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Abstract. Let Ω ⊂ R
2 be an open, bounded domain and Ω =

⋃N
i=1 Ωi be

a partition. Denote the Fraenkel asymmetry by 0 ≤ A(Ωi) ≤ 2 and write

D(Ωi) :=
|Ωi| − min1≤j≤N |Ωj |

|Ωi|
with 0 ≤ D(Ωi) ≤ 1. For N sufficiently large depending only on Ω, there
is an uncertainty principle

(
N∑

i=1

|Ωi|
|Ω| A(Ωi)

)

+

(
N∑

i=1

|Ωi|
|Ω| D(Ωi)

)

≥ 1

60000
.

The statement remains true in dimensions n ≥ 3 for some constant cn >
0. As an application, we give an (unspecified) improvement of Pleijel’s
estimate on the number of nodal domains of a Laplacian eigenfunction
and an improved inequality for a spectral partition problem.

1. Introduction

1.1. Motivation

It is easy to partition R
2 into sets of equal measure that are ‘almost’ disks (the

hexagonal packing, for example) and it is also possible to decompose R
2 into

disks of different size (Apollonian packings)—but obviously not both at the
same time. We are interested in a quantitative descriptions of this phenomenon.

This question turns out to have some relevance in the calculus of varia-
tions, in particular in the study of vibrations of a membrane Ω ⊂ R

2 as well
as in spectral partition problems: given an eigenfunction φ of the Laplacian
−Δ with Dirichlet boundary conditions on Ω, what is the maximal number
of connected components of Ω\ {x ∈ Ω : φ(x) = 0}? Our quantitative study of

The author is grateful for various discussions about spectral partition problems with Bern-
hard Helffer.
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Figure 1. A partition into sets of equal measure and a
partition into disks (only large disks visible)

this simple geometric principle in terms of Fraenkel asymmetry and size is
very much motivated by the applicability to nodal domain estimates—it could
be of interest to capture the same phenomenon in other geometrically natural
quantities (Fig. 1).

1.2. Geometric Notions

Let n ≥ 2. Consider an open, bounded domain Ω ⊂ R
n with a given decom-

position

Ω =
N⋃

i=1

Ωi. (1)

We require two quantities to measure:
1. The deviation of Ωi from a ball.
2. The deviation of |Ωi| from.

min
1≤j≤N

|Ωj |. (2)

In measuring how much a set deviates from a ball, Fraenkel asymmetry has
recently become an increasingly central notion (i.e., [10]); given a domain Ω ⊂
R

n, its Fraenkel asymmetry is defined via

A(Ω) := inf
B

|Ω�B|
|Ω| , (3)

where the infimum ranges over all disks B ⊂ R
n with |B| = |Ω| and � is the

symmetric difference
Ω�B = (Ω\B) ∪ (B\Ω). (4)

Fraenkel asymmetry is scale invariant

0 ≤ A(Ω) ≤ 2. (5)

As for deviation in size, we define the deviation from the smallest element in
the partition via

D(Ωi) :=
|Ωi| − min1≤j≤N |Ωj |

|Ωi| , (6)

which is scale invariant as well and satisfies

0 ≤ D(Ωi) ≤ 1. (7)
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1.3. Main Result

Our main result states that for partitions of Ω into a large number of sets, an
average element of the partition needs to have either its Fraenkel asymmetry
A(Ωi) or its deviation from the smallest element D(Ωi) bounded away from 0
by a universal constant. This statement obviously fails if we only pick one of
the two terms: any set can be decomposed into N sets of measure |Ω|/N each
or each set can be decomposed into disks of different radii with an arbitrarily
small measure of different shape (packings of Apollonian type).

Theorem 1. Suppose Ω ⊂ R
n is an open and bounded domain and

Ω =
N⋃

i=1

Ωi (8)

with measurable sets Ωi satisfying

Ωi ∩ Ωj = ∅ for i 
= j. (9)

There exists a universal constant cn > 0 depending only on the dimension and
a constant N0 ∈ N depending only on Ω such that for N ≥ N0

(
N∑

i=1

|Ωi|
|Ω| A(Ωi)

)

+

(
N∑

i=1

|Ωi|
|Ω| D(Ωi)

)

≥ cn. (10)

In particular,

c2 ≥ 1
60000

. (11)

Remarks.

• Taking Ω to be the union of a finite number of disjoint balls of equal radius
shows that such a statement can only hold for N sufficiently large depending
on Ω.

• There are no assumptions whatsoever on the shape of Ωj—they need not
be connected.

• Fraenkel asymmetry turns the problem into a non-local one as the ‘missing’
measure Ω�B can be arbitrarily spread over the plane: this is why we
believe that any argument yielding a substantially improved constant will
need to be based on significantly new ideas. Indeed, our proof will essentially
only be a ‘non-local perturbation’ of a local argument, but not truly non-
local itself (hence the small constant).

• What can be said about the optimal constant cn? A natural candidate for
an extremizer in R

2 is the hexagonal tiling, which suggests that maybe

c2 ∼ 0.074465754 . . . (12)

As packing density of spheres decreases in higher dimensions, we consider
it extremely natural to conjecture that

c2 ≤ c3 ≤ · · · (13)
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• The following interesting question is due to Almut Burchard: suppose the
hexagonal packing was indeed a minimizer; we can introduce a parameter
α > 0 and look for minimizers of

α

(
N∑

i=1

|Ωi|
|Ω| A(Ωi)

)

+

(
N∑

i=1

|Ωi|
|Ω| D(Ωi)

)

. (14)

It seems reasonable to conjecture that the hexagonal packing will then be
a minimizer for every 0 < α ≤ 1. However, it is easy to see that there will
be some α0 ≥ 1 such that the hexagonal packing is no longer minimizing
for any α > α0. What happens at the transition? Which configurations
minimize the expression then?

1.4. Variants and Extensions

There are many possible variations and extensions. We can write Fraenkel
asymmetry as

A(Ω) = inf
x∈Rn

|Ω�(B + x)|
|Ω| , (15)

where B is the ball centered at the origin scaled in such a way that |B| =
|Ω|. However, this definition can be easily generalized by considering other
sets K instead of the ball if one corrects for the arising lack of rotational
symmetry, i.e.,

AK(Ω) := inf
x∈Rn

inf
R∈R

|Ω�(RK + x)|
|Ω| , (16)

where K is scaled in such a way that |K| = |Ω| and R is the set of all rotations.
The proof of our main statement is quite robust: it immediately allows to prove
the following variant.

Theorem 2. Let K ⊂ R
n be a bounded, convex set with a smooth boundary

containing no line segment. Then there exists a constant c(K) > 0 such that
for any open, bounded Ω ⊂ R

n and any decomposition

Ω =
N⋃

i=1

Ωi (17)

with measurable sets Ωi satisfying

Ωi ∩ Ωj = ∅ for i 
= j (18)

and N sufficiently large, there is a geometric uncertainty principle
(

N∑

i=1

|Ωi|
|Ω| AK(Ωi)

)

+

(
N∑

i=1

|Ωi|
|Ω| D(Ωi)

)

≥ c(K). (19)

This is certainly not the most general form of the theorem. Let S be the
set of bounded sets in R

n such that R
n can be partitioned into translations

and rotations of S. Suppose K is a bounded set satisfying

inf
S∈S

AS(K) > ε (20)
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for some ε > 0. Does this already imply a geometric uncertainty principle for
AK with a constant depending only on ε?

2. Application to Spectral Problems

2.1. Introduction

Consider an open, bounded domain Ω ⊂ R
2. The Laplacian operator with

Dirichlet conditions gives rise to a sequence of eigenvalues (λn)n∈N and asso-
ciated eigenfunctions (φn)n∈N, where

−Δφn = λnφn in Ω (21)

φn = 0 on ∂Ω. (22)

Laplacian eigenfunctions are of great intrinsic interest and have been exten-
sively studied. One natural question is to find bounds on the number of con-
nected components of

Ω\ {x ∈ Ω : φn(x) = 0} . (23)
Let us denote this quantity by N(φn). There are no non-trivial lower bounds
on N(φn) in general. Denoting the smallest positive zero of the Bessel function
by j ∼ 2.40 . . . , the known upper bounds are as follows:

N(φn) ≤ n (Courant, 1924) (24)

lim sup
n→∞

N(φn)
n

≤
(

2
j

)2

(Pleijel, 1956) (25)

lim sup
n→∞

N(φn)
n

≤
(

2
j

)2

− 3 · 10−9 (Bourgain, 2013), (26)

where (2/j)2 ≤ 7/10. Polterovich [15] suggests that the optimal constant might
be 2/π ∼ 0.63 with equality for a rectangle (this example has also been noted
Bérard [1] and probably others). It seems natural to assume that a domain Ω ⊂
R

2 giving rise to a large number of nodal domains needs to have a completely
integrable geodesic flow. Some numerical experiments in this direction have
been carried out by Blum et al. [4].

2.2. Pleijel’s Argument

Pleijel’s argument [14] is short and simple. Suppose the eigenfunction φn

induces a partition

Ω =
N⋃

i=1

Ωi. (27)

Then, by the Faber–Krahn inequality,

λn(Ω) ≥ λ1(Ωi) ≥ λ1(B), (28)

where B is the disk satisfying |B| = |Ωi|. However, λ1(B) can be explicitly
computed and the inequality then implies a lower bound on |B|. Combining
this with Weyl’s law λn ∼ 4πn/|Ω|, yields the result. Of course, this argument
is only sharp if we have a decomposition of Ω into disks of equal radius.
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2.3. Bourgain’s Argument

Bourgain [5] employs a spectral stability estimate due to Hansen and Nadi-
rashvili, which is formulated in terms of the inradius of a domain: for a non-
empty, bounded domain Ω ⊂ R

2, we have

λ1(Ω) ≥
[

1 +
1

250

(

1 − ri(Ω)
ro(Ω)

)3
]

λ1(Ω0), (29)

where Ω0 is the ball with |Ω0| = |Ω|, r0(Ω) is the radius of Ω0 and ri the
inradius of Ω. The second ingredient is a packing result due to Blind [3]:
the packing density of a collection of disks in the plane with radii a1, a2, . . .
satisfying ai ≥ (3/4)aj for all i, j is bounded from above by π/

√
12. These two

results imply the improvement.

2.4. An Improved Pleijel Estimate

Exploiting stability estimates for the Faber–Krahn inequality in terms of
Fraenkel asymmetry, we are able to prove the following result.

Corollary 1. There exists a constant ε0 > 0 such that

lim sup
n→∞

N(φn)
n

≤
(

2
j

)2

− ε0. (30)

An explicit value for ε0 would follow from an explicit constant in a
Faber–Krahn stability result involving Fraenkel asymmetry (these constants
are known to exist but have not yet been determined explicitly). Given the
general interest in this question, we are confident that such a result will be
eventually obtained. Much like Bourgain, however, we consider the underlying
geometry more interesting than the actual numerical value—particularly in
light of the following obstruction.

2.5. An Obstruction

Take Ω = [0, 1]2 of unit measure and cover it using the hexagonal covering
(with obvious modifications at the boundary). Numerical computations (e.g.,
[13]) give that the first Laplacian eigenvalue of a hexagon H satisfies

λ1(H) ∼ 18.5762
|H| . (31)

The Weyl law gives
λn(Ω) ∼ 4πn. (32)

We can place N hexagons of size |H| in Ω, where

N |H| = 1. (33)

Since we need to have λn(Ω) ≥ λ1(H), this implies

4πn ∼ 18.5762
|H| (34)

and thus
N =

1
|H| ∼ 4π

18.5762
n ∼ 0.676 . . . n. (35)
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As a consequence, any type of argument that leads to an improved Pleijel
inequality with a constant smaller than 0.67 . . . will need to employ completely
different arguments: the arguments given by Pleijel, Bourgain and this paper
argue based on the assumption that a partition of Ω into nodal domains is
given. However, such a partition could very well be the hexagonal partition.
Arguments leading to a better constant than 0.676 . . . will need to explain why,
say, an eigenfunction on a domain will not have eigenfunctions corresponding
to a partition into hexagons.

2.6. Spectral Minimal Partitions

The problem of spectral minimal partitions is as follows: given a smooth,
bounded domain Ω ⊂ R

n and an integer k ∈ N, find among all partitions
of Ω into k disjoint domains

Ω =
k⋃

i=1

Ωi (36)

the one minimizing
max
1≤i≤k

λ1(Ωi). (37)

It is conjectured that in two dimensions the minimal partitions should asymp-
totically behave like hexagonal tilings (with the exception of the boundary,
which becomes negligible as k → ∞). We refer to Caffarelli and Lin [7], Helffer
et al. [12] and a survey of Helffer [11]. One basic inequality [12, Proposition
6.1] following immediately from Pleijel’s estimate is that

max
1≤i≤k

λ1(Ωi) ≥ k
πj2

|Ω| . (38)

Bourgain remarks that his argument also allows to slightly improve the con-
stant in this inequality. As a second quantity that is sometimes minimized
(see e.g., Caffarelli and Lin [7] or Bérard and Helffer [2]), one can consider the
average and establish a strengthened Pleijel-type estimate

max
1≤i≤k

λ1(Ωi) ≥ 1
k

k∑

i=1

λ1(Ωi) ≥ k
πj2

|Ω| . (39)

This inequality, too, can be strengthened.

Corollary 2. There exists a ε0 > 0 such that for any smooth, bounded domain
Ω ⊂ R

2 and all k sufficiently large (depending on Ω)

1
k

k∑

i=1

λ1(Ωi) ≥ (πj2 + ε0)
k

|Ω| . (40)

3. Proof of Theorem 1 in Two Dimensions

This section contains a complete proof of the main statement in dimension
n = 2: the proof will track all arising constants. This takes up most of the
text and contains all the ideas of this paper—the argument is robust, and the
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necessary (and rather easy) modifications to obtain more general results will
then be given in subsequent sections.

3.1. Two Possible Strategies

There seems to be a very natural way to prove the statement; however, we did
not manage to fully quantify all the steps and had to find another argument.
We record our original idea nonetheless in the hope of building additional
insight.

Sketch of an idea. The inequality can be regarded as a probabilistic statement.
Pick a random domain weighted according to size (i.e., choosing a random
point of the domain, the probability of picking Ωi is |Ωi|/|Ω|). Our statement
can be read as a lower bound on the expectation of the random variable

A(Ωi) + D(Ωi). (41)

This motivates the following argument. Pick a random domain: either it
already has large Fraenkel asymmetry (in which case we are done) or it does
not and behaves quite disk-like. In the second case, we look at its neighbouring
domains. If there are few adjacent domains, at least one of them touches along
a long arc of the boundary meaning that the neighbouring domain has large
Fraenkel asymmetry (two disks touch in at most one point). If there are many
neighbours, either most are significantly smaller (making our randomly chosen
domain big in comparison and giving the statement) or some will need to get
squeezed together because there is not enough room (creating a large Fraenkel
asymmetry). We believe that such a strategy, properly implemented, could
give a relatively sharp constant—however, making all these steps quantitative
seems complicated.

Sketch of a different idea: our proof. We chose a different approach of a more
global nature: given a decomposition, we immediately switch to a collection of
N disks by taking disks realizing the Fraenkel asymmetry for each partition.
Then, we show that:

• There are few very large elements: the size of neighbourhood of the union
of all disks whose size is bounded away from the smallest element in the
partition by a constant factor can be bounded from above.

• Ignoring the large sets (of which there are few), the Fraenkel balls of small
sets usually do not overlap too much; the exceptional set is small.

Removing all large disks and all overlapping disks, we may shrink the remaining
disks such that no two of them overlap: the resulting disk packing cannot have
too high a density.

3.2. Defining Quantities

The limes inferior in the statement guarantees that boundary effects coming
from ∂Ω become negligible and we will ignore the boundary throughout the
proof (equivalently, we could have phrased the statement for periodic partitions
of R

2).
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We assume w.l.o.g. that |Ω| = 1. For a point x ∈ R
2 and a set A ⊂ R

2,
we abbreviate

‖x − A‖ := inf
y∈A

‖x − y‖. (42)

We introduce two numbers c1, c2 > 0 that will serve as threshold values for
‘being big’ and ‘strong overlap’ and we will keep them as variables throughout
the proof; however, a minimization problem towards the end of the proof will
motivate us to set

c1 =
1

250
and c2 =

7
250

(43)

and the reader can substitute these values throughout the proof if he wishes
to. Their role is as follows: we call Ωi ‘big’, if

|Ωi| ≥ (1 + c1) min
1≤j≤N

|Ωj |. (44)

The constant c2 will serve as a measure of overlap: two disks with centers in
x, y ∈ R

2 and radii r1, r2 will be considered to have ‘large’ overlap if

|x − y| ≤ (1 − c2)(r1 + r2). (45)

We define a natural length scale η0. Everything in this problem and this proof
is scale invariant and, correspondingly, the actual size of η0 is completely irrel-
evant throughout the proof: the variable cancels in the end. However, we con-
sider it helpful to imagine a fixed length scale η0 at which everything plays
out and will phrase all arising quantities in terms of η0, which we define via

πη2
0 = min

1≤i≤N
|Ωi|. (46)

The proof will be carried out via contradiction, we assume
(

N∑

i=1

|Ωi|
|Ω| A(Ωi)

)

+

(
N∑

i=1

|Ωi|
|Ω| D(Ωi)

)

≤ c (47)

for some small constant c and show that this will lead to a contradiction if c
is small enough. It makes sense to be slightly more careful, and therefore we
assume that for all d1, d2 ≥ 0 with c = d1 + d2

(
N∑

i=1

|Ωi|
|Ω| A(Ωi)

)

≤ d1 (48)

and (
N∑

i=1

|Ωi|
|Ω| D(Ωi)

)

≤ d2. (49)

We assign to each of the sets Ω1, . . . ,Ωn a disk B1, B2, . . . , Bn such that
|Bi| = |Ωi| and

A(Ωi) =
|Ωi�Bi|

|Ωi| . (50)

Note that a disk Bi need not be uniquely determined by Ωi (if there is more
than one possible choice, we pick an arbitrary one and fix it for the rest of the
proof). Each of these disks Bi has a center xi and a radius ri ≥ η0.
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3.3. The Union of Large Sets has Small Measure

Here, we prove a simple statement: the measure occupied by ‘large’ sets (in
the sense of (44)) is small. Note that the statement is indeed for the measure
and not the number of large sets, which could be small.

Lemma 1. We have
∣
∣
∣
∣
∣
∣

⋃

|Ωi|>(1+c1)πη2
0

Ωi

∣
∣
∣
∣
∣
∣
≤ d2

c1
+ d2. (51)

Proof. From (46), (49) and the definition of D(Ωi), we get that

d2 ≥
N∑

i=1

|Ωi|
|Ω| D(Ωi) =

N∑

i=1

(|Ωi| − πη2
0) = 1 − Nπη2

0 (52)

and therefore

N ≥ 1 − d2

πη2
0

. (53)

Now, let us suppose that 0 ≤ M ≤ N elements of the partition are ‘small’ in
the sense of satisfying |Ωi| ≤ (1 + c1)πη2

0 . We wish to show that M itself has
to be big. Trivially, ∣

∣
∣
∣
∣
∣

⋃

|Ωi|≤(1+c1)πη2
0

Ωi

∣
∣
∣
∣
∣
∣
≥ Mπη2

0 . (54)

The remaining measure is divided among big sets, hence the number
of ‘big’ elements is at most the remaining measure divided by the smallest
possible area a ‘big’ set can have

N − M ≤ 1 − Mπη2
0

(1 + c1)πη2
0

(55)

and thus, in total,

1 − d2

πη2
0

≤ N = M + (N − M) ≤ M +
1 − Mπη2

0

(1 + c1)πη2
0

. (56)

Rewriting gives

M ≥ c1 − d2 − d2c1

c1πη2
0

, (57)

which implies ∣
∣
∣
∣
∣
∣

⋃

|Ωi|≤(1+c1)πη2
0

Ωi

∣
∣
∣
∣
∣
∣
≥ c1 − d2 − d2c1

c1
(58)

and therefore, since |Ω| = 1,
∣
∣
∣
∣
∣
∣

⋃

|Ωi|>(1+c1)πη2
0

Ωi

∣
∣
∣
∣
∣
∣
≤ d2

c1
+ d2. (59)

�
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3.4. A Neighbourhood of the Union of Large Sets has Small Measure

In the last section, we have seen that measure of the set of large disks is small.
However, we actually require a slightly stronger statement showing that an
entire neighbourhood of that set is still small. For future use, we define the
index set I of partition elements with ‘big’ measure

I =
{
i ∈ {1, . . . , N} : |Ωi| ≥ (1 + c1)πη2

0

}
. (60)

Lemma 2. A 2η0−neighbourhood of
⋃

i∈I Bi has small measure: we have
∣
∣
∣
∣
∣

{

x ∈ Ω :

∥
∥
∥
∥
∥
x −

⋃

i∈I

Bi

∥
∥
∥
∥
∥

≤ 2η0

}∣
∣
∣
∣
∣
≤ 9d2

c1
+ 9d2. (61)

Proof. This argument is very simple: the 2η0−neighbourhood of a disk with
radius r has measure (r + 2η0)2π. The worst case is precisely the case, where
all Bi are well separated such that their 2η0−neighbourhoods do not inter-
sect (otherwise: move the disks apart to create a neighbourhood with bigger
measure). In this case, the total measure gets amplified by factor

(√
1 + c1 + 2

)2
η2
0π

(1 + c1)η2
0π

≤ 9 (62)

and the result follows from (51). �

3.5. Most Small Sets have Well-Separated Balls

By now, we have a good control on the ‘large’ disks and their neighbourhood:
we can (mentally and later in the proof literally) remove them from the stage
and consider the remaining small disks. It remains to control their intersec-
tions.

Lemma 3. The union of ‘small’ disks Bi, i 
= I, for which there exists another
‘small’ disk such that they intersect strongly in the sense of (45) is bounded by
∣
∣
∣
∣
∣

⋃

i/∈I

{
Bi : ∃j /∈I i 
= j : |xi − xj | ≤ (1 − c2)(ri + rj)

}
∣
∣
∣
∣
∣
≤ 20π

37
1 + c1

c
3/2
2

d1 (63)

Proof. For simplicity, we introduce the index set

J =
{
i /∈ I : ∃Bi ∃j /∈I i 
= j : |xi − xj | ≤ (1 − c2)(ri + rj)

}
. (64)

We will now derive an upper bound on the measure of the set, which we now
can abbreviate as ∪j∈JBj , using nothing but the inequality (49)

N∑

i=1

|Ωi|A(Ωi) ≤ d1. (65)

Suppose i ∈ J . Then there exists a j ∈ J such that the balls Bi, Bj have
controlled radius (this follows automatically from the fact that both disks are
‘small’)

η0 ≤ ri, rj ≤ √
1 + c1η0 (66)
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and intersect in a quantitatively controlled way

|xi − xj | ≤ (1 − c2)(ri + rj). (67)

Then the intersection Bi ∩Bj is of interest: if the Fraenkel asymmetry of Ωi is
to be small, then almost all of its measure should be contained in Bi, but the
very same reasoning also holds for Ωj and Bj . In particular, since every point
in the intersection can only belong to one of the two sets, we have

|Ωi|A(Ωi) + |Ωj |A(Ωj) ≥ |Bi ∩ Bj |. (68)

It remains to compute the quantity |Bi ∩ Bj |. Using scaling invariance, we
may assume η0 = 1. We are then dealing with two disks in the Euclidean
plane whose radii r1, r2 are bounded from below by 1 and whose centers x1, x2

satisfy
d := |x1 − x2| ≤ (1 − c2)(r1 + r2). (69)

Elementary Euclidean geometry yields

|Bi ∩ Bj | = r2
1 arccos

(
d2 + r2

1 − r2
2

2dr1

)

+ r2
2 arccos

(
d2 + r2

2 − r2
1

2dr2

)

− 1
2

√
(−d + r1 + r2)(d + r1 − r2)(d − r1 + r2)(d + r1 + r2). (70)

Easy but tedious calculations give that the quantity is decreasing in both radii
and as such minimized for r1 = r2 = 1. This is then a one-dimensional function
in c2 and it is easy to show that for c2 ≤ 0.05 the function is

2 arccos (1 − c2) − 2
√

(2 − c2)(1 − c2)2c2 ≥ 37
10

c
3
2
2 . (71)

Recalling the normalization η0 = 1, we get the scale-invariant estimate

|Bi ∩ Bj | ≥ 37
10

c
3
2
2 η0. (72)

A priori, the intersection patterns of {Bi : i ∈ J} can be very complicated.
However, there is a very simple monotonicity: we can remove areas, where three
or more balls intersect and arrange the balls in (possibly more than one) chain.
This increases the area and decreases the area of intersection. By the same
argument, the area further increases if we assume that any disk in {Bi : i ∈ J}
touches precisely one other disk (i.e., the intersection pattern reduces to that of
pairs of disks intersecting each other and no disk). Any such (i.e., intersecting)
pair of disks Bi, Bj satisfies (Fig. 2)

Figure 2. Increasing area while decreasing average Fraenkel asymmetry
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|Bi ∪ Bj | ≤ 2(1 + c1)πη2
0 (73)

as well as

|Bi ∩ Bj | ≥ 37
10

c
3
2
2 η0, (74)

which is connected via (68) to the sum
N∑

i=1

|Ωi|A(Ωi) ≤ d1. (75)

Thus ∣
∣
∣
∣
∣
∣

⋃

j∈J

Bj

∣
∣
∣
∣
∣
∣
≤ [

2(1 + c1)πη2
0

] d1

37
10c

3/2
2 η2

0

=
20π

37
1 + c1

c
3/2
2

d1. (76)

�

3.6. Bounds on the Size of the Neighbourhood of Strongly Intersecting Small
Disks

By applying the very same reasoning as in Sect. 3.4, we could argue that by
considering an entire 2η0-neighbourhood the measure gets amplified by a factor
of at most 9. This is perfectly reasonable but can actually be improved as we
are now dealing with disks intersecting other disks. We are thus studying the
following problem: given two disks B1, B2 with radii r1, r2 ≥ η0 intersecting in
precisely one point, what bounds can be proven on

|{x ∈ R
2 : ‖x − (B1 ∪ B2)‖ ≤ 2η0

} |
|B1| + |B2| ≤? (77)

This problem can be explicitly solved using elementary calculus and reduces to
a case-distinction and two integrations; we leave the details to the interested
reader. Carrying out the calculations gives

|{x ∈ R
2 : ‖x − (B1 ∪ B2)‖ ≤ 2η0

} |
|B1| + |B2| ≤ 9

2
+

2
√

2
π

+
9
π

arcsin
(

1
3

)

(78)

∼ 6.37 . . . (79)

≤ 32
5

(80)

with equality for r1 = r2 = 1. Arguing as in Sect. 3.4 and using (63), we get
∣
∣
∣
∣
∣
∣

⎧
⎨

⎩
x ∈ Ω :

∥
∥
∥
∥
∥
∥
x −

⋃

j∈J

Bj

∥
∥
∥
∥
∥
∥

≤ 2η0

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
≤ 128π

37
(1 + c1)

c
3/2
2

d1 (81)

3.7. Finding a Dense Disk Packing

We conclude our argument by deriving the existence of a disk packing in the
plane with impossible properties. Here, we employ an aforementioned result of
Blind [3] that also played a role in Bourgain’s argument and was mentioned
before: the packing density of a collection of disks in the plane with radii
a1, a2, . . . satisfying ai ≥ (3/4)aj for all i, j is bounded from above by π/

√
12.
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A rough outline of the remainder of the argument is as follows:

1. Consider the set of Fraenkel disks {Bi : 1 ≤ i ≤ N}
2. Remove all ‘big’ disks
3. Remove all remaining ‘small’ disks strongly intersecting another small disk
4. Shrink all remaining disks by a factor (1 − c2).

This leaves us with a set of disjoint disks in the Euclidean plane with roughly
the same radius and we can apply Blind’s result—the argument has one big
flaw, of course, removing elements from a set does not increase its packing
density (just think of a hexagonal packing of disks: if we remove the little
triangle-shaped gaps between the disks, packing density goes up to 1).

We counter the problem by not only removing ‘big’ disks or ‘small’ disks
strongly intersecting other small disks, but an entire 2η0−neighbourhood of
these sets as well. Doing this is equivalent to assuming that while we created
holes in the middle of the set, these holes are of such a shape that within a
neighbourhood we can actually achieve packing density 1.

From (61) and (81), we get that the set

Ω∗ := Ω\
⎛

⎝

{

x ∈ Ω :

∥
∥
∥
∥
∥
x −

⋃

i∈I

Bi

∥
∥
∥
∥
∥

≤ 2η0

}

∪
⎧
⎨

⎩
x ∈ Ω :

∥
∥
∥
∥
∥
∥
x −

⋃

j∈J

Bj

∥
∥
∥
∥
∥
∥

≤ 2η0

⎫
⎬

⎭

⎞

⎠

(82)

satisfies

|Ω∗| ≥ 1 −
(

9d2

c1
+ 9d2 +

128π

37
(1 + c1)

c
3/2
2

d1

)

. (83)

Ω∗ consists of disks with radii satisfying

η0 ≤ ri ≤ √
1 + c1η0 (84)

and with the additional property that the centers of any two disks are well
separated

|xi − xj | ≥ (1 − c2)(ri + rj). (85)

By shrinking all these disks by a factor of 1 − c2 while keeping their center in
the same place, they become disjoint. Thus, from Blind’s result

|(1−c2)Ω∗| ≤ (1−c2)2
[

1 −
(

9d2

c1
+9d2+

128π

37
(1 + c1)

c
3/2
2

d1

)]

≤ π√
12

. (86)

We need to find a set of parameters, for which the inequality fails. Indeed,
setting

c1 =
1

250
and c2 =

7
250

, (87)

we get for any d1, d2 ≥ 0 with

d1 + d2 =
1

60000
, (88)
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that

(1 − c2)2
[

1 −
(

9d2

c1
+ 9d2 +

128π

37
(1 + c1)

c
3/2
2

d1

)]

≥ π√
12

+
1

1000
. (89)

This contradiction proves the statement. �

Remark. The weakest point in the argument is certainly the last step,
where we remove an entire 2η0−neighbourhood. Intuition suggests that
we should be able that maybe even removing merely a η0-neighbourhood
should be more than sufficient; however, we have not been able to make a
progress on that question, which would certainly be the most natural start-
ing point if one wanted to improve the constant using arguments along these
lines.

4. Proof of the General Case

Here, we give a proof of Theorem 2 in general dimensions (which contains
Theorem 1 for n ≥ 3 as a special case). This section essentially recapitulates
the previous argument without caring about the actual numerical values at all.
The new ingredient is the following insight: in the proof of Theorem 1, after a
careful geometric analysis, we did end up with the inequality

(1 − c2)2
[

1 −
(

9d2

c1
+ 9d2 +

128π

37
(1 + c1)

c
3/2
2

d1

)]

≥ π√
12

+
1

1000
. (90)

The crucial point is the following: no matter what actual numerical values are
placed in front, by choosing d2 � c1 and d1 � c2, the inequality will always
be false for c1, c2 sufficiently close to 1 by simple continuity. In the previous
proof, it was our goal to keep d1, d2 as large as possible, but once we discard
this concern we can be much more wasteful in the actual geometric estimates.

Proof. The argument is again by contradiction. η0 plays a similar same role
as before, we define it via

η0 =
(

min
1≤j≤N

|Ωj |
)1/n

. (91)

The constant c1 again determines whether a domain is ‘big’, which we define
to be the case if

|Ωi| ≥ (1 + c1) min
1≤j≤N

|Ωj |. (92)

The precise meaning of c2 is introduced further below. Arguing by contradic-
tion we assume that

(
N∑

i=1

|Ωi|
|Ω| AK(Ωi)

)

+

(
N∑

i=1

|Ωi|
|Ω| D(Ωi)

)

≤ c (93)
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and want to derive a contradiction for c sufficiently small. Following the same
argument as before, we again get a bound on the number of large sets

∣
∣
∣
∣
∣
∣

⋃

|Ωi|>(1+c1)ηn
0

Ωi

∣
∣
∣
∣
∣
∣
≤ c

c1
+ c. (94)

Switching again to the Fraenkel bodies K1, . . . ,KN , we wish to remove a c3η0

neighbourhood of any ‘large’ Fraenkel body Ki, where c3 < ∞ is chosen such
that c3η0 is many multiples of the diameter of a ‘small’ Ki having measure at
most (1 + c1)ηn

0 . This allows us to bound the size of a c3η0 neighbourhood of
⋃

|Ωi|>(1+c1)ηn
0

Ki (95)

by c4(c/c1 + c) for some finite constant c4. The constant c2 now measures
whether two ‘small’ Fraenkel bodies have large intersection, writing again

I = {i ∈ {1, . . . , N} : |Ωi| ≥ (1 + c1)ηn
0 } , (96)

we consider
⋃

i/∈I

{Ki : ∃ji 
= j /∈ I : |(Ki ∩ Kj)| ≥ c2η
n
0 }. (97)

The same argument as before implies that for any two elements in the set, we
get

AK(Ki)|Ki| + AK(Kj)|Kj | ≥ c2η
n
0 . (98)

Since (
N∑

i=1

|Ωi|
|Ω| AK(Ωi)

)

≤ c, (99)

this implies a bound on the measure of the set
∣
∣
∣
∣
∣

⋃

i/∈I

{Ki : ∃ji 
= j /∈ I : |(Ki ∩ Kj)| ≥ c2η
n
0 }
∣
∣
∣
∣
∣
≤ c5c (100)

for some constant c5 < ∞ and a bound of the form c6c on the measure of
its c3η0 neighbourhood. Finally, since the boundary of the convex body K
contains no line segment, we get that for every ε1 > 0 there is a ε2 > 0 such
that any collection K1,K2, . . . of non-overlapping rotated and scaled translates
of K in the plane with volumes v1, v2, . . . satisfying

inf
i,j

vi

vj
≥ 1 − ε1 (101)

has packing density at most 1 − ε2. Finally, there exists a constant c7 such
that for any two scaled, translated copies K1,K2 of K with

|(Ki ∩ Kj)| ≤ c2η
n
0 , (102)

the rescaled bodies c7K1, c7K2 (rescaling being done in a way to fix, say, their
center of mass) satisfy

(c7K1) ∩ (c7K2) = ∅. (103)
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Note that the optimal c7 depends continuously on c2 and tends to 1 as c2 tends
to 0. Now, following the same argument as before, we can derive the inequality

1 − ε2 ≥ cn
7

(

1 − c4c

c1
− c4c − c6c

)

. (104)

The dependence is easy: pick some 0 < ε1 � 1. This yields ε2 > 0. Given
ε1, pick c1 � ε1. We pick c2 so small that cn

7 > 1 − ε2. c4 and c6 are again
externally given, but the inequality can now be seen to be false if c = 0. By
continuity c > 0. �

4.1. Proof of the Improved Pleijel Estimate

The Corollary has a very simple proof: as in the proof of Pleijel’s estimate, we
get a lower bound on

min
1≤i≤N

|Ωi| (105)

from the Faber–Krahn inequality. Theorem 1 now implies that either not all
elements in the partition are of that size (in which case some need to be bigger
and their requirement for more spaces allows for a smaller number of nodal
domains) or that some deviate from the disk in a controlled way (in which
case stability estimates require them to have a larger measure).

Proof. Let

Ω =
N⋃

i=1

Ωi (106)

be the decomposition introduced by a Laplacian eigenfunction with eigenvalue
λ � 1, and let η0 = η0(λ) be chosen in such a way that πη2

0 = |B|, where B is
the disk such that λ1(B) = λ. Theorem 1 yields that

N∑

i=1

|Ωi|
|Ω| (A(Ωi) + D(Ωi)) ≥ c (107)

for some c ≥ 1/60000; therefore, either
N∑

i=1

|Ωi|
|Ω| D(Ωi) ≥ c

2
or

N∑

i=1

|Ωi|
|Ω| A(Ωi) ≥ c

2
. (108)

Suppose the first inequality holds. Then

c

2
≤

N∑

i=1

|Ωi|
|Ω| D(Ωi) =

1
|Ω|

(|Ω| − Nπη2
0

)
(109)

in which case

N ≤
(
1 − c

2

) |Ω|
πη2

0

. (110)

The fact that Pleijel’s argument is sharp for a partition into equally sized disks
(or, equivalently, Weyl’s law) implies

lim
λ→∞

|Ω|
πη2

0

=
(

2
j

)2

n (111)
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and this yields the result. Suppose the second inequality holds. We start with
a simple Lemma.

Lemma 4. We have ∣
∣
∣
∣
∣
∣

⋃

A(Ωi)≥ c
6

Ωi

∣
∣
∣
∣
∣
∣
≥ c

6
|Ω|. (112)

Proof of the Lemma. Suppose the statement was false. Then, using A(Ωi) ≤ 2,

c

2
≤

N∑

i=1

|Ωi|
|Ω| A(Ωi) (113)

<
2

|Ω|

∣
∣
∣
∣
∣
∣

⋃

A(Ωi)≥ c
6

Ωi

∣
∣
∣
∣
∣
∣
+

c

6
1

|Ω|

∣
∣
∣
∣
∣
∣

⋃

A(Ωi)≤ c
6

Ωi

∣
∣
∣
∣
∣
∣

(114)

≤ c

3
+

c

6
=

c

2
.

�

Now, we recall some stability estimates for the Faber–Krahn inequality
in terms of Fraenkel asymmetry. Brasco et al. [6] (improving an earlier result
of Fusco et al. [9]) have shown that

λ1(Ω) − λ1(Ω0)
λ1(Ω0)

� A(Ω)2, (115)

where Ω0 is again the disk with |Ω0| = |Ω|.
Pick any domain Ωi with A(Ωi) ≥ c/6 and use B to denote the disk such

that |B| = |Ωi|. The stability estimate

λ1(Ωi) − λ1(B)
λ1(B)

≥ C · A(Ωi)2 (116)

can be rewritten as

λ1(Ωi) ≥
(

1 + C
c2

36

)

λ1(B) (117)

Recall that η0 is chosen such that the disk D of radius η0 satisfies λ1(D) =
λn(Ω). However, by (117), we know that λ1(Ωi) is a multiplicative factor larger
than the first eigenvalue of the disk of equal measure. In order for λ1(Ωi) ≤
λn(Ω) to still be satisfied, we require that

|Ωi|
πη2

0

≥ 1 + C
c2

36
. (118)

We use this as follows:

Ω =
N⋃

i=1

Ωi =

⎛

⎝
⋃

A(Ωi)≥ c
6

Ωi

⎞

⎠ ∪
⎛

⎝
⋃

A(Ωi)≤ c
6

Ωi

⎞

⎠ (119)
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By Pleijel’s argument, the number of nodal domains in the second set is
bounded from above by

1
πη2

0

∣
∣
∣
∣
∣
∣

⋃

A(Ωi)≤ c
6

Ωi

∣
∣
∣
∣
∣
∣

(120)

while (118) implies the number of nodal domains in the first set is bounded by

1
πη2

0

1
1 + C c2

36

∣
∣
∣
∣
∣
∣

⋃

A(Ωi)≥ c
6

Ωi

∣
∣
∣
∣
∣
∣
. (121)

Using (112) and |Ω| = 1, we get

1
πη2

0

1
1 + C c2

36

∣
∣
∣
∣
∣
∣

⋃

A(Ωi)≥ c
6

Ωi

∣
∣
∣
∣
∣
∣
+

1
πη2

0

∣
∣
∣
∣
∣
∣

⋃

A(Ωi)≤ c
6

Ωi

∣
∣
∣
∣
∣
∣

≤ 1
πη2

0

1
1 + C c2

36

c

6
+

1
πη2

0

(
1 − c

6

)
(122)

≤
(

1 − c3C

216 + 6c2C

)
1

πη2
0

. (123)

By definition of η0, the expression (πη2
0)−1 is precisely the upper bound of

Pleijel on the number of nodal domains, and thus

N ≤
(

1 − c3C

216 + 6c2C

)(
2
j

)2

n (124)

for n sufficiently big. �

4.2. Proof of the Spectral Partition Inequality

Proof. Suppose the statement was false. Then there exists some smooth,
bounded Ω such that for any ε > 0 there are arbitrarily large k such that
there are partitions

Ω =
k⋃

i=1

Ωi (125)

with
1
k

k∑

i=1

λ1(Ωi) ≤ (πj2 + ε)
k

|Ω| . (126)

Let us start by re-iterating the proof of the original estimate. The Faber–Krahn
inequality implies

1
k

k∑

i=1

λ1(Ωi) ≥ 1
k

k∑

i=1

πj2

|Ωi| . (127)

The convexity of x → 1/x and the fact that
k∑

i=1

|Ωi| = |Ω| (128)
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immediately imply that

1
k

k∑

i=1

πj2

|Ωi| ≥ k
πj2

|Ω| (129)

with equality if and only if |Ωi| = |Ω|/k for all 1 ≤ i ≤ k. We can quantify the
notion of convexity a little bit. Indeed, assuming our desired spectral partition
inequality to be false and given any δ > 0, we can find a subsequence of
partitions with

1
kj

# {1 ≤ i ≤ kj : (1 − δ)|Ω| ≤ kj |Ωi| ≤ (1 + δ)|Ω|} → 1. (130)

This, however, means that we can find a subsequence of partitions with the
property that ⎛

⎝
kj∑

i=1

|Ωi|
|Ω| D(Ωi)

⎞

⎠ ≤ δ′, (131)

where δ′ > 0 can be as small as we wish. Then, however, the geometric uncer-
tainty principle implies that

⎛

⎝
kj∑

i=1

|Ωi|
|Ω| A(Ωi)

⎞

⎠ ≥ c2 − δ′, (132)

where c2 > 1/60000 is the optimal constant in two dimensions. Then, however,
arguing as before, we can improve on Pleijel’s estimate. �
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