4

)
[ρ0]z+,−,

where .= means that terms of order O(λ2) are disregarded [see (2.65)]. It is
assumed here that [ρ0]z+,− ∈ R [see (2.66) for the general expression] and we
have set

r =
−4iγ −√π2ξ(0)2 − 16γ2

πξ(0)
with γ =

σ

λ2
.

Here, the square root is the principal branch with branch cut on the negative
real axis and ξ(0) > 0 is a constant proportional to the reservoir spectral
density at zero [see (1.14)]. The system has four resonance energies: one is
zero and the other three are

w2 = i
λ2

2
πξ(0), w3,4 = i

λ2

4
πξ(0) ± i

√
λ4

16
π2ξ(0)2 − σ2.

These expressions interpolate the values of the previously known, isolated
regime (lowest order in λ for σ fixed) and the overlapping resonances values
derived here (σ small, λ fixed; see also the remark after Theorem 2.5).
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The diagonal converges to 1
2 at the rate Imw2 ∝ λ2, independently of σ.

The decoherence rate (decay of the off-diagonal in the energy basis) is obtained
as follows.

• Overlapping resonances regime: γ << 1 and r ≈ −1. Thus, [ρt]z+,− ≈
eitw4 [ρ0]z+,−, which has decay rate Imw4 ≈ 2

πξ(0)
σ2

λ2 .
• Isolated resonances regime: 1/γ << 1 and r ≈ −i∞. Thus, [ρt]z+,− ≈

eitw3 [ρ0]z+,−, which has decay rate Imw3 ≈ πξ(0)
4 λ2.

In the isolated resonances regime, the decoherence rate is given by the system–
reservoir coupling constant λ alone, while in the overlapping case, it depends
also on the level splitting parameter σ. For a fixed λ, the decoherence rate
increases quadratically in σ (for small σ). The further its energy levels lie
apart, the quicker the spin decoheres.

We define the critical value γ∗ for which the square root in w3,4 vanishes,

γ∗ :=
1
4
πξ(0).

This critical value separates two regimes with different qualitative behaviours
of the resonances w3 and w4. As γ increases from zero to γ∗, the resonance w3

moves down the imaginary axis, decreasing from the initial value 1
2 iπξ(0)λ2 to

1
4 iπξ(0)λ2, while w4 moves up the imaginary axis, from the origin to 1

4 iπξ(0)λ2.
The two resonances meet for γ = γ∗. As γ > γ∗ increases further, the res-
onances w3 and w4 move horizontally away from the imaginary axis, their
imaginary parts stay constant, equal to 1

4πξ(0)λ2. This motivates the sharp
definition of the overlapping resonances regime, in the spin-boson model, to be
given by γ < γ∗ and of the isolated resonances regime to be given by γ > γ∗.

It is interesting to note that in nuclear physics, there is a (to our knowl-
edge not rigorously defined) notion of overlapping resonances, used in the
description of processes involving unstable nuclei by non-hermitian Hamilto-
nians [9,34]. It is observed that in the overlapping regime, the resonance widths
(imaginary parts of resonance energies) segregate into two clusters: one located
close to the origin (slow channels), the other at a much larger value (fast chan-
nels). The same occurs in our system: in the overlapping regime, we have one
resonance at zero and another one, w4, close to it. The other two, w2 and w3,
are much larger, both close to 1

2 iπξ(0)λ2. As the system transitions into the
isolated resonances regime, the two clusters mix.

2. Resonances and Dynamics

2.1. Resolvent Representation

The main result of this section is Theorem 2.2. For θ ∈ R let Uθ be the
unitary (translation) on HR defined by sector-wise action UθΩR = ΩR and
Uθψn(u1, ϑ1, . . . , un, ϑn) = ψn(u1 + θ, ϑ1, . . . , un + θ, ϑn). A vector ψ ∈ HR

is called Uθ-analytic if the map θ �→ Uθψ is HR-valued analytic in {θ ∈ C :
|θ| < θ0} (the θ0 is that of assumption A1). All vectors of the form ψ ⊗ ΩR,
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for arbitrary ψ ∈ HS, are Uθ-analytic. We introduce the reference state

Ω = ΩS ⊗ ΩR, (2.1)

where ΩR is the vacuum in HR and ΩS is the trace state

ΩS =
1√
N

N∑

a=1

ϕa ⊗ ϕa. (2.2)

Ω is cyclic and separating for M and we denote the associated modular
operator and modular conjugation by Δ and J , respectively [7]. We have
Δ = ΔS ⊗ ΔR, where ΔR = e−βLR and ΔS = 1 (the trace state is KMS
with inverse temperature β = 0). The modular conjugation is J = JS ⊗ JR.
We have JSφ ⊗ χ = χ̄ ⊗ φ̄ for φ, χ ∈ C

N , and where the bar means com-
plex conjugation of vector components in the basis {ϕa}N

a=1. Furthermore,
JRψn(u1, ϑ1, . . . , un, ϑn) = ψn(−u1, ϑ1, . . . ,−un, ϑn). A suitable generator of
the dynamics is constructed as follows, see [20] and also [25]. On the dense set
MΩ we define the group U(t) by

U(t)AΩ = eitL(σ,λ)Ae−itL(σ,λ)Ω, A ∈ M, t ∈ R, (2.3)

where L(σ, λ) is the Liouvillian (1.10). We introduce the linear space

D0 = D(LR) ∩ D(N1/2) ∩ MΩ ⊂ H, (2.4)

where N = dΓ(1) is the number operator.

Proposition 2.1. (a) U(t) is strongly differentiable on D0 and its generator is
given by

i
d
dt

|t=0 U(t) = K(σ, λ) := L0(σ) + λV − λJΔ1/2V JΔ1/2. (2.5)

(b) θ �→ UθK(σ, λ)U∗
θ has an analytic continuation from θ ∈ R to {θ ∈ C :

|θ| < θ0}, in the strong sense on D0. This continuation is given by

Kθ(σ, λ) = L0,θ(σ) + λIθ, (2.6)

where

L0,θ(σ) = L0(σ) + θN (2.7)

Iθ = Vθ − V ′
θ (2.8)

Vθ =
1√
2
G ⊗ 1 ⊗

(
a∗(gβ(· + θ)

)
+ a
(
gβ(· + θ̄)

))
(2.9)

V ′
θ =

1√
2
1 ⊗ G ⊗

(
a∗(e

β
2 (·+θ)gβ(− · −θ̄)

)
+ a
(
e− β

2 (·+θ̄)gβ(− · −θ)
))

(2.10)

(Here, we use the convention g(u) = g(u).)

Proof. We do not write the dependence of operators on (σ, λ) in this proof,
which follows [20] (see also [25]).
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(a) Let AΩ ∈ D0. Then
d
dt

|t=0U(t)AΩ = −iALΩ + iLAΩ = −iA(L0 + λV )Ω + i(L0 + λV )AΩ.

(2.11)
Since L0Ω = 0 and AV Ω = JΔ1/2V ∗A∗Ω = JΔ1/2V JΔ1/2AΩ, the
right side of (2.11) equals iL0AΩ+iλ(V −JΔ1/2V JΔ1/2)AΩ. This shows
part (a).

(b) For real θ, we have

UθK(λ)U∗
θ =L0+θN+

λ√
2
G ⊗ 1 ⊗

(
a∗(gβ(·+θ))+a(gβ(·+θ))

)

− λ√
2
1 ⊗ G ⊗

(
a∗(e

β
2 (·+θ)gβ(− · −θ))+a(e− β

2 (·+θ)gβ(− · −θ))
)
.

By assumption (A) we obtain the analytic extension (2.6)–(2.10). Note
that in the argument of the annihilation operators, the analytic exten-
sion has the complex conjugate θ̄, since the annihilation operators are
anti-linear in their argument. �

Theorem 2.2. Assume A1 and A2. Let θ with 0 < Imθ < θ0 be fixed. There is
a λ0 > 0 such that for all |λ| < λ0 and all σ ∈ R, we have the following. Let
φ ∈ H and A ∈ M be such that φ and AΩ are Uθ-analytic vectors, and such
that φθ̄ ∈ D(|LR| 1

4+η), for some η > 0. Then we have for all t ≥ 0
〈
φ, eitL(σ,λ)Ae−itL(σ,λ)Ω

〉
=

−1
2πi

∫

R−i

eitz
〈
φθ, (Kθ(σ, λ)−z)−1(AΩ)θ

〉
dz. (2.12)

We give a proof of this result in Appendix B.

Remarks. 1. Vectors representing product states of an arbitrary small sys-
tem state and the equilibrium reservoir states are of the form φ = BΩ,
where B ∈ MS [and, recall, Ω is given in (2.1)]. The proof of (2.12) for
such φ and A ∈ MS is easier than that of the full result. This is the
situation of [27].

2. In [25] a spectral dilation deformation is performed simultaneously with
the translation (see also [5,26]). In this doubly deformed situation, the
analogue of Theorem 2.2 is proven in Section 8 of [25]. The dilation
deforms the spectrum of K in a ‘sectorial way’ (a V -shape), leading to
useful decay estimates of the (deformed) resolvent (K −z)−n, as |Rez| →
∞. However, in the present work, we only use spectral translation and
such decay estimates do not hold (as the distance between the spectrum of
Kθ and the real axis does not grow now when |Rez| → ∞). We therefore
need a new proof of this result. The advantage of only performing the
translation deformation is that less restrictive conditions on the form
factor are needed only.

2.2. Resonances of K(σ = 0, λ)
The operator Kθ(0, λ) is defined in Proposition 2.1, with L0 = LR. Recall
that ϕa, a = 1, . . . , N , is the orthonormal eigenbasis of G, (1.6). The operator
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Kθ(0, λ) is reduced by the decomposition

H =
N⊕

a,b=1

Ran
(
|ϕa〉〈ϕa| ⊗ |ϕb〉〈ϕb|

)
⊗ HR.

Namely,

Kθ(0, λ) =
N⊕

a,b=1

Ka,b, (2.13)

where Ka,b acts on HR as

Ka,b = LR + θN + λ(gaΦθ − gbΦ̃θ), (2.14)

with
Φθ =

1√
2

(
a∗(gβ(· + θ)) + a(gβ(· + θ̄))

)

Φ̃θ =
1√
2

(
a∗(e

β
2 (·+θ)gβ(− · −θ)) + a(e− β

2 (·+θ̄)gβ(− · −θ̄))
)
.

(2.15)

To alleviate the notation, we do not display θ and λ in Ka,b.

Theorem 2.3 (Spectrum of Ka,b). Assume A1 and A2. Let θ with 0 < Imθ < θ0

be fixed. There is a λ0 > 0 such that if 0 ≤ |λ| < λ0, then for all a, b = 1, . . . , N ,
the operator Ka,b has a simple eigenvalue λ2δa,b, where δa,b is given in (1.13).
All other spectrum of Ka,b lies in {z ∈ C : Imz > 3

4 Imθ}.
Remarks. 1. It follows from Theorem 2.3 and the decomposition (2.13) that

the spectrum of Kθ(0, λ) in the strip {z ∈ C : Imz < 3
4 Imθ} consists

precisely of the eigenvalues {λ2δa,b}N
a,b=1 (there are no higher order terms

in λ). A simple expression for the eigenvectors associated to the non-zero
eigenvalues is not available, only a perturbation series is. However, it is
readily seen that the eigenvalue zero has the eigenvectors ϕa ⊗ ϕa ⊗ ΩR,
a = 1, . . . , N . Indeed, if a = b, then it follows directly from (2.14) that

Ka,aΩR = λgaUθ(Φ − JΔ1/2ΦJΔ1/2)ΩR = 0, (2.16)

since JΔ1/2ΦJΔ1/2ΩR = ΦΩR.
2. If the form factor g satisfies ‖gβ/u‖2

2 < ∞, then the operator Ka,b, (2.14),
is unitarily equivalent to the operator LR + const. The condition on the
form factor implies the infra-red behaviour g(k) ∼ |k|p for small k, with
p > −1/2. Then Ka,b has a simple real eigenvalue, as also predicted by
(1.13), saying that Imδa,b = 0. In the infra-red singular case, p = −1/2,
the unitary transformation ceases to exist and the eigenvalue becomes
complex.

Proof of Theorem 2.3. The spectrum of Ka,b for λ = 0 consists of a single sim-
ple eigenvalue at zero, with eigenvector ΩR, and of horizontal lines of continu-
ous spectrum {x + Imθ n : x ∈ R, n = 1, 2, . . .}. The operators Φθ and Φ̃θ are
infinitesimally small w.r.t. N (relatively bounded with arbitrarily small relative
bound). Analytic perturbation theory implies that there exists a λ0 > 0 such
that if 0 ≤ |λ| < λ0, then the only spectrum of Ka,b in {z ∈ C : Imz < Imθ/2}
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is a single, simple eigenvalue. We show that this eigenvalue is λ2δa,b, with δa,b

given in (1.13).
The dynamics of the reduced density matrix of the small system has been

calculated explicitly in Proposition 7.4 of [27]. Let ψ0 = BΩS ⊗ ΩR be an
initial state, where B ∈ M′

S (the commutant) is arbitrary [see also (2.1)]. The
reduced system density matrix at time t, in the basis {ϕa}, is given by [ρt]a,b =
〈ψ0, eitL(0,λ)(|ϕb〉〈ϕa|⊗1S)e−itL(0,λ)ψ0〉. It is shown in the above reference that

[ρt]a,b = [ρ0]a,b eiλ2αa,b(t), (2.17)

with αa,b(t) = (g2
a − g2

b )S(t) + i(ga − gb)2Γ(t), where

Γ(t) =
∫

R3

|g(k)|2 coth
(

β|k|
2

)
sin2( |k|t

2 )
|k|2 d3k,

(2.18)
S(t) =

1
2

∫

R3

|g(k)|2 |k|t − sin |k|t
|k|2 d3k.

For large times, αa,b(t) becomes linear,

lim
t→∞

αa,b(t)
t

= δa,b, (2.19)

with δa,b given in (1.13). We express the reduced density matrix alternatively,
using Theorem 2.2, as

[ρt]a,b =
−1
2πi

∫

R−i

eitz
〈
B∗BΩS ⊗ ΩR, (Kθ − z)−1

(|ϕb〉〈ϕa| ⊗ 1S

)
ΩS ⊗ ΩR

〉
dz.

(2.20)
We use that eitL(0,λ)(|ϕb〉〈ϕa| ⊗ 1S)e−itL(0,λ)B = BeitL(0,λ)(|ϕb〉〈ϕa| ⊗ 1S)
e−itL(0,λ), which holds since B ⊗ 1R belongs to the commutant M′. It follows
from the definition (2.2) that (|ϕb〉〈ϕa| ⊗ 1S)ΩS = 1√

N
ϕb ⊗ ϕa. Therefore, we

obtain from (2.20) that

[ρt]a,b =
1√
N

〈B∗BΩS, ϕb ⊗ ϕa〉 −1
2πi

∫

R−i

eitz
〈
ΩR, (Kb,a − z)−1ΩR

〉
dz

= [ρ0]a,b
−1
2πi

∫

R−i

eitz
〈
ΩR, (Kb,a − z)−1ΩR

〉
dz. (2.21)

Comparing (2.21) and (2.17) yields the identity

eiλ2αa,b(t) =
−1
2πi

∫

R−i

eitz
〈
ΩR, (Kb,a − z)−1ΩR

〉
dz. (2.22)

Denote the unique eigenvalue of Ka,b in {z ∈ C : Imz < Imθ/2} by ζa,b(λ)
and let Ca,b be a small circle around ζa,b(λ) not including any other point of
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the spectrum of Ka,b. By deforming the contour of integration, we have
−1
2πi

∫

R−i

eitz
〈
ΩR, (Ka,b − z)−1ΩR

〉
dz

=
−1
2πi

∮

Ca,b

eitz
〈
ΩR, (Ka,b − z)−1ΩR

〉
dz + Rλ(t), (2.23)

with a remainder term small in λ and decaying to zero exponentially quickly as
t → ∞. This follows from the following result, proven in [27], Proposition 4.2:

Proposition 2.4 ([27]). Let ψ0 ∈ HS. Then
∣
∣
∣
∣
∣
∣
∣

∫

R+i 34 Imθ

eitz
〈
ψ0 ⊗ ΩR, (Kθ(σ, λ) − z)−1ψ0 ⊗ ΩR

〉
dz

∣
∣
∣
∣
∣
∣
∣
≤ Cλ2e− 3

4 t Imθ,

uniformly in σ varying in compact sets. The same bound holds if Kθ(σ, λ) is
replaced by Ka,b.

This result implies that |Rλ(t)| ≤ Cλ2e− 3Imθ
4 t for some constant C. Since

ζa,b(λ) is a simple pole of the resolvent (Ka,b − z)−1 we can replace eitz by
eitζa,b(λ) in (2.23) and we obtain

−1
2πi

∫

R−i

eitz
〈
ΩR, (Ka,b − z)−1ΩR

〉
dz = eitζa,b(λ)ca,b(λ) + Rλ(t), (2.24)

where ca,b(λ) = −1
2πi

∮
Ca,b

〈
ΩR, (Ka,b − z)−1ΩR

〉
dz. Combining (2.22) and

(2.24) gives

eiλ2αa,b(t)−itζa,b(λ) = ca,b(λ) + e−itζa,b(λ)Rλ(t).

As Imζa,b(λ) < 1
2 Imθ, we have limt→∞ e−itζa,b(λ)Rλ(t) = 0. Thus the expo-

nent on the left hand side converges to a finite number, as t → ∞, and so
this exponent, divided by t, tends to zero as t → ∞. (Note that ca,b(λ) is
not zero for small λ, by perturbation theory.) Then, due to (2.19), we have
ζa,b(λ) = λ2δa,b. The proof of Theorem 2.3 is complete. �
2.3. Resonances of K(σ, λ)
We now examine the operator Kθ(σ, λ), defined in Proposition 2.1, (2.6)–
(2.10), with L0 given in (1.11). We consider Kθ(σ, λ) as an unperturbed part,
Kθ(0, λ), plus a perturbation σLS (see (1.5)). Since the eigenvalues of Kθ(0, λ)
are isolated (Theorem 2.3), we can apply analytic perturbation theory to follow
them as the perturbation is switched on (σ �= 0).

Theorem 2.5 (Spectrum of Kθ(σ, λ)). Assume A1–A3. Let λ be fixed, satisfying
0 < |λ| < λ0, where λ0 is given in Theorem 2.3. There is a σ0 > 0 (depending
on λ) s.t. if 0 ≤ σ < σ0, then the spectrum of Kθ(σ, λ) in the region {z ∈ C :
Imz < 1

2 Imθ} consists of simple eigenvalues εa,b(σ, λ). Those eigenvalues are
analytic functions of σ, given by (1.18). Zero is an eigenvalue of T , (1.17). It
is simple if [HS]a,b �= 0 for all a �= b.



1412 M. Merkli and H. Song Ann. Henri Poincaré

Remark. The theorem assumes the non-degeneracy condition A3. An analysis
in the presence of degenerate non-zero resonances λ2δa,b can be carried out
along the same lines. We have done this for the spin-boson model. We have
checked that the values for the resonances thus obtained coincide with those
obtained in Sect. 2.7 (to order two in σ).

Proof of Theorem 2.5. (A) Non-zero eigenvalues The non-zero eigenvalues of
Kθ(0, λ) are simple, given by εa,b(0, λ) = λ2δa,b, for a �= b. We denote by
ϕa,b ⊗ Xa,b the eigenvector associated to εa,b(0, λ), where ϕa,b = ϕa ⊗ ϕb and
Xa,b is a normalized vector in HR, depending on λ and θ. The adjoint operator
satisfies Kθ(0, λ)∗ϕa,b ⊗ X∗

a,b = λ2δa,bϕa,b ⊗ X∗
a,b for a vector X∗

a,b satisfying〈
Xa,b,X

∗
a,b

〉
= 1. We denote the Riesz projection of Kθ(0, λ) associated to

εa,b(0, λ) by

Pa,b = |ϕa,b ⊗ Xa,b〉〈ϕa,b ⊗ X∗
a,b|. (2.25)

By analytic perturbation theory, Kθ(σ, λ) has a simple eigenvalue in the vicin-
ity of λ2δa,b, for small σ. It is given by

εa,b(σ, λ) = λ2δa,b + σε
(1)
a,b + σ2ε

(2)
a,b + Oλ(σ3), (2.26)

where (see [22, Sect. II.2.2] and also [32, Thm. XII.12])

ε
(1)
a,b = Tr(LSPa,b) = [HS]a,a − [HS]b,b. (2.27)

Here, we have set [HS]a,b = 〈ϕa,HSϕb〉. The second-order correction is

ε
(2)
a,b = −Tr

(
LS(Kθ(0, λ) − λ2δa,b)−1P̄a,bLSPa,b

)
. (2.28)

We write P̄ for 1−P for general projections P . We set P S
a,b = |ϕa,b〉〈ϕa,b| and

PR
a,b = |Xa,b〉〈X∗

a,b|. Then Pa,b = P S
a,b ⊗PR

a,b and P̄a,b = P̄ S
a,b ⊗1R +P S

a,b ⊗ P̄R
a,b.

It follows that P̄a,bLS (ϕa,b ⊗ Xa,b) = (P̄ S
a,bLSϕa,b) ⊗ Xa,b. Using this and

P̄ S
a,b =

∑
(c,d) �=(a,b) P S

c,d in expression (2.28) yields

ε
(2)
a,b = −

∑

(c,d) �=(a,b)

〈
ϕa,b ⊗ X∗

a,b, LS (Kθ(0, λ) − λ2δa,b)−1ϕc,d ⊗ Xa,b

〉

〈ϕc,d, LSϕa,b〉 .

‘Replacing’ ϕc,d ⊗ Xa,b by the eigenvector ϕc,d ⊗ Xc,d, we obtain

ε
(2)
a,b = −

∑

(c,d) �=(a,b)

1
λ2(δc,d − δa,b)

| 〈ϕa,b, LSϕc,d〉 |2 〈X∗
a,b,Xc,d

〉
+ ξ, (2.29)

where

ξ =
∑

(c,d) �=(a,b)

〈
ϕa,b ⊗ X∗

a,b, LS(Kθ(0, λ) − λ2δa,b)−1ϕc,d ⊗ (Xc,d − Xa,b)
〉

〈ϕc,d, LSϕa,b〉 . (2.30)
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By perturbation theory, we have Xa,b = ΩR + O(λ). Therefore, Xc,d − Xa,b =

O(λ) and
〈
X∗

a,b,Xc,d

〉
= 1 + O(λ). Together with the bound (2.34) of Corol-

lary 2.7 below, we obtain

|ξ| ≤ C

|λ| . (2.31)

Finally,
〈ϕa,b, LSϕc,d〉 = χb=d [HS]a,c − χa=c [HS]d,b. (2.32)

Relation (1.18) for a �= b follows from (2.29), (2.31) and (2.32) and a little
algebra. �

Proposition 2.6 (Bound on the resolvent). There are constants C and λ0

(depending on Imθ only) such that if 0 < |λ| < λ0, then we have the following.
Fix any α > 0 and take complex z satisfying |z| < Cα, Imz < 1

4 Imθ, and
dist(E , z) ≥ αλ2, where E = {λ2δa,b : a, b = 1, . . . , N} is the set of eigenvalues
of Kθ(0, λ). Then we have

‖(Kθ(0, λ) − z)−1‖ ≤ C1

(
1

Imθ
+

1
dist(E , z)

)
, (2.33)

where C1 is a constant depending only on Imθ.

Knowing the bound on the resolvent we can obtain a bound on the reduced
resolvent.

Corollary 2.7. For any a, b = 1, . . . , N we have

‖(Kθ(0, λ) − λ2δa,b)−1P̄a,b‖ ≤ C2

(
1

Imθ
+

1
λ2

)
, (2.34)

for some constant C2 depending on Imθ.

Proof of Corollary 2.7. The reduced resolvent has the representation

(Kθ(0, λ) − λ2δa,b)−1P̄a,b =
−1
2πi

∮

Γa,b(λ)

(z − λ2δa,b)−1(Kθ(0, λ) − z)−1P̄a,bdz,

where Γa,b(λ) = {z = λ2δa,b+λ2reiφ : φ ∈ [0, 2π]}, with an appropriate radius
r (independent of λ) such that Γa,b(λ) encircles only the eigenvalue λ2δa,b and
such that Γa,b(λ) lies within the region of z for which the bound (2.33) holds,
according to Proposition 2.6. Then dist(E , z) is a constant times λ2. It follows
that

‖(Kθ(0, λ) − λ2δa,b)−1P̄a,b‖ ≤ C

(
1

Imθ
+

1
λ2

)
(1 + ‖Pa,b‖),

for some constant C. The bound (2.34) follows from ‖Pa,b‖ = 1 + O(λ). �

Proof of Proposition 2.6. Let PR = |ΩR〉〈ΩR|, P̄R = 1 − PR, and R(z) =
(Kθ(0, λ) − z)−1.

Step 1. For any ψ ∈ H we have
∣
∣〈ψ, P̄R(Kθ(0, λ) − z)P̄Rψ

〉∣∣ ≥ Im
〈
ψ, P̄R(Kθ(0, λ) − z)P̄Rψ

〉
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=
〈
ψ, P̄R

(
N1/2{Imθ + λImN−1/2IθN

−1/2}N1/2 − Imz
)
P̄Rψ

〉

≥ (Imθ − C|λ| − Imz)‖P̄Rψ‖2

≥ 1
2
Imθ ‖P̄Rψ‖2.

By the Cauchy–Schwartz inequality, it follows that ‖P̄R(Kθ(0, λ)− z)P̄Rψ‖ ≥
1
2 Imθ ‖P̄Rψ‖ and therefore

‖P̄RR(z)P̄R‖ ≤ 2
Imθ

. (2.35)

Step 2. Consider the Feshbach map

Fz = PR(−z − λ2IθP̄RR(z)P̄RIθ)PR

= PR(−z − λ2IθP̄RR(0)P̄RIθ)PR + O(λ2|z|). (2.36)

Let
Gz = −λ2PRIθP̄RR(z)P̄RIθPR. (2.37)

By the isospectrality property of the Feshbach map (see e.g. [6, Theorem IV.1])
we know that

Gλ2δa,b
ϕa,b ⊗ ΩR = λ2δa,b ϕa,b ⊗ ΩR,

for all a, b = 1, . . . , N . We also have Gz − Gζ = O(λ2|z − ζ|), as long as
Imz, Imζ < 1

4 Imθ. It follows that G0 ϕa,b ⊗ ΩR = λ2δa,b ϕa,b ⊗ ΩR + O(λ4), for
all a, b = 1, . . . , N . Therefore, G0 =

∑N
a,b=1 λ2δa,b|ϕa,b〉〈ϕa,b| ⊗ PR + O(λ4),

and so
Gz =

N∑

a,b=1

λ2δa,b|ϕa,b〉〈ϕa,b| ⊗ PR + O(λ4 + λ2|z|). (2.38)

Using (2.38) and (2.37) in (2.36) shows that

Fz =
N∑

a,b=1

(λ2δa,b − z)|ϕa,b〉〈ϕa,b| ⊗ PR + O(λ4 + λ2|z|). (2.39)

The sum on the right side is an invertible operator, the norm of the inverse
being

max
a,b=1,...,N

|λ2δa,b − z|−1 = [dist(E , z)]−1.

Therefore, there is a constant C s.t. if

λ4 + λ2|z| < C dist(E , z), (2.40)

then Fz is invertible and
‖F−1

z ‖ ≤ 2
dist(E , z)

. (2.41)

Let α > 0 be fixed, and take z s.t. dist(E , z) ≥ αλ2. Then (2.40) is satisfied
provided λ is small enough and |z| < Cα.

Step 3 The resolvent R(z) is related to P̄RR(z)P̄R and F−1
z by (see e.g.

[6, Eqn. (IV.14)])

R(z) =
(
PR − P̄RR(z)P̄RKθ(0, λ)PR

)

×F−1
z

(
PR − PRKθ(0, λ)P̄RR(z)P̄R

)
+ P̄RR(z)P̄R.
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We combine this equation with the bounds ‖P̄RKθ(0, λ)PR‖, ‖PRKθ(0, λ)P̄R‖
≤ C|λ| and (2.35), (2.41) to arrive at the estimate (2.33). This completes the
proof of Proposition 2.6. �
(B) Zero eigenvalue. Let P (σ) be the group projection associated to the eigen-
values of Kθ(σ, λ) bifurcating out of the origin as σ �= 0. Here, we consider
λ fixed and σ small. The null space of Kθ(0, λ) is known exactly, see (2.16).
Let X∗

a,a ∈ HR be the vector satisfying K∗
a,aX∗

a,a = 0 and
〈
ΩR,X∗

a,a

〉
= 1. We

have X∗
a,a = ΩR + O(λ). Then P (0) =

∑N
a=1 |ϕa,a〉〈ϕa,a| ⊗ |ΩR〉〈X∗

a,a|. Note
that P (0)LSP (0) = 0. Analytic perturbation theory gives

Kθ(σ, λ)P (σ) = σ2T2 + Oλ(σ3)
(2.42)

T2 = −P (0)LSKθ(0, λ)−1LSP (0).

We have LSP (0) =
∑N

a=1

∑
c,d=1,...,N ;c �=d |ϕc,d〉〈ϕa,a| ⊗ PR 〈ϕc,d, LSϕa,a〉 +

O(λ). Next,
Kθ(0, λ)−1ϕc,d ⊗ ΩR = Kθ(0, λ)−1ϕc,d ⊗ (Xc,d + ΩR − Xc,d)

=
1

λ2δc,d
ϕc,d ⊗ ΩR + O(λ−1), (2.43)

where we use Corollary 2.7 in the last step. Starting from (2.42) and using
(2.43), we arrive at

T2 =
2i
λ2

T + O(λ−1), (2.44)

where the operator T has matrix elements [T ]a,b = 〈ϕa,a ⊗ ΩR, T ϕb,b ⊗ ΩR〉
given by (1.17). In this derivation, we also use that δb,a = −δa,b, see
(1.13). Note that T is a real symmetric matrix, [T ]a,b < 0 for a �= b, and
[T ]a,a = −∑b�=a[T ]a,b. These properties imply that for x = (x1, . . . , xN ) ∈ C

N ,
〈x, Tx〉 =

∑N
a,b=1 |[T ]a,b| |xa − xb|2 ≥ 0. Therefore, if [T ]a,b �= 0 for all a �= b,

then zero is a simple eigenvalue of T , with eigenvector proportional to (1, . . . , 1)
and all other eigenvalues of T are strictly positive.

This completes the proof of Theorem 2.5. �

2.4. Proof of Theorem 1.1

The proof of these two theorems is based on the resolvent representation,
Theorem 2.2, and on the spectral data given in Theorem 2.5. The procedure
follows [5,19,25] (for the path integration deformation argument) and [27,
Theorem 3.1] (for the reduced dynamics).

Let Ψ0 ∈ H (initial state). Given ε > 0, we can find a vector Ψε such
that (a) | 〈Ψ0, AΨ0〉 − 〈Ψε, AΩ〉 | < ‖A‖ε, for all A ∈ M, where Ω is the ref-
erence state (2.1), and (b) Ψε is Uθ-analytic and Uθ̄Ψη ≡ (Ψη)θ̄ is in the
domain of e|LR|/2. To produce Ψε, one may first find B ∈ M′ (commutant of
M) s.t. ‖Ψ0 − BΩ‖ < ε/2 (this can be done by the cyclicity of Ω) and set
Ψ1,ε = B∗BΩ. Then (a) is verified. Next, one regularizes this vector to satisfy
(b), e.g. by forming Ψ2,ε = e−ηL2

Re−ηD2
e−4ηθ2

0N2
Ψ1,ε, where D = dΓ(−i∂u)

is the generator of spectral deformation and N = dΓ(1) is the number oper-
ator. Taking η > 0 small enough gives Ψε satisfying (a) and (b). The set of
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translation-analytic functionals

S0 = {〈Ψ, ·Ω〉 : Ψ satisfies (a) and (b)} (2.45)

is hence dense in the set of all states on M. The translation-analytic observ-
ables are defined by

M0 = {A ∈ M : AΩ is Uθ-analytic}. (2.46)

Let ω0 ∈ S0 and A ∈ M0. Theorem 2.2 gives

ω0(αt
σ,λ(A)) =

−1
2πi

∫

R−i

eitz
〈
Ψθ, (Kθ(σ, λ) − z)−1(AΩ)θ

〉
dz.

We deform the contour of integration into the upper half-plane, as in [5,19,25],
to pick up the contributions of the poles at the resonance energies of the resol-
vent by means of the residue theorem. The integral over the path R− i equals
the integral over the path R+ 3

4 iImθ plus the sum of the integrals around circles
Γa,b, each enclosing exactly one eigenvalue εa,b of Kθ(σ, λ). While the integral
over R + 3

4 iImθ is O(e− 3
4 t Imθ), the integral around a given eigenvalue εa,b is

−1
2πi

∮

Γa,b

eitz
〈
Ψθ̄, (Kθ(σ, λ) − z)−1AΩ

〉
dz = eitεa,b(σ,λ)

〈
Ψθ̄, Q̃a,b(AΩ)θ

〉
,

(2.47)

where Q̃a,b = −1
2πi

∮
Γa,b

(Kθ(σ, λ) − z)−1dz is the Riesz spectral projection.
The KMS state of the uncoupled system (λ = 0) is given by the standard

vector Ω0 = ΩS,β ⊗ΩR. Here, ΩS,β is the unique vector in the standard natural
cone, the closure of {AJSAΩS : A ∈ MS} [recall the definition of ΩS and
JS given in and after (2.2)], representing the system Gibbs equilibrium state
(which is determined by the density matrix ∝ e−βσHS). Perturbation theory
of KMS states (see [5,7,13]) tells us that

ΩSR = e−βL(σ,λ)/2Ω0/‖e−βL(σ,λ)/2Ω0‖, (2.48)

where L(σ, λ) is given in (1.10), is the KMS state for the interacting system.
Consider σ > 0. Since Imεa,b > 0 for all a �= b and Imεa,a > 0 for

a = 2, . . . , N and since ΩSR is an invariant state, it follows by taking t → ∞
that the quantity (2.47) for a = b = 1 is 〈ΩSR, AΩSR〉 = ωβ,σ,λ(A). The
remaining contributions to the right side of (1.20) come from the resonances
bifurcating out of the origin (first sum) and those bifurcating out of εa,b(0, λ),
as σ becomes non-zero. We have χa(A) = 〈Ψθ̄, Q̃a,a(AΩ)θ〉, and a similar
definition for χa,b.

Consider σ = 0. Then εa,a(0, λ) = 0 for all a = 1, . . . , N . The first two
terms on the right side of (1.20) arise from the projection onto the kernel of
Kθ(0, λ). This defines the χa for σ = 0. The χa,b are again given by the scalar
products on the right side of (2.47).

Note that the χa are not continuous as σ → 0, as only the total group pro-
jection associated to the eigenvalues bifurcating out of the origin is continuous
(actually analytic), but not the individual projections.
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2.5. Proof of Theorem 1.2

Theorem 2.8 (Reduced dynamics). Let χ1 be an arbitrary normalized vector
in HS and let A ∈ MS be a system observable. Then we have
〈
χ1 ⊗ ΩR, eitL(σ,λ)Ae−itL(σ,λ)Ω

〉

=
N∑

a,b=1

eitεa,b(σ,λ) 〈χ1, Qa,bAΩS〉 (1+Oλ(σ)+O(λ)
)
+O
(
λ2e− 3

4 tθ0
)
, (2.49)

where the εa,b(σ, λ) are given in (1.18). Here,

Qa,b =

{ |ϕa,b〉〈ϕa,b| if a �= b

|ϕT
a 〉〈ϕT

a | if a = b,
(2.50)

where {ϕT
a }N

a=1 is the orthonormal basis of eigenvectors of T , (1.17), so that
TϕT

a = ξaϕT
a .

Proof of Theorem 2.8. Take the representation (2.12) for a fixed θ. The inte-
gral over the path R − i equals the integral over the path R + 3

4 iImθ plus
the sum of the integrals around circles Γa,b, each enclosing exactly one eigen-
value εa,b of Kθ(σ, λ). While the integral over R+ 3

4 iImθ is O(λ2e− 3
4 t Imθ) (see

Proposition 2.4), the integral around a given eigenvalue εa,b is

−1
2πi

∮

Γa,b

eitz
〈
χ1 ⊗ ΩR, (Kθ(σ, λ) − z)−1AΩ

〉
dz = eitεa,b

〈
χ1 ⊗ ΩR, Q̃a,bAΩ

〉
,

where Q̃a,b = −1
2πi

∮
Γa,b

(Kθ(σ, λ) − z)−1dz is the Riesz spectral projection. By
perturbation theory, we have, for a �= b,

Q̃a,b = |ϕa,b〉〈ϕa,b| ⊗ |Xa,b〉〈X∗
a,b| + Oλ(σ)

= |ϕa,b〉〈ϕa,b| ⊗ |ΩR〉〈ΩR| + Oλ(σ) + O(λ).

Similarly, we have Q̃a,a = |ϕT
a 〉〈ϕT

a | ⊗ |ΩR〉〈ΩR| + Oλ(σ). (Note that T is
self-adjoint.) This completes the proof of Theorem 2.8. �

We now prove Theorem 1.2. Let ρ0 be the initial density matrix of the
small system. It is represented by a normalized vector χ in the GNS space
HS. By the cyclicity of ΩS there is a unique element B′ in the commutant
M′

CN = 1CN ⊗ B(HS) such that χ = B′ΩS. The evolution of the reduced
density matrix elements [ρt]a,b = 〈ϕa, ρtϕb〉 is given by

[ρt]a,b =
〈
χ ⊗ ΩR, eitL(σ,λ)(|ϕb〉〈ϕa| ⊗ 1CN )e−itL(σ,λ)χ ⊗ ΩR

〉

=
〈
χ ⊗ ΩR, B′eitL(σ,λ)(|ϕb〉〈ϕa| ⊗ 1CN )e−itL(σ,λ)Ω

〉
. (2.51)
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We can thus use Theorem 2.8. The main term on the right side of (2.49) is
N∑

c,d=1

eitεc,d(σ,λ) 〈χ,B′Qc,d(|ϕb〉〈ϕa| ⊗ 1CN )ΩS〉

=
1√
N

N∑

c,d=1

eitεc,d(σ,λ) 〈χ,B′Qc,d ϕb,a〉 , (2.52)

by the definition (2.2) of ΩS. If a �= b then, according to (2.50), Qc,dϕb,a

vanishes, except when c = b and d = a, in which case it equals ϕb,a. Then we
have 〈χ,B′ϕb,a〉 =

√
N 〈χ,B′(|ϕb〉〈ϕa| ⊗ 1CN |)ΩS〉 =

√
N [ρ0]a,b. We conclude

that for a �= b, the main term of [ρt]a,b is eitεb,a(σ,λ)[ρ0]a,b. This shows (1.23).
Relation (1.24) is proven in the same way. �

2.6. Using the Feshbach Map

Zero is an eigenvalue of Kθ(0, 0) of multiplicity N2. By a simple Riesz projec-
tion argument, one shows that, for σ and λ small, Kθ(σ, λ) has N2 eigenvalues
in the vicinity of the origin. The size of the eigenvalues can be estimated as
follows. Suppose that z �= 0 and Imz < 1

2 Imθ, so that z is in the resolvent set
of Kθ(0, 0). If the series

(Kθ(0, 0) − z)−1
∑

n≥0

[
(σLS + λIθ)(Kθ(0, 0) − z)−1

]n (2.53)

converges, then z belongs to the resolvent set of Kθ(σ, λ) and (2.53) equals
(Kθ(σ, λ) − z)−1. Therefore, if z is a (non-zero) eigenvalue of Kθ(σ, λ), then
we must have

‖(σLS + λIθ)(Kθ(0, 0) − z)−1‖ ≥ 1. (2.54)
Using standard bounds on the interaction, we see that (2.54) implies that there
are constants C, c > 0 s.t. if σ, |λ| < c, then

|z| < C(σ + |λ|). (2.55)

Estimate (2.55) is a bound on the eigenvalues of Kθ(σ, λ) in the vicinity of
the origin. The eigenvalues can be tracked using the Feshbach map. Namely,
z ∈ C, Imz < 1

2 Imθ is an eigenvalue of Kθ(σ, λ) if and only if it is an eigenvalue
of the operator

Fz = PR

(
σLS − λ2Iθ(Kθ(σ, λ) − z)−1Iθ

)
PR (2.56)

which acts on the smaller space RanPR = C
N ⊗ C

N . Recall that PR =
|ΩR〉〈ΩR|. By expanding the resolvent around z = 0, σ = 0 and λ = 0, taking
into account (2.55), we have

Fz = PR

(
σLS − λ2IθKθ(0, 0)−1Iθ

)
PR + O

(
λ2
(
σ + |λ|)

)
, (2.57)

provided z is an eigenvalue of Kθ(σ, λ) and σ, |λ| < c. An elementary calcula-
tion shows that the operator Fz, viewed as acting on RanPR, has the form

Fz =σLS−λ2
(
αG2⊗1−αG⊗G+αG⊗G−α1⊗G2

)
+O
(
λ2
(
σ+|λ|)

)
, (2.58)
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where C is defined after (1.5) and α = 1
2

〈
g, |k|−1g

〉− i
2πξ(0), with ξ(0) given

in (1.14). Note that the quadratic term in λ is diagonal in the basis ϕa,b,

−λ2
(
αG2 ⊗ 1 − αG ⊗ G + αG ⊗ G − α1 ⊗ G2

)

= −λ2

2

N∑

a,b=1

( 〈
g, |k|−1g

〉
(g2

a − g2
b ) − iπξ(0)(ga − gb)2

)|ϕa,b〉〈ϕa,b|. (2.59)

We conclude from the isospectrality of the Feshbach map and (2.58), (2.59)
that the eigenvalues of Kθ(0, λ) are given by −λ2

2

( 〈
g, |k|−1g

〉
(g2

a − g2
b ) −

iπξ(0)(ga − gb)2
)
, modulo a remainder O(λ2(σ + |λ|)). This is compatible with

the result of Theorem 2.3. However, from that Theorem, we know in addition
that the remainder actually vanishes.

2.7. The Spin-Boson System

The Feshbach operator (2.58) is represented in the energy basis
{φ+,+, φ+,−, φ−,+ φ−,−}, where φ+,− = φ+ ⊗ φ− (etc) and Szφ± = ± 1

2φ±,
by the matrix

Fz = W + O
(
λ2
(
σ + |λ|)

)
, (2.60)

W =

⎛

⎜
⎜
⎜
⎝

iλ2

4 πξ(0) 0 0 −iλ2

4 πξ(0)
0 σ + iλ2

4 πξ(0) −iλ2

4 πξ(0) 0
0 −iλ2

4 πξ(0) −σ + iλ2

4 πξ(0) 0
−iλ2

4 πξ(0) 0 0 iλ2

4 πξ(0)

⎞

⎟
⎟
⎟
⎠

. (2.61)

The four eigenvalues of W are

w1 = 0, w2 = i
λ2

2
πξ(0), w3,4 = i

λ2

4
πξ(0) ± i

√
λ4

16
π2ξ(0)2 − σ2, (2.62)

where the square root is the principal branch with branch cut on the negative
real axis. The corresponding eigenvectors of W are

χ1 =
1√
2

⎡

⎢
⎢
⎣

1
0
0
1

⎤

⎥
⎥
⎦ , χ2 =

1√
2

⎡

⎢
⎢
⎣

1
0
0

−1

⎤

⎥
⎥
⎦ ,

χ3 =
1

1 + r2

⎡

⎢
⎢
⎣

0
1
r
0

⎤

⎥
⎥
⎦ , χ4 =

1
1 + r2

⎡

⎢
⎢
⎣

0
−r
1
0

⎤

⎥
⎥
⎦ , (2.63)

where r = −4iγ−
√

π2ξ(0)2−16γ2

πξ(0) with γ = σ
λ2 . The eigenvalues of the adjoint W ∗

are the complex conjugates wj and the corresponding eigenvectors are

χ∗
1 =

1√
2

⎡

⎢
⎢
⎣

1
0
0
1

⎤

⎥
⎥
⎦ , χ∗

2 =
1√
2

⎡

⎢
⎢
⎣

1
0
0

−1

⎤

⎥
⎥
⎦ , χ∗

3 =

⎡

⎢
⎢
⎣

0
1
r
0

⎤

⎥
⎥
⎦ , χ∗

4 =

⎡

⎢
⎢
⎣

0
−r
1
0

⎤

⎥
⎥
⎦ . (2.64)
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The eigenvectors are normalized as 〈χi, χ
∗
i 〉 = 1 and 〈χi, χ

∗
j 〉 = 0 if i �= j. The

reduced spin density matrix, represented in the energy basis φ±, is given by
(proceed as for Theorem 1.2 or see [24, Theorem 2.1] and [27])

[ρt]zm,n
.=

4∑

j=1

eitwj

∑

k,l=±
[ρ0]zl,k 〈φk,l, χj〉

〈
χ∗

j , φn,m

〉
. (2.65)

Here, we take m,n, k, l to stand for either + or −, and .= means that we
approximate the true resonances ε (the eigenvalues of Fz) by the w and we
neglect additive O(λ2) terms (uniform in t ≥ 0) on both sides. Using the
explicit formulas (2.63), (2.64) for the eigenvectors χj , χ∗

j , we arrive at

[ρt]z+,+
.=

1
2

+
1
2
eitw2([ρ0]z+,+ − [ρ0]z−,−),

(2.66)
[ρt]z+,−

.=
r

r2 + 1
eitw3(r[ρ0]z+,−+[ρ0]z−,+) +

1
r2+1

eitw4([ρ0]z+,−−r[ρ0]z−,+).
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Appendix A. Invariant States

Invariant system–reservoir states. Let Lstandard = L0(σ) + λV − λJV J be the
standard Liouvillian and let P be the closure of the set {AJAΩ : A ∈ M}
[the natural positive cone associated to (M,Ω); see also (2.1)]. There is a one-
to-one correspondence between normalized vectors in KerLstandard ∩ P and
normal states on M which are invariant under the dynamics generated by L,
(1.10) (see for instance [13]).

For σ = 0, the standard Liouvillian has a direct sum decomposition as
in (2.13), with ‘blocks’ Lstandard,a,b = LR +λ{gaΦ(gβ)− gbJΦ(gβ)J}. One can
perform the spectral analysis of this operator in the same way as we do for
K(0, λ) to see that KerLstandard = span{ϕa ⊗ ϕa ⊗ ΩR,a}N

a=1, where

ΩR,a =
e−β(LR+λgaΦ(gβ))/2ΩR

‖e−β(LR+gaΦ(gβ))/2ΩR‖ (A.1)

is the reservoir KMS state with respect to the dynamics generated by the Liou-
villian LR + λgaΦ(gβ), denoted by ωR,a. This ‘perturbed’ KMS state belongs
to the standard natural cone associated to (MR,ΩR) (see e.g. [13]) and hence
ϕa ⊗ ϕa ⊗ ΩR,a ∈ P.

For σ > 0 and under the condition that Kθ(σ, λ) has one-dimensional
kernel, the only invariant state is the coupled equilibrium ΩSR introduced in
(2.48).

Invariant initial states of the small system for σ = 0. The explicit expression
(2.17) shows that M0,λ, the manifold of invariant initial system states, is
the set of density matrices which are diagonal in the eigenbasis {ϕa}N

a=1 of
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G. Let ρ0 be a given initial density matrix of the small system and set τ =∑
a[ρ0]a,a|ϕa〉〈ϕa|. Then dist(M0,λ, ρ0) = ‖τ − ρ0‖1. To see this, let τn be

a sequence in M0,λ such that limn→∞ ‖τn − ρ0‖1 = dist(M0,λ, ρ0). By the
equivalence of the trace norm and the norm ‖ρ‖max = maxa,b | 〈ϕa, ρϕb〉 | ≡
maxa,b |[ρ]a,b|, we have

‖τn − ρ0‖1 ≥ c‖τn − ρ0‖max ≥ cmax
a

∣
∣[τn]a,a − [ρ0]a,a

∣
∣,

for some constant c > 0. It follows that limn→∞ maxa |[τn]a,a − [ρ0]a,a| = 0
and therefore limn→∞ ‖τn − τ‖1 = 0. This shows that dist(M0,λ, ρ0) =
‖τ − ρ0‖1. As the dynamics leaves the diagonal invariant, we also have
dist(M0,λ, T0,λ(t)ρ0) = ‖τ − T0,λ(t)ρ0‖1. Again by the equivalence of norms,
there is a C > 0 s.t.

‖τ − T0,λ(t)ρ0‖1 ≤ C max
a,b:a�=b

|[T0,λ(t)ρ0]a,b| ≤ Ce−λ2γGΓ(t) max
a,b:a�=b

|[ρ0]a,b|,

where we use (2.17) in the last inequality. Finally, maxa,b:a�=b |[ρ0]a,b| ≤ c‖τ −
ρ0‖1. The statement about orbital stability after (1.21) follows. The asymptotic
linearity of Γ(t) follows from (2.19). In three dimensions, limt→∞ Γ(t) = ∞ if
the infra-red behaviour of the coupling form factor is g(k) ∼ |k|−1/2 as k ∼ 0,
see (1.13). See also [31].

Absence of invariant initial system states for σ > 0. Suppose that zero is
a simple eigenvalue of Kθ(σ, λ). Then for σ > 0, the set of invariant initial
system states Mσ,λ is empty. Indeed, by the property of return to equilibrium,
limt→∞ Tσ,λ(t)ρ0 = ρ∗ for all initial states ρ0, where ρ∗ is the reduction to
the small system of the coupled system–reservoir KMS state ΩSR [see (2.48)].
Therefore, ρ∗ is the only possible element in Mσ,λ. However, that ρ∗ �∈ Mσ,λ

can be seen as follows. For any A ∈ B(CN ) we have

d
dt

∣
∣
∣
t=0

TrCN (Tσ,λ(t)ρ∗ A) = 〈Ω∗ ⊗ ΩR, i[L(σ, λ), A ⊗ 1S ⊗ 1R]Ω∗ ⊗ ΩR〉 ,

where Ω∗ is the vector representative of ρ∗. The commutator in the last
expression equals σ[HS, A] ⊗ 1S ⊗ 1R + λ[G,A] ⊗ 1S ⊗ Φ(gβ). There-
fore, the above derivative is zero if and only if 〈Ω∗, ([HS, A] ⊗ 1S)Ω∗〉 =
〈ΩSR([HS, A] ⊗1S ⊗ 1R)ΩSR〉 = 0. By expanding ΩSR ∝ Ω0−λ

2

∫ β

0
e−sL0/2V Ω0

+ O(λ2) [see (2.48)], we obtain

〈ΩSR, ([HS, A] ⊗ 1S ⊗ 1R)ΩSR〉

=
λ2σ

2

N∑

k,l=1

(Ek − El)〈GPkAPlG〉S,β fk,l + O(λ4), (A.2)

where Pk is the spectral projection associated to the eigenvalue Ek of HS, the
average 〈·〉S,β is taken in the state ΩS,β and where fk,l =

∫
R×S2 |gβ(u, ϑ)|2

(eβu/2−1)(e−βu/2−1)
u2 dudϑ + O(σ). For small σ, we have fk,l < 0 for all k, l.

By choosing an A s.t. the right side of (A.2) does not vanish we obtain
d
dt |t=0TrCN (Tσ,λ(t)ρ∗ A) �= 0, so ρ∗ is not invariant.
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Appendix B. Proof of Theorem 2.2

Throughout the proof, we do not write the dependence of operators on (σ, λ)
(i.e., we write L for L(σ, λ), and so on).

Let s ∈ C, |s| < 1/2+ε, where ε is the constant in Assumption A2. Using
the expression Δ = 1HS ⊗ e−βLR for the modular operator, we get

ΔisV Δ−is = G ⊗ 1CN ⊗ e−iβsLRΦ(gβ)eiβsLR

= G ⊗ 1CN ⊗ 1√
2

(
a∗(e−iβsugβ) + a(e−iβsugβ)

)
. (B.1)

This operator is well defined and strongly analytic in s̄ on D(N1/2), due to
assumption (A2). On D(L0)∩D(N1/2) we define the family of strongly analytic
operators in s,

K(s) = L0 + λI(s), (B.2)

I(s) = V − λV ′(s), (B.3)

V ′(s) = Δ−isJV JΔis = JΔisV Δ−isJ. (B.4)

This family has been introduced in [25]. It interpolates between the self-adjoint
K(0) and the operator K(−i/2) = K [see (2.5)].

Proposition B.1. Let I(s)(t) = eitL0I(s)e−itL0 and recall the definition (2.1) of
the reference state Ω. The Dyson series

∑

n≥0

(iλ)n

t∫

0

dt1

t1∫

0

dt2 · · ·
tn−1∫

0

dtn I(s)(tn)I(s)(tn−1) · · · I(s)(t1)Ω (B.5)

converges for all λ ∈ R and is analytic in s for |s| < 1/2 + ε.

Proof of Proposition B.1. Let ψν ∈ Ran P (N ≤ ν) (spectral projection of N
onto subspace with at most ν particles). Since the interaction operator I(s)

changes the particle number by at most one, we have

I(s)(tn)I(s)(tn−1) · · · I(s)(t1)ψν

= eitnL0I(s)P (N ≤ ν + n − 1)e−itnL0 · · · eit1L0I(s)P (N ≤ ν)e−it1L0ψν .

The standard bounds ‖a∗(f)(N +1)−1/2‖ ≤ ‖f‖ and ‖a(f)(N +1)−1/2‖ ≤ ‖f‖
give ‖I(s)(N +1)−1/2‖ ≤ 4M , where M := (

∫ |e( 1
2+ε)β|u|gβ(u, σ)|2dudσ)

1
2 < ∞

due to assumption (A2). Hence

‖I(s)(tn)I(s)(tn−1) · · · I(s)(t1)ψν‖ ≤
√

(ν + 1) · · · (ν + n)(4M)n‖ψν‖, (B.6)

uniformly in s. This and the analyticity of I(s)(tn)I(s)(tn−1) · · · I(s)(t1)ψν

imply that (B.5) is analytic in s for |s| < 1
2 + ε. This proves

Proposition B.1. �

We define an operator denoted eitK(s)
, on the dense set MΩ, by

eitK(s)
Ω := (B.5) and eitK(s)

AΩ := eitLAe−itLeitK(s)
Ω (B.7)

for A ∈ M.
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Proposition B.2. We have eitK(−i/2)
AΩ = eitLAe−itLΩ, for all A ∈ M.

Proof of Proposition B.2. It suffices to show that eitK(−i/2)
Ω = Ω. Note that

(G⊗1)ΩS = (1⊗CGC)ΩS [see after (1.5) for the definition of C], JΔ
1
2 ΩR = ΩR

and that Φ(gβ) is self-adjoint. Thus,

I(−i/2)Ω = [G ⊗ 1 ⊗ Φ(gβ) − 1 ⊗ G ⊗ JΔ
1
2 Φ(gβ)JΔ

1
2 ]ΩS ⊗ ΩR

= (G ⊗ 1)ΩS ⊗ [Φ(gβ)ΩR − JΔ
1
2 Φ(gβ)JΔ

1
2 ΩR] = 0.

It now follows directly from (B.7) and (B.5) that eitK(−i/2)
Ω = Ω. �

Let ψ = AΩ. Since K(s) is self-adjoint for s ∈ R, we have
〈
φ, eitK(s)

ψ
〉

=
−1
2πi

∫

R−i

eitz
〈
φ, (K(s) − z)−1ψ

〉
dz, s ∈ R. (B.8)

Next we perform the spectral deformation. By analyticity the scalar product
in the integrand of (B.8) equals

〈
φθ, (K

(s)
θ − z)−1ψθ

〉
, for all |θ| < θ0. Here,

K
(s)
θ = L0,θ +λI

(s)
θ is the analytic extension of UθK

(s)U∗
θ to complex |θ| < θ0.

Thus we obtain
〈
φ, eitK(s)

ψ
〉

=
−1
2πi

∫

R−i

eitz
〈
φθ, (K

(s)
θ − z)−1ψθ

〉
dz, s ∈ R. (B.9)

From now on we take θ to be a fixed iθ, for some 0 < θ < θ0.

Proposition B.3. Both sides in (B.9) have an analytic extension to s ∈ C,
|s| < 1/2+ ε. Since they are equal for real s we have (by the identity principle)
that (B.9) stays valid for all |s| < 1/2 + ε.

Taking the value s = −i/2 in (B.9), together with Proposition B.2, gives
relation (2.12) and hence proves Theorem 2.2.

Proof of Proposition B.3. Analyticity of the l.h.s. of (B.9) is immediate from
Proposition B.1 and relations (B.7). To prove the analyticity of r.h.s. of (B.9),
we first prove the convergence of the improper Riemann integral. The second
resolvent equation gives

(K(s)
θ − z)−1 = (L0θ − z)−1 + (L0θ − z)−1λI

(s)
θ (K(s)

θ − z)−1. (B.10)

Accordingly, the right side of (B.9) consists of two terms. The first one, coming
from the uncoupled resolvent, equals

〈
φ, eitL0ψ

〉
. Hence we only need to show

the convergence of the integral
−1
2πi

∫

R−i

eitz
〈
φθ, (L0θ − z)−1λI

(s)
θ (K(s)

θ − z)−1ψθ

〉
dz. (B.11)

Consider

(K(s)
θ − z)−1

= (L0θ + λI
(s)
θ − z)−1

= (L0θ−z)−
1
2 [1−(L0θ−z)− 1

2 λI
(s)
θ (L0θ−z)−

1
2 ]−1(L0θ−z)−

1
2 . (B.12)
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Since I
(s)
θ (N + 1)− 1

2 is bounded and (z = x − i)

‖(N + 1)
1
2 (L0θ − z)− 1

2 ‖ = sup
n≥0,l∈R

√
n + 1

4
√

(l − x)2 + (θn + 1)2
≤ 2√

θ
, (B.13)

we have ‖(L0θ − z)− 1
2 λI

(s)
θ (L0θ − z)− 1

2 ‖ < 1/2, for |λ| small enough. It follows
from (B.12) that

(K(s)
θ − z)−1 = (L0θ − z)− 1

2 B(L0θ − z)− 1
2 , (B.14)

where B is a bounded operator satisfying ‖B‖ ≤ 1
1−1/2 = 2. This and (B.13)

imply that
‖λI

(s)
θ (K(s)

θ − z)−1(L0θ − z)
1
2 ‖ ≤ C|λ|, (B.15)

for some constant C. We estimate the integrand in (B.11) as
∣
∣
∣
〈
φθ, (L0θ − z)−1λI

(s)
θ (K(s)

θ − z)−1ψθ

〉∣∣
∣

≤ C|λ| ‖(L∗
0θ − z̄)−1φθ̄‖ ‖(L0θ − z)− 1

2 ψθ‖
≤ C|λ|{(1 + |x|) 1

2+η‖(L∗
0θ − z̄)−1φθ̄‖2 + (1 + |x|)− 1

2 −η‖(L0θ − z)− 1
2 ψθ‖2

}

= C|λ|{S1(x) + S2(x)}. (B.16)

The last line defines the two functions S1 and S2 of x = Rez. Here we use the
inequality ab ≤ αa2 + b2/α, for α = (1 + |x|)1/2+η, where 0 < η < 1/2. We
have

S1(x) = (1 + |x|) 1
2+η
〈
φθ̄, (L0θ − z)−1(L∗

0θ − z̄)−1φθ̄

〉

=
∞∑

n=0

(1 + |x|) 1
2+η
〈
φθ̄, (L0θ − z)−1(L∗

0θ − z̄)−1P (N = n)φθ̄

〉

=
∞∑

n=0

∫

R

(1 + |x|) 1
2+η

(l − x)2 + (θn + 1)2
dμn(l), (B.17)

where dμn is the spectral measure of LR associated to vector P (N = n)φθ̄ and
P (N = n) is the spectral projection onto the n particle sector. By Fubini’s
theorem,

∫

R

S1(x)dx =
∞∑

n=0

∫

R

⎡

⎣
∫

R

(1 + |x|) 1
2+η

(l − x)2 + (θn + 1)2
dx

⎤

⎦dμn(l). (B.18)

The integral over x is bounded above by
∫

R

(1 + |x + l|) 1
2+η

x2 + 1
dx ≤

∫

R

(1 + |x|) 1
2+η + |l| 1

2+η

x2 + 1
dx ≤ Cη + π|l| 1

2+η.

We use here that (a + b)r ≤ ar + br for a, b ≥ 0, 0 < r < 1. It follows from
(B.18) and this estimates that

∫

R

S1(x)dx ≤
〈
φθ̄, (Cη + π|LR| 1

2+η)φθ̄

〉
< ∞. (B.19)
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We treat the second term in (B.16) in a similar fashion.
∫

R

S2(x)dx =
∫

R

(1 + |x|)− 1
2 −η
〈
ψθ, (L∗

0θ − z̄)− 1
2 (L0θ − z)− 1

2 ψθ

〉
dx

=
∞∑

n=0

∫

R

⎡

⎣
∫

R

(1 + |x|)−1/2−η

√
(l − x)2 + (θn + 1)2

dx

⎤

⎦dνn(l), (B.20)

where dνn is the spectral measure of LR associated to vector P (N = n)ψθ.
The integral over x is bounded above by
∫

R

(1 + |x|)−1/2−η

√
(l − x)2 + 1

dx ≤
∫

R

{
(1 + |x|)−1−2η +

1
(l − x)2 + 1

}
dx ≤ Cη + π,

uniformly in l ∈ R. It follows from the last estimate and (B.20) that
∫

R

S2(x)dx ≤ (Cη + π)‖ψθ‖2 < ∞. (B.21)

The bounds (B.19) and (B.21) finish the proof that the integral on the right
side of (B.9) converges.

To complete the proof of Proposition B.3 (and hence that of Theo-
rem 2.2), we need to show that the integral on the right side of (B.9) is analytic
in s, for |s| < 1

2 + ε. To do so, let ν > 0 and set

Fν(s) =
−1
2πi

ν−i∫

−ν−i

eitz
〈
φθ, (K

(s)
θ − z)−1ψθ

〉
dz, (B.22)

which is analytic in s, for |s| < 1
2 + ε. Denote by F (s) the right side of (B.9).

We have

∣
∣Fν(s) − F (s)

∣
∣ =

1
2π

∣
∣
∣
∣
∣
∣

( −ν−i∫

−∞−i

+

∞−i∫

ν−i

)
eitz
〈
φθ, (K

(s)
θ − z)−1ψθ

〉
dz

∣
∣
∣
∣
∣
∣
. (B.23)

The above analysis shows that the integrals converge uniformly in s and hence
(B.23) converges to zero uniformly in s. Therefore, F (s) is analytic. This com-
pletes the proof of Proposition B.3 and that of Theorem 2.2. �
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