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An Extensive Adiabatic Invariant
for the Klein–Gordon Model
in the Thermodynamic Limit

Antonio Giorgilli, Simone Paleari and Tiziano Penati

Abstract. We construct an extensive adiabatic invariant for a Klein–
Gordon chain in the thermodynamic limit. In particular, given a fixed
and sufficiently small value of the coupling constant a, the evolution of
the adiabatic invariant is controlled up to time scaling as β1/a for any
large enough value of the inverse temperature β. The time scale becomes a
stretched exponential if the coupling constant is allowed to vanish jointly
with the specific energy. The adiabatic invariance is exhibited by show-
ing that the variance along the dynamics, i.e. calculated with respect
to time averages, is much smaller than the corresponding variance over
the whole phase space, i.e. calculated with the Gibbs measure, for a set
of initial data of large measure. All the perturbative constructions and
the subsequent estimates are consistent with the extensive nature of the
system.

1. Introduction and Statement of Results

In the quest for a mathematically rigourous foundation of Statistical Physics
in general, and Statistical Mechanics in particular, despite many efforts and
recent successes, a lot of work is still to be done. More specifically, if one consid-
ers an Hamiltonian system, instead of some ad hoc model, for the microscopic
description of large systems, the behaviour over different long time scales is
often still a challenge. One of the possible, and natural strategies, is to apply
the techniques and results of Hamiltonian perturbation theory to large systems,
with particular attention to the thermodynamic limit, i.e. when the number of
degrees of freedom grows very large, at fixed, non-vanishing, specific energy.
The present paper is concerned with the existence of an adiabatic invariant
for an arbitrarily large one-dimensional Klein–Gordon chain, with estimates
uniform in the size of the system.
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It is well known that results like the KAM and the Nekhoroshev theo-
rems stated for finite-dimensional systems (see e.g. [2,25,30–33]) appear to be
somewhat useless as the number N of degrees of freedom of the system grows,
for the estimated dependence on N of the constants involved is usually very
bad, and in particular the (specific) energy thresholds do vanish in the limit
N → ∞. It is worth to mention however that a first theoretical result at finite
specific energy, hence with estimates uniform in N , and on an average time
scale can be found in [15]. Extensions in the infinite-dimensional case have
been made (see e.g. [4,12,13,17,26,27,34,36] for the case of partial differential
equations, or [3,9,20] for the case of lattices), but always for finite energy,
i.e. for zero specific energy. Our aim is precisely to remove such a drawback,
producing a long time estimate for finite specific energy.

In the present paper, we consider the Hamiltonian

H(x, y) =
1
2

N∑

j=1

[(
y2
j + x2

j

)
+ a(xj − xj−1)2 +

1
2
x4
j

]
, (1.1)

of a Klein–Gordon chain with N degrees of freedom, periodic boundary con-
ditions x0 = xN , and coupling constant a.

A previous investigation of a similar model has been made in [24]. In that
paper, a first-order (in the sense of perturbation theory) adiabatic invariant has
been analytically constructed. Moreover, by numerical investigation it has been
shown that the adiabatic invariance persists for times much longer than those
predicted by the first-order theoretical analysis. Thus, the model appeared to
be worth of further theoretical investigation.

A very recent breakthrough in this direction is represented by the
paper [16], which exploits the idea of complementing the perturbation esti-
mates with probabilistic techniques, thus producing a control of the long time
evolution in the thermodynamic limit. We will come back later to the relation
between that paper and the present work.

Let us give a brief sketch of our procedure. The basic idea of both the
quoted works is to avoid the usual procedure of introducing normal modes
for the quadratic part of the Hamiltonian (1.1), thus considering the model
as a set of identical harmonic oscillators with a coupling which includes a
small quadratic term describing a nearest neighbours interaction controlled
by the small parameter a. We construct an extensive adiabatic invariant as
follows. First, as in [24], we exploit a transformation of the quadratic part of
the Hamiltonian into the sum of two terms in involution, one of them includ-
ing all resonant coupling terms. The relevant fact is that the transformation
preserves the extensive nature of the system and produces new coordinates
which are each exponentially localized around the corresponding original ones.
As a subsequent step, the perturbation process is performed here at higher
order. Thus, we produce an adiabatic invariant which still preserves both the
extensive nature of the system and the exponential decay of the interaction
with the distance. Furthermore, we produce estimates which are uniform in
the number N of degrees of freedom.
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We stress that our model contains two independent perturbation parame-
ters, namely (i) the coupling parameter a, and (ii) the specific energy ε. This
is a point that deserves particular consideration. We pay special attention in
keeping these two parameters separated, so that we can deal with the physi-
cally sound hypothesis that the coupling parameter a is fixed, and the inverse
temperature β grows arbitrarily large. Actually, the main Theorem 5.1 is for-
mulated so that one is allowed to play independently with both parameters in
suitable ranges.

A second relevant point is concerned with the question how to assess
the adiabatic invariance of our quantity. The delicate point is again related to
the thermodynamic limit, which was indeed a major obstacle in tackling the
problem with perturbation methods, but can be dealt with using a statistical
approach. In a simplified description (see e.g. [28]) we can say that as the
number of degrees of freedom grows, all the extensive functions appear as
essentially constant over the energy surface, in the sense that for increasing N
their densities approach a delta function centred around their average value.
Clearly an almost constant function is also approximately constant along an
orbit, which seems not to give a meaningful information. The idea is thus
to compare the dynamical fluctuation with the statistical deviation of the
function over the phase space, using the Gibbs measure. A function defined
on the phase space will be considered reasonably conserved if its fluctuation
along the orbit is significantly smaller than its Gibbs variance, for a large set
of initial data.

In the present paper we are able to show that, in the physically sound
assumption of fixed coupling constant a, as the specific energy ε goes to zero,
for a large (asymptotically full) Gibbs measure of initial data, and for time
scaling as inverse powers of ε, the time variance of our quantity is smaller than
the corresponding Gibbs variance; their ratio vanishing as a power of ε. The
estimates are uniform in the number N of degrees of freedom.

We come now to a formal presentation of the results in a somehow
simplified form. A general formulation is given in the main Theorem 5.1,
where some parameters appear that may be subjected to a fine tuning (a
and β among them). In the statement below we reduce the number of free
parameters by making appropriate choices, so as to give more readable,
but still physically meaningful results. Whenever, it will be useful we shall
denote by z all the coordinates and momenta (x, y) and by H(z, a) the
Hamiltonian so as to bring into evidence the dependence on the coupling
constant a.

We denote here by dz the 2N -dimensional Lebesgue measure in the phase
space M := R

2N , by dm the Gibbs measure and by Z the corresponding
partition function, namely

dm(β, a) :=
e−βH(z,a)

Z(β, a)
dz, Z(β, a) :=

∫

M
e−βH(z,a)dz;
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for every function X : M → R we denote its phase average and its variance1

respectively by

〈X〉 :=
∫

M
Xdm(β, a), σ2[X] :=

〈
X2
〉− 〈X〉2.

For every measurable set A ∈ M, we will denote m(A) :=
∫
A
dm(β, a).

We recall that for β large and a small, β is roughly the inverse of the
average specific energy

1
β

∼ 〈H〉
N

.

We also need to define the time average and the time variance, evaluated
along the time evolution. Denoting by φt the Hamiltonian flow, these quantities
are naturally defined as

X(z, t) :=
1
t

t∫

0

(X ◦ φs)(z)ds, σ2
t [X] := X2 −X

2
.

We remark that σ2
t [X] is a function of (z, t), and that all the previously defined

averages and variances are clearly functions of β and a, even though we do not
write these dependencies explicitly.

We state here a particular version of the main result of the paper giving,
for fixed coupling constant and small specific energies, a control for time scales
growing as a power of β. In the statements of the present section, the sym-
bols C1, C2, . . . denote constants that may have different values in different
contexts.

Theorem 1.1. There exist positive constants a∗, β0, β1, C1 and C2 such that,

for all 0 < a < a∗, given the integer r :=
⌊
C1

√
1+2a
a

⌋
, there exists an extensive

polynomial Φ : M → R of degree 2r + 2, such that for all β > max{β0, β1r
6}

one has

m

(
z ∈ R

2N : σ2
t [Φ] ≥ σ2[Φ]√

β

)
≤ C2

β

(
t

t

)2

, t = βr/2

Remark 1.2. According to the result stated above, given a system with Hamil-
tonian (1.1) with a sufficiently small, and fixed, coupling constant a, there
exists a quantity whose time variance is smaller than its phase variance for
a set of initial data of large Gibbs measure; this holds over long times scal-
ing with ε−C/

√
a, for small enough average specific energy ε. Actually, given

the relation among β, r and a, the minimal time scale (corresponding to the
maximal specific energy allowed) is of order rr, i.e. (1/

√
a)1/

√
a.

We may state another result, where the time scale is a stretched expo-
nential in β. The price to be paid, again in the hypothesis of a fixed coupling
constant, is that the specific energy must be bounded both from below and

1 We do not use the standard notation σ2
X because we reserve the subscript, in particular

with a t, for the variance along the dynamics.
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from above; otherwise, it is necessary to let the coupling vanish as the specific
energy goes to zero.

Theorem 1.3. There exist positive constants a∗, β∗, C∗, C1, C2 and C3 such
that, for all β ≥ β∗ and 0 < a < a∗ satisfying

√
a 3
√
β ≤ C∗,

given the integer r :=
⌊
C1

3
√
β
⌋
, there exist an extensive polynomial Φ : M → R

of degree 2r + 2, such that one has

m

(
z ∈ R

2N : σ2
t [Φ] ≥ σ2[Φ]√

β

)
≤ C2

β

(
t

t

)2

, t = eC3
3√β

The proofs of the theorems stated here are given in Sect. 5 as corollaries of
the main Theorem 5.1.

The paper actually consists of two separate parts, namely (i) the con-
struction of an approximate conserved quantity with perturbation methods,
and (ii) the control of the dynamical fluctuation using statistical tools.

The first part makes use of the formal perturbation expansion method
introduced in [23] and used in subsequent works, but implements a quantita-
tive scheme of estimates that exploits the characteristics of the present system,
namely the complete resonance, the extensivity of the model and the exponen-
tial decay of interactions with the distance, to produce estimates uniform in
N . The role of complete resonance in removing the critical dependencies on N
goes back to [9,10] and has been used later on, e.g. in [3,24]. The extensivity
property has been dealt with in our previous paper [24] exploiting the cyclic
symmetry ; some results are restated here in a more terse way, using the for-
malism of circulant matrices. The method of control of the exponential decay
introduced here is new, up to our knowledge. The quantitative perturbation
scheme developed in the present work significantly improves the one in [16].
In this respect, we put emphasis on the different method of solving the homo-
logical equation. The problem is to invert a linear operator that depends on
the coupling parameter a. We are able to formulate a direct inversion lemma,
thus replacing the truncation method used in [16] with a more effective one;
the price we pay is that, at variance with their approach, we actually have
to control small divisors, thus introducing an upper bound on the number
of perturbation steps allowed. The crucial positive outcome of our choice, in
this technical point, is the possibility of preserving the independence of the
parameters a and ε, while they are collectively controlled in [16] as a+ ε.

In the second part, the statistical control of the fluctuation is reminiscent
of the scheme used in [16]. However, we are able to produce improved estimates
of the adiabatic invariance and to prove almost everything independently and
in a different way. First of all, we do not rely on probabilistic techniques (like
marginal probabilities) but we use a more direct approach. In particular, we
exploit a mechanism of cancellations of unwanted interaction terms, which
allows us to bring into evidence the decay properties of spatial correlations.
A second point concerns the fundamental use, besides the decay properties
of spatial correlations, of the short-range interaction properties of the system
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which are preserved by our perturbative construction, the latter being another
outcome of the improvements of the first part.

Let us add a comment on the possible extensions of the present work.
Most of the ideas and techniques used here are not restricted to the one-
dimensional case. E.g. properties like complete resonance, extensivity and
exponential decay of interaction range may be handled essentially in the same
way even for a multidimensional lattice, perhaps at the price of more compli-
cated estimates. A trickier formalization may be required in the part concern-
ing the statistical estimates, in particular for the cancellations.

A further comment is devoted to the fact that in both the present result
and in [16] the coupling parameter must be small enough: thus, the applicabil-
ity to the Fermi–Pasta–Ulam model still remains open. This is particularly rel-
evant since the question of the relaxation properties of the latter model at the
thermodynamic limit still remains not completely understood (see e.g. [21]),
despite some recent advancement in the investigation of the integrability origin
of the long time stability exhibited both with long wave initial data and with
generic initial data (see e.g. [5–8,11,14,22,29]).

We close this review of the literature with a very recent2 and interesting
result: paper [19]. Although they consider different models and deal with a
different question, i.e. the problem of heat conduction, it appears as a relevant
work since they are able to perform a normal form at the thermodynamic limit.

The paper is organized as follows. In Sect. 2 the general setting is intro-
duced, with the formalization of the extensivity of the system, the interaction
range and its relation with the perturbation tools. In Sect. 3 we recall the
normal form transformation of the quadratic part of the Hamiltonian, which
produces the zeroth-order approximation of the adiabatic invariant; the formal
construction is then carried on at higher perturbative orders in Sect. 4. The
control on the time evolution of the adiabatic invariant, and the estimates on
the measure of the set of initial data for which they hold, is given in Sect. 5,
where we actually give the complete and detailed version of the main result of
paper. An Appendix with several technical lemmas closes the paper.

2. General Setting

One of the guiding ideas of this work is to exploit some general characteristics
of a many particles mechanical system:
(i) Particles interacting with a two-body potential;
(ii) The potential is invariant with respect to rotations and translations;
(iii) The potential is assumed to be a smooth function; actually we consider

the stronger condition of being analytic in the coordinates.
With these conditions the Hamiltonian may be given the generic form

H(q, p) =
∑

j

1
2
p2
j +

1
2

∑

i�=j
V (qi, qj)

2 We became aware of it actually during submission.
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where the potential V possesses the symmetry and short-range properties
above.

These properties are quite general ones. E.g. besides the realm of Statis-
tical Mechanics, they also apply to the Solar System and have actually been
used by Lagrange in his theory of secular motions.

Here, we restrict our attention to a system of identical particles on a d-
dimensional lattice, with a short- or even finite-range interaction. In this case
one needs just to know the local interaction of a particle with its neighbours
or with the whole chain, and the complete Hamiltonian is the sum of the
contribution of every particle to both the kinetic and the potential energy.
This is usually expressed by saying that the Hamiltonian is extensive. Functions
possessing the same extensivity property of the Hamiltonian are particularly
relevant.

2.1. Formalization

We restrict our attention to the simplified model of a finite one-dimensional
lattice with periodic boundary conditions and short-range interactions. We
denote by xj , yj the position and the momentum of a particle, with xj+N = xj
and yj+N = yj for any j.

Cyclic Symmetry. We give a formal implementation of extensivity by intro-
ducing the concept of cyclic symmetry. The cyclic permutation operator τ is
defined as

τ(x1, . . . , xN ) = (x2, . . . , xN , x1), τ(y1, . . . , yN ) = (y2, . . . , yN , y1). (2.1)

We shall denote
(
τf
)
(x, y) = f(τx, τy).

Definition 2.1. We say that a function F is cyclically symmetric if τF = F .

Cyclically symmetric functions may be constructed as follows. Let f be
given. A new function F = f⊕ is constructed as

F (x, y) = f⊕(x, y) =
N∑

l=1

τ lf(x, y). (2.2)

The upper index ⊕ should be considered as an operator defining the new
function. We shall say that f⊕(x, y) is generated by the seed f(x, y). Gen-
erally speaking, the decomposition of a cyclically symmetric function in the
form (2.2) need not be unique. We shall often use the convention3 of denoting
extensive functions with capital letters and their seeds with the corresponding
lower case letter.

The following properties will be useful:
(i) If f = f ′ + f ′′ is a seed of a function F then τs

′
f ′ + τs

′′
f ′′ is also a seed

of the same function, for any integers s′, s′′;
(ii) The Poisson bracket h⊕ = {f⊕, g⊕} between two cyclically symmetric

functions is also cyclically symmetric. A seed is easily constructed as h =
{f, g⊕}, but other choices are allowed using the property (i) above.

3 We will also reserve the prime to denote auxiliary variables rather than derivatives.
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Norm of an Extensive Function. Assume now that we are equipped with a
norm for our functions ‖·‖, e.g. the supremum norm over a suitable domain.
We introduce a norm ‖ · ‖⊕ for an extensive function F = f⊕ by defining

∥∥F
∥∥⊕ = ‖f‖,

i.e. we actually measure the norm of the seed. An obvious remark is that the
norm so defined depends on the choice of the seed, but this will be harmless
for the following reason. All the perturbation procedure and the quantitative
estimates on the norm, in the rest of the paper, are based on the fact that all
algebraic operations, in particular Poisson brackets, induce a natural choice of
the seed for the resulting function. Thus, the relevant estimates will be made
directly on the seed so that the initial choice is propagated through the whole
procedure. For these reasons, all the quantitative estimates in the rest of the
paper could be restated as: the function we are considering possesses a seed
whose norm satisfies the stated inequality. We do not explicitly mention this
fact in every statement. Moreover, we also have the following relevant facts:
(i) For any s one has ‖τsf‖ = ‖f‖;
(ii) The inequality ‖F‖ ≤ N‖f‖ holds true for any choice of the seed.
This is particularly useful if we are able to produce norms of the seed which
are independent of N , since this fully exploits the property of the system of
being extensive. This is what we plan to do, indeed.

Polynomial Norms. Let f(x, y) =
∑
jk fj,kx

jyk be a homogeneous polynomial
of degree s in x, y. We define its polynomial norm as

‖f‖ :=
∑

j,k

|fj,k|.

Short-Range Interaction. The short-range interaction is characterized by writ-
ing the seed f of a function as a sum f =

∑
m f

(m), where the decomposition
f (m) is explained in Sect. 2.2, formula (2.7). We consider in particular the
case of exponential decay of interactions using two positive parameters: we
say that a function f expanded as above is of class D(Cf , σ) in case one has∥∥f (m)

∥∥ ≤ Cfe−mσ. Such a characterization of function is particularly useful in
statistical calculation. The known quantitative perturbation schemes will be
adapted to deal with these classes of functions.

Circulant Matrices. Let us restrict our attention to the harmonic approxi-
mation around a stable equilibrium. The Hamiltonian is a quadratic form
represented by a matrix A

H0(x, y) =
1
2
y · y +

1
2
Ax · x.

If the Hamiltonian H is extensive, then the same holds also for its quadratic
part H0 = h⊕

0 . This implies that A commutes with the matrix τ representing
the cyclic permutation (2.1)

τij =

{
1 if i = j + 1 (modN),
0 otherwise.
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We remark that the matrix τ is orthogonal and generates a cyclic group of
order N with respect to the matrix product.

We recall the following

Definition 2.2. A matrix A ∈ MatR(N,N) is said to be circulant if

Aj,k = a(k−j) (modN).

Actually, the set of circulant matrices is a subset of Toepliz matrices, i.e
those which are constant on each diagonal. For a comprehensive treatment of
circulant matrices, see e.g. [18]. We just recall some properties that will be
useful later.
1. The set of N ×N circulant matrices is a real vector space of dimension N ,

and a basis is given by the cyclic group generated by τ (see 3.1 of [18]).
2. The set of matrices which commute with τ , i.e. those A such that Aτ = τA,

coincides with the set of circulant matrices (see 3.1 of [18]).
3. The set of eigenvalues of a circulant matrix is the Discrete Fourier Trans-

form of the first row of the matrix and vice-versa. This allows to construct
the circulant matrix from its spectrum.

4. Let M2 = A, where A is circulant; then M is circulant, too. Moreover, from
the definition of M :=

√
A, it follows that if A is symmetric, then M is also

symmetric.
In our problem the cyclic symmetry of the Hamiltonian implies that the

matrix A of the quadratic form is circulant. Obviously it is also symmetric, so
that the space of matrices of interest to us has dimension

⌊
N
2

⌋
+ 1. Indeed, a

circulant and symmetric matrix is completely determined by
⌊
N
2

⌋
+1 elements

of its first line.

2.2. Interaction Range

We give here a formal characterization of finite-range interaction, pointing out
some properties that will be useful in the rest of the paper. We first consider
the case of an infinite chain, which is easier to deal with. Then, we shall point
out the differences with the periodic case.

The Infinite Chain. We start with some definitions. Let us label the variables
as xl, yl with l ∈ Z. Let us consider a monomial xjyk (in multi-index notation).
We define the support S(xjyk) of the monomial and the interaction distance
�(xjyk) as follows: considering the exponents (j, k) we set

S(xjyk) = {l : jl �= 0 or kl �= 0}, �(xjyk) = diam
(
S(xjyk)

)
.

We say that the monomial is left aligned in case S(xjyk) ⊂ {0, . . . , �(xjyk)−1}.
The definitions above is extended to a homogeneous polynomial f by

saying that S(f) is the union of the supports of all the monomials in f , and
that f is left aligned if all its monomials are left aligned. The relevant property
is that if f̃ is a seed of a cyclically symmetric function F , then there exists also
a left aligned seed f of the same function F : just left align all the monomials
in f̃ .
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For the seed f of a function (using z to collectively denote the x and y
variables, and k the corresponding multi-index) consider the decomposition

f(z) =
∑

m≥0

f (m)(z), f (m)(z) =
∑

�(k)≤m
fkz

k, (2.3)

assuming that every f (m) is left aligned. It would be interesting to replace the
inequality �(k) ≤ m with equality, but this is not compatible with the fact
that the Poisson bracket can possibly reduce the interaction range. However,
for our purposes it is enough to assure two properties, namely (i) in f (m) there
are no terms with interaction range longer than m (upper bound); (ii) the size
of f (m), estimated with a norm, is of order μm, with some positive μ. This is
what we are going to do.

For the Poisson bracket between two cyclically symmetric functions we
have

{f⊕, g⊕} =
∑

s,s′
{τsf, τs′

g} =
∑

m,m′

∑

s,s′
{τsf (m), τs

′
g(m′)}

=
∑

s

τs
(∑

m,m′

∑

s′
{f (m), τs

′
g(m′)}

)
.

The last expression immediately suggests to construct a seed by just removing
the translation τs and the sum over s. However, we remark that the obvious
equality

{τs+jf (m), τs
′+jg(m′)} = τ j{τsf (m), τs

′
g(m′)}

holds true. Thus, we may replace any term {f (m), τs
′
g(m′)} for s ∈ Z with a

translated one.
Let us exploit these facts. Given s ∈ Z, we concentrate our attention on

the expression {f (m), τs
′
g(m′)}. The following properties hold true.

1. If s′ < −m′ or s′ > m then one has {f (m), τs
′
g(m′)} = 0, for the two

functions that depend on independent sets of variables.
2. If s′ < 0 we may replace the seed {f (m), τs

′
g(m′)} with {τ−s′

f (m), g(m′)}.
3. A seed for {f⊕, g⊕} is given by the m+m′ + 1 expressions

{f (m), g(m′)} , {τf (m), g(m′)} , . . . ,{τm′
f (m), g(m′)}

{f (m), τg(m′)} , . . . ,{f (m), τmg(m′)}
(2.4)

letting m,m′ ≥ 0.
4. Between the expressions in (2.4) there are

|m−m′| + 1 with�(·) ≤ max(m,m′), plus
2 with�(·) ≤ max(m,m′) + 1, plus
2 with�(·) ≤ max(m,m′) + 2, plus

...
2 with�(·) ≤ m+m′.

(2.5)
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Figure 1. Graphical representation of the values of m, m′

which concur in forming the seed h(ν). The white triangle con-
tains all nodes that must be selected according to Table 2.5.
The left figure refers to the case of an infinite chain. The right
figure shows which nodes are removed in the case of a finite
chain. (See text for more details)

The third property follows from the first two, which are obvious. The seed
(2.4) so found is left aligned. It may contain duplicated monomials in some
expression, but this is harmless because we are only interested in bounding
the interaction range. The last property is just matter of counting.

Denote now h⊕ = {f⊕, g⊕}. Letting m and m′ to vary, we reorder
the seed (2.4) so that we can write h =

∑
ν≥0 h

(ν). To this end, we col-
lect together in h(ν) all expressions which according to (2.5) have an esti-
mated upper bound of the interaction range equal to ν. This assures on
the one hand that the interaction range of h(ν) does not exceed ν and on
the other hand, that terms with interaction range certainly less than ν are
placed in some h(ν′) with ν′ < ν. It is convenient to represent graphically the
Table (2.5) as a tridimensional diagram on N

3 by putting (m,m′) on the hor-
izontal plane and the admitted upper bounds for �(·) on the vertical axis, i.e.
max(m,m′), max(m,m′) + 1, . . . , m + m′. To each non-empty node so iden-
tified we attach a weight given by the number of terms in the first column
of (2.5). Then we make a section with the horizontal plane of height ν, thus
obtaining the left diagram of Fig. 1 which represents schematically all terms
in (2.5) that go into h(ν). The non-empty nodes on the selected plane satisfy
max(m,m′) ≤ ν ≤ m + m′, namely they belong to the white triangle in the
diagram. The nodes of the diagram together with their weight contain all the
information we need to estimate the norms. The nodes inside the grey triangle
have �(·) certainly less than ν, so we need not to include them in h(ν). This
rearrangement of seeds assures that the norm of every term in η(ν) has a factor
μν , as we shall see later.
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We conclude that

h(ν) =
∑

m,m′,s,s′
{τsf (m), τs

′
g(m′)} (2.6)

the sum being extended to the nodesm,m′ in the diagram with the translations
s, s′ allowed for them according to the property 3.

The Periodic Chain. In view of the periodicity, the labels of the variables may
be taken to be 0, . . . , N − 1, and the definitions of support, interaction range
and left alignment are easily adapted. In particular, the infinite sum on (2.3)
is truncated at m = N . Taking into account the finite limits in the sums, we
have

h⊕ = {f⊕, g⊕} =
N−1∑

s=0

τs
( N−1∑

m,m′=0

N−1∑

s′=0

{f (m), τs
′
g(m′)}

)
.

The seed’s components h(ν) are constructed in much the same way with a
minor change. Precisely in (2.4) we must distinguish two different case. For
m + m′ < N − 1 we get exactly the same formula. For m + m′ ≥ N − 1 we
only have a subset of N elements, namely

{f (m), g(m′)} , . . . , {f (m), τN−1g(m′)}.
This is represented in the right part of the diagram of Fig. 1, where the part
to be omitted is covered in dark grey.

Exponential Decay of Interactions. We recall the definition given in Sect. 2.1.
The seed f of a function f is said to be of class D(Cf , σ) in case

∥∥∥f (m)
∥∥∥ ≤ Cfe−σm, Cf > 0 , σ > 0, (2.7)

where f =
∑
m f

(m) is the expansion of f in terms of increasing interaction
range, as in (2.3).

The following Lemma produces a general estimate of the Poisson bracket
specially adapted to the case of cyclically symmetric polynomials. It is crucial
for the control of the dependence on N of the norms of extensive functions
generated by our perturbation scheme.

Lemma 2.3. Let f(x, y) and g(x, y) be homogeneous polynomials of degree r and
s, respectively. Then, {f, g} is a homogeneous polynomial of degree r + s− 2,
and one has

‖{f, g}‖ ≤ rs‖f‖ ‖g‖.
Moreover, the seed {f, g⊕} of {f⊕, g⊕} satisfies

∥∥{f⊕, g⊕}∥∥⊕ ≤ rs‖f‖ ‖g‖. (2.8)

Proof. To prove the first inequality write the Poisson bracket as

{f, g} =
∑

j,k,j′,k′
fj,kgj′,k′

n∑

l=1

jlk
′
l − j′

lkl
xlyl

xj+j
′
yk+k

′
,
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In view of the definition of the norm we may estimate

‖{f, g}‖ ≤
∑

j,k,j′,k′
|fj,k| |gj′,k′ |

n∑

l=1

(jlk′
l + j′

lkl).

Since j′
l ≤ s and k′

l ≤ s one has
∑n
l=1(jlk

′
l + j′

lkl) ≤ s
∑n
l=1(jl + kl) = rs,

which readily gives the first inequality. Coming to (2.8), remark that we may
write

f⊕(x, y) =
∑

j,k

fj,k

N∑

m=1

(τmx)j(τmy)k,

meaning that all monomials (τmx)j(τmy)k have the same coefficient. Differ-
entiating with respect to xl yields

∂f⊕

∂xl
=
∑

j,k

N∑

m=1

fj,k
(τ−mj)l

xl
(τmx)j(τmy)k.

Using the cyclic decomposition of the Poisson bracket {f⊕, g⊕} =
({f, g⊕})⊕,

one gets

{f, g⊕} =
∑

j,k,j′,k′
fj,kgj′,k′

N∑

l=1

jl
xlyl

(
xjyk

N∑

m=1

(τ−mk′)l(τmx)j
′
(τmy)k

′
+

−xj′
yk

′
N∑

m=1

(τ−mj′)l(τmx)j
′
(τmy)k

′
)
.

The norm is thus estimated as

‖{f, g⊕}‖ ≤
∑

j,k,j′,k′
|fj,k| |gj′,k′ |

N∑

l=1

(
jl

N∑

m=1

(τ−mk′)l + kl

N∑

m=1

(τ−mj′)l

)
.

Remarking that
∑N
m=1(τ

−mj′)l = |j′| and
∑N
m=1(τ

−mk′)l = |k′|, one has

N∑

l=1

(jl|k′| + kl|j′|) ≤ (|j′| + |k′|)
N∑

l=1

(jl + kl) = (|j′| + |k′|)(|j| + |k|).

In view of the definition of the norm one gets

‖{f, g⊕}‖ ≤ rs‖f‖ ‖g‖,
from which (2.8) follows. �

The next statements provide the basic estimates for controlling the expo-
nential decay in the framework of perturbation theory.

Lemma 2.4. Let F, G be cyclically symmetric homogeneous polynomials of
degree r′, r′′, respectively. Let the seeds f, g be of class D(Cf , σ′) and
D(Cg, σ′′), respectively, and let σ < min(σ′, σ′′). Then, there exists Ch ≥ 0
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such that the seed h of H = {F,G} is of class D(Ch, σ). An explicit estimate
is

Ch =
r′r′′CfCg

(1 − e− max(σ′,σ′′))(1 − e− max(σ′,σ′′)+σ)
.

Proof. According to (2.6), the seed of H may be written as

h(ν) =
∑

m′,m′′

∑

s′.s′′
{τs′

f (m′), τs
′′
g(m′′)},

where the sum must be extended to all nodes of the triangle of the diagram 1.
In view of the general estimate of the Poisson bracket in Lemma 2.3, we have

∥∥∥∥
∑

s′,s′′
{τs′

f (m′), τs
′′
g(m′′)}

∥∥∥∥ ≤ r′r′′CfCge−m′σ′
e−m′′σ′′

;

This uses the cyclic symmetry and the fact that the sum over s′, s′′ is restricted
to the values allowed by (2.5). Thus, for all nodes of the diagram we get a
common factor r′r′′CfCg and must deal only with the exponentials. Possibly
exchanging the functions we may suppose that σ′ > σ′′(> σ). To get the
estimate of h(ν) we have to sum up all the couples (m′,m′′) in the white
triangle of Fig. 1: we perform the summation by fixing the each diagonal
segment m′ +m′′ = l and increasing l = ν, . . . , 2ν. Hence, we can write

2ν∑

l=ν

∑

m′+m′′=l

e−m′σ′
e−m′′σ′′

2ν∑

l=ν

ν∑

m′=l−ν
e−lσ′′

e−m′(σ′−σ′′)

=
ν∑

l=0

ν∑

m′=l

e−(l+ν)σ′′
e−m′(σ′−σ′′)

=
ν∑

l=0

ν−l∑

m=0

e−(l+ν)σ′′
e−(m+l)(σ′−σ′′)

=
ν∑

l=0

ν−l∑

m=0

e−νσ′′
e−lσ′

e−m(σ′−σ′′),

where we have first replaced m′′ = l −m′, then have shifted back the interval
of the running index l (thus exhibiting e−νσ′′

), and finally have shifted back
the interval of the running index m(= m′). Then, we estimate

ν∑

l=0

ν−l∑

m=0

e−νσ′′
e−lσ′

e−m(σ′−σ′′) = e−νσe−ν(σ′′−σ)
ν∑

l=0

e−lσ′
ν−l∑

m=0

e−m(σ′−σ′′)

≤ e−νσ
ν∑

l=0

e−lσ′
ν−l∑

m=0

e−m(σ′−σ)

<
e−νσ

(1 − e−σ′)(1 − e−(σ′−σ))
.

The claim follows by replacing σ′ with max(σ′, σ′′). This completes the proof.
�
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Corollary 2.5. If in Lemma 2.4 we have σ′ �= σ′′ then we may set σ =
min(σ′, σ′′) and

Ch =
r′r′′CfCg

(1 − e− max(σ′,σ′′))(1 − e−|σ′−σ′′|)
.

Proof. Just set σ = σ′′ and at the end replace σ′ − σ with |σ′ − σ′′|. �

Corollary 2.6. If in Lemma 2.4 we have σ′ > σ′′ and f (0) = 0, i.e. f =∑
m≥1 f

(m) = O(e−σ′
) then we may set σ = σ′′ and

Ch =
2e−(σ′−σ′′)r′r′′CfCg

(1 − e−σ′)(1 − e−(σ′−σ′′))
.

Proof. Set σ = σ′′. Then hypothesis f =
∑
m′≥1 f

(m′) implies that we must
remove the element (m′,m′′) = (0, ν) from the elements of the white triangle
of Fig. 1: this element gives a factor e−νσ′′

. Hence, the sum in Lemma 2.4
becomes

ν∑

l=0

ν−l∑

m=0

e−(m+l)σ′
e−(ν−m)σ′′ − 1 = e−σ′′ν

[
ν∑

l=0

e−lσ′
ν−l∑

m=0

e−m(σ′−σ′′) − 1

]

< e−σ′′ν

[
e−σ′

+ e−(σ′−σ′′)

(1 − e−σ′)(1 − e−(σ′−σ′′))

]

< e−σ′′ν 2e−(σ′−σ′′)

(1 − e−σ′)(1 − e−(σ′−σ′′))
,

which readily gives the claim. �

3. Normal Form for the Quadratic Hamiltonian

Let us rewrite the Hamiltonian (1.1) as a sum of its quadratic and quartic
parts H = H0 +H1, where

H0(x, y) :=
1
2

N∑

j=1

[
y2
j + x2

j + a(xj − xj−1)2
]
, H1(x, y) :=

1
4

N∑

j=1

x4
j . (3.1)

The aim of this section is to give the quadratic part a resonant normal
form so that it turns out to be written as H0 = HΩ +Z0 with Z0 an extensive
function exhibiting an exponential decay of the interaction among sites with
their distance, and {H0, Z0} = 0. That is, Z0 is a first integral for H0. This
result has been already stated in [24]; we give here a different proof. We will
then apply the transformation also to the quartic part of our Hamiltonian,
showing that it still has an exponential decay of the interactions.
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3.1. The Normalizing Transformation

We introduce the positive parameters ω(a) > 1 and μ(a) < 1/2

ω2(a) := 1 + 2a, μ :=
a

ω2

ad rewrite the quadratic part of our Hamiltonian as

H0(x, y) =
1
2
y · y +

1
2
x ·Ax,

where [recalling τ as the permutation matrix generating (2.1)]

A = ω2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −μ 0 . . . 0 −μ
−μ 1 −μ . . . 0 0

0 −μ 1
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . 1 −μ

−μ 0 0 . . . −μ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ω2
[
I − μ(τ + τ	)

]
, (3.2)

which is clearly circulant and symmetric, and gives a finite-range interaction.
The latter form is particularly useful because it exhibits the perturbation para-
meter μ that will be assumed to be small. This particular form allows us to
look at our model as a system of identical harmonic oscillators with a small lin-
ear coupling. The resulting complete resonance is one of the keys of our result.
Introduce the constant Ω as the average of the square roots of the eigenvalues
of A.

Proposition 3.1. For μ < 1/2 there exists a canonical linear transformation
which gives the Hamiltonian H0 the particular resonant normal form

H0 = HΩ + Z0, {HΩ, Z0} = 0 (3.3)

with HΩ and Z0 cyclically symmetric with seeds

hΩ =
Ω
2

(q21 + p2
1),

ζ0 =
1
2

�N
2 �∑
j=1

bj(q0qj+p0pj+q0qN−j+p0pN−j+1) + δbN
2 +1(q0qN

2 +1+p0pN
2 +1)

|bj(μ)| = O((2μ)j), δ =

{
0 N odd
1 N even

(3.4)

The linear transformation is given by

q = A1/4x, p = A−1/4y, (3.5)

where the circulant and symmetric matrix A1/4 satisfies
(
A1/4

)
1,j

= cj(μ)(2μ)j−1, 1 ≤ j ≤
⌊
N

2

⌋
+ 1, |cj(μ)| ≤ 2

√
ω. (3.6)

H1 remains an extensive and cyclically symmetric function once composed with
the transformation (3.5).
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We remark that all the perturbative construction is performed after the
linear transformation (3.5), but all the estimates with the Gibbs measure of
Sect. 5 are made in the original variables. We thus need some further proper-
ties of the transformation itself, which are given in the following two results.
Recalling that, according to the notations of Sect. 2.2, we label the coordinates
with indices 0, . . . , N − 1, and introducing the decay rate σ0

σ0 := − ln(2μ) ⇒ 2μ = e−σ0 , (3.7)

we have

Proposition 3.2. The linear canonical transformation (3.5) is the flow at time
t = 1 of the cyclically symmetric quadratic form X0

X0(x, y) := x ·By, B :=
1
4

ln (A),

where B is a symmetric and circulant matrix characterized by

B1,j = cj(μ)(2μ)j , |cj(μ)| ≤ 1
2
C0(a) :=

1
4

∣∣∣ ln
(

ω2

1 − 2μ

)∣∣∣,

for 1 ≤ j ≤ ⌊N2
⌋

+ 1; the seed of X0 satisfies χ0 ∈ D(C0(a), σ0

)
and reads

χ0 =
�N

2 �∑
j=1

B1,j(x0yj + y0xj) + δB1,N/2+1x0yN/2+1 δ =

{
0 N odd
1 N even

(3.8)

Lemma 3.3. Let ρ⊕ an homogeneous polynomial of degree 2r+ 2 in D(Cρ, σ∗
)

and assume χ0 ∈ D(C0(a), σ′) with σ∗ < σ′ ≤ σ0, then

TX0ρ ∈ D(e(r+1)C̃Cρ, σ∗
)
, C̃ ≤ 2C0(a)

(1 − e−σ′)(1 − e−(σ′−σ∗))
.

A fundamental point is represented by the decay properties of the seeds
of Z0 and H1.

Lemma 3.4. The seeds of the functions Z0 and H1 satisfy

ζ0 ∈ D(C0(a), σ0

)
, C0(a) = O(1)

h1 ∈ D(C1(a), σ1

)
, C1(a) = O(1)

for a → 0, σ1 :=
1
2
σ0.

Remark 3.5. The seed h1 cannot preserve the same exponential decay rate of
the linear transformation (see the corresponding proof in the Appendix); how-
ever, it is possible to show that h1 ∈ D(C1(a), σ1

)
for any σ1 < σ0. We make

the choice σ1 = σ0/2 to explicitly relate σ1 to the small natural parameter a
of the model, since it will be useful in the estimates of the main Theorems of
the paper.

The proofs of all the statements of this section are deferred to Appen-
dix 6.1.1.
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4. Construction of an Extensive First Integral

We construct a formal first integral for the Hamiltonian (1.1) using the Lie
transform algorithm in the form introduced in [23]. We include a brief descrip-
tion, referring to the quoted paper for proofs.

Given a generating sequence {Xs}s≥1, we define the linear operator
TX as

TX =
∑

s≥0

Es, E0 = I, Es =
s∑

j=1

LXj
Es−j , (4.1)

where LXj
· = {Xj , ·} is the Lie derivative with respect to the flow generated

by Xj . The operator TX turns out to be invertible and to possess the relevant
properties

TX (f · g) = (TX f) · (TX g), TX {f, g} = {TX f, TX g}. (4.2)

Let now Z satisfy the equation TXZ = H, and let Φ0 commute with Z,
i.e. {Φ0, Z} = 0. Then in view of the second of (4.2), one immediately gets
{TX Φ0,H} = 0, i.e. Φ = TX Φ0 is a first integral for the Hamiltonian H.

The operator TX is defined here at a formal level, and it is known that
using it in normal form theory usually produces non-convergent expansions.
However, we may well use it in formal sense, as explained by Poincaré (Ch.
VIII in [35]). What we actually do is truncate the all expansions at a given
order, so that all the equalities above are true up to terms of order larger than
r (i.e. of degree larger that 2r + 2 in our polynomial expansions). E.g. the
sentence above “Φ = TX Φ0 is a first integral for H” should be interpreted as
“having determined X1, . . . ,Xr, then truncate Φ(r) = Φ0 + Φ1 + · · · + Φr, so
that we have {Φ(r),H} = O(r + 1)”. The statement of Proposition 4.1 below
must be interpreted in this sense.

In this section we prove the following

Proposition 4.1. Consider the Hamiltonian H = h⊕
Ω + ζ⊕

0 + h⊕
1 with seeds

hΩ = Ω
2 (x2

0 + y2
0), the quadratic term ζ0 of class D(C0, σ0) with ζ(0)

0 = 0, and
the quartic term h1 of class D(C1, σ1 ), with σ0 > σ1 > ln(4). Pick a positive
σ∗ < σ1. Then, there exist positive γ, μ∗ and C∗

μ∗ =
Ω(1 − e−σ0)(1 − e−(σ0−σ∗))

8C0eσ1
,

γ = 2Ω
(
1 − rμ

μ∗

)
,

C∗ =
C1

γ(1 − e−σ0)(1 − e−(σ0−σ∗))
.

(4.3)

such that for any positive integer r satisfying

2rμ < μ∗, (4.4)

there exists a finite generating sequence X = {χ⊕
1 , . . . , χ

⊕
r } of a Lie transform

such that TXZ −H = O(r+ 1), i.e. the remainder O(r+ 1) starts with terms
of degree bigger than 2r + 4 and Z is an extensive function of the form
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Z = h⊕
Ω + ζ⊕

0 + · · · + ζ⊕
r

with LΩZs = 0 for s = 0, . . . , r, Zs = ζ⊕
s of degree 2s+ 2.

Moreover, defining

Cr := 64r2C∗; (4.5)

σs :=
sσ∗ + (r − s)σ1

r
for s = 2, . . . , r, (4.6)

the following statements hold true:
(i) The seed χs of Xs is of class D(Cs−1

r
C1
γs , σs);

(ii) The seed ζs of Zs is of class D(Cs−1
r C1, σs);

(iii) If Φ = ϕ⊕ is a homogeneous polynomial of degree 2m and of class
D(Cϕ, σ0) then for s = 0, . . . , r one has that EsΦ is of class D(F srCϕ, σs)
with Fr = 16(m+ 2)r2C∗;

(iv) Setting Φ = HΩ in the previous point we have that EsHΩ is of class
D(F s−1

r C1, σs);
(v) Setting Φ0 = HΩ and considering the first r+1 terms in the expansion of

TX Φ0, namely Φ(r) = Φ0 + · · · + Φr with Φs = EsΦ0, we have

Φ̇(r) = {H1,Φr}
which is a cyclically symmetric homogeneous polynomial of degree 2r + 4
and of class D(Cρ, σ∗) with

Cρ =
8(r + 2)(16r2C∗)r−1C2

1

(1 − e−σ0)(1 − e−(σ0−σ∗))
.

The rest of this section is devoted to the proof of the proposition. We first
include a formal part, where we illustrate in detail the process of construction
of the normal form and introduce an appropriate framework which allows us
to control how the interaction range propagates. Then, we give quantitative
estimates paying particular attention to the exponential decay of interactions
with the distance.

4.1. Formal Algorithm and Solution of the Homological Equation

We now translate the equation TXZ = H into a formal recursive algorithm
that allows us to construct both Z and X . We take into account that our
Hamiltonian has the particular formH = H0+H1 , whereH1 is a homogeneous
polynomial of degree 4.

For s ≥ 1 the generating function Xs and the normalized term Zs must
satisfy the recursive set of homological equations

LH0Xs = Zs + Ψs; (4.7)

where
Ψ1 = H1,

Ψs =
s− 1
s

LXs−1H1 +
s−1∑

j=1

j

s
Es−jZj , s ≥ 2.

(4.8)
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A justification of this algorithm is the following. Using the Definition (4.1) of
Tχ, we expand the equation TχZ = H into the recursive set of equations

Z0 = H0,

Z1 +E1Z0 = H1, (4.9)

EsZ0 +
s∑

l=1

Es−lZl + Zs = 0 for s > 1

In view of E1Z0 = Lχ1
H0, the second equation is readily written as LH0χ1 =

Z1 − H1, which is the homological equation at order s = 1. Then, using the
definition of Es, we replace EsZ0 =

∑s−1
l=1

l
sLχl

Es−lZ0 in the third of (4.9)
and get the homological equation LH0χs = Zs + Ψs, where

Ψs =
s−1∑

l=1

l

s
Lχl

Es−lZ0 +
s−1∑

l=1

Es−lZl.

The expression for Ψs may be simplified thanks to the equations of the previous
orders as follows. Replacing Es−lZ0 as given by (4.9) in the first sum calculate

s−1∑

l=1

l

s
Lχl

Es−lZ0 =
s− 1
s

Lχs−1
H1 −

s−1∑

l=1

l

s
Lχl

s−l∑

j=1

Es−l−jZj

=
s− 1
s

Lχs−1
H1 −

s−1∑

j=1

s− j

s

s−j∑

l=1

l

s− j
Lχl

Es−j−lZj

=
s− 1
s

Lχs−1
H1 −

s−1∑

j=1

s− j

s
Es−jZj ,

where the definition of the operator Es has been used in the last equality.
Then, replace the latter expression in the r.h.s. of Ψs above and get the wanted
expression (4.8).

Our aim is to solve the homological Eq. (4.7) with the prescription that
LΩZs = 0 where LΩ · := {HΩ, ·} is the Lie derivative along the vector field
generated by HΩ as defined in (3.3). Thus, the next step is to point out the
properties of the operator LΩ and discuss the solution of the homological
equation.

4.1.1. The Linear Operator LΩ. It is an easy matter to check that LΩ maps
the space of homogeneous polynomials into itself. It is also well known that
LΩ may be diagonalized via the canonical transformation

xj =
1√
2
(ξj + iηj), yj =

i√
2
(ξj − iηj), j = 1, . . . , N, (4.10)

where (ξ, η) ∈ C
2n are complex variables. A straightforward calculation gives

LΩξ
jηk = iΩ(|k| − |j|) ξjηk,

where |j| = |j1| + · · · + |jN | and similarly for |k|.



Vol. 16 (2015) An Adiabatic Invariant in the Thermodynamic Limit 917

A relevant general property is that if f(x, y) =
∑
j,k cj,kx

jyk (in multi-
index notation) is a real polynomial, then the transformation (4.10) produces
a polynomial g(ξ, η) =

∑
j,k bj,kξ

jηk with complex coefficients bj,k satisfying

bj,k = −b∗k,j .
Conversely, this is the condition that the coefficients of g(ξ, η) must satisfy to
assure that transforming it back to real variables x, y we get a real polynomial.

Let us denote by P(s) the (finite) linear space of the homogeneous poly-
nomials of degree s in the 2n canonical variables ξ1, . . . , ξn, η1, . . . , ηn . The
kernel and the range of LΩ are defined in the usual way, namely

N (s) = L−1
Ω (0), R(s) = LΩ(P(s))

The property of LΩ of being diagonal implies

N (s) ∩ R(s) = {0}, N (s) ⊕ R(s) = P(s).

Thus, the inverse L−1
Ω : R(s) → R(s) is uniquely defined on the restriction R(s)

of P(s). It will also be useful to introduce the projectors on the range and on
the kernel defined as

ΠR(s) = L−1
Ω LΩ, ΠN (s) = I − ΠR(s) ,

so that we have ΠR(s) + ΠN (s) = I.

Lemma 4.2. Let f ∈ P(s) and g ∈ P(r). Then, the following composition table
applies

{·, ·} N (r)

∣∣∣∣ R(r)

N (s) N (r+s−2)

∣∣∣∣ R(r+s−2)

R(s) R(r+s−2)

∣∣∣∣ P(r+s−2)

(4.11)

Proof. For any pair of functions f, g , by Jacobi’s identity for Poisson brackets
we have LΩ{f, g} = {LΩf, g} + {f, LΩg}. If f, g are in the respective kernels,
then LΩ{f, g} = 0 , which proves that {f, g} ∈ N (r+s−2) . If g ∈ R(r) then
we may write g = LΩL

−1
Ω g , and so if f ∈ N (s) we have, still using Jacobi’s

identity, {f, LΩL
−1
Ω g}= LΩ{f, L−1

Ω g} in view of LΩf = 0 , which proves that
{f, g} ∈ R(r+s−2) . If f, g are in the respective ranges, then nothing can be
said in general. This gives the table. �

4.1.2. The Linear Operator LH0 . We come now to the solution of the homo-
logical Eq. (4.7). In view of (3.3), we have LH0 = LΩ + LZ0 , so that we
immediately get

LH0 = LΩ

(
I + L−1

Ω LZ0

)
.

Thus, we have

L−1
H0

= (I +K)−1
L−1

Ω , K := L−1
Ω LZ0 , (4.12)
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and using the Neumann’s series we can write

(I +K)−1 =
∑

l≥0

(−1)lKl.

Let us consider LH0 on the (finite dimensional) topological space P(s);
with the notation ‖·‖op we mean the dual norm of a linear operator acting on
P(s) (they are all continuous). The following proposition claims that, although
we lack information about its Kernel and Range, we can invert LH0 on R(s).
This is one of the crucial technical points of the paper, leading eventually to
the independence of the two perturbative parameters a and 1/β. See also the
forthcoming Remark 4.6 on the control of small divisors.

Proposition 4.3. If the restriction of K to R(s) satisfies

‖K‖op < 1, (4.13)

then for any g ∈ R(s), there exists an element f ∈ R(s) such that

(I +K)f = g with f =
∑

l≥0

(−1)lKlg.

Proof. Let us take g ∈ R(s), then from (4.11) one has LZ0g ∈ R(s) and also
L−1

Ω LZ0g = Kg ∈ R(s); in other words,

K : R(s) → R(s).

The sequence {Klg} is composed of elements of R(s) and the same holds for
the finite sum

fn =
n∑

l=0

(−1)lKlg ∈ R(s), n ≥ 1.

Condition (4.13) provides the convergence of the sequence fn → f , with f
which belongs to R(s), since it is a closed subset of P(s). To prove that f
solves the required equation, we consider the sequence

gn = (I +K)fn ∈ R(s);

from the definition of fn we have gn = g + (−1)nKn+1g, and since Kn+1g
vanishes, the sequence gn converges to g. But the continuity of K implies also
gn = (I +K)fn → (I +K)f , so the uniqueness of the limit gives the thesis. �

4.2. Quantitative Estimates and Exponential Decay of Interactions

Here, we complete the formal setting of the previous sections by producing
all estimates of the norms of the relevant functions. We also prove the cru-
cial property that the exponential decay of interactions is preserved by our
construction.

Recalling the Definition (4.6) of σs, so that σ1 > · · · > σr = σ∗ , our aim
is to show that the functions Xs, Ψs and Zs that are generated by the formal
construction are of class D(·, σs), with some constant to be evaluated in place
of the dot.
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We shall repeatedly use the following elementary estimate. By the general
inequality

1 − e−x ≥ x
1 − e−a

a
for 0 ≤ x ≤ a.

we have

1 − e−σj ≥ σj(1 − e−σ0)
σ0

for 1 ≤ j ≤ r,

1 − e−(σj−σk) ≥ (σj − σk)(1 − e−(σ0−σ∗))
σ0 − σ∗

for 1 ≤ j < k ≤ r.

Moreover, in view of the Definition (4.6) of σ0, . . . , σr for 0 ≤ j < s ≤ r, we
get

1 − e− max(σj ,σs−j) ≥ 1 − e−σ0

σ0
max(σj , σs−j) >

(1 − e−σ0)
2

,

1 − e−(σj−σk) ≥ k − j

r
(1 − e−(σ0−σ∗)).

(4.14)

Estimate of the Homological Equation. We first consider the operator L−1
Ω .

Lemma 4.4. Let F = f⊕ ∈ R(r) be a cyclically symmetric homogeneous poly-
nomial of degree r of class D(Cf , σ). Then, there exists a cyclically symmetric
homogeneous polynomial Φ = ϕ⊕ ∈ R(s) which solves LΩΦ = F and is of class
D(Cϕ, σ) with

Cϕ ≤ Cf
2Ω

.

The proof is a straightforward consequence of the diagonal form of LΩ.
Coming to the inversion of LH0 , we state the following

Lemma 4.5. Let G = g⊕ ∈ R(2s+2) be a cyclically symmetric homogeneous
polynomial of degree 2s+ 2 of class D(Cg, σs). Let K as defined in (4.12) and
assume

CK :=
4C0e−(σ0−σ1)

Ω(1 − e−σ0)(1 − e−(σ0−σ∗))
≤ 1

2r
. (4.15)

Then, there exists a cyclically symmetric homogeneous polynomial X = χ⊕ ∈
R(2s+2) which solves LH0X = G; moreover, χ is of class D(Cg/γ, σs) with

γ = 2Ω(1 − rCK). (4.16)

Remark 4.6. In Proposition 4.3, we ask ‖K‖op < 1 to simply perform the
inversion. In the above Lemma 4.5, condition (4.15) reads as ‖K‖op < 1/2,
and the stronger requirement is to control the small divisors (4.16).

We emphasize that in view of the first of (4.3) we have CK = μ/μ∗ . Therefore,
condition (4.15) reads 2rμ < μ∗, which is the smallness condition for μ of
Proposition 4.1. Furthermore, this gives the value of γ in (4.3).

We also emphasize that the constant γ is evaluated as independent of
s, but seems to depend on the degree r of truncation of the first integral.
However, in view of the condition on μ we have Ω ≤ γ ≤ 2Ω.
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Proof. Recall that ζ0 is of class D(C0, σ0), as stated in Lemma 3.4. By Corol-
lary 2.6, with Z0, σ0 and σs in place of f, σ′ and σ′′, respectively, we see that
LZ0g is of class D(C ′Cg, σs) with

C ′ ≤ 4(s+ 1)C0e−(σ0−σs)

(1 − e−σ0)(1 − e−(σ0−σs))
≤ 8rC0e−(σ0−σ1)

(1 − e−σ0)(1 − e−(σ0−σ∗))

where the second of (4.14) has been used. Using Lemma 4.4, we get that
Kg is of class D(rCKCg, σs) with CK given by (4.15). This also implies that
‖K‖op ≤ rCK . In view of condition (4.15) we may apply Proposition 4.3, thus
concluding that the inverse of LH0 is well defined. With an explicit calculation
we also calculate ‖Km‖op ≤ (rCK)m, thus concluding that L−1

H0
g is of class

D(Cg/γ, σs) with γ as in (4.16), as claimed. �

Having thus proved that the homological equation can be solved, the
statement (i) of Proposition 4.1 follows.

Iterative Estimates on the Generating Sequence. We recall that the generating
sequence is found by recursively solving the homological equations LH0χs =
Zs + Ψs for s = 1, . . . , r with

Ψ1 = H1,

Ψs =
s− 1
s

LXs−1H1 +
s−1∑

l=1

l

s
Es−lZl,

EsZl =
s∑

j=1

j

s
LXj

Es−jZl for s ≥ 1.

(4.17)

Our aim is to find positive constants Cψ,1, . . . , Cψ,r so that Ψs is of class
D(Cψ,s, σs). In view of Lemma 4.4 this implies that Zs is of class D(Cζ,s, σs)
with Cζ,s = Cψ,s and χs of class D(Cχ,s, σs) with Cχ,s = Cψ,s/γ . Meanwhile,
we also find constants Cζ,s,l such that EsZ2l is of class D(Cζ,s,l, σs+l) whenever
s+ l ≤ r.

We look for a constant Br and two sequences {ηs}1≤s≤r and {θs}1≤s≤r
such that

Cψ,1 ≤ η1C1, Cζ,0,1 ≤ η1θ0C1,

Cψ,s ≤ ηs
s
Bs−1
r C1 for s > 1,

Cζ,s,l ≤ θsηlB
s+l−1
r C1 for s ≥ 1 , l ≥ 1.

(4.18)

In view of Ψ1 = H1 and of E0Z1 = Z1 we can choose η1 = θ0 = 1. By (4.17)
and using Lemmas 4.4 and 2.4 together with Corollary 2.5, we get the recursive
relations

Cζ,s,l ≤ 4
s

s−1∑

j=1

j(s+ l − j)ηjηlθs−j
(1 − e− max(σj ,σs+l−j)+σs+l)(1 − e− max(σj ,σs+l−j))

Bs+l−2
r C2

1

γ
.

Cψ,s ≤
(

8(s− 1)ηs−1C1

s(1 − e−(σ0−σs))(1 − e−σ0)
+
s−1∑

l=1

lBr
s
ηlθs−l

)
Bs−2
r C1

γ
, (4.19)
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We observe that, from the first of (4.14), we have

1 − e− max(σj ,σs+l−j) ≥ 1 − e−σ0

σ0
max{σj , σs+l−j}

=
1 − e−σ0

σ0

(
σ0 − σ0 − σ∗

r
min{j, s+ l − j}

)

>
1 − e−σ0

σ0

(
σ0 + σ∗

2

)

since min{j, s− j} ≤ r/2, thus it gives

1 − e− max(σj ,σs+l−j) >
1 − e−σ0

2
.

Using the second of (4.14) in a similar way to deal with

1 − e−[max(σj ,σs+l−j)−σs+l] ≥ s+ l − min{j, s+ l − j}
r

(
1 − e−(σ0−σ∗)

)
,

and setting

Br =
16C1r

γ(1 − e−(σ0−σ∗))(1 − e−σ0)
.

we get

Cζ,l,s≤ 1
s

s∑

j=1

jηjηlθs−j Bs+l−1
r C1,

Cψ,s≤
(

1
s
ηs−1 +

s−1∑

l=1

l

s
ηlθs−l

)
Bs−1
r C1,

Therefore, the required inequalities (4.18) are satisfied by the sequences recur-
sively defined as

θs =
s∑

j=1

j

s
ηjθs−j for s ≥ 1,

ηs = ηs−1 +
s−1∑

j=1

jηjθs−j for s ≥ 2.

starting with η1 = θ0 = 1. Actually, to find an estimate for the generating
function it is enough to investigate the sequence η1, . . . , ηr . To this end, after
multiplication by a factor 1/s, we subtract the second relation from the first
one, thus getting

θ1 = 1, θs =
(
s+ 1
s

)
ηs − 1

s
ηs−1 < 2ηs − 1

s
ηs−1.

Then, we substitute the latter expression for θs−j in the second of the relations
above and get

ηs < ηs−1 +
s−1∑

j=1

2jηjηs−j < 3
s−1∑

j=1

jηjηs−j .
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Hence, the wanted inequality (4.18) for Cψ,s is satisfied by the sequence

η1 = 1, ηs = 3
s−1∑

j=1

jηjηs−j = 3s

s/2�∑

j=1

ηjηs−j , s ≥ 2.

By induction it is possible to prove that ηs ≤ 9s−1s! for all s = 1, . . . , r: indeed,
it holds

xs ≤ 9s−1 s

3


s/2�∑

j=1

j!(s− j)! ≤ 9s−1s!,

provided

s/2�∑

j=1

j!(s− j)! =

s/2�∑

j=2

j!(s− j)! ≤ 2(s− 1)!;

the latter being true since for 4 ≤ s ≤ r and 2 ≤ j ≤ �s/2�

j!
(s− j)!
(s− 1)!

=
j−2∏

i=0

(
j − i

s− j − i

)
≤
(

2
3

)j−1

.

Then, by s! ≤ (
√
e)−(s−1)ss we obtain for 1 ≤ s ≤ r

ηs ≤
(

9√
e

)s−1

ss < 4s−1rs−1

Replacing this and (4.19) in the inequality (4.18) for Cψ,s and recalling that
Cχ,s ≤ Cψ,s/γ, we have

Cχ,s ≤ (64r2C∗)s−1C1

γs
, C∗ =

C1

γ(1 − e−σ0)(1 − e−(σ0−σ∗)
.

This proves the statement (ii) of Proposition 4.1 with the estimated value of
C∗ in (4.3). The statement (iii) also follows in view of Cζ,s ≤ Cψ,s .

Estimate of the Truncated First Integral. We give an estimate for the first
r terms of TX Φ where Φ is a homogeneous polynomial, as specified in the
statement (iv) of Proposition (4.1). We look for a sequence Cϕ,s of constants
such that EsΦ is of class D(Cϕ,s, σs) for s = 0, . . . , r. Of course we have
Cϕ,0 = Cϕ, so we look for a recursive estimate for s > 0 using Lemma 2.4
and the Definition (4.1) of TX . Recalling (4.14) we have that EsΦ is of class
D(A, σs) with a constant A satisfying

A ≤
s∑

j=1

j

s
· 4(j + 1)(s− j +m+ 1)
(1 − e− max(σj ,σs−j)+σs)(1 − e− max(σj ,σs−j))

· C1

jγ
(Cr)j−1Cϕ,s−j

≤
s∑

j=1

(s− j +m+ 1)
max(j, s− j)

· 16C1r

γ(1 − e−σ0)(1 − e−(σ0−σ∗))
(Cr)j−1Cϕ,s−j
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Thus, recalling the Definition (4.3) of C∗, we may set

Cϕ,s =
1
4

s∑

j=1

s− j +m+ 1
max(j, s− j)

(Cr)jCϕ,s−j .

For s = 1 this gives

Cϕ,1 = (m+ 1)r2C∗Cϕ, (4.20)

so that the claim is true with Fr as given in (4.3). For s > 1, we extract from
the sum the term j = 1 and replace the index j with j + 1 in the rest of the
sum, thus getting

Cϕ,s ≤ (s+m)
4(s− 1)

CrCϕ,s−1 +
Cr
4

s−1∑

j=1

s− j +m

max(j + 1, s− 1 − j)
(Cr)jCϕ,s−1−j ,

≤ s+m

4(s− 1)
CrCϕ,s−1 +

1
4
CrCϕ,s−1

≤ m+ 2
4

CrCϕ,s−1.

This proves the statement (iv) of Proposition 4.1.
Concerning the statement (v), we remark that LX1Hω = −LΩX1 =

−Z1 −H1 in view of the homological equation at order 1. Therefore, we may
replace (4.20) with Cϕ,1 = C1. For s > 1, the argument above for a generic
function Φ requires only a minor modification and one obtains the same recur-
sive relation for Cϕ,s, where we just replace a different value for Cϕ,1 . This
proves the claim.

Estimate of the Time Derivative of the Approximate First Integral. We come
to the statement (vi) of Proposition 4.1. Recall that by construction we have
TXZ −H = O(r + 2), meaning that its expansion starts with terms of degree
at least 2(r + 2). Since LΩZs = 0 for s = 0, . . . , r and recalling the general
property TX {f, g} = {TX f, TX g}, we immediately have

{H,TX Φ0} = TX {Z,Φ0} = O(r + 2)

On the other hand, since TX Φ0 − Φ(r) = O(r + 2), we also have {H,Φ(r)} =
O(r+ 2). Substituting the expansions H = H0 +H1 and Φ(r) = Φ0 + · · · + Φr
we get Φ̇(r) = {H,Φ(r)} = {H1,Φr}, which is an extensive homogeneous poly-
nomial of degree 2r+4, as claimed. Recalling that H1 is of class D(C1, σ0) and
Φr is of class D(F r−1

r C1, σr), in view of the statement (v), a straightforward
application of Lemma 2.4 gives

Cρ ≤ 8(r + 2)F r−1
r C2

1

(1 − e−σ0)(1 − e−(σ0−σ∗))
,

and the result follows by just replacing the estimated value of Fr from state-
ment (iv), with m = 0.

This concludes the proof of Proposition 4.1.
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5. Long Time Estimates and Statistical Control of Fluctuations

In this section we actually present, and prove, the main result of the paper
in its complete and detailed form; the results given in the introduction, i.e.
Theorems 1.1 and 1.3, are simplified statements with some particular choices
of the parameters involved.

We first stress that although the whole perturbative construction of our
conserved quantity Φ ≡ Φ(r) is based upon an initial normal form transfor-
mation of the quadratic part of the Hamiltonian, i.e. there is a change of
coordinates at the very beginning of our procedure, we will state our result
and the corresponding proof in the original4 variables z = (x, y).

As explained in the introduction, our aim is to show that Φ is a good
adiabatic invariant over a long time scale: to this purpose, we introduce its
variation over a time interval

ΔtΦ(z) := Φ
(
φt(z)

)− Φ((z)),

where φt(z) is the Hamiltonian flow. We will show that ΔtΦ remains small,
compared with the phase variance of Φ, over a long time scale, for a set of
initial data z of large Gibbs measure. This kind of control is quite weak for
all the times between 0 and t, since the set of large measure is in principle
allowed to change if we change the final t to control the intermediate times.
We thus give two stronger estimates: the first deals with ΔtΦ. Its smallness
implies that for every large deviation of a given sign at intermediate times
must correspond a similar deviation with the opposite sign. An even stronger
control is obtained with the smallness of σ2

t [ΔtΦ]: in this case, we have that
ΔsΦ is small also for all s ∈ (0, t).

5.1. Main Result

Concerning the time scale over which we are able to control the evolution of our
adiabatic invariant, we have actually two types of estimates, as a power law and
a stretched exponential, each with its own set of hypothesis and constants, but
with a similar formulation; we thus present the two results together. To simplify
the statement, we find it convenient to formulate in advance the hypothesis
and definitions under which the result holds in those two cases. In particular,
we define the time scale t̄ and the corresponding bounds on β.

Given the constants5 a0, μ∗, μ2, β∗, β0, β1, β3, β4, K1, defining

μ0 :=
a0

1 + 2a0
, μ1 :=

(
1 − 3

4(max{β0,1})2

)8

64K8
1 (1 + 4a0)4

,

we introduce

4 We will take care of this via the application of Lemma 3.3 throughout the proof.
5 See Propositions 4.1, 5.4, 5.8 and Lemmas 6.2 and 5.9.



Vol. 16 (2015) An Adiabatic Invariant in the Thermodynamic Limit 925

HD1 (power law estimate). there exist β2 > 0 and r∗(μ) = μ∗
2μ such that for

any integer r ∈ [1, r∗) and for any ν ∈ (0, 1], defining

β∗ := max
{
β0, β1, β2, β3, β4, (β∗r3)1/ν ,

√
3/2
}
,

μ∗ := min
{
μ0, μ1, μ2,

1
8

}
,

then

assume β∗ ≤ β, and define
λ := r(1 − ν) + 1 − ν/2,

t := βλ.

HD2 (exponential estimate). there exists μ3 > 0 such that defining

β∗ := max
{
β0, β1, β3, β4, 64eβ∗,

√
3/2
}

μ∗ := min

{
μ0, μ1, μ2, μ3, μ∗ 3

√
eβ∗

β∗
,
1
8

}
,

then

assume β∗ ≤ β < eβ∗
(
μ∗
μ

)3

and define
κ :=

3
2

3

√
β

eβ∗ ,

t :=
κ9/2eκ/2

β
.

We are now ready to state the result:

Theorem 5.1. For either the hypothesis and definitions of case HD1 or those
of case HD2, there exist constants K > 1 such that, for all μ < μ∗, and for
any positive δ one has

m
(
z ∈ R

2N : |ΔtΦ(z)| ≥ δσ[Φ]
)

≤ 12K
δ2

(
t

t

)2

,

m
(
z ∈ R

2N :
∣∣ΔtΦ(z)

∣∣ ≥ δσ[Φ]
)

≤ 3K
δ2

(
t

t

)2

,

m
(
z ∈ R

2N : σ2
t [ΔtΦ(z)] ≥ δσ2[Φ]

)
≤ 4K

δ

(
t

t

)2

.

Remark 5.2. The estimates contained in the above theorem can be seen as the
generalizations of Propositions 2, 3 and 4 of paper [24]. The result of paper [16]
can be compared with the first estimate, with the hypothesis and definition
set HD2 in the case of vanishing coupling constant; the only difference being
a slightly improved exponent for the argument of the exponential (1/3 in our
case, 1/4 in their result).

Proof. The first two estimates of the theorem are actually Tchebychev esti-
mates, while the third is a Markov estimate. We recall that, in our notations,
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given any measurable function f and any real η > 0, for p = 1 and 2 respec-
tively, Markov and Tchebychev estimates are

m
(
z ∈ R

2N : |f(z)| ≥ η
)

≤ 〈|f |p〉
ηp

.

Choosing η = δσ[Φ], and using Tchebychev for the first two estimates, and with
η = δσ2[Φ] and using Markov for the third one, one has to control respectively
the following three quantities

〈
(ΔtΦ)2

〉

δ2σ2[Φ]
,

〈(
ΔtΦ

)2〉

δ2σ2[Φ]
,

〈
σ2
t [ΔtΦ]

〉

δσ2[Φ]
. (5.1)

By the rough inequality σ2
t [ΔtΦ(z)] ≤ (ΔtΦ)2(z) it is clear that to esti-

mate the three quantities above, we need to control the phase average of
(ΔtΦ)2,

(
ΔtΦ

)2
and (ΔtΦ)2. By defining

R := {Φ(r),H} = {Φr,H1}, (5.2)

we have ΔtΦ(z) = − ∫ t
0
R ◦ φs(z)ds, so that we may write

〈
(ΔtΦ)2

〉
=

〈 ∫

[0,t]2

(R ◦ φs1) (R ◦ φs2) ds1ds2

〉

=
∫

[0,t]2

〈(R ◦ φs1) (R ◦ φs2)〉ds1ds2

≤
∫

[0,t]2

‖(R ◦ φs1)‖L2 ‖(R ◦ φs2)‖L2 ds1ds2

=
∫

[0,t]2

‖R‖2
L2 ds1ds2 = t2

〈
R2
〉
.

where we used Fubini’s theorem, Schwartz inequality and the invariance of the
measure under the Hamiltonian flow. For the second quantity we need to add
a further double integration over time to perform the time average, but the
scheme is the same:

〈(
ΔtΦ

)2〉
=

〈
1
t2

∫

[0,t]2

Δs1ΦΔs2Φds1ds2

〉

=
1
t2

∫

[0,t]2

〈 ∫

[0,s1]×[0,s2]

(R ◦ φτ1) (R ◦ φτ2) dτ1dτ2

〉
ds1ds2

≤ t2

4
〈
R2
〉
.
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In the third case, we instead have a single time integration from the time
average:

〈
(ΔtΦ)2

〉
=

〈
1
t

∫

[0,t]

(ΔsΦ)2ds

〉
=

1
t

∫

[0,t]

〈
(ΔsΦ)2

〉
ds

≤ 1
t

∫

[0,t]

s2
〈
R2
〉
ds =

t2

3
〈
R2
〉
.

For all the three quantities (5.1), everything we thus need to control the
quotient of

〈
R2
〉

over σ2[Φ], with an upper bound for the numerator and a
lower bound for the denominator: for the former we apply Proposition 5.4,
and for the latter we use Proposition 5.8. In particular, the hypothesis and
definition sets HD1 and HD2 imply the hypothesis of Proposition 5.4 part 1
and, respectively, part 2.

Indeed if HD1 holds, from μ < μ∗ we have that a < min{a0, 1/6} (μ∗ <
min{μ0, 1/8}) and6 D2μ� < 1/2 (μ < μ1). The condition μ < μ2 is required
in Lemma 5.9, for the lower bound of σ2[Φ]. With respect to the hypothesis
of Proposition 5.8 we observe that if HD1 holds, the bounds on β are satisfied
(for β large enough, setting β2 as the threshold), since we need it to be scaling
like r3 and according to HD1 we have it scaling as r(3/ν) with ν ≤ 1.

If HD2 holds, since in that case from Proposition 5.4 we set the optimal
integer r as �κ/3�, the condition on β translates in the following inequality

1 >
3
4
eC̃−1

(
1 + 2 3

√
eβ∗

β

)

which is true since C̃ vanishes with μ (set here μ3 as the threshold).
Using also the constants Ω (Proposition 3.1), C1 (Proposition 4.1) and

K2 (Proposition 5.3), setting

K :=
325e6

2
K2

1K2Ω4

C2
1

·
⎧
⎨

⎩

2β∗3 case HD1

38

e4
case HD2

we have the thesis. �

Proof of Theorem 1.1. After observing that σ2
t [ΔtΦ] = σ2

t [Φ], use the third
estimate of Theorem 5.1, hypothesis and definitions set HD1, with r = �r∗�,
ν = 1

2 , δ = β−1/2 and letting only βr/2 in the time scale t̄. �

Proof of Theorem 1.3. Applying Theorem 5.1, hypothesis and definitions set
HD2, third estimate, with δ = β−1/2 and letting only ecκ in the time scale t̄
with a constant c slightly smaller than 1/2 to get the correct power of β outside
the exponential factor. The upper bound on

√
a 3
√
β represents last condition

in HD2 using the Definition (3.7) of μ. �

6 The constant D is defined in Appendix 6.2 and recalled in Section 5.2, while μ� in (5.11).
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The rest of the section is devoted to the proofs of the upper bound of〈
R2
〉
, in Subsect. 5.3, and of the lower bound of σ2[Φ] in Subsect. 5.4. Due to

its relevance and to the slightly different techniques involved, we anticipate in
Subsect. 5.2 the result on the control of the decay of correlations.

5.2. Decay of Correlations

The main result of this section is an estimate of the correlation between two
polynomials with disjoint supports: we show such a correlation to be (at least)
small as ad where d is the distance between the two supports.

Let β0, a0 and K1 be the constants of Lemma 6.2. Consider also these
other constants7 defined in Appendix 6.2:

A1 =
√

1 + 4a, A2 =
√

1 − 2a, B = 1 − 3
4β2

, D =
K1A1(a)
B(β)

;

Introduce the following:

μ� := a(2 + a), K2 :=
4(2K1)2+8a0

(1 − 2a0)4(1 − a0)6
. (5.3)

Proposition 5.3. Let N be the length of the periodic chain. Let φ and ψ be
two homogeneous polynomial of degree 2r and 2s, respectively, and interaction
length m and m′, respectively; suppose their supports are disjoint and denote
by d their distance,8 then for any β > β0 and a < a0 it holds

|〈φψ〉 − 〈φ〉〈ψ〉| ≤ K2

[
Dm+m′+2d+4

]
μd�

[
2r+sr!s!
(A2

2β)r+s

]
‖φ‖ ‖ψ‖ .

Before entering into the details of the proof it is necessary to introduce
another notation for the measure that will be useful also in the sequel of this
section. To this purpose, we split the original Hamiltonian in a different way.
We recall that H is naturally split in two different terms H0 and H1 [see (3.1)]
according to the degree, but here we want to put into evidence the coupling
terms of H. There are two possible choices, the first being to separate all the
terms depending on the coupling constant a, i.e. a2

∑
j(xj+1 −xj)2. We instead

separate the diagonal and the off-diagonal part of A [see (3.2) and (6.1)] like
in Proposition 3.1, but maintaining the original variables; in this way, we put
into evidence the real coupling terms. Accordingly we define, on a subset of
variables, the uncoupled component of the Gibbs measure by

dV (m)
s :=

s+m−1∏

j=s

e
−β
[
(1+2a)

x2
j
2 +

x4
j
4

]

dxj ,

which depend only on m variables, and the coupling part by

[p, q] := eβaxpxp+1 · · · eβaxq−1xq ,

7 Aj are actually functions of a, B a function of β and D a function of both the parameters,

but all these quantities are asymptotically constants as a → 0 and β → ∞.
8 If p = minS(φ), q = maxS(φ), t = minS(ψ) and u = maxS(ψ), with q < t, then
d = min(t− q − 1, N − u+ p− 1).
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for9 p < q ≤ p+N . We observe that, for any m < l, it is possible to factorize
both the component of the measure: dV (l)

s = dV (m)
s dV (l−m)

s+m and [s, s + l] =
[s, s +m][s +m, s + l]. Whenever S(φ) ⊂ {p, . . . , q}, we will write [p, φ, q] :=
φ[q, p], to stress the bound on the support. The full Gibbs measure, again
ignoring the y variables, is then given by [0, l]dV (l)

0 for a system with periodic
boundary conditions,10 so the partition function will be

Zl :=
∫

Rl

[0, l]dV (l)
0 =

∫

Rl

e−βH(x)dx.

Proof. The proof consists of two main steps: in the first one we show the
presence of several cancellations, while in the second one we actually estimate
the remaining terms.

Without any loss of generality we may assume φ to be left aligned, so
that its support is contained in {0, . . . ,m− 1}; denote by t the minimal index
in the support of ψ, which will be therefore contained in {t, . . . , t+m′ − 1}.

As a first step, we rescale all the variables by a factor
√
β. We need to

introduce a corresponding notation for the relevant objects with the rescaled
variables, and to this purpose we will systematically add a � as a superscript
when needed. We remark that the powers of β appearing as a multiplying
factor will not be included in the �-objects. For example, we have

[p, q]� := eaxpxp+1 · · · eaxq−1xq , dV (m)�
s :=

s+m−1∏

j=s

e
−
[
(1+2a)

x2
j
2 +

x4
j

4β2

]

dxj .

(5.5)
If we perform such a scaling on the correlation, we get

〈φψ〉 − 〈φ〉〈ψ〉 =
1

βr+s

(
〈φψ〉� − 〈φ〉�〈ψ〉�

)
.

We need to introduce a further notation related to the coupling terms
[p, q]� of the measure. These terms are products of factors of the form eα,
each being the coupling term between two consecutive sites of the chain; to
possibly decouple the chain in several positions we use the trivial identity
eα = 1 + (eα − 1), so that for example [0,m]� turns out to be the sum of 2m

terms each of which is the product of m factors: for every j = 0, . . . ,m− 1 the
factor can be either 1 or eaxjxj+1 − 1. We will identify each term in the sum
with a string of m symbols in {0, 1}: 0 for the factor eaxjxj+1 − 1, and 1 for
the factor 1. For example, for m = 4, a possible factor is

k = 0010 → [0,m]�k = (eax0x1 − 1) · (eax1x2 − 1) · 1 · (eax3x4 − 1) .

9 We remark that in this notation, given the generic dimension l of the space, the indexes
must be considered modulo l.
10 for a system with free boundary conditions the measure is [0, l− 1]dV

(l)
0 , so the partition

function will be

Zl :=

∫

Rl

[0, l− 1]dV
(l)
0 =

∫

Rl

e−βH(x)dx. (5.4)
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Thus, we may write [0,m]� =
∑

k[0,m]�k : we will use this kind of expansion for
the coupling terms involving sites outside the support of the polynomials. We
remark that a factor of the type eα − 1 is roughly of order α, i.e. in our case
of order a, so the number of “zeros” in the sequence k can be used to quantify
the smallness of the corresponding term.

Let us now rewrite the correlation collecting the partition function in the
denominators

〈φψ〉� − 〈φ〉�〈ψ〉� =
〈〈φψ〉〉�

Z� − 〈〈φ〉〉�〈〈ψ〉〉�

Z�2
, (5.6)

where we used the notation 〈〈φ〉〉 := Z · 〈φ〉 =
∫
φ(x)e−βH(x)dx, and let us

concentrate our attention on the numerator.
According to the supports of φ and ψ, we split the coupling part of the

measure in the following way

[0, N ]� = [0,m− 1]� · [m− 1, t]� · [t, t+m′ − 1]� · [t+m′ − 1, N ]�;

moreover, in every integral, we will expand the “holes” between the supports:

[m− 1, t]� =
∑

j

[m− 1, t]�j , [t+m′ − 1, N ]� =
∑

k

[t, t+m′ − 1]�k .

We rewrite the two addenda of the numerator of (5.6) as

〈〈φψ〉〉�
Z�
N =

∑

j

∑

k

∑

j′

∑

k′
∫

RN

[0, φ,m−1]�[m−1, t]�j [t, ψ, t+m′−1]�[t+m′−1, N ]�kdV
(N)�
0

×
∫

RN

[0,m−1]�[m−1, t]�j′ [t, t+m′−1]�[t+m′−1, N ]�k′dV (N)�
0 ,

〈〈φ〉〉�〈〈ψ〉〉� =
∑

j

∑

k

∑

j′

∑

k′
∫

RN

[0, φ,m−1]�[m−1, t]�j [t, t+m′−1]�[t+m′−1, N ]�kdV
(N)�
0

×
∫

RN

[0,m−1]�[m−1, t]�j′ [t, ψ, t+m′−1]�[t+m′−1, N ]�k′dV (N)�
0

(5.7)

Given such a decomposition of the correlation 〈φψ〉�−〈φ〉�〈ψ〉�, and using
the bitwise “and” operator ∧ [see (6.8) in Appendix 6.3 for a formal definition],
we give the main claim of the proof:
1. All the terms such that j ∧ j′ �= 0 AND k ∧ k′ �= 0 cancel;
2. All the terms such that j ∧ j′ = 0 OR k ∧ k′ = 0 are (at least) of order ad.
The idea behind the cancellations is that j ∧ j′ �= 0 ensure the presence (see
Remark 6.16) of at least a “1” in the same position in both j and j’: this
corresponds to the absence of the coupling term so that both the integrals in
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each of the expressions in (5.7) can be split in the same position; the same
happens with k and k’. This opportunity to cut the integrals in the holes
between the supports of φ and ψ allows us to rearrange the terms to show that
actually all these terms cancel. The formal proof is deferred to Appendix 6.3.

Concerning the second part instead, the idea is that j∧j′ = 0 ensure the
presence of enough “zeros”, each contributing with an order in a. To make the
argument more precise, let us first assume that the strings j and j’ are not
longer than k and k’; thus, according to the statement of the proposition, the
length l of both j and j’ is equal to d+ 2.

Let us consider first the case in which j∧j′ = 0. Since we must consider all
the cases for k and k′, we actually do not expand the second hole between the
supports of φ and ψ. Moreover, instead of expanding the whole term [m−1, t],
we will write

[m− 1, t]� = [m− 1,m]�
∑

j

[m, t− 1]�j [t− 1, t]�,

and similarly for the same hole in the other integral. Please note that,
despite the use of the same letter, now the string j has length exactly d:
expanding only on the “interior” of the hole simply means that we will include
in our estimates some terms that actually could be avoided because they cancel.

The strategy is thus to apply Lemma 6.8 to 〈φψ〉�
N and 〈1〉�

N , cutting the
chain in four parts for the first average and into two parts for the second one:

〈φψ〉�
N 〈1〉�

N

≤ Km+m′+d
1

〈
φea(x

2
0+x

2
m−1)

〉�

m

1
Z�
d

∑

j

∫

Rd

e
a
2 (x2

m+x2
t−1)[m, t− 1]�jdV

(d)�
m

〈
ψea(x

2
t+x2

t+m′−1)
〉�

m′

〈
ea(x

2
t+m′+x2

N−1)
〉�

N−m−m′−d

Kd
1

〈
ea(x

2
t+x2

m−1)
〉�

N−d
1
Z�
d

∑

j′

∫

Rd

e
a
2 (x2

m+x2
t−1)[m, t− 1]�j′dV (d)�

m . (5.8)

We first deal with the sum given by the expansion of the smaller holes;
for the other terms we will apply some Lemmas proven in the Appendix.
Introducing the notation |j| to count the number of “zeros” in the string j,
according to Remark 6.16 we have d ≤ |j|+ |j′|; clearly it also holds |j|+ |j′| ≤
2d.

We need to estimate the generic term [m, t−1]�j ; we will use the inequality
eα−1 ≤ αeα on each of the “zero” factors, and then apply the estimate which
decouple the measure:

[m, t− 1]�j ≤ a|j| ∏

jn=0

xnxn+1eaxnxn+1 ≤ a|j| ∏

jn=0

xnxn+1ea
1
2 (x2

n+x2
n+1).

With the use of the previous estimate, the measure within (m, t − 1) can be
factorized so that we have, for b ∈ {0, 1, 2}, the following integrals:
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∫

R

|x|be−
(
αb

x2
2 + x4

4β2

)

≤
(

2
αb

) b+1
2

Γ
(
b+ 1

2

)
αb = 1 + (2 − b)a,

with the exception of the boundary sites m and t− 1 where αb = 1 + (1 − b)a.
Since it could be not completely trivial to control, for all the possible strings
j, how many factors have b = 0 or b = 1 or b = 2, the idea is to evaluate
at the same time the terms coming from [m, t − 1]�j with those coming from
[m, t−1]�j′ . Let us consider a site n with m < n < t−1, and suppose that from
[m, t − 1]�j we have a term with b = 0: this is possible if and only if jn = 1
and jn−1 = 1. But then, from j ∧ j′ = 0, one has j′

n = 0 and j′
n−1 = 0

which implies that the corresponding term from [m, t− 1]�j′ will be an integral
with b = 2. Thus, the product of the two terms will be bounded by 2π. If we
start b = 1, this is compatible with both 01 and 10 as substrings of j, which
implies respectively 10 or 00, and 01 or 00 for j’: thus, from [m, t − 1]�j′ , the
contribution will be with b = 1 or b = 2, and the product can be bounded in
the same way. As a last case, starting from b = 2, this requires 00 for j which
is compatible with all the cases in j’: again, the product of the two terms will
bounded by 2π. For the two boundary sites, one has the same kind of control11

simply with a factor (1 − a)
3
2 on each site for the worst case.

We thus have the following estimate
∫

Rd

e
a
2 (x2

m+x2
t−1)[m, t− 1]�jdV

(d)�
m

∫

Rd

e
a
2 (x2

m+x2
t−1)[m, t− 1]�j′dV (d)�

m

≤ a|j|+|j′|

(1 − a)6
(2π)d .

We need now to control the sum over all the possible strings such that j∧j′ =
0. We exploit the fact that d ≤ |j| + |j′| ≤ 2d and count the number of
configurations for the couple of strings j and j’ with a given value of |j|+ |j′|.
It is easy to verify that

#
{

(j, j′) : |j| + |j′| = d+ i
}

=
(
d

i

)
2d−i,

so we end up with
∑

j,j′

∫

Rd

e
a
2 (x2

m+x2
t−1)[m, t− 1]�jdV

(d)�
m

∫

Rd

e
a
2 (x2

m+x2
t−1)[m, t− 1]�j′dV (d)�

m

≤ (2πa)d

(1 − a)6

d∑

i=0

(
d

i

)
2d−iai =

[2πa(2 + a)]d

(1 − a)6
. (5.9)

We are now ready to go on with the estimate (5.8); using Lemma 6.9
for the averages involving φ and ψ, Lemma 6.10 for the averages without

11 The fact that we need to control also the position n− 1 is not a problem because, even if
we expand only over (m, t − 1), the condition j ∧ j′ = 0 actually holds for the strings over
(m− 1, t).
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polynomials, Lemmas 6.4 and 6.5 for the remaining partition functions and
(5.9) for the remaining terms, one has

〈φψ〉�
N ≤ Km+m′+2d

1

(
A1

B

)m 2rr!
A2+2r

2

‖φ‖
(
A1

B

)m′
2ss!
A2+2s

2

‖ψ‖

× (2K1)2+8a0

(
D

A2

)4(
A1√
2πB

)2d [2πa(2 + a)]d

(1 − a)6
.

The same strategy can be applied to 〈φ〉�〈ψ〉�, cutting, for each average, the
term containing the polynomial, the term containing the hole to be expanded,
and the rest of the chain: it is easy to realize that the same factors present
in (5.8) arise, with the same estimates, so that we will simply add a factor 2.

We are now left only with the case j ∧ j′ �= 0, which implies k ∧ k′ = 0.
By our assumption, the strings k are longer, so these remaining terms are even
smaller as powers of a, and we may simply repeat the same procedure working
on k, but expanding a substring of length d: we get the same results so we will
close our proof adding another factor 2 to the estimate. �

5.3. Upper Bound of
〈
R2
〉

In this part, we prove that
〈
R2
〉

is of order O (N/βλ1
)
, with λ1 ∈ [4, 2r + 4),

if we impose a suitable lower bound for β, or of order O
(
Ne− 3√β/β3

)
if

we have both a lower and an upper bound for β. One remarkable point is
the proportionality to N instead of N2, and the other relevant aspect is the
dependence on the specific energy via the parameter β. Both these points are
a joint consequence of the control of the decay of correlations, as given by
Proposition 5.3, and the decay of the interaction range preserved throughout
the whole perturbative construction. Concerning the dependence on β, the
fact that the exponential estimate does not hold for vanishing specific ener-
gies is due to condition (4.4) which gives an upper bound to the (optimal)
perturbative order we can reach at fixed coupling μ.

In (5.2) we defined the remainder as

R = {Φ(r),H} = {Φr,H1},
which represents the rate of time variation of the almost conserved integral
Φ(r). By recalling that in our perturbative construction we maintain the cycli-
cal symmetry, have that Φr = ϕ⊕

r and H1 = h⊕
1 , and thus can write R = ρ⊕

where ρ := {ϕr, h⊕
1 }. In the proof we need to exploit the decay properties of ρ

[see again Proposition 4.1, point (vi)]; with the choice

σ∗ := σ0/4 < σ1, (5.10)

the decomposition (2.3) is written in this case as:

ρ =
N∑

l=1

ρ(l),
∥∥∥ρ(l)

∥∥∥ ≤ Cρμ
l
�, μ� := e−σ∗ . (5.11)
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Introduce the following constant12 quantities

K4 := K3
33e6Ω6

29C2
1

, β∗ :=
26eC̃−1

(1 − μ2
� )(1 − μ�)A2

2

C1

Ω
, λ1 := 2r(1 − ν) + 4 − ν.

(5.12)

Proposition 5.4. The following different estimates hold:
1. for any ν ∈ (0, 1], a < min{a0, 1/4} and β > max{β0, (β∗r3)1/ν ,

√
3/2}

such that D2μ� < 1, for any integer r < μ∗/(2μ) one has

〈
R2
〉 ≤ N

βλ1

[
K4β

∗3

(1 −D2μ�)2

]
;

2. for any a < min{a0, 1/4} and β ≥ max{β0, 64eβ∗,
√

3/2} such that D2μ� <
1, there exists κ such that taking r = �κ/3�, then

〈
R2
〉 ≤ N

e−κ

κ9

[
38K4

2e4(1 −D2μ�)2

]
,

⎧
⎪⎨

⎪⎩

κ := 3
2

3

√
β
eβ∗ , β < eβ∗

(
μ∗
μ

)3

,

κ := 3
2
μ∗
μ , β ≥ eβ∗

(
μ∗
μ

)3

.

The proof will be carried out in several steps, actually working first on
the dependence on N and then on the scaling in β; in particular, for the first
point, it is useful to rewrite

〈
R2
〉

as the sum of two term to be dealt with
separately. To this purpose, we exploit the cyclic symmetry of R, i.e. using the
decomposition (2.2):

R = ρ⊕ =⇒ R =
N−1∑

j=0

ρj , ρj := ρ ◦ τ j .

It is thus possible to write R2 =
∑N−1
j=0 ρ2

j + 2
∑

0≤i<j≤N−1 ρiρj , which
implies, by translational invariance,13 the following expression

〈
R2
〉

= N
〈
ρ2
〉

+ 2
∑

0≤i<j≤N−1

〈ρiρj〉. (5.13)

While the first addendum is clearly proportional to N , the second appears to
be proportional to N2: we will now show that this is actually not the case. As
a first step we recall that 〈ρρj〉 = 〈ρρN−j〉, thus we may write

∑

0≤i<j≤N−1

〈ρiρj〉 =
N−1∑

j=1

(N − j)〈ρρj〉 = N

[N/2]∑

j=1

〈ρρj〉, (5.14)

where the last equality, in the case N odd, comes from Lemma 6.19. We remark
that, although the expression for the even case (see Lemma 6.19) is slightly
different, in the subsequent estimates it will be bounded from above by the
odd one.

12 More precisely β∗ is asymptotically constant with a → 0: we have 26e−1C1/Ω ≤ β∗ <
29e2C1/Ω for 0 ≤ a < 1/4.
13 All the terms

〈
ρ2j

〉
are equivalent because of the same symmetry of the measure and of

ρ itself.
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The strategy is first to give an estimate of the generic term 〈ρρj〉 for all
j ≤ [N/2], and then perform the sum. Defining the following constant

K3 := 28K4
1K2 > 4D4K2, (5.15)

the inequality holds since a < 1/4 and β >
√

3/2. We have

Lemma 5.5. For any a < min{a0, 1/4} and β > max{β0,
√

3/2} such that
D2μ� < 1, one has

〈ρρj〉 < 3
4
K3C

2
ρg2(r)

[(
D2μ�

)j +
(
D2μ�

)N−j

1 −D2μ�

]
j ≤ N/2, (5.16)

with

g(r) :=
42r+4(r + 2)!2

(A2
2β)2r+4

. (5.17)

Proof. Using (5.11) we may write 〈ρρj〉 =
∑2N
i=0

∑
l+l′=i

〈
ρ(l)ρ

(l′)
j

〉
. The idea

is to split such a sum into two parts: in the first one, choosing l and l′ small
enough, we will include (part of the) terms for which ρ(l) and ρ(l′)

j have disjoint
supports and will exploit the decay of correlations as given by Proposition 5.3;
in the second term, with l and l′ bounded from below, we will instead exploit
the decay (5.11) of ρ itself. We thus define

A :=
∑

l+l′<j

〈
ρ(l)ρ

(l′)
j

〉
, B :=

∑

l+l′≥j

〈
ρ(l)ρ

(l′)
j

〉
.

A term: We clearly have l < j; moreover, since we restrict to j ≤ N/2 due to
Lemma 6.19, we also have j + l′ ≤ N − 1. Thus, ρ(l) and ρ

(l′)
j have disjoint

supports. Using Proposition 5.3, with d = min{j − l, N − (j + l′)}, we obtain
∣∣∣
〈
ρ(l)ρ

(l′)
j

〉∣∣∣ ≤ K2μ
d
�g(r)D

2d+l+l′+4
∥∥∥ρ(l)

∥∥∥
∥∥∥ρ(l′)

∥∥∥ ;

we remark that in the dependence on r (recall, from (5.2), that R has degree
2r+4) we could expect a factor 22r+4 in g(r), but we overestimate with 42r+4,
because the B term needs exactly such a dependence.

Since14 μ� < μ� for (at least) a < 1/4, using also (5.11) one has
∣∣∣
〈
ρ(l)ρ

(l′)
j

〉∣∣∣ ≤ K2C
2
ρg(r)μ

d+l+l′
� D2d+l+l′+4.

It is useful to distinguish the cases d = j− l and d = N − (j+ l′), that we call
A1 and A2, respectively. In the sub-case A1, one has l + l′ + d = j + l′ and
l + l′ + 2d = j + l′ + d; thus we get

∑

l+l′<j,A1

∣∣∣
〈
ρ(l)ρ

(l′)
j

〉∣∣∣ ≤ K2D
4C2

ρg(r)(Dμ�)
j
∑

l+l′<j

Dl′+dμl
′
� .

14 Although this does not “sounds” good . . .
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We deal with the remaining sum in this way

∑

l+l′<j

Dl′+dμl
′
� =

j−1∑

i=0

i∑

l′=0

(Dμ�)
l′
Dj+l′−i = Dj

j−1∑

i=0

D−i
i∑

l′=0

(
D2μ�

)l′

<
Dj

1 −D2μ�

j−1∑

i=0

D−i <
2Dj

1 −D2μ�
,

where we exploit also that C > 2 [see (5.3)]. Then,

∑

l+l′<j,A1

∣∣∣
〈
ρ(l)ρ

(l′)
j

〉∣∣∣ < 2K2D
4C2

ρg(r)

(
D2μ�

)j

1 −D2μ�
. (5.18)

In the other sub-case A2, just replacing l with l′ and j with N − j, we
get

∣∣∣
〈
ρ(l)ρ

(l′)
j

〉∣∣∣ ≤ K2D
4C2

ρg(r)μ
N−j+l
� DN−j+l+d.

With the same approach used above one obtains

∑

l+l′≤j−1

Dl+dμl� = DN−j
j−1∑

i=0

i∑

l=0

D−i(D2μ�
)l
<

2DN−j

1 −D2μ�
,

hence the contribution coming from A2 is

∑

l+l′<j,A2

∣∣∣
〈
ρ(l)ρ

(l′)
j

〉∣∣∣ < 2K2D
4C2

ρg(r)

(
D2μ�

)N−j

1 −D2μ�
, (5.19)

and combining A1 with A2 we get

∑

l+l′<j

∣∣∣
〈
ρ(l)ρ

(l′)
j

〉∣∣∣ <
K3

2
C2
ρg(r)

[(
D2μ�

)j +
(
D2μ�

)N−j

1 −D2μ�

]
. (5.20)

B term: Since we aim at exploiting the decay of ρ, by Schwartz inequality we
rewrite the correlation as

∑

l+l′≥j

∣∣∣
〈
ρ(l)ρ

(l′)
j

〉∣∣∣ ≤
∑

l+l′≥j

√〈
(ρ(l))2

〉〈
(ρ(l′))2

〉
;

using Proposition 6.11 it holds
〈
(ρ(l))2

〉
<

(2K1)1+4a0

A4r+12
2

D2+l

(
2
β

)2r+4

(2r + 4)!
∥∥∥ρ(l)

∥∥∥
2

;

the analogous estimate holds for
〈
(ρ(l′))2

〉
. Then, by observing that

(2K1)1+4a0

A4
2

< K2, (2r + 4)! ≤ 22r+4(r + 2)!2,

one obtains
√〈

(ρ(l))2
〉〈

(ρ(l′))2
〉
< K2D

2D(l+l′)/2
(

4
A2

2β

)2r+4

(r + 2)!2
∥∥∥ρ(l)

∥∥∥
∥∥∥ρ(l′)

∥∥∥ .
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If we notice that K2D
2 < K3/4, and using (5.17), then

√〈
(ρ(l))2

〉〈
(ρ(l′))2

〉
<
K3

4
C2
ρg(r)D

(l+l′)/2μl+l
′

� ; (5.21)

the sum over l and l′ gives

∑

l+l′≥j

∣∣∣
〈
ρ(l)ρ

(l′)
j

〉∣∣∣ <
K3

4
C2
ρg(r)

(Dμ�)
j

1 −Dμ�
. (5.22)

To get (5.16), simply add (5.22) to (5.20). �

We are now ready to state and prove an estimate showing how
〈
R2
〉

is
proportional to N .

Lemma 5.6. For a < min{a0, 1/4} and β > max{β0,
√

3/2} such that D2μ� <
1, one has

〈
R2
〉 ≤ N

K3C
2
ρg(r)

(1 −D2μ�)2
. (5.23)

Proof. As showed before [see (5.13) and the subsequent paragraphs], we have

〈
R2
〉 ≤ N

〈
ρ2
〉

+N

[N/2]∑

j=1

|〈ρρj〉|. (5.24)

Concerning the first term we may proceed like in the proof Lemma 5.5;
in the case of B term, the only difference being the index of the sum; we thus
follow such a proof up to formula (5.21), and then

〈
ρ2
〉
<

N−1∑

i=0

∑

l+l′=i

∣∣∣
〈
ρ(l)ρ(l′)

〉∣∣∣ <
N−1∑

i=0

∑

l+l′=i

1
4
K3C

2
ρg(r)

(
D

1
2μ�

)l+l′

<
1
4
K3

C2
ρg(r)

(1 −D2μ�)
. (5.25)

To control the second term of (5.24), from Lemma 5.5 we have to estimate
the following sum

[N/2]∑

j=1

[(
D2μ�

)j
+
(
D2μ�

)N−j]
=

(
D2μ�

)− (D2μ�
)N

1 −D2μ�
<

(
D2μ�

)

1 −D2μ�
, (5.26)

which leads us to
[N/2]∑

j=1

|〈ρρj〉| ≤ 3
4
K3C

2
ρg(r)

[ (
D2μ�

)

(1 −D2μ�)2

]
.

Adding (5.25) and then multiplying by N , one has (5.23). �

The final step in the proof of Proposition 5.4 consists in showing the
correct dependence on β: to this purpose, we estimate the numerator of (5.23).

Lemma 5.7. The following two estimates hold:
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1. For any ν ∈ (0, 1], a < min{a0, 1/4} and β > max{β0, (β∗r3)1/ν ,
√

3/2}
one has

K3C
2
ρg(r) ≤ K4

β∗3

βλ1
. (5.27)

2. For any a < min{a0, 1/4} and β ≥ max{β0, 64eβ∗,
√

3/2}, there exists κ
such that taking r = �κ/3�, then

K3C
2
ρg(r) ≤ 38K4

2e4

e−κ

κ9
,

⎧
⎪⎨

⎪⎩

κ := 3
2

3

√
β
eβ∗ , β < eβ∗

(
μ∗
μ

)3

,

κ := 3
2
μ∗
μ , β ≥ eβ∗

(
μ∗
μ

)3

.
(5.28)

Proof. As a first step, we have to work on Cρ: from Proposition 4.1 (vi)

Cρ ≤ 8(r + 2)F r−1
r C2

1e(r+2)C̃

(1 − μ2
� )(1 − μ�)

,

where the correction e(r+2)C̃ comes from the transformation back to the orig-
inal variables (see Lemma 3.3), and for Fr = 16r2C∗, using (4.3) and (4.4), it
holds

8r2C1

Ω(1 − μ2
� )(1 − μ�)

≤ Fr ≤ 16r2C1

Ω(1 − μ2
� )(1 − μ�)

.

Using the above estimates and rearranging some terms, we have

C2
ρg(r) ≤ Ω6(1 − μ2

� )
4(1 − μ�)4

212C2
1

(r + 2)2

r12

(
4FreC̃

A2
2β

)2r+4

[(r + 2)!]2;

this can be further simplified as

C2
ρg(r) ≤ 33Ω6

29C2
1

a2
r ar :=

(
eβ∗ r

2

β

)r+2
r!
r3
. (5.29)

We now proceed in two different ways to get the two different estimates (5.27)
and (5.28). For the first one, with a power law dependence on β, using the
standard upper bound r! ≤ e

√
r
(
r
e

)r, we have

ar ≤ e3β∗2 r
3/2

β2

(
β∗ r

3

β

)r
= e3β∗3/2

(
β∗ r

3

βν

)r+1/2

β−[r(1−ν)+2− ν
2 ],

so that

K3C
2
ρg(r) ≤ K3

33e6Ω6

29C2
1

[
β∗3/2

(
β∗ r

3

βν

)r+1/2

β−λ1/2

]2

≤ K4
β∗3

βλ1
,

where we used β > (β∗r3)1/ν to estimate from above
(
β∗ r3

βν

)r+1/2

.
For the exponential estimate (5.28), we work on (5.29) in a different way,

trying to optimize the order r. As usual, the sequence ar will be initially
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decreasing, and then definitively increasing: we are interested in the larger
r ≥ 2 such that ar < ar−1, which translates in

eβ∗

β
r3
(

r

r − 1

)2r−1

< 1 ⇐ r < ropt :=

⌊
3

√
β

8eβ∗

⌋
.

The lower bound on β in the hypothesis implies that ropt ≥ 2; moreover,
the corresponding upper bound is enough to conclude that 2roptμ ≤ μ∗ as
required in condition (4.4) of Proposition 4.1. Using again r! ≤ e

√
r
(
r
e

)r, and
using r3opt ≤ β

8eβ∗ , we have

ar ≤
(

r2

8r3opt

)r+2
e
√
rrre−r

r3
=

er
√
r

64r6opt

(
r3

8er3opt

)r
,

so that

K3C
2
ρg(ropt) ≤ K4

212e4

1
r9opt

(8e)−2ropt ,

and the thesis follows using the lower bound (2 + 2 ln 8)ropt ≥ F (β).

If instead β > eβ∗ (μ∗/μ)3, then ropt > rmax :=
⌊
μ∗
2μ

⌋
allowed by Propo-

sition 4.1; in this case it holds r3max ≤ β
8eβ∗ , so that the previous estimates on

ar holds true with rmax instead of ropt and the thesis follows using the lower
bound (2 + 2 ln 8)rmax ≥ 3/2(μ∗/μ). �

5.4. Lower Bound of σ2[Φ]
In this section, we give the required lower bound for σ2[Φ]: besides the fact
that an estimate from below can be less trivial than one from above, the main
point here is that Φ is non-homogeneous.

As for the estimate of the previous subsection, one relevant aspect is the
proportionality with N , and the other one is the scaling with β.

Given the constants μ2 and β4 of Lemma 5.9, we have the following

Proposition 5.8. There exists a positive constant β3, such that if μ < μ2,
D2μ� < 1 and β > max{β0, β3, β4, 6eC̃β∗r2(r + 1),

√
3/2}, then

σ2[Φ] ≥ N

β2

Ω2

10
.

Proof. We exploit once again the cyclic symmetry of Φ, i.e. Φ = ϕ⊕ =
∑
j ϕ ◦

τ j . Recalling the standard notation σ(f, g) = 〈fg〉 − 〈f〉〈g〉 for the covariance,
we thus write15

σ2[Φ] =
∑

j

σ2
[
ϕ ◦ τ j]+ 2

∑

h<k

σ
(
ϕ ◦ τh, ϕ ◦ τk)

≥ Nσ2[ϕ] − 2
∑

h<k

∣∣σ
(
ϕ ◦ τh, ϕ ◦ τk)∣∣ ,

15 We avoid the notation ϕj = ϕ ◦ τ j because we will need the index to indicate the

homogeneity degree.
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where we used the translation invariance to extract the factor N from the first
sum. The proof will be carried out in the two forthcoming Lemmas, whose
application immediately gives the estimate (5.8): the first dealing with the
variance σ2[ϕ] and the second for the estimate of the covariance terms. We
exploit the different scalings in β to ensure the second term being smaller than
the first one, provided β is large enough (setting β2 as the threshold). �

Lemma 5.9. There exist positive constants μ2 and β4, such that if μ < μ2,
D2μ� ≤ 1/2 and β > max{β0, β4, 6eC̃β∗r2(r + 1),

√
3/2}, then

σ2[ϕ] ≥ Ω2

9β2
.

Proof. We exploit the expansion in homogeneous parts of ϕ =
∑r
s=0 ϕs: the

strategy is to show that, under the assumed hypothesis, the leading term of
the variance of ϕ is given by the variance of ϕ0. We thus first expand

σ2[ϕ] =
r∑

s,s′=0

σ(ϕs, ϕs′) = σ2[ϕ0] +Rσ, Rσ :=
2r∑

i=1

∑

s+s′=i

σ(ϕs, ϕs′), (5.30)

so that we will get the thesis via σ2[ϕ] ≥ σ2[ϕ0] − |Rσ|, by giving a lower
bound for σ2[ϕ0] and an upper bound for |Rσ|.
Step 1 (lower bound for σ2[ϕ0]). From Proposition 3.1 and Proposition 4.1
we have ϕ0 = hΩ = Ω(q20 + p2

0)/2, which has interaction length equal to one
in the variables (q, p); once we transform it back to (x, y) variables, from a
direct calculation using the decay properties of A1/4 (see formula (3.6) of
Proposition 3.1) we have that ϕ0 ∈ D(Cϕ0 ,− ln(2μ̃)) with Cϕ0 ≤ Ω

1−2μ̃ ; hence

the decomposition ϕ0 =
∑
l≥0 ϕ

(l)
0 holds, where

ϕ
(0)
0 (x, y) =

Ω
2
(
x2

0 + y2
0

)
;

thus

σ2[ϕ0] = σ2
[
ϕ

(0)
0

]
+ 2

∑

l+l′≥1

σ
(
ϕ

(l)
0 , ϕ

(l′)
0

)
≥ σ2

[
ϕ

(0)
0

]
− 2

∑

l+l′≥1

∣∣∣σ
(
ϕ

(l)
0 , ϕ

(l′)
0

)∣∣∣ .

We will now show that the first term is different from zero, while the second is
of order O(a) and asymptotically vanishing. Indeed, from the factorization of
the Gibbs measure with respect to the x and y variables, one has σ2

[
x2

0 + y2
0

]
=

σ2
[
x2

0

]
+ σ2

[
y2
0

]
; it thus follows

σ2
[
ϕ

(0)
0

]
=

Ω2

4
(
σ2
[
x2

0

]
+ σ2

[
y2
0

])
>

Ω2

4
σ2
[
y2
0

]
=

Ω2

8β2
.

The covariance part is dealt with exploiting the exponential decay of the
homogeneous polynomials ϕ(l)

0 ; in particular, each covariance is estimated via
Schwartz inequality as |σ(ϕ,ψ)| ≤ |〈ϕψ〉| + |〈ϕ〉〈ψ〉| ≤ √〈ϕ2〉〈ψ2〉 + |〈ϕ〉〈ψ〉|,
and then applying Lemmas 6.13 and 6.14 we have
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∣∣∣σ
(
ϕ

(l)
0 , ϕ

(l′)
0

)∣∣∣ ≤
√〈(

ϕ
(l)
0

)2
〉〈(

ϕ
(l′)
0

)2
〉

+
∣∣∣
〈
ϕ

(l)
0

〉〈
ϕ

(l′)
0

〉∣∣∣

≤ 1
β2

{
2(2K1)1+4a0

A4
2

D2+ l+l′
2

√∥∥∥∥
(
ϕ

(l)
0

)2
∥∥∥∥

∥∥∥∥
(
ϕ

(l′)
0

)2
∥∥∥∥

+
(2K1)2+8a0

A8
2

D4+l+l′
∥∥∥ϕ(l)

0

∥∥∥
∥∥∥ϕ(l′)

0

∥∥∥

}(
2
A2

2

)2

≤ K3

β2
C2
ϕ0

(De−σ0)l+l
′
;

the sum over l and l′ gives
∑

l+l′≥1

(De−2σ0)l+l
′ ≤
∑

i≥1

i(De−2σ0)i <
De−2σ0

1 −De−2σ0
=

2μ̃D
1 − 2μ̃D

.

If we collect the two estimates, we have

σ2[ϕ0] ≥ Ω2

β2

(
1
8

− 2K3Dμ̃

(1 − 2μ̃)2(1 − 2μ̃D)

)
. (5.31)

Step 2 (upper bound for |Rσ|). For the remainder, we will estimate each term
in the sum: we first control the covariance terms again via Schwartz inequality

|σ(ϕs, ϕs′)| ≤ |〈ϕsϕs′〉| + |〈ϕs〉〈ϕs′〉| ≤
√

〈ϕ2
s〉〈ϕ2

s′〉 + |〈ϕs〉〈ϕs′〉|.
We apply Lemma 6.13 and Corollary 6.15 to both ϕs and ϕs′ ; in particu-

lar, using estimate (6.7) and using
√

(2s+ 2)!(2s′ + 2)! < 2s+s
′+2(s+ s′ + 2)!,

we have
√

〈ϕ2
s〉〈ϕ2

s′〉 ≤
[
4D2(2K1)1+4a0

A4
2

]
Cϕs

Cϕs′

1 − μ�

[(
4

A2
2β

)s+s′+2

(s+ s′ + 2)!

]
;

where we used σs > σ∗, and the Definition (5.11) of μ�; in a similar way, using
estimate (6.6)

|〈ϕs〉〈ϕs′〉| ≤
[
4D4(2K1)2+8a0

A8
2

]
Cϕs

Cϕs′

[(
2

A2
2β

)s+s′+2

(s+ s′ + 2)!

]
.

Summing up the previous formulas, and using the Definitions (5.3) and (5.15)
of K2 and K3,
√

〈ϕ2
s〉〈ϕ2

s′〉 + |〈ϕs〉〈ϕs′〉| ≤ K3
Cϕs

Cϕs′

1 − μ�

[(
4

A2
2β

)s+s′+2

(s+ s′ + 2)!

]
. (5.32)

As we did in the proof of Lemma 5.7, we now make explicit the depen-
dence of Cϕs

from the index s: from points (iv), (v) and (vi) of Proposition 4.1

Cϕs
= e(s+1)C̃F s−1

r C1,
24r2C1

Ω
(
1 − μ2

�

)
(1 − μ�)

≤ Fr ≤ 48r2C1

Ω
(
1 − μ2

�

)
(1 − μ�)

,
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where the factor e(s+1)C̃ comes from the transformation back to the original
variables (see Lemma 3.3). Using (5.32) in (5.30), we have

|Rσ| ≤ K3C
2
1

1 − μ�

2r∑

i=1

∑

s+s′=i

e(s+s′+2)C̃F s+s
′−2

r

[(
4

A2
2β

)s+s′+2

(s+ s′ + 2)!

]

≤ K3C
2
1

F 4
r (1 − μ�)

2r∑

i=1

⎡

⎣
(

4FreC̃

A2
2β

)i+2

(i+ 2)!

⎤

⎦

≤ K3

21234

(
Ω
C1

)4 1
r8

2r∑

i=1

⎡

⎣
(

263C1eC̃r2

Ω
(
1 − μ2

�

)
(1 − μ�)A2

2β

)i+2

(i+ 2)!

⎤

⎦.

(5.33)

The sum in the previous formula is of the form
∑2r
i=1 ai with ai =

Xi+2(i + 2)!; we have that ai is monotone decreasing, for i = 1, . . . , 2r, if
X(2r + 2) < 1. But for hypothesis we have β > 6eC̃β∗r2(r + 1), so [recalling
the Definition (5.12) of β∗] it holds ai ≤ a1 and thus

∑2r
i=1 ai ≤ 2ra1 = 12X3r.

Inserting such an estimate in (5.33), we have

|Rσ| ≤ 28K3e3C̃

(
1 − μ2

�

)3(1 − μ�)3A6
2

(
Ω
C1

)
1
rβ3

(5.34)

Step 3. With such an upper bound for |Rσ| proportional to β−3 and with the
lower bound (5.31) proportional to β−2, there exist β4 and μ2 such that if
μ < μ2 and β > β4 the thesis follows. �

Lemma 5.10. Given β > max{β0, 6eC̃β∗r2(r + 1),
√

3/2} and μ such that
D2μ� < 1, one has
∣∣∣∣∣
∑

h<k

σ
(
ϕ ◦ τh, ϕ ◦ τk)

∣∣∣∣∣ ≤ N

[ (
D2μ�

)

(1 −D2μ�)2

]
28K3e3C̃

(
1 − μ2

�

)3(1 − μ�)3A6
2

(
Ω
C1

)
1
rβ3

.

Proof. We first proceed like in formula (5.14) exploiting the translation invari-
ance

∑

h<k

σ
(
ϕ ◦ τh, ϕ ◦ τk) = N

[N/2]∑

j=1

σ
(
ϕ,ϕ ◦ τ j),

where we used Lemma 6.19 for the part
〈
(ϕ ◦ τh)(ϕ ◦ τk)〉 and an easy direct

calculation for the terms
〈
ϕ ◦ τh〉〈ϕ ◦ τk〉. We will follow the strategy of the

proof of Lemma 5.5: at variance with that situation, here ϕ is not homogeneous
so, besides the expansion (2.3) on the interaction lengths, we also need to
expand over the different degrees ϕ =

∑r
s=0 ϕs. We will use the notation

ϕs,j := ϕs ◦ τ j to indicate at the same time the degree and the translation.

σ
(
ϕ,ϕ ◦ τ j) =

r∑

s,s′=0

σ(ϕs, ϕs′,j) =
r∑

s,s′=0

2N∑

i=0

∑

l+l′=i

σ
(
ϕ(l)
s , ϕ

(l′)
s′,j

)
.
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We split again the sum over i into two parts:

A :=
∑

l+l′<j

σ
(
ϕ(l)
s , ϕ

(l′)
s′,j

)
, B :=

∑

l+l′≥j
σ
(
ϕ(l)
s , ϕ

(l′)
s′,j

)
.

In the A term, ϕ(l)
s and ϕ(l′)

s′,j have disjoint supports, so we can apply Proposi-
tion 5.3

|A| ≤
∑

l+l′<j

K2D
l+l′+2d+4 μd�

(
2

A2
2β

)s+s′+2

(s+ 1)!(s′ + 1)!
∥∥∥ϕ(l)

s

∥∥∥
∥∥∥ϕ(l′)

s′,j

∥∥∥

≤ 2K2D
4Cϕs

Cϕs′

(
2

A2
2β

)s+s′+2

(s+ s′ + 2)!
∑

l+l′<j

Dd(Dμ�)
l+l′+d

≤ K3Cϕs
Cϕs′

(
2

A2
2β

)s+s′+2

(s+ s′ + 2)!

[(
D2μ�

)j +
(
D2μ�

)N−j

1 −D2μ�

]
,

where we used also the Definitions (5.3) and (5.15) of K2 and K3, the fact that
μ� < μ� for a < 1/4, and e−σs < μ�, and we worked out the sum like in (5.18),
(5.19) and (5.20).

In the B term, where l+ l′ is relatively large, we exploit the exponential
decay; after the usual application of Schwartz inequality, by Proposition 6.11
we have

∣∣∣σ
(
ϕ(l)
s , ϕ

(l′)
s′,j

)∣∣∣ ≤
√〈(

ϕ
(l)
s

)2
〉〈(

ϕ
(l′)
s′,j

)2
〉

+
∣∣∣
〈
ϕ(l)
s

〉〈
ϕ

(l′)
s′,j

〉∣∣∣

≤
{

(2K1)1+4a0

A4
2

D2+ l+l′
2
√

(2s+ 2)!(2s′ + 2)!

×
√∥∥∥∥
(
ϕ

(l)
s

)2
∥∥∥∥

∥∥∥∥
(
ϕ

(l′)
s′,j

)2
∥∥∥∥ +

∥∥∥ϕ(l)
s

∥∥∥
∥∥∥ϕ(l′)

s′,j

∥∥∥

+
(2K1)2+8a0

A8
2

D4+l+l′(s+ 1)!(s′ + 1)!

}(
2

A2
2β

)s+s′+2

≤ K3(s+ s′ + 2)!
(

4
A2

2β

)s+s′+2

Cϕs
Cϕs′ (Dμ�)l+l

′

where we used again
√

(2s+ 2)!(2s′ + 2)! < 2s+s
′+2(s + s′ + 2)!, e−σs < μ�

and the Definitions (5.3) and (5.15) of K2 and K3. We thus have

|B| ≤ K3(s+ s′ + 2)!
(

4
A2

2β

)s+s′+2

Cϕs
Cϕs′

(Dμ�)j

1 −Dμ�
.

To sum over the various degrees, we observe that the terms depending
on s and s′ are the same as in formula (5.32), the only difference being here
that the sum starts from 0; at the same time, since the dependence on j is
factorized, we deal with the sum over the translation like in (5.26):
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∣∣∣∣∣
∑

h<k

σ
(
ϕ ◦ τh, ϕ ◦ τk

)∣∣∣∣∣ ≤ N

[N/2]∑

j=1

|σ
(
ϕ, ϕ ◦ τ j

)
| ≤ N

[N/2]∑

j=1

2r∑

i=0

∑

s+s′=i

|A| + |B|

≤ N

[N/2]∑

j=1

(D2μ�)
j + (D2μ�)

N−j

1 − D2μ�
2K3C

2
1

2r∑

i=1

e(i+2)C̃F i−2
r

[(
4

A2
2β

)i+2

(i + 2)!

]

≤ N

[ (
D2μ�

)

(1 − D2μ�)2

]
2K3C

2
1

F 4
r

2r∑

i=1

⎡

⎣
(

4Fre
C̃

A2
2β

)i+2

(i + 2)!

⎤

⎦

≤ N

[ (
D2μ�

)

(1 − D2μ�)2

]
K3

21234

(
Ω

C1

)4
1

r8

2r∑

i=1

⎡

⎣
(

263C1e
C̃r2

Ω
(
1 − μ2

�

)
(1 − μ�)A2

2β

)i+2

(i + 2)!

⎤

⎦.

Also in this case, we have a sum of the form
∑2r
i=0 ai just like in (5.33), with i

starting from 0 instead of 1. The same conclusions hold, and thus using (5.34)
we have the thesis. �

Acknowledgements

We thank Dario Bambusi, Giancarlo Benettin, Andrea Carati, Luigi Galgani
and Antonio Ponno for useful discussions and comments. This research is
partially supported by MIUR-PRIN program under project 2007 B3RBEY
(“Teoria delle perturbazioni ed applicazioni alla Meccanica Statistica ed
all’Elettrodinamica”) and project 2010 JJ4KPA (“Teorie geometriche e
analitiche dei sistemi Hamiltoniani in dimensioni finite e infinite”).

6. Appendix

6.1. Proofs of Section 3

We provide here the proofs of all the statements claimed in Sect. 3 concerning
the linear normalizing transformation A1/4.

6.1.1. Proof of Proposition 3.1. If we apply the canonical linear change of
coordinates q = A1/4x and y = A1/4p, then H0 reads

H0(q, p) =
1
2
p ·A1/2p+

1
2
q ·A1/2q.

Since A is circulant and symmetric, the same holds also for both A1/2 and A1/4

(see property 4. stated after Definition 2.2); thus, we can isolate the diagonal16

part of A1/2

A1/2 = ΩI +B,

16 The coefficient of the diagonal is also the first element of the first row, and thus, from
property 3 of circulant matrices stated after Definition 2.2, it is the average of the eigenvalues
of A1/2.
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and write

H0 = HΩ + Z0, where HΩ =
[
Ω
2

(q21 + p2
1)
]⊕
, Z0 =

1
2
p ·Bp+

1
2
q ·Bq.

(6.1)
Hence it follows (3.4), with bj(μ) being the first half-row of the circulant and
symmetric matrix B. A direct computation gives.17 {HΩ, Z0} = 0. The expo-
nential decay of the elements bj ∼ μj follows from the same argument and so
we are going to use this to show the exponential decay of the elements of the
matrix A1/4.

Introducing T = τ + τ	, recalling (3.2), and by expanding with respect
to μ, we get

A1/4 =
√
ω

⎡

⎣I +
∑

k≥1

(
1/4
k

)
(−1)k(μT )k

⎤

⎦.

The exponential decay follows from the analysis of the first [N/2] − 1 powers
of the symmetric matrix T ; indeed, for k ≤ [N/2] − 1 one has

T kj,j+i = 0, |i− [N/2] − 1| ≤ [N/2] − k − 1,

which allows to claim immediately
(
A1/4

)
1,j

= cj(μ)μj−1, k = 1, . . . , [N/2] + 1.

We want to prove that |cj(μ)| = O(2j); we first observe that for any
1 ≤ j ≤ [N/2] + 1 it holds

(
A1/4

)
1,j

=
√
ω
∑

h≥j−1

(−1)hμhTh1,j

(
1/4
h

)
,

so that by inserting
(
1/4
j

)
= (−1)j(4j−5)!!

4jj! it reads

(
A1/4

)
1,1

=
√
ω

⎡

⎣1 +
∑

h≥1

μhTh1,1
h!

(4h− 5)!!
4h

⎤

⎦,

(
A1/4

)
1,j

=
√
ω
∑

h≥j−1

μhTh1,j
h!

(4h− 5)!!
4h

< 0, j ≥ 2.

We stress that for j ≥ 2 the element
(
A1/4

)
1,j

is negative. From the decom-
position

T k =
k∑

l=0

(
k

l

)
τk−lτ−l =

k∑

l=0

(
k

l

)
τk−2l,

17 The same conclusion follows also from the theory of the linear centralizer unfolding (see
[1]) or from the normal form construction performed in Section 2 of [24].
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it is possible to give an estimate uniform in i and j

0 < T kij =
k∑

l=0

(
k

l

)
τk−2l
ij <

k∑

l=0

(
k

l

)
= 2k,

since the elements of τk−2l are only 1 and 0. We can thus estimate
∣∣(A1/4

)
1,j

∣∣ ≤ −√
ω(2μ)j−1

∑

k≥0

(2μ)k

(k + j − 1)!
(4k + 4j − 9)!!

4k+j−1

<
√
ω(2μ)j−1

⎡

⎣1 −
∑

k≥1

(2μ)k

k!
(4k − 5)!!

4k

⎤

⎦ < 2
√
ω(2μ)j−1.

The estimate holds also for j = 1. We can furthermore apply the same argu-
ment to A1/2

A1/2 = ΩI +B, |bj | ≤ 2ω(2μ)j−1, j ≥ 2

thus showing that B is a μ perturbation of ΩI. The behaviour of the coefficients
bj also justifies (3.4). The shape of the seed ζ0 is a direct consequence of (6.1):
the vector Bq is determined by its first element, being (Bq)j = τ j−1(Bq)1,
and since we can write qj = τ j−1q1 for any j, then it follows that q0(Bq)1 can
be chosen as a seed for Z0. The same holds for the conjugated variables p. �

6.1.2. Proof of Proposition 3.2. The flow of the Hamiltonian χ of (3.8) is given
by the exponentials x(t) = eBtx0 and y(t) = e−Bty0, so the time t = 1 flow
gives A1/4 = eB and hence the definition B := 1

4 ln (A) which, due to (3.2),
reads

B :=
1
4

ln(ω2)I +
1
4

ln (I − μT ), ln (I − μT ) := −
∑

k≥1

1
k
μkT k.

From the series definition, we immediately get that B is circulant and sym-
metric. The exponential decay of its elements and the subsequent upper bound
can be obtained with the same estimates used in the proof of Proposition 3.1.
The final decomposition and the claim χ0 ∈ D(C0(a), σ0

)
follow from the

same argument used for (6.2): the first choice for the seed is χ0 = x0(By)1,
which gives χ

(m)
0 = B1,m(x0ym + y0xm). Then, one uses translations to

get (3.8). �

6.1.3. Proof of Lemma 3.3. We apply Corollary 2.5 with f = X0, thus obtain-
ing LX0ρ ∈ D(CCρ, σ∗

)
with

C ≤ (r + 1)2C0

(1 − e−σ′)(1 − e−(σ′−σ∗))
.

Then, we recall that TX0ρ =
∑
l≥0

1
l!L

l
X0
ρ; hence for any homogeneous term

in the series it holds
∥∥(LlX0

ρ
)(m)∥∥ ≤ ClCρe−mσ∗ .

�
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6.1.4. Proof of lemma 3.4. The claim involving the seed of Z0 is based on
the choice of ζ0 in Proposition 3.1, namely formula (3.4). One has to observe
that any term of the form bj(q0qN−1−j + p0pN−1−j) in the seed ζ0 can be
replaced with the corresponding bj(q0qj +p0pj), obtained with the translation
τ j . Hence, another seed for Z0 (in the odd case, for example) reads

ζ0 =
[N/2]∑

m=1

ζ
(m)
0 , ζ

(m)
0 = 2

[N/2]∑

m=1

bm(q0qm + p0pm). (6.2)

The estimate for ζ0 then follows from
∥∥∥ζ(m)

0

∥∥∥ = 4|bm| ≤ 8ω (2μ)m.

To prove the claim involving H1 = h⊕
1 , we adapt the proof of Lemma 3.3,

working on the series expansion of the seed TX0h1. The proof exploits some
peculiarities of the Lie derivatives LkX0

h1, which are derived by χ(0)
0 = 0 and

h
(m)
1 = 0 for all m ≥ 1.

We have the following:
LX0h1. we can write explicitly

LX0h
(m)
1 =

m∑

l=1

B1,lx
3
0xl, m = 1, . . . , [N/2],

whereB1,l are the coefficients of the matrixB defining X0 in Proposition 3.2.
Then, for any m ≥ 1 it holds

∥∥∥LX0h
(m)
1

∥∥∥ =
∥∥∥χ(m)

0

∥∥∥ ≤ C0(a)e−σ0m = C0(a)e−(σ0−σ′′)e−σ′′m,

thus LX0h1 ∈ D(C1,1 := C0e−(σ0−σ′′), σ′′) for any σ′′ < σ0. In particular,
LX0h1 ∈ D(C1,1, σ1).

L2
X0
h1. the second Lie derivative represents the Poisson bracket between X0

with χ0 ∈ D(C0, σ0) and the previous Lie derivative seed LX0h1, hence
L2

X0
h1 ∈ D(C1,2, σ1). Remarkably, the expansion of both the functions

starts with m = 1, being χ(0)
0 = LX0h

(0)
1 = 0, thus it is possible to apply

Corollary 2.6 to obtain

C1,2 =
16e−(σ0−σ1)C1,1C0

(1 − e−σ0)(1 − e−(σ0−σ1))
.

L3
X0
h1. the third derivative represents the Poisson bracket between L2

X0
h1 ∈

D(C1,2, σ1) and X0. Thus, surely we have L3
X0
h1 ∈ D(C1,3, σ1). Corollary 2.6

provides

C1,3 =
16e−(σ0−σ1)C0

(1 − e−σ0)(1 − e−(σ0−σ1))
C1,2C0 ;

LkX0
h1. the iterated Lie derivative is still the Poisson bracket between an homo-

geneous polynomial Lk−1
X0

h1 ∈ D(C1,k−1, σ1) of degree 4 and X0. Corollary
2.6 provides
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C1,k =
16e−(σ0−σ1)C0

(1 − e−σ0)(1 − e−(σ0−σ1))
C1,k−1C0,

which iteratively yields the estimate

C1,k ≤
[

16e−(σ0−σ1)C0

(1 − e−σ0)(1 − e−(σ0−σ1))

]k
C0. (6.3)

By collecting all the Lie derivatives in the definition of the Lie transform, we
have

∥∥∥(TX0h1)(m)
∥∥∥ ≤

∑

k≥0

1
k!

∥∥∥(LkX0
h1)(m)

∥∥∥ ≤ e−σ1m
∑

k≥0

1
k!
C1,k

≤ C0e−σ1m
∑

k≥0

1
k!

[
16e−(σ0−σ1)C0

(1 − e−σ0)(1 − e−(σ0−σ1))

]k

= C1e−σ1m,

where using σ0 = 2σ1, we have defined

C1 := C0 exp
(

16e−σ0/2C0

(1 − e−σ0)(1 − e−σ0/2)

)
.

The claim C1(a) = O(1) comes from (a → 0) ⇒ (σ0 → +∞). �

6.2. Technical Lemmas on Gibbs Averages

6.2.1. Useful Integrals. We recall a couple of useful formulas18 for integrals.
The first is

Ik :=
∫

R

xke−x2
dx =⇒ I2k =

2k − 1
2

I2(k−1) =
(2k − 1)!!

2k
√
π. (6.4)

The second formula gives an estimate for

Gk(γ) :=
∫

R

xke−(x2+γ2x4)dx.

We have the following

Lemma 6.1. Let γ > 0 satisfy γ2(2k + 1)(2k + 3) < 4. Then one has

1 − γ2 (2k + 1)(2k + 3)
4

≤ G2k(γ)
G2k(0)

≤ 1.

Proof. There exists ξ ∈ [0, γ], such that

Gk(γ) −Gk(0) = γ
∂Gk
∂γ

(ξ) = −2γξGk+4(ξ).

Since Gk is a monotonic function of γ, we can estimate ξGk+4(ξ) both from
above and from below as 0 ≤ ξGk+4(ξ) ≤ γGk+4(0) for all ξ ∈ [0, γ]. In view of
Gk(0) = Ik and using twice the recursive relation (6.4), the claim follows. �

18 We also use the notation k!! := k[(k − 2)!!] if k > 1, and k!! := 1 if k = 1 or k = 0.
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6.2.2. Partition Function. Throughout the present section, we consider a peri-
odic chain of length l and drop the y depending part of H because the corre-
sponding integrals are trivially factorized. We also split H0 as

H0 = Hd +Ha, Hd =
1
2

∑

j

x2
j , Ha =

a

2

∑

j

(xj+1 − xj)2 (6.5)

where a plays the role of the small coupling parameter. We also recall that
H1 = 1

4

∑
j x

4
j . Finally, we emphasize the role of the parameter a by denoting

the partition function as Z(β, a).
We present three Lemmas investigating the role of boundary conditions

and that of the parameters N , a and β on the partition function; we start
recalling the following

Lemma 6.2 (Lemma 5 and 6 of [16]). There exist constants β0 > 0,
a0 > 0, K1 > 2 such that for any β > β0 and 0 < a < a0, one has

Zl(β) ≥ Zl−1(β)
1
K1

√
2π
β
.

Denoting by Z the partition function for the system with free boundary condi-
tions,19 one has

Zl(β) ≤ Zl(β) (2K1)
1+4a0 .

Proof. For the proof we refer to [16]; please note that our variables xj corre-
spond to their variables qj after a rescaling: qj =

√
ωxj . �

Corollary 6.3. Under the same hypothesis of Lemma 6.2, for the scaled20 quan-
tities one has

Z�
l (β) ≥ Z�

l−1(β)
√

2π
K1

Z�
l (β) ≤ Z�

l (β) (2K1)
1+4a0 .

In the following Lemma, we control the complete partition function
Z(β, a) with the totally uncoupled one Z(β, 0), exploiting the decomposition
(6.5). We remark that it is independent of the boundary conditions.

Lemma 6.4. Let A1 :=
√

1 + 4a. If a > 0 then

1
Al1

Zl(β, 0) ≤ Zl(β, a) ≤ Zl(β, 0).

Proof. Using the trivial inequality (v − w)2 ≤ 2(v2 + w2), when a > 0 we use
the estimate Ha ≤ 4aHd to get the following inequalities

Hd +H1 ≤ H ≤ (1 + 4a)Hd + (1 + 4a)2H1.

19 See (5.4).
20 See the paragraph before definitions (5.5) in the proof of Proposition 5.3.
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Inserting the previous formula in the explicit expressions for Z(β, a) and
Z(β, 0), we have

∫

Rl

e−β(Hd+H1)dx ≥
∫

Rl

e−βHdx

≥
⎡

⎣
∫

R

e−β
(
(1+4a) x2

2 +(1+4a)2 x4
4

)

dx

⎤

⎦
l

=
1
Al1

∫

Rl

e−β(Hd+H1)dx,

using, in the last equality, the change of variable y =
√

1 + 4ax. �

As a corollary of Lemma 6.1, in the uncoupled case it is possible to control
the partition function Z(β, 0) with the corresponding harmonic21 one, which

can be denoted by Zl(∞, 0) :=
∫

Rl e−βHddx =
(

2π
β

)l/2
:

Lemma 6.5. For β >
√

3/4, denoting B := 1 − 3
4β2 < 1, one has

Bl ≤ Zl(β, 0)
Zl(∞, 0)

≤ 1.

Proof. Rescale Z by
√
β and then apply Lemma 6.1. �

As a corollary of the previous Lemmas, one has

Corollary 6.6. Let β0, a0 and K1 be the constants of Lemma 6.2, then for any
β > β0, 0 < a < a0 and l′ < l one has

Zl−l′(β, a)Zl′(β, a)
Zl(β, a)

≤ Kl′
1 .

Proof. Apply Lemma 6.2 l′ times, then apply Lemma 6.4 and Lemma 6.5. �

Remark 6.7. The previous statements, Lemma 6.4, Lemma 6.5 and Corol-
lary 6.6, hold also for the scaled quantities Z�, with identical proofs.

6.2.3. Gibbs Averages of Monomial. We first describe the possibility of cutting
a (periodic) chain into two (periodic) subchains, showing how the respective
averages are related. We consider in general two functions f and g with disjoint
supports; we have the following

Lemma 6.8. In a periodic chain of length l, let f and g be two functions
with disjoint supports, in particular supp(f) ⊆ {0, . . . , l′ − 1} and supp(g) ⊆
{l′, . . . , l− 1}. Let β0, a0 and K1 be the constants of Lemma 6.2, then for any
β > β0 and 0 < a < a0 one has

〈fg〉l ≤ Kl′
1

〈
feβa(x

2
l′−1+x

2
0)
〉

l′

〈
geβa(x

2
l−1+x

2
l′)
〉

l−l′
,

and an identical inequality, but without β in the exponential factors, for the
scaled case.

21 The corresponding scaled version is clearly Z�
l (∞, 0) := (2π)l/2.
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Proof. We start writing the averaged quantity splitting the measure in the
following way:

〈fg〉l =
1
Zl

∫

Rl

[0, f, l′ − 1][l′ − 1, l′][l′, g, l − 1][l − 1, l]dV (l′)
0 dV (l−l′)

l′ .

If we could remove the terms [l′ − 1, l′] and [l − 1, l], we would end up in two
separated chain with free boundaries; to recover periodicity in both chains we
should multiply by eβaxl′−1x0 and eβaxl−1xl′ ; now observe that, using |bc| <
1
2 (b2 + c2), one has

[l′ − 1, l′]
eβaxl′−1x0

eβaxl′−1x0
[l − 1, l]

eβaxl−1xl′

eβaxl−1xl′

≤ eβaxl′−1x0eβa(x
2
l′−1+x

2
0)eβaxl−1xl′ eβa(x

2
l−1+x

2
l′),

so we have

〈fg〉l ≤ Zl′Zl−l′
Zl

〈
feβa(x

2
l′−1+x

2
0)
〉

l′

〈
geβa(x

2
l−1+x

2
l′)
〉

l−l′
;

the thesis now follows from Corollary 6.6. For scaled case, simply add � every-
where and remove β as needed in the proof above. �

In the next Lemma we are interested in the phase average of a monomial:
in this case the dimension of the space is not a critical aspect of the estimate,
so we can simply perform our estimate passing to the uncoupled quantities
paying the price of the power of a constant to the dimension of the space.

Lemma 6.9. Let xk be a monomial of degree 2r, A2 :=
√

1 − 2a, a < 1/2 and
β >

√
3/4, then

〈
xk
〉
l
≤ Al1

〈
xk
〉
l,0
,

〈
xkeβa(x

2
0+x

2
l−1)
〉

l
≤ Al1

A
2+k0+kl−1
2

〈
xk
〉
l,0

〈
xk
〉
l,0

≤ 1
Bl

2rr!
βr

.

Proof. For the first inequality, one simply use Ha > 0 and Lemma 6.4 to get
〈
xk
〉
l
=

1
Zl(β, a)

∫

Rl

xke−β(Hd+Ha+H1) ≤ Al1
Zl(β, 0)

∫

Rl

xke−β(Hd+H1),

which is actually Al1
〈
xk
〉
l,0

. For the second inequality, we further use ez
4/4 ≤

e(z4/A2)
4/4 in the previous estimate, and then scale by A2 to the “boundary”

variables appearing in the exponential factor.
For the last inequality, using H1 > 0 and Lemma 6.5, one can first exploit

the control of the (decoupled) nonlinear Gibbs measure by the (decoupled)
harmonic one:

〈
xk
〉
l,0

≤ 1
BlZl(∞, 0)

∫

Rl

xke−βHd .
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Then, concerning the numerator we have
∫

Rl

xke−βHd =
l∏

j=1

∫

R

xkj e−β x2
2 dx =

l∏

j=1

(
2
β

) kj+1
2

Γ
(
kj + 1

2

)

≤
(

2
β

)r (√2π
β

)l l∏

j=1

(
kj
2

)
!,

where we used, when kj is even, the relation Γ
(
n+ 1

2

)
= (2n)!

4nn!

√
π ≤ n!

√
π; if

kj is odd, and we actually estimate
∫ |xkj |e−βHd , then Γ

(
kj+1

2

)
=
(
kj−1

2

)
!

which bounded by the estimate of the other case. As a last step we recall that∏
j (mj !) ≤

(∑
jmj

)
! to get the thesis. �

In the next Lemma, despite its similarity with the previous one, we need
a different approach, since it will be applied in a case with the dimension of the
space growing with N ; thus, it is not possible to pay the price of the constant
Al1.

Lemma 6.10. Let β0, a0 and K1 be the constants of Lemma 6.2; for every
0 ≤ i < l it holds

〈
eβa(x

2
i +x2

i+1)〉
l
≤ (2K1)

(1+4a0)

(
D

A2

)2

, D :=
K1A1

B
.

Proof. Let us write first the Hamiltonian isolating the energy of two chains
with free boundaries,22 the first defined on the two sites i and i + 1 and the
second on the remaining sites, plus the connecting springs:

H(x) = H(2)(xi, xi+1) + H(l−2)(xi+2, xi+3, . . . , xi−1)

+
a

2
(xi−1 − xi)

2 +
a

2
(xi+1 − xi+2)

2 ;

then, estimating by above with 1 the contribution of the connecting springs
〈
eβa(x

2
i +x2

i+1)〉
l
≤ 1
Zl

∫

Rl−2

e−βH(l−2)
∫

R2

eβa(x
2
i +x2

i+1)e−βH(2)
dx1 · · · dxl

=
Zl−2Z2

Zl

Zl−2

Zl−2

∫
R2 eβa(x

2
i +x2

i+1)e−βH(2)
dxidxi+1

Z2

≤ K2
1 (2K1)

(1+4a0)

∫
R2 e−β(1−2a)(x2

i /2+x
2
i+1/2)dxidxi+1

A−2
1 Z2(β, 0)

,

where we used Corollary 6.6, Lemma 6.2 and Lemma 6.4; then using also
Lemma 6.5 and a rescaling like in Lemma 6.9 one has the thesis. �

In the next proposition, we consider the average of monomial whose sup-
port is not the entire space. It is actually a trivial consequence of the previous
results.

22 We recall the use of the calligraphic letters H and Z for the free boundary cases [see (5.4)].
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Proposition 6.11. Let β0, a0 and K1 be the constants of Lemma 6.2, and let
xk be a left aligned even monomial of degree 2r and interaction range l′ < l.
Then, for any β > β0 and a < a0 one has

〈
xk
〉
l
≤ (2K1)

(1+4a0)

A
4+k0+kl′−1
2

D2+l′ 2rr!
βr

.

Proof. Use Lemma 6.8 to cut the chain at the boundaries of the support of
xk; then apply Lemma 6.9 and 6.10 to the resulting terms. �

Remark 6.12. In all the previous results, i.e. Lemmas 6.8, 6.9 and 6.10 and
Proposition 6.11, the same estimates hold true if one substitutes every average
〈·〉 with the corresponding scaled version 〈·〉� and remove β. The proofs are
almost, if not completely, identical.

6.2.4. Gibbs Averages of Polynomials of Class D(C, σ). In this subsection we
consider polynomials instead of monomials, but we restrict to those with an
exponential decay of the interaction range, as described in Sect. 2.2 (we recall
in particular the decomposition (2.3) and the Definition (2.7) of class D(C, σ)).
A first result is the following

Lemma 6.13. If ϕ ∈ D(Cϕ, σs) is a polynomial of degree 2s+ 2 with s ≤ r, if
De−σs ≤ 1/2 then

〈ϕ〉 ≤
[
2D2(2K1)1+4a0

A4
2

]
Cϕ

[(
2

A2
2β

)s+1

(s+ 1)!

]
(6.6)

Proof. Using the decomposition (2.3), let us write 〈ϕ〉 =
∑
l

〈
(ϕ)(l)

〉
. By apply-

ing Proposition 6.11 we can estimate each addendum as
〈
ϕ(l)
〉

≤ (2K1)1+4a0

A4
2

D2+l

(
2

A2
2β

)s+1

(s+ 1)!
∥∥∥ϕ(l)

∥∥∥ ;

performing the sum over l, we have

∑

l

〈
ϕ(l)
〉

≤ (2K1)1+4a0

A4
2

(
2

A2
2β

)s+1

(s+ 1)!D2Cϕ

N−1∑

l=0

(
De−σs

)l
,

and from the estimate
∑N−1
l=0 (De−σs)l ≤ 2 (the latter being true due to con-

dition Dμ� ≤ 1/2) the thesis follows. �

We are interested in a similar estimate for the square of a given polyno-
mial; to this purpose we first give the following

Lemma 6.14. If ϕ ∈ D(Cϕ, σs) then ϕ2 ∈ D(2C2
ϕ/(1 − e−σs), σs).

Proof. We write ϕ2 =
∑N−1
l=0 (ϕ2)(l), with

(ϕ2)(l) =
(
ϕ(l)
)2

+ 2ϕ(l)
l−1∑

l′=0

ϕ(l′),
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hence

∥∥∥(ϕ2)(l)
∥∥∥ ≤ 2

∥∥∥ϕ(l)
∥∥∥

l∑

l′=0

∥∥∥ϕ(l′)
∥∥∥ ≤ 2C2

ϕe−σsl
l∑

l′=0

e−σsl
′
<

2C2
ϕ

1 − e−σs
e−σsl.

�

A trivial consequence of the two previous lemmas is then the following

Corollary 6.15. If ϕ ∈ D(Cϕ, σs) is a polynomial of degree 2s+ 2, if De−σs ≤
1/2 then

〈
ϕ2
〉 ≤

[
4D2(2K1)1+4a0

A4
2

]
C2
ϕ

1 − e−σs

[(
2

A2
2β

)2s+2

(2s+ 2)!

]
(6.7)

6.3. Cancellations

In this appendix, we provide the formal proof of the cancellations that take
place in the correlation terms of Proposition 5.3.

We first recall a few basic facts about binary strings used in the proof.
Define Σm := {k = k1 · · · km s.t. kl ∈ {0, 1} ∀l} the space of binary strings
of finite length. We shall denote by �(k) the length of the string k. Recall that
the usual bitwise “and” operator ∧ : Σm × Σm → Σm is defined as

(i, j) �→ k = i ∧ j, kl =

{
1 il=1 and jl=1
0 otherwise

(6.8)

Remark 6.16. An elementary property is the following: given two strings j and
k in Σm, if j ∧ k = 0, then the total number of zeros contained collectively in
j and k is at least m.

A relevant point is that the presence of a 1 allows us to decouple the
measure as follows. Expand [p, r] =

∑
j[p, r]j and select a string j = v1w

with a 1 in the position corresponding to the site q. Then, we have [p, r]j =
[p, q]v[q + 1, r]w in place of the general decomposition [p, r] = [p, q][q, r]. We
shall use this property in dealing with expressions (5.7) in cases of having
j ∧ j′ �= 0 and k ∧ k′ �= 0. For, if j ∧ j′ �= 0, then both j and j’ have a 1
in the same position, so that a decomposition as above may take place in the
corresponding site of the chain.

Consider the set

Σ :=
{{j, k, j′, k′} : j ∧ j′ �= 0 , k ∧ k′ �= 0 ,

�(j) = �(j′) = l , �(k) = �(k′) = l′
}
.

We introduce now an equivalence relation as follows. Let j∧j′ �= 0 and look for
the first digit 1 in j ∧ j′. Then, split j = v1w and j′ = v′1w′ with �(v) = �(v′)
and with v ∧ v′ = 0. Similarly, split k = x1y and k′ = x′1y′ with �(x) = �(x′)
and x ∧ x′ = 0. We say that {a, b, a′, b′} ∈ Σ is equivalent to {j, k, j′, k′} in
case it can by obtained by an arbitrary exchange of the pairs (v, v′), (w, w′),
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(x, x′) and (y, y′). More precisely, (a, b, a′, b′) must be equal to one of

{v1w, x1y, v′1w′, x′1y′}, {v′1w, x1y, v1w′, x′1y′},
{v1w, x1y′, v′1w′, x′1y}, {v′1w, x1y′, v1w′, x′1y},
{v1w, x′1y, v′1w′, x1y′}, {v′1w, x′1y, v1w′, x1y′},
{v1w, x′1y′, v′1w′, x1y}, {v′1w, x′1y′, v1w′, x1y},
{v1w′, x1y, v′1w, x′1y′}, {v′1w′, x1y, v1w, x′1y′},
{v1w′, x1y′, v′1w, x′1y}, {v′1w′, x1y′, v1w, x′1y},
{v1w′, x′1y, v′1w, x1y′}, {v′1w′, x′1y, v1w, x1y′},
{v1w′, x′1y′, v′1w, x1y}, {v′1w′, x′1y′, v1w, x1y},

where some of the above combinations may well coincide, e.g. if v = v′. The
above list of 16 combinations actually describes the equivalence classes gener-
ated by our relation.

Remark 6.17. It is clearly sufficient to show that cancellations occurs within
each equivalence class, and this is what we are going to do.

Let us now pick an equivalence class, i.e. choose one of its elements
denoted again by {j, k, j′, k′} = {v1w, x1y, v′1w′, x′1y′}, and exploit the decom-
position corresponding to the 1 digits. For the term 〈〈φψ〉〉Z in (5.7), writing
only the integrand function, we get

(
[0, φ,m−1] · [m−1, t]j · [t, ψ, t+m′−1] · [t+m′−1, N ]k

)

×([0,m−1] · [m−1, t]j′ · [t, t+m′−1] · [t+m′−1, N ]k′
)

=
(
[u′−1, N ]y · [0, φ,m−1] · [m−1, u− 1]v

)

×([u, t]w · [t, ψ, t+m′−1] · [t+m′−1, u′ − 1]x
)

×([u′−1, N ]y′ · [0,m−1] · [m−1, u− 1]v′
)

×([u, t]w′ · [t, t+m′−1] · [t+m′−1, u′ − 1]x′
)
,

where u and u′ denote the sites corresponding to the 1, i.e. [m−1, t]j = [m−
1, u − 1]v[u, t]w and [t + m′−1, N ]k = [t + m′−1, u′ − 1]x[u′−1, N ]y, and the
same for the primed strings. We do not write explicitly the analogous equality
for the term in 〈〈φ〉〉〈〈ψ〉〉.

The argument that follows becomes more transparent by introducing a
compact notation for each of the lines in the above formula, namely

[y : φ : v] := [u′−1, N ]y · [0, φ,m−1] · [m−1, u− 1]v,

[w : ψ : x] := [u, t]w · [t, ψ, t+m′−1] · [t+m′−1, u′ − 1]x,

[y′ : : v′] := [u′−1, N ]y′ · [0,m−1] · [m−1, t]v · [m−1, u− 1]w′ ,

[w′ : : x′] := [u, t]w′ · [t, t+m′−1] · [t+m′−1, u′ − 1]x′ .

Using such a notation and writing the corresponding terms for the whole
expression 〈〈φψ〉〉Z − 〈〈φ〉〉〈〈ψ〉〉, one has

[y : φ : v]·[w : ψ : x]·[y′ : : v′]·[w′ : : x′] − [y : φ : v]·[w : : x]·[y′ : : v′]·[w′ : ψ : x′];
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we remark that each factor in the above expression has a support disjoint from
the supports of the other factors, so that the integral can be factorized.

Select now {v1w, x1y, v′1w′, x′1y′} and {v1w′, x′1y, v′1w, x1y′}, i.e. two
elements which belong to the same equivalence class being obtained via a per-
mutation of both pairs (w, w′) and (x, x′) and add together the corresponding
contributions, namely

[y : φ : v] · [w : ψ : x] · [y′ : : v′] · [w′ : : x′] − [y : φ : v] · [w : : x] · [y′ : : v′] · [w′ : ψ : x′]

+ [y : φ : v] · [w′ : ψ : x′] · [y′ : : v′] · [w : : x] − [y : φ : v] · [w′ : : x′] · [y′ : : v′] · [w : ψ : x];

they clearly compensate each other and add up to zero. Performing the per-
mutation only in the pair (w, w′) and then only in the pair (x, x′), we have
instead

[y : φ : v] · [w′ : ψ : x] · [y′ : : v′] · [w : : x′] − [y : φ : v] · [w′ : : x] · [y′ : : v′] · [w : ψ : x′]

+ [y : φ : v] · [w : ψ : x′] · [y′ : : v′] · [w′ : : x] − [y : φ : v] · [w : : x′] · [y′ : : v′] · [w′ : ψ : x],

which again add up to zero. The previous expressions show the cancellations
among 4 of 16 terms in the equivalence class; it is not difficult to verify that
the other cancellations take place working also, jointly or separately, with the
permutations of the other pairs (v, v′) and (y, y′). This completes the proof
that all contributions to 〈〈φψ〉〉Z − 〈〈φ〉〉〈〈ψ〉〉 coming from elements of every
equivalence class in Σ cancel out in pairs.

6.4. Structure of the Remainder

We present here a couple of lemmas concerning the structure of the remainder
of our perturbative construction. We recall that Φ = ϕ⊕ and R = ρ⊕, so that
in particular R =

∑N−1
j=0 ρj with ρj := ρ ◦ τ j .

Lemma 6.18. In the original variables x, y, the seed ϕ(x, y) is even in the
momenta y and consequently the seed of the remainder ρ(x, y) is odd both in
the momenta y and in the coordinates x.

Proof. We recall that the original Hamiltonian H(x, y) = T (y)+V (x) is obvi-
ously of even degree in the momenta and that also the iterative scheme gives
polynomials Φr(x, y) which are of even degree in the momenta. Hence, the
Poisson bracket defining ρ produces a polynomial of odd degree both in the
momenta and being the whole degree even, in the configuration variables. �

Lemma 6.19. It holds

N−1∑

j=1

(N − j)〈ρρj〉 =

{
N
2

〈
ρρN/2

〉
+N

∑N/2−1
j=1 〈ρρj〉, N even

N
∑[N/2]
j=1 〈ρρj〉, N odd

Proof. We provide the proof in the odd case, the other one being very similar.
We have the following equalities:
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N−1∑

j=1

〈ρρj〉 =
[N/2]∑

j=1

〈ρρj〉 +
N−1∑

j=[N/2]+1

〈ρρN−j〉 = 2
[N/2]∑

j=1

〈ρρj〉 ;

N−1∑

j=1

j〈ρρj〉 =
[N/2]∑

j=1

[j + (N − j)]〈ρρj〉 = N

[N/2]∑

j=1

〈ρρj〉.

Thus, subtracting the second line to N times the first one gives the thesis. �
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