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Abstract. Consider a point scatterer (the Laplacian perturbed by a delta-
potential) on the standard three-dimensional flat torus. Together with the
eigenfunctions of the Laplacian which vanish at the point, this operator
has a set of new, perturbed eigenfunctions. In a recent paper, the author
was able to show that all of the perturbed eigenfunctions are uniformly
distributed in configuration space. In this paper we prove that almost all
of these eigenfunctions are uniformly distributed in phase space, i.e. we
prove quantum ergodicity for the subspace of the perturbed eigenfunc-
tions. An analogue result for a point scatterer on the two-dimensional
torus was recently proved by Kurlberg and Ueberschär.

1. Introduction

Consider a point scatterer on the standard three-dimensional flat torus T
3 =

R
3/2πZ

3, which is formally given by

− Δ + αδx0 (1.1)

where −Δ is the associated Laplacian on T
3, δx0 is the Dirac potential at x0

and α is a coupling parameter.
We want to study quantum ergodicity of this system, which is a key

question in the field of quantum chaos. A classical result regarding quantum
ergodicity is Schnirelman’s theorem [4,14,19], which asserts that for classically
ergodic systems, the quantum counterpart is quantum ergodic, i.e. almost all
eigenstates are uniformly distributed in phase space. However our system is
not classically ergodic but an intermediate system; its classical dynamics is
nearly integrable.

Rigorously, a point scatterer is obtained as a self-adjoint extension of the
Laplacian acting on functions vanishing near x0. Such extensions are parame-
trized by φ ∈ (−π, π], where φ = π corresponds to the standard Laplacian
[α = 0 in (1.1)]. For φ �= π, the eigenfunctions of the corresponding oper-
ator consist of eigenfunctions of the Laplacian which vanish at x0 (and are
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not affected by the scatterer, so they are related to the unperturbed problem),
and new, perturbed eigenfunctions. Since the latter are the only eigenfunctions
which feel the scatterer, we have to consider only them to study the physics
of the perturbed problem.

In a recent paper [18], the author was able to prove quantum (unique)
ergodicity regarding the perturbed eigenfunctions of a point scatterer on the
standard three-dimensional flat torus, but only for observables which do not
depend on the momentum. Our goal now is to prove quantum ergodicity
regarding the perturbed eigenfunctions in full phase space.

We remark that a two-dimensional analogue of the theorem in [18] (i.e.
quantum ergodicity in configuration space) was proved for a general two-
dimensional flat torus by Rudnick and Ueberschär [12]; in a recent work by
Kurlberg and Ueberschär, they prove an analogue of the theorem in the current
paper for the standard two-dimensional flat torus.

The unit (co)tangent bundle of T
3 is the compact metric space S∗

T
3 �

T
3 × S2, on which we have the Liouville probability measure μ which is the

normalized product of the Lebesgue measure m on T
3 and the Lebesgue mea-

sure σ on S2. Observables are smooth, zero-th order ξ-homogeneous functions
a (x, ξ) on S∗

T
3. To quantize them, we use the notion of pseudo-differential

operators on T
3, which will be discussed in greater detail in Sect. 3 below. As

we will see, quantizing a ∈ C∞ (
S∗

T
3
)

leads to an operator Op (a), which is a
bounded operator on L2

(
T

3
)
.

We now state the main theorem of this paper. For every φ ∈ (−π, π), let
Λφ be the set of perturbed eigenvalues of the point scatterer, with the corre-
sponding L2-normalized eigenfunctions gλ (λ ∈ Λφ). We prove the following.

Theorem 1.1. Fix φ ∈ (−π, π). There is a subset Λφ,∞ ⊆ Λφ of density one,
so that for all a ∈ C∞ (

S∗
T

3
)
,

〈Op (a) gλ, gλ〉 →
∫

S∗T3

adμ

as λ → ∞ along Λφ,∞.

We actually prove a more general statement: let N3 be the set of inte-
gers which are sums of three squares (these are the eigenvalues of the Lapla-
cian), and let Λ be any increasing sequence whose elements interlace with the
elements of N3. For any λ ∈ Λ, define gλ to be the L2-normalized Green’s
function: gλ = Gλ

‖Gλ‖2
, where Gλ = (Δ + λ)−1

δx0 .

Theorem 1.2. There is a subset Λ∞ ⊆ Λ of density one so that for all a ∈
C∞ (

S∗
T

3
)
,

〈Op (a) gλ, gλ〉 →
∫

S∗T3

adμ

as λ → ∞ along Λ∞.
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This is of interest since in the physics literature one considers φ which
is not fixed, but varies as λ → ∞ (see [15,16]); since the only condition for
Λ in Theorem 1.2 is that its elements interlace with the elements of N3, the
theorem will still hold in such cases.

Approximating an observable with a linear combination of the functions
Yl,m (ξ) eix·ζ , where Yl,m are spherical harmonics, the question at hand reduces
to an arithmetic one. The main case is ζ = 0 (the other cases will follow from
the proof of proposition 3.9 in [18]), for which a new arithmetic ingredient is
used—an estimate due to Duke, by which he proved in [5,6] the equidistribu-
tion of integer lattice points on a sphere of radius

√
n, n �≡ 0, 4, 7 (8) , n → ∞

(conjectured by Linnik, and proved independently by Golubeva and Fomenko
[8,9]). It will be combined with Siegel’s lower bound for r3 (n), the number
of representations of n as a sum of three squares [n �≡ 0, 4, 7 (8)] [17], which
was also a key ingredient in proving the analogue result in configuration space
in [18].

We comment that all this is very different from the two-dimensional case,
where arithmetic questions about spheres are replaced by questions about cir-
cles. The two-dimensional analogue to Duke’s estimate is the theorem of Erdös
and Hall [7] about the distribution of lattice points on circles; an obvious com-
plication constructing the density one sequence Λ∞ of perturbed eigenvalues
is due to the fact that the theorem of Erdös and Hall is not deterministic, i.e.
lattice points on circles are equidistributed only for an unspecified density one
set of compatible ns.

2. Point Scatterers on the Torus

Let T
3 = R

3/2πZ
3 be the standard flat torus. A rigorous definition of the

operator (1.1) can be found in [18], following [3,12]. For the convenience of the
reader we give here a brief summary:

Let D0 = C∞
0

(
T

3\ {x0}
)

be the domain of C∞ functions vanishing in a
neighbourhood of x0, and define an operator on L2

(
T

3
)

by −Δx0 = −Δ|D0 .
For the adjoint of −Δx0 we have

Dom
(−Δ∗

x0

)
= H2

(
T

3\ {x0}
)

=
{
f ∈ L2

(
T

3
)

: ∃A ∈ C, −Δf + Aδx0 ∈ L2
(
T

3
)}

,

and the self-adjoint extensions of −Δx0 are indexed by a parameter φ ∈
(−π, π]; the domain of the corresponding operators −Δφ,x0 contains the func-
tions f ∈ Dom

(−Δ∗
x0

)
such that

∃a ∈ C, f (x) = a

(
cos

φ

2
· −1
4π |x − x0| + sin

φ

2

)
+ o (1) , x → x0

and their action on f ∈ Dom (−Δφ,x0) is given by

− Δφ,x0f = −Δf + Aδx0 = −Δf + a cos
φ

2
δx0 , (2.1)

so we define a point scatterer to be one of these extended operators −Δφ,x0 .
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We remark that for φ = π we have Dom (−Δπ,x0) = H2
(
T

3
)

and
−Δπ,x0f = −Δf , so this extension recovers the standard Laplacian −Δ∞ on
the domain H2

(
T

3
)

(which is the unique self-adjoint extension of−Δ|C∞(T3)).
The functions (2π)−3/2

eiξ·x (
ξ ∈ Z

3
)

form an orthonormal basis of
eigenfunctions of −Δ∞ for L2

(
T

3
)
. The corresponding eigenvalues are the

norms |ξ|2 of vectors in Z
3, i.e. the set N3 of integers which are sums of three

squares, and each eigenvalue is of multiplicity r3 (n) which is the number of
representations of n = a2 + b2 + c2 with a, b, c ∈ Z integers.

For the perturbed operator (2.1) with φ �= π, we still have the nonzero
eigenvalues from the unperturbed problem (0 �= λ ∈ σ (−Δ∞)), with multiplic-
ities decreased by one, as well as a new set Λ = Λφ of eigenvalues (referred to
as the perturbed eigenvalues), each appearing with multiplicity one, with the
corresponding eigenfunctions being multiples of the Green’s function

Gλ (x, x0) = (Δ + λ)−1
δx0 .

The main tool we use for studying the Green’s functions Gλ is their L2-
expansion, which is given by

Gλ(x, x0) = − 1
8π3

∑

ξ∈Z3

exp (iξ · (x − x0))
|ξ|2 − λ

.

We denote by

gλ (x) :=
Gλ (x, x0)

‖Gλ‖2

the L2-normalized Green’s function, or the normalized perturbed eigenfunc-
tions of the scatterer.

One can see that perturbed eigenvalues are the solutions to the equation

∑

ξ∈Z3

{
1

|ξ|2 − λ
− |ξ|2

|ξ|4 + 1

}

= c0 tan
φ

2
(2.2)

with

c0 =
∑

ξ∈Z3

1
|ξ|4 + 1

so the perturbed eigenvalues interlace with the elements of

N3 = {0 = n0 < n1 < n2 < · · · } ,

and denoting them by λk = λφ
k we can write

λ0 < n0 < λ1 < n1 < λ2 < · · · < nk < λk+1 < nk+1 < . . . .

Recall that a subset Λ′ = {λjk
} ⊆ Λ is of density a (0 ≤ a ≤ 1) in Λ if

lim
J→∞

1
J

# {k ∈ N : jk ≤ J} = a
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or equivalently

lim
X→∞

# {λ ∈ Λ′ : λ ≤ X}
# {λ ∈ Λ : λ ≤ X} = a.

3. Pseudo-Differential Operators on the Torus

To quantize observables a ∈ C∞ (
S∗

T
3
)
, one can use the special structure of T

3

as a compact group, to get a global definition of pseudo-differential operators
on T

3, instead of using the theory of (Hörmander’s) pseudo-differential oper-
ators on R

3 locally, which could be rather inconvenient. This idea goes back
to Agranovich [1], and it was proved by McLean [11] that both definitions of
pseudo-differential operators on the torus are equivalent. A recent monograph
by Ruzhansky and Turunen [13] gives a very comprehensive treatment of this
subject—we present here the basic definitions of pseudo-differential operators
on T

n (and in particular on T
3) using their notations.

Let σ : Z
n → C, and let ej be the standard basis elements of R

n. Let Δξj

be the partial difference operator defined by

Δξj
σ (ξ) = σ (ξ + ej) − σ (ξ),

and for a multi-index α define

Δα
ξ = Δα1

ξ1
· · · Δαn

ξn
.

Following the notation in [13], for m ∈ R, 0 ≤ δ, ρ ≤ 1, define Sm
ρ,δ (Tn × Z

n)
to be the set of functions a (x, ξ) which are smooth in x for all ξ ∈ Z

n, and
satisfy

∣
∣Δα

ξ ∂β
xa (x, ξ)

∣
∣ ≤ Ca,α,β,m 〈ξ〉m−ρ|α|+δ|β|

for every x ∈ T
n, α, β multi-indices, and ξ ∈ Z

n. Here, 〈ξ〉 =
(
1 + |ξ|2

)1/2

.
For every symbol a (x, ξ) ∈ Sm

ρ,δ (Tn × R
n), define a toroidal symbol ã :

T
n × Z

n → C by the restriction ã = a|Tn×Zn ; it is not hard to show that
ã (x, ξ) ∈ Sm

ρ,δ (Tn × Z
n). Define

Op (a) f (x) = Op (ã) f (x)
=

∑

ξ∈Zn

eix·ξa (x, ξ) f̂ (ξ) .

One verifies (see [13]) that the operator Op (a) : C∞ (Tn) → C∞ (Tn) is well
defined and continuous. Note that for a symbol a (x, ξ) =

∑
|α|≤m aα (x) ξα we

get that

Op (a) f (x) =
∑

|α|≤m

aα (x)
∑

ξ∈Z3

eix·ξξαf̂ (ξ)

=
∑

|α|≤m

aα (x)
∑

ξ∈Z3

eix·ξ ̂(−i∂)α
f (ξ)

=
∑

|α|≤m

aα (x) (−i∂)α
f (x)

as one would expect.
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In particular, we use this quantization for zero-th order positively homo-
geneous symbols a (x, ξ) ∈ S0

1,0

(
T

3 × R
3
)

(in the sense that a (x, λξ) = a (x, ξ)
for |ξ| ≥ 1 and λ ≥ 1). Since a (x, ξ) is a smooth ξ-homogeneous function of
order zero, we can identify it with a smooth function on the unit cotangent
bundle of T

3 and write a ∈ C∞ (
S∗

T
3
)
.

One proves that in this case, Op (a) extends to a bounded operator on
L2

(
T

3
)
. Moreover, we have the following result on the L2-norm of Op (a)

(Theorem 4.8.1 in [13]): Let k ∈ N and k > n/2. Let a : T
n × Z

n → C be
such that

∣
∣∂β

x a (x, ξ)
∣
∣ ≤ C for all (x, ξ) ∈ T

n × Z
n and all |β| ≤ k. Then, the

operator Op (a) extends to a bounded linear operator on L2 (Tn), and there
exists a constant Ck (which depends only on k) such that

‖Op (a)‖2
L2(Tn)→L2(Tn) ≤ Ck

∑

|α|≤k

sup
y∈Tn

sup
ξ∈Zn

∣
∣∂α

y a (y, ξ)
∣
∣2 .

Thus, for n = 3, k = 2, a ∈ S0
1,0

(
T

3 × R
3
)

we have

‖Op (a)‖2
L2(T3)→L2(T3) ≤ C

∑

|α|≤2

sup
y∈T3

sup
ξ∈Z3

∣
∣∂α

y a (y, ξ)
∣
∣2 . (3.1)

4. Bounds For the Green’s Functions and Truncation

We collect some auxiliary results proved in [18]:
We have the following lower bound for the L2-norm of the Green’s func-

tion:

‖Gλ‖2
2 � λ1/2−ε.

For L > 0, define the truncated Green’s function by

Gλ,L (x) = − 1
8π3

∑

||ξ|2−λ|<L

eiξ·(x−x0)

|ξ|2 − λ

and the L2-normalized truncated Green’s function by gλ,L = Gλ,L

‖Gλ,L‖2
.

For L = λδ, δ > 0, we have

‖gλ − gλ,L‖2 → 0

as λ → ∞ and

‖Gλ,L‖2 = ‖Gλ‖2 (1 + o (1)) .

It is also proved that for all f ∈ C∞ (
T

3
)

|〈fgλ, gλ〉 − 〈fgλ,L, gλ,L〉| ≤ 2 ‖f‖∞ ‖gλ − gλ,L‖2 ,

and a similar proof shows that for all a ∈ C∞ (
S∗

T
3
)

|〈Op (a) gλ, gλ〉 − 〈Op (a) gλ,L, gλ,L〉|
≤ 2 ‖Op (a)‖L2(T3)→L2(T3) ‖gλ − gλ,L‖2 . (4.1)
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5. Basis Elements

The following lemma shows that we can approximate a smooth function on
T

3 × S2 by a finite linear combination of functions of the form eζ,l,m (x, ξ) =
Yl,m (ξ) eix·ζ , where Yl,m (ξ) is the spherical harmonic of degree l and order m

(normalized so that
∫

S2 |Yl,m|2 dσ = 1).

Lemma 5.1. For all a ∈ C∞ (
T

3 × S2
)
, ε > 0, there exist N1, N2 and

P (x, ξ) =
∑

|ζ|≤N1

∑

l≤N2

∑

|m|≤l

cζ,l,meζ,l,m (x, ξ) ∈ C∞ (
T

3 × S2
)
,

such that for all x ∈ T
3, ξ ∈ S2 and for all multi-index α where |α| ≤ 2, we

have |∂α
x (a − P ) (x, ξ)| < ε.

Proof. Let ε > 0. Expanding a to its Fourier series in the variable x, for every
ξ ∈ S2 we have

a (x, ξ) =
∑

ζ∈Z3

aζ (ξ) eix·ζ (5.1)

where aζ (ξ) = 1
8π3

∫
T3 a (x, ξ) e−ix·ζdx, with convergence in the sense of

L2
(
T

3
)
. Moreover, since a ∈ C∞ (

T
3 × S2

)
, integration by parts yields that

aζ (ξ) � |ζ|−k for all k (where the implied constant is independent of ξ), so
that the series in (5.1) is uniformly convergent in T

3 × S2. Since uniform con-
vergence implies L2 convergence to the same (equivalence class of) function,
and since for every ξ both sides of (5.1) are continuous functions on T

3, we
conclude that the series uniformly converges in T

3 ×S2 to a (x, ξ). We also get
that for every multi-index α, we have

∂α
x a (x, ξ) =

∑

ζ∈Z3

aζ (ξ) ∂α
x eix·ζ

=
∑

ζ∈Z3

aζ (ξ) (iζ)α eix·ζ (5.2)

and the series in (5.2) is uniformly convergent in T
3 × S2 to ∂α

x a (x, ξ), so we
can find N1 such that for all x, ξ and for all multi-index α where |α| ≤ 2, we
have

∣
∣
∣
∣
∣
∣
∂α

x

⎛

⎝a (x, ξ) −
∑

|ζ|≤N1

aζ (ξ) eix·ζ

⎞

⎠

∣
∣
∣
∣
∣
∣
<

ε

2
.

For every ζ, we have the spherical harmonics expansion:

aζ (ξ) =
∞∑

l=0

∑

|m|≤l

cζ,l,mYl,m (ξ) (5.3)

where cζ,l,m =
∫

S2 aζ (ξ) Yl,m (ξ)dσ, with convergence in the sense of L2
(
S2

)
.

Since a (x, ξ) ∈ C∞ (
T

3 × S2
)
, we easily see that for all ζ we have aζ (ξ) ∈

C∞ (
S2

)
, and hence

∑
|m|≤l cζ,l,mYl,m (ξ) � l−k for all k (see [2], for example),
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so the sum in (5.3) is uniformly convergent in S2 for all ζ and, again, it must
converge to aζ (ξ). We conclude that there exists N2 such that for all |ζ| ≤ N1

and for all ξ we have
∣
∣
∣
∣
∣
∣
aζ (ξ) −

∑

l≤N2

∑

|m|≤l

cζ,l,mYl,m (ξ)

∣
∣
∣
∣
∣
∣
<

ε

2N5
1

and if we denote

P (x, ξ) =
∑

|ζ|≤N1

∑

l≤N2

∑

|m|≤l

cζ,l,meζ,l,m (x, ξ) ,

we get that for all x, ξ and for all multi-index α such that |α| ≤ 2, we have

|∂α
x (a − P ) (x, ξ)| ≤

∣
∣
∣
∣
∣
∣
∂α

x

⎛

⎝P (x, ξ) −
∑

|ζ|≤N1

aζ (ξ) eix·ζ

⎞

⎠

∣
∣
∣
∣
∣
∣
+

ε

2

=

∣
∣
∣
∣
∣
∣
∂α

x

⎛

⎝
∑

|ζ|≤N1

⎛

⎝aζ (ξ) −
∑

l≤N2

∑

|m|≤l

cζ,l,mYl,m (ξ)

⎞

⎠ eix·ζ

⎞

⎠

∣
∣
∣
∣
∣
∣
+

ε

2

≤ N2
1

∑

|ζ|≤N1

∣
∣
∣
∣
∣
∣
aζ (ξ) −

∑

l≤N2

∑

|m|≤l

cζ,l,mYl,m (ξ)

∣
∣
∣
∣
∣
∣
+

ε

2
< ε.

�

We can think of eζ,l,m (x, ξ) = Yl,m (ξ) eix·ζ as a zero-th order positively
homogeneous symbol in S0

1,0

(
T

3 × R
3
)
, by extending Yl,m (ξ), (l,m) �= (0, 0)

homogeneously to the domain |ξ| ≥ 1, and arbitrarily to the domain |ξ| < 1;

the function Y0,0 (ξ) = 1
2

√
1
π extends to ξ ∈ R

3 in an obvious way. To prove
our main theorem, we will now see that it suffices to show a simpler version of
it on the functions eζ,l,m (x, ξ).

Proposition 5.2. Suppose that there is a subset Λ∞ ⊆ Λ of density one so that
for all ζ, l,m with at least one of them nonzero we have

〈Op (eζ,l,m) gλ,L, gλ,L〉 → 0

as λ → ∞ along Λ∞, then Theorem 1.2 follows. Here 0 < δ < 1, L = λδ.

Proof. Let ε > 0, and a (x, ξ) ∈ C∞ (
S∗

T
3
)
. From Lemma 5.1, there is

P (x, ξ) =
∑

|ζ|≤N1

∑

l≤N2

∑

|m|≤l

cζ,l,meζ,l,m (x, ξ)

such that for all x ∈ T
3, ξ ∈ R

3, |ξ| ≥ 1 and for all multi-index α where |α| ≤ 2,
we have |∂α

x (a − P ) (x, ξ)| < ε. Without loss of generality we can assume that
we have

∂α
x P (x, 0) = ∂α

x a (x, 0) (5.4)
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for all x ∈ T
3 and for all multi-index α, because for λ large enough

Op (P ) gλ,L (x) = − 1
8π3 ‖Gλ,L‖2

∑

||ξ|2−λ|<L

ei(x−x0)·ξP (x, ξ)
1

|ξ|2 − λ

does not depend on the value of P (x, 0) [and it is easy to change P (x, ξ) in
the domain |ξ| < 1 to get a new symbol P̃ ∈ C∞ (

S∗
T

3
)

satisfying (5.4)], so
under this assumption the inequality |∂α

x (a − P ) (x, ξ)| < ε holds for every
ξ ∈ Z

n. Since

Op (e0,0,0) =
1
2

√
1
π

id,

and for (ζ, l,m) �= (0, 0, 0)

〈Op (eζ,l,m) gλ,L, gλ,L〉 → 0

as λ → ∞ along Λ∞, we have

〈Op (P ) gλ,L, gλ,L〉 =
∑

|ζ|≤N1

∑

l≤N2

∑

|m|≤l

cζ,l,m 〈Op (eζ,l,m) gλ,L, gλ,L〉

→ 1
2

√
1
π

c0,0,0

as λ → ∞ along Λ∞, and
∫

S∗T3

Pdμ =
1

area (T3) area (S2)

∑

|ζ|≤N1

∑

l≤N2

∑

|m|≤l

cζ,l,m

⎛

⎝
∫

T3

eix·ζdm

⎞

⎠

⎛

⎝
∫

S2

Yl,m (ξ) dσ

⎞

⎠

=
1

area (T3) area (S2)
c0,0,0

⎛

⎝
∫

T3

1dm

⎞

⎠

⎛

⎝
∫

S2

Y0,0 (ξ) dσ

⎞

⎠

=
1
2

√
1
π

c0,0,0,

so

〈Op (P ) gλ,L, gλ,L〉 →
∫

S∗T3

Pdμ

as λ → ∞ along Λ∞. Thus for λ ∈ Λ∞ large enough, we have
∣
∣
∣
∣
∣
∣
〈Op (P ) gλ, gλ〉 −

∫

S∗T3

Pdμ

∣
∣
∣
∣
∣
∣
< ε + |〈Op (P ) gλ, gλ〉 − 〈Op (P ) gλ,L, gλ,L〉|

≤ ε + 2 ‖Op (P )‖L2(T3)→L2(T3) ‖gλ − gλ,L‖2

< Cε.
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Using the bound in (3.1), we get that

|〈Op (a − P ) gλ, gλ〉|2 ≤ ‖Op (a − P ) gλ‖2
2

≤ ‖Op (a − P )‖2
L2(T3)→L2(T3)

≤ C
∑

|α|≤2

sup
y∈T3

sup
ξ∈Z3

∣
∣∂α

y (a − P ) (y, ξ)
∣
∣2

< Cε2

for λ ∈ Λ∞ (we call all our constants C).
We conclude that for λ ∈ Λ∞ large enough, we have

∣
∣
∣
∣
∣
∣
〈Op (a) gλ, gλ〉 −

∫

S∗T3

adμ

∣
∣
∣
∣
∣
∣
≤ |〈Op (a − P ) gλ, gλ〉|

+

∣
∣
∣
∣
∣
∣
〈Op (P ) gλ, gλ〉 −

∫

S∗T3

Pdμ

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∫

S∗T3

Pdμ −
∫

S∗T3

adμ

∣
∣
∣
∣
∣
∣

< Cε

and the proposition follows. �

6. A Density One Set

By the theorem of Legendre and Gauss (see [10]), the Diophantine equation

x2
1 + x2

2 + x2
3 = n

has solutions in integers xi (i = 1, 2, 3) if and only if n is not of the form
4a (8k + 7) with a ∈ Z, a ≥ 0 and k ∈ Z, and for all n, r3 (4an) = r3 (n).

Equivalently, if we write n = 4an1, with 4 � n1, then n is a sum of three
squares if and only if n1 �≡ 7 (8), that is to say

N3 = {n ∈ N : n = 4an1, 4 � n1 ⇒ n1 �≡ 7 (8)} ,

and r3 (n) = r3 (n1).
For n ∈ N3, write n = 4an1 with 4 � n1, and define

Ngood =
{

n ∈ N3 : n1 > n1/2
}

the set of “good” elements in N3, and Nbad = N3\Ngood the set of “bad
elements”. We show that there are very few “bad” elements in N3:

Lemma 6.1. # {n ∈ Nbad : n ≤ X} ≤ X1/2 log X.

Proof. For n ∈ Nbad, n ≤ X, we have n = 4an1 with n1 ≤ n1/2 ≤ X1/2

and a = log4 (n/n1) ≤ log n/ log 4 ≤ log X, so there are at most X1/2 log X
possibilities for such n. �
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For λ ∈ Λ, denote nλ to be the closest element in N3 to λ (and if there
are two elements with the same distance, take the smallest of them). Note that
|nλ − λ| ≤ 1.5, and for n �= nλ we have |n − λ| ≥ 0.5.

Define Λ∞ = {λ ∈ Λ : nλ ∈ Ngood}. We show that:

Lemma 6.2. Λ∞ is a density one set in Λ.

Proof. For every λ ∈ Λ\Λ∞, we have nk < λ < nk+1, where either nλ = nk

or nλ = nk+1, and nλ ∈ Nbad. Thus, for every n ∈ Nbad where n ≤ X + 1.5
there are at most two λ ∈ Λ\Λ∞, λ ≤ X such that nλ = n, so by Lemma 6.1
we have

# {λ ∈ Λ\Λ∞ : λ ≤ X} ≤ 2# {n ∈ Nbad : n ≤ X + 1.5} � X1/2 log X,

but

# {λ ∈ Λ : λ ≤ X} ≥ # {n ≤ X : n �≡ 0, 4, 7 (8)} � X,

so

# {λ ∈ Λ\Λ∞ : λ ≤ X}
# {λ ∈ Λ : λ ≤ X} � X−1/2 log X

which tends to zero as X → ∞. So Λ\Λ∞ is a density zero set in Λ, and
therefore Λ∞ is a density one set in Λ. �

7. Proving Theorem 1.2

We are only left to prove the following proposition:

Proposition 7.1. Let ζ, l,m with at least one of them nonzero, and let 0 < δ <
1/28, L = λδ. Then

〈Op (eζ,l,m) gλ,L, gλ,L〉 → 0

as λ → ∞ along Λ∞.

Proof. We have

|〈Op (eζ,l,m) Gλ,L, Gλ,L〉|

�

∣
∣
∣
∣
∣
∣
∣

〈
∑

||ξ|2−λ|<L

ei(x−x0)·ξ

|ξ|2 − λ
eix·ζYl,m

(
ξ

|ξ|
)

,
∑

||η|2−λ|<L

ei(x−x0)·η

|η|2 − λ

〉
∣
∣
∣
∣
∣
∣
∣

�

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

||ξ|2−λ|<L

||ξ+ζ|2−λ|<L

1
(
|ξ|2 − λ

) (
|ξ + ζ|2 − λ

)Yl,m

(
ξ

|ξ|
)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

First, assume that ζ �= 0:
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The functions Yl,m are bounded on S2, so

|〈Op (eζ,l,m) Gλ,L, Gλ,L〉| �
∑

||ξ|2−λ|<L

||ξ+ζ|2−λ|<L

1∣
∣
∣|ξ|2 − λ

∣
∣
∣
∣
∣
∣|ξ + ζ|2 − λ

∣
∣
∣

and therefore

|〈Op (eζ,l,m) gλ,L, gλ,L〉| �

∑
||ξ|2−λ|<L

||ξ+ζ|2−λ|<L

1

||ξ|2−λ|||ξ+ζ|2−λ|

‖Gλ,L‖2
2

→ 0

as λ → ∞ by the proof of Proposition 3.9 in [18].
Assume now that ζ = 0.
We have

|〈Op (e0,l,m) Gλ,L, Gλ,L〉| �

∣
∣
∣
∣
∣
∣
∣

∑

||ξ|2−λ|<L

Yl,m

(
ξ

|ξ|
)

(
|ξ|2 − λ

)2

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

|n−λ|<L

Wl,m (n)
(n − λ)2

∣
∣
∣
∣
∣
∣

where

Wl,m (n) =
∑

|ξ|2=n

Yl,m

(
ξ

|ξ|
)

.

If we write n = 4an1 with 4 � n1, then by Duke’s estimate (see [5,6])

|Wl,m (n)| = |Wl,m (n1)| � n
13/28+ε
1 ≤ n13/28+ε

and by Siegel’s theorem [17] r3 (n) = r3 (n1) � n
1/2−ε
1 , so

|Wl,m (n)|
r3 (n)

� n
−1/28+ε
1 .

For λ ∈ Λ∞, recall that nλ is the closest element in N3 to λ (and if there are
two elements with the same distance, take the smallest of them). From the
definition of Λ∞ we know that nλ ∈ Ngood.

Write
∑

|n−λ|<L

Wl,m (n)
(n − λ)2

=
∑

|n−λ|<L
n	=nλ

Wl,m(n)

(n−λ)2
+ Wl,m(nλ)

(nλ−λ)2
.

Since for n �= nλ we have |n − λ| ≥ 0.5:
∣
∣
∣
∣
∣
∣
∣
∣

∑

|n−λ|<L
n	=nλ

Wl,m (n)
(n − λ)2

∣
∣
∣
∣
∣
∣
∣
∣

�
∑

|n−λ|<L

n13/28+ε � λ13/28+δ+ε,
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then
∣
∣
∣
∣
∑

|n−λ|<L
n	=nλ

Wl,m(n)

(n−λ)2

∣
∣
∣
∣

‖Gλ,L‖2
2

� λ13/28+δ+ε

‖Gλ‖2
2

� λ−1/28+δ+2ε

which tends to zero for ε > 0 small enough, because δ < 1
28 . For the other

term, writing nλ = 4an1 with 4 � n1, we have
∣
∣
∣Wl,m(nλ)

(nλ−λ)2

∣
∣
∣

‖Gλ,L‖2
2

�
|Wl,m(nλ)|
(nλ−λ)2

‖Gλ‖2
2

�
|Wl,m(nλ)|
(nλ−λ)2

∑∞
n=0

r3(n)

(n−λ)2

� |Wl,m (nλ)|
r3 (nλ)

� n
−1/28+ε
1

and, since nλ ∈ Ngood, we have

n
−1/28+ε
1 ≤ n

−1/56+ ε
2

λ � λ−1/56+ ε
2

so this term also tends to zero as λ → ∞ along Λ∞. �
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