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Achronal Limits, Lorentzian Spheres,
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Abstract. In the early 1980s Yau posed the problem of establishing the
rigidity of the Hawking–Penrose singularity theorems. Approaches to this
problem have involved the introduction of Lorentzian Busemann functions
and the study of the geometry of their level sets—the horospheres. The
regularity theory in the Lorentzian case is considerably more complicated
and less complete than in the Riemannian case. In this paper, we intro-
duce a broad generalization of the notion of horosphere in Lorentzian
geometry and take a completely different (and highly geometric) ap-
proach to regularity. These generalized horospheres are defined in terms
of achronal limits, and the improved regularity we obtain is based on regu-
larity properties of achronal boundaries. We establish a splitting result for
generalized horospheres, which when specialized to Cauchy horospheres
yields new results on the Bartnik splitting conjecture, a concrete realiza-
tion of the problem posed by Yau. Our methods are also applied to space-
times with positive cosmological constant. We obtain a rigid singularity
result for future asymptotically de Sitter spacetimes related to results in
Andersson and Galloway (Adv Theor Math Phys 6:307–327, 2002), and
Cai and Galloway (Adv Theor Math Phys 3:1769–1783, 2000).
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1. Introduction

In the early 1980s Yau posed the problem of establishing the rigidity of the
Hawking–Penrose singularity theorems. Approaches to this problem, includ-
ing the approach advocated by Yau [30], have involved the introduction of
Lorentzian Busemann functions and the study of the geometry of their level
sets—the horospheres. The regularity theory in the Lorentzian case is consid-
erably more complicated and less complete than in the Riemannian case. In
this paper, we introduce a broad generalization of the notion of horosphere in
Lorentzian geometry and take a completely different (and highly geometric)
approach to regularity. These generalized horospheres are defined in terms of
achronal limits (see Sect. 2), and the improved regularity we obtain is based
on regularity properties of achronal boundaries as developed by Penrose [24].
Generalized horospheres are introduced in Sect. 3, along with the two main
classes of examples, Cauchy horospheres and ray horospheres. The latter are
closely related to standard horospheres. Cauchy horospheres generalize stan-
dard horospheres in the context of spacetimes with compact Cauchy surfaces.
Convexity and rigidity properties of generalized horospheres are studied in
Sect. 4. These results are then applied to obtain some splitting results for
globally hyperbolic spacetimes.

The present work was motivated in part by the so-called Bartnik splitting
conjecture [4] and some recent related developments (see e.g., [26]). The classi-
cal Hawking–Penrose singularity theorems (cf., [20]) establish the existence of
singularities, expressed in terms of incomplete causal geodesics, in large generic
classes of spacetimes. In [19] Geroch put forth, in rather explicit terms, the
conjectural point of view that spatially closed spacetimes obeying reasonable
energy conditions should fail to be singular only under exceptional circum-
stances. In the early 1980s, Yau formulated this problem in more differential
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geometric terms as noted above. This led to the following explicit conjecture,
stated as Conjecture 2 in Bartnik [4].

Conjecture. Let (M, g) be a spacetime which contains a compact Cauchy sur-
face and obeys the strong energy condition, Ric(X,X) ≥ 0 for all timelike
vectors X. If (M, g) is timelike geodesically complete, then (M, g) splits iso-
metrically into the product (R × V,−dt2 ⊕ h), where (V, h) is a compact Rie-
mannian manifold.

Thus, according to the conjecture, such spacetimes M must be singular,
except under very special circumstances; see e.g., [5, Chapter 14] for further
background. The conjecture has been proven subject to the addition of a ‘no
observer horizon’ type condition, which has taken various forms (see e.g., [4,
12,13]). In Sect. 4 we prove a splitting result for generalized horospheres,
see Theorem 4.4. When specialized to Cauchy horospheres, this leads to a
proof of the Bartnik conjecture provided that, in addition, a certain ‘max–
min’ condition associated to a given Cauchy surface S holds; see Definition 4.7
in Sect. 4.3. The splitting is shown to occur along the Cauchy horosphere
S−

∞(S). Within the class of timelike geodesically complete spacetimes with
compact Cauchy surfaces, we show that this max–min condition is implied by
the so-called S-ray condition introduced in [12]. In fact the S-ray condition is
a strictly stronger condition within this class, as can be seen in de Sitter space,
where, due to the presence of observer horizons, the S-ray condition fails, but
where the max–min condition holds. An alternative approach to Theorem 4.4,
in the case of a Cauchy horosphere, is considered in Sect. 5, by way of the
Lorentzian splitting theorem. In Sect. 6 we obtain a rigid singularity theorem
for spacetimes with positive cosmological constant, which is related to some
results in [1] (see also [8]), but which does not assume the existence of a future
conformal completion. The proof of this theorem involves the introduction of
the notion of ‘limit mean curvature’.

2. Achronal Limits

With regard to causal theoretic notions discussed here and elsewhere, we refer
the reader to the standard references [5,20,22,24]. Let (Mn+1, g) be a space-
time, i.e., a connected, time-oriented Lorentzian manifold, with n ≥ 1. We
recall here some basic facts about achronal boundaries.

A set F ⊂ M is called a future set if F = I+(S) for some set S ⊂ M . It
follows that F is a future set if and only if I+(F ) = F . A past set is defined
time-dually. Note that future and past sets are necessarily open. An achronal
boundary is the boundary (assumed to be non-empty) of a future or past
set, i.e., a non-empty set of the form A = ∂I±(S), for some subset S ⊂ M .
Achronal boundaries have many nice structural properties. In particular, an
achronal boundary A ⊂ M is in general an edgeless achronal C0 hypersurface
of M (cf. [24, Lemma 3.17, Corollary 5.9]).

We will rely in an essential way on the following facts about achronal
boundaries, cf., [24, Proposition 3.15].
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Proposition 2.1 (Achronal Decomposition). Let A be a (non-empty) achronal
boundary. Then we have the following.

(1) There exists a unique future set F such that ∂F = A and a unique past
set P such that ∂P = A. Then also, I+(A) ⊂ F and I−(A) ⊂ P .

(2) The sets P , F and A are mutually disjoint and,

M = P ∪ A ∪ F. (2.1)

Further, any curve from P to F must meet A (at a unique point if it is
timelike).

Remark on the proof. The statement above is a slight refinement of the state-
ment of Proposition 3.15 in [24]. Suppose, for example, A = ∂F , where F is
a future set. Then, as in [24], P = I−(M\F ) is a past set with A = ∂P , and
the decomposition (2.1) holds. If A = ∂F ′, for some other future set F ′, then
in a similar fashion we are led to the decomposition M = P ′ ∪ A ∪ F ′. But
Proposition 3.15 in [24] then implies that F ′ = F . �

Simple examples show that the inclusions I−(A) ⊂ P and I+(A) ⊂ F
may be strict. We say that an achronal boundary is past proper provided
I−(A) = P . It follows from the uniqueness of P that A is past proper if and
only if ∂I−(A) = A. Time-dually, an achronal boundary A is future proper
provided I+(A) = F (or, equivalently, provided ∂I+(A) = A). We have the
following basic lemma whose proof is left to the reader.

Lemma 2.2. Let A and B be achronal boundaries with associated unique past
and future sets {PA, FA} and {PB , FB}, respectively. Then the following hold.

(1) PA ⊂ PB if and only if FB ⊂ FA.
(2) If A and B are past proper, then PA ⊂ PB iff J−(A) ⊂ J−(B) iff A ⊂

J−(B).

We will say that a sequence of achronal boundaries {Ak} is monotonic if
either {Pk} is increasing (i.e., Pk ⊂ Pk+1 for all k) or {Fk} is increasing.

Definition 2.3 (Achronal Limits). Let {Ak} be a sequence of achronal bound-
aries, and, for each k, let Pk and Fk be the unique past and future sets such
that Ak = ∂Pk = ∂Fk.

(1) If the sequence {Pk} is increasing then the future achronal limit A∞ of
{Ak} is defined as,

A∞ = ∂

(⋃
k

Pk

)
. (2.2)

(2) If the sequence {Fk} is increasing then the past achronal limit A∞ of {Ak}
is defined as,

A∞ = ∂

(⋃
k

Fk

)
. (2.3)
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Since an arbitrary union of past (resp. future) sets is a past (resp. future)
set, an achronal limit (if non-empty) is an achronal boundary, and hence is
itself an edgeless achronal C0 hypersurface in M .

Remark 2.4. Suppose, as will be the case in examples later, that {Ak} is a
sequence of past proper achronal boundaries, i.e., I−(Ak) = Pk for all k. Then,
by Lemma 2.2, {Pk} is increasing if and only if {J−(Ak)} is increasing if and
only if Ak ⊂ J−(Ak+1) for all k. Similarly, {Fk} is increasing, or equivalently
{Pk} is decreasing, if and only if {J−(Ak)} is decreasing if and only if Ak+1 ⊂
J−(Ak) for all k.

We now show that an achronal limit A∞ is, in a sense made precise below,
the sequential limit of the Aks. A sequence of points {xk} is future increasing
if xk ≤ xk+1 for all k. If such a sequence converges to x ∈ M , we call x the
(future) causal limit of {xk}. Past increasing sequences of points, and their
limits, are understood time-dually.

Proposition 2.5 (Sequential Characterization of Achronal Limits). Let A∞ be
the future (resp. past) achronal limit of a sequence of achronal boundaries
{Ak}. Then any limit point of a sequence ak ∈ Ak is contained in A∞. More-
over, fixing any point a ∈ A∞ and any timelike curve α through a, a is the
future (resp. past) causal limit of the sequence ak = α ∩ Ak, (for k sufficiently
large).

Proof. For definiteness, assume A∞ is a future limit. By Definition 2.3, {Pk}
is increasing and A∞ = ∂P∞, P∞ = ∪kPk.

Suppose a ∈ M is a limit point of a sequence ak ∈ Ak, with akj
→ a. Let

U be any neighborhood of a. For large j, we have akj
∈ U . Then for large j,

since U meets Akj
= ∂Pkj

, it meets Pkj
and hence also ∪kPk = P∞. Also, U

intersects I+(a) at some point y, and since I−(y) is open and contains a, it
contains akj

for all sufficiently large j. Thus, y ∈ I+(Akj
) ⊂ Fkj

for all large
j, and consequently, y /∈ ∪kPk = P∞. It follows that a ∈ ∂P∞ = A∞. Hence,
A∞ contains all limit points of sequences ak ∈ Ak.

Now let a ∈ A∞ and let α : I → M be any future-pointing timelike
curve with 0 ∈ I and α(0) = a. Fix T > 0 with −T ∈ I. We have α|[−T,0) ⊂
I−(A∞) ⊂ P∞ = ∪kPk and a 
∈ Pk. Thus, for all sufficiently large k, α is a
timelike curve from α(−T ) ∈ Pk to α(0) = a ∈ Ak ∪ Fk. It follows then from
Proposition 2.1 that for each sufficiently large k, there is a unique tk ∈ (−T, 0]
such that ak := α(tk) ∈ Ak. The fact that {Pk} is increasing implies that {tk}
must be (weakly) increasing in k, and hence that {ak} is future increasing.
Suppose that tk 
→ 0, i.e., that tk ≤ 2δ < 0. Then α(δ) ∈ I−(A∞) ⊂ P∞,
and hence α(δ) ∈ Pk for large k. On the other hand, α(δ) ∈ I+(Ak) ⊂ Fk for
large k, which is not possible since Pk ∩ Fk = ∅. So we have tk → 0, and thus
ak = α(tk) → α(0) = a. �

Remark 2.6. Proposition 2.5 is closely related to the notion of Hausdorff closed
limits; see, for example, [23, Section 4.3]. In fact, it follows from Proposition 2.5
that the Hausdorff closed limit of a monotonic sequence of achronal boundaries
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{Ak} exists and coincides with its achronal limit, and hence we may write
A∞ = lim Ak.

3. Spheres and Horospheres

Throughout this section we shall assume spacetime M is globally hyperbolic.
Recall, this means that M is strongly causal and that all sets of the form
J+(p) ∩ J−(q) are compact. By a Cauchy surface for M we shall mean an
achronal set S ⊂ M that is met by every inextendible causal curve in M . A
Cauchy surface for M is, in particular, a (past and future proper) achronal
boundary, and hence is an edgeless achronal C0 hypersurface in M . The fol-
lowing facts are well known, cf., [20,22,24]:

(1) S is a Cauchy surface for M if and only if S is achronal and D(S) = M ,
or equivalently, H(S) = ∅, where D(S) = D+(S) ∪ D−(S) is the domain
of dependence of S and H(S) = H+(S) ∪ H−(S) is the Cauchy horizon
of S.

(2) M is globally hyperbolic if and only if it admits a Cauchy surface S.

3.1. Lorentzian Length and Distance

We denote the Lorentzian distance function by d; letting Ωc
p,q be the set of

future-directed causal curves from p to q, recall that,

d(p, q) =

{
sup{L(γ) : γ ∈ Ωc

p,q}, q ∈ J+(p)
0, q /∈ J+(p).

(3.4)

A future causal curve segment α from p to q ∈ J+(p) is maximal if
d(p, q) = L(α), i.e., there is no longer causal curve from p to q. Note that this
implies α realizes the distance between any two of its points. A future ray is
a future-inextendible curve γ : [a, b) → M , where b ∈ (a,∞], each segment of
which is maximal.

As M is taken to be globally hyperbolic, we have the standard fact that
d is finite and continuous on M × M . Furthermore, any two causally related
points are joined by a maximal causal geodesic segment.

For any subset S ⊂ M , we define the distance from S to q ∈ M by

d(S, q) =

{
sup{d(x, q) : x ∈ S} q ∈ J+(S)
0, q /∈ J+(S)

(3.5)

A future causal curve segment α from S to q ∈ J+(S) is called a future
maximal S-segment if d(S, q) = L(α). Again, this implies that α realizes the
distance from S to any of its points. A future S-ray is a future-inextendible
curve γ : [a, b) → M from γ(a) ∈ S, such that each initial segment γ|[a,c],
c ∈ (a, b), is a maximal S-segment. The distance to S from a point q, d(q, S),
is defined in a similar fashion, and analogous terminology is used.
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3.1.1. Causal Completeness and Boundedness. We shall make use of the no-
tion of causal completeness introduced in [14]; see also [27,28].

Definition 3.1. A subset S ⊂ M is said to be future causally complete if for all
p ∈ J+(S), the closure in S of J−(p)∩S is compact. Past causal completeness
is defined time-dually.

We note that compact sets and Cauchy surfaces are past and future
causally complete. In general, if S is either past or future causally complete,
then S is necessarily closed:

Lemma 3.2. If S is future causally complete, then S is closed.

Proof. Consider a sequence {sk} ⊂ S, with sk → x. Let y ∈ I+(x). Then for
all large k, sk ∈ J−(y) ∩ S, and, in particular, y ∈ J+(S). Since the closure in
S of J−(y) ∩ S is compact, the sequence {sk} has a convergent subsequence
in S, which must in fact converge to x. Hence, x ∈ S. �

We summarize several other basic properties of causal completeness, cf.
[27,29].

Lemma 3.3. Let S be a subset of a globally hyperbolic spacetime M .
(1) If S is future causally complete then J+(S) is closed.
(2) The following are equivalent for S closed.

(a) S is future causally complete.
(b) J−(p) ∩ S is compact for all p ∈ J+(S).
(c) J−(p) ∩ J+(S) is compact for all p ∈ J+(S).

(3) If C is future causally complete and S ⊂ J+(C) is closed, then S is future
causally complete.

Remarks on the proof. (1) is proved in a manner similar to Lemma 3.2. For
(2), the equivalence (a) ⇐⇒ (b) follows readily from the fact that S is closed.
The equivalence (b) ⇐⇒ (c) follows from the set relations, J−(p) ∩ S ⊂
J−(p)∩J+(S) = J−(p)∩J+(J−(p)∩S). For (3), note that if x ∈ J+(S), then
J−(x) ∩ S is a closed subset of the compact set J−(x) ∩ J+(C). �

The following is fundamental to our treatment of generalized spheres.

Lemma 3.4. Let M be globally hyperbolic. If S is future causally complete, then
x → d(S, x) is finite-valued and continuous on M , and given any q ∈ J+(S),
there is a maximal future S-segment α from S to q, i.e., L(α) = d(S, q).

Proof. Let q ∈ J+(S), and note that J−(q)∩S is compact. Let xk ∈ J−(q)∩S
such that d(xk, q) → d(S, q). Then {xk} has a limit point p0 ∈ S, and by
continuity of d on M × M , we have d(p0, q) = limj→∞ d(xkj

, q) = d(S, q). In
particular, d(S, q) < ∞. Furthermore, by global hyperbolicity, q ∈ J+(p0),
hence, p0 is joined to q by a maximal causal geodesic segment α, which must
also be maximal as an S-segment, L(α) = d(p0, q) = d(S, q). For continuity,
note that, since J+(S) is closed, d(S, ·) is continuous on the open set M\J+(S),
where it vanishes identically. Hence, it remains to show continuity at q ∈
J+(S). Note that for this, it suffices to show that for any sequence qk → q,
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we have limj→∞ d(S, qkj
) = d(S, q), for some subsequence {qkj

}, (since this
would apply to a supremum-realizing sequence as well as an infimum-realizing
sequence). Fix q+ ∈ I+(q) ⊂ J+(S). Then J−(q+) ∩ S is compact. For all
large k, we have qk ∈ J−(q+) and hence J−(qk) ∩ S ⊂ J−(q+) ∩ S. Let
pk ∈ J−(q+) ∩ S with d(pk, qk) = d(S, qk), where pk is chosen arbitrarily
for any qk 
∈ J+(S). By compactness of J−(q+) ∩ S, {pk} has a subsequence
{pkj

} converging to some p∞ ∈ J−(q+) ∩ S. By continuity on M × M , we
have limj→∞ d(S, qkj

) = limj→∞ d(pkj
, qkj

) = d(p∞, q) ≤ d(S, q) = d(p0, q).
On the other hand, we have d(p0, qkj

) ≤ d(S, qkj
), the limit of which gives

d(p0, q) ≤ limj→∞ d(S, qkj
). Hence, limj→∞ d(S, qkj

) = d(p0, q) = d(S, q). �

In view of Lemma 3.4, causal completeness is what we will typically
demand when considering distance from a set. Causal completeness has been
used in [27,28] for similar purposes.

A past or future causally complete set S, which is also achronal and
edgeless, enjoys some additional properties.

Lemma 3.5. Let M be globally hyperbolic and suppose ∅ 
= S ⊂ M is achronal
and edgeless. If S is past causally complete, then S = ∂I−(S), i.e., S is a past
proper achronal boundary.

Proof. By achronality, S ∩ I−(S) = ∅. It follows that S ⊂ ∂I−(S). We show
that ∂I−(S) ⊂ S. Suppose otherwise that x ∈ ∂I−(S)\S. By Theorem 3.20
in [24], x is the past endpoint of a null geodesic η ⊂ ∂I−(S) which is either
future inextendible in M or else has a future endpoint on S. Since J−(S)
is closed, we have η ⊂ J+(x) ∩ ∂I−(S) ⊂ J+(x) ∩ J−(S). If η were future
inextendible, being imprisoned in the compact set J+(x)∩J−(S) would imply
a strong causality violation. Hence, η must have a future endpoint y ∈ S; we
may assume η ∩ S = {y}. Then since S is an achronal C0 hypersurface and
y is the only point of η to meet S, there will be a point on η near y in the
timelike past of S. This implies that x ∈ I−(S), which is a contradiction. �

In a somewhat similar fashion we obtain the following.

Lemma 3.6. Let M be globally hyperbolic and suppose ∅ 
= S ⊂ M is achronal
and edgeless. Then S is past causally complete if and only if S is a past Cauchy
surface, H−(S) = ∅.
Proof. Suppose H−(S) = ∅. Then D−(S) = J−(S), from which it follows that
J+(p) ∩ S is compact for all p in J−(S). Hence, S is past causally complete.
Now suppose that S is past causally complete, and that there exists a point
p ∈ H−(S). By Theorem 5.12 in [24], p is the past endpoint of a null geo-
desic η ⊂ H−(S) which is future-inextendible in M . But this again leads to a
strong causality violation, since η ⊂ J+(p) ∩ H−(S) ⊂ J+(p) ∩ J−(S). Hence,
H−(S) = ∅. �

In globally hyperbolic spacetimes, causal completeness is closely related
to the notion of ‘causal boundedness’, which will be used later to “causally
control” subsets of M .
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Definition 3.7. We say a subset A ⊂ M is future bounded if there is a Cauchy
surface S in M such that A ⊂ J−(S). Past boundedness is defined time-dually.

Lemma 3.8. Let M be globally hyperbolic and ∅ 
= S ⊂ M closed. Then S is
past causally complete if and only if S is future bounded.

Proof. First suppose S is future bounded by a Cauchy surface Σ, i.e., S ⊂
J−(Σ). Since Σ is past causally complete, then S is past causally complete, by
Lemma 3.3.

Now suppose S is past causally complete. Let A = ∂I−(S). We first note
that A is non-empty. Otherwise, M = I−(S) = J−(S). But then the causal
future of any point would be compact, by Lemma 3.3, which would imply
a strong causality violation. Hence, A is a non-empty edgeless achronal set.
Using [24, Theorem 3.20] as in the proof of Lemma 3.5, we have, A ⊂ J−(S).
Hence, by Lemma 3.3, A is also past causally complete. Then by Lemma 3.6,
A is a past Cauchy surface, i.e., H−(A) = ∅ and D−(A) = J−(A).

Let M̃ = M − J−(A). Since, in particular J−(A) is closed, one readily
verifies that M̃ is a (connected) globally hyperbolic spacetime in its own right.
As such it admits a Cauchy surface Σ. We claim that Σ is a Cauchy surface
for M . Let β : (−∞,∞) → M be a future-directed, inextendible causal curve
in M . If β ⊂ M̃ , then β must meet Σ. On the other hand if β meets J−(A) =
D−(A) at some point β(t), say, then β|[t,∞) must intersect A and enter into
M̃ . But the portion of β in M̃ must then meet Σ. Hence, Σ is a Cauchy surface
for M .

Finally, fix any x ∈ S. Let α be any future-inextendible causal curve from
x ∈ S. Since J+(x) ∩ J−(S) is compact, α must eventually leave J−(A) ⊂
J−(S), and enter M̃ . Hence, the future end of α meets Σ, which means x ∈
J−(Σ). Since x ∈ S was arbitrary, we have S ⊂ J−(Σ). �
3.1.2. Further Facts. We will need the following fact later.

Lemma 3.9. Let S be an achronal boundary and η : [0, b] → M , η(0) ∈ S,
a future-directed null geodesic. If η is S-maximal then η ⊂ S. Hence, a null
S-ray from an achronal boundary S is necessarily contained in S.

Proof. Letting P and F be the unique past and future sets, respectively, as in
Proposition 2.1, we have η ⊂ J+(S) ⊂ I+(S) ⊂ S ∪ F . Suppose that η(c) ∈ F
for some c ∈ (0, b]. Since η(0) ∈ S, we have I−(η(0)) ⊂ P . Consequently, there
is a timelike curve from P to η(c) ∈ F , and by the separating property of
achronal boundaries, this curve must meet S. But this means η(c) ∈ I+(S),
which implies L(η|[0,c]) = 0 < d(S, η(c)), contradicting the maximality of η as
an S-segment. �

The limit curve lemma is a basic tool in Lorentzian geometry. We will
make use of it in the following form, cf. [5,14].

Lemma 3.10. Fix a complete Riemannian metric h on M . Let αk : [0,∞) → M
be a sequence of future-inextendible causal curves, parameterized with respect
to h-arc length. If {αk(0)} has a limit point p, there is a future-inextendible
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(continuous) causal curve α : [0,∞) → M with α(0) = p, and a subsequence
{αkj

} converging uniformly to α, with respect to h, on compact parameter
intervals.

The limit curve lemma will be used in conjunction with the following
standard fact (see e.g., [24, Theorem 7.5].

Proposition 3.11. The Lorentzian arc length functional is upper semicontinu-
ous with respect to the topology of uniform convergence on compact subsets,
i.e., if a sequence of causal curves αk : [a, b] → M converges uniformly to the
causal curve α : [a, b] → M , then

lim sup
k→∞

L(αk) ≤ L(α) (3.6)

3.2. Generalized Spheres

Given r > 0 and a non-empty past causally complete set C, the (generalized)
past sphere of radius r and center C is the set,

S−
r (C) := {x : d(x,C) = r}. (3.7)

Lemma 3.12. If non-empty, S−
r (C) is an acausal past proper achronal bound-

ary.

Proof. Let S := S−
r (C) 
= ∅. We first observe that S is acausal. Let y ∈ S and,

by the past causal completeness of C, let β be a maximal timelike segment
from y to C of length r. If z ∈ J−(y) − {y}, then by “cutting the corner”
in a neighborhood of y if necessary, one can produce a causal curve from z
to C of length strictly greater than r. Hence, z 
∈ S−

r (C) = S. This shows
that S is acausal. To show that S = ∂I−(S), let x ∈ ∂I−(S) and let α :
[−T, 0] → M be a future timelike curve segment ending at α(0) = x. Then
α|[−T,0) ⊂ I−(S). Consequently, we have d(α(−t), C) > r for all t > 0 and by
continuity, d(x,C) ≥ r. If d(x,C) > r, then use a past maximal C-segment
from x to C to see that x ∈ I−(S), a contradiction. Thus, d(x,C) = r, i.e.,
x ∈ S. This shows ∂I−(S) ⊂ S. The inclusion S ⊂ ∂I−(S) follows from the
achronality of S. �

Lemma 3.13. Let S be a past sphere of radius r. Then S admits a maximal
future ‘radial’ S-segment of length r from each point.

Proof. If S = S−
r (C) for some past causally complete C ⊂ M , then by the

time-dual of Lemma 3.4 each x ∈ S is joined to C by a maximal C-segment
of length r. By definition of S−

r (C), this segment is necessarily maximal as an
S-segment. �

Lemma 3.14. Let C ⊂ M be past causally complete. Then the radius is additive
in the sense that,

S−
a (S−

r (C)) = S−
r+a(C).

Consequently, for s > r > 0, we have, d(S−
s (C), S−

r (C)) = s − r (provided
S−

s (C) 
= ∅).
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Proof. By Lemma 3.3, each sphere S−
r (C) is past causally complete. Hence,

S−
a (S−

r (C)) is well defined. To show that the radius is additive, first let x ∈
S−

a (S−
r (C)). By Lemma 3.4, x is joined to some y ∈ S−

r (C) by a timelike
segment of length a. As y is similarly joined to C by a segment of length r,
we have d(x,C) ≥ r + a. Then, letting α be a maximal future C-segment
from x to C, α must pass through S−

r (C). The portion of α before S−
r (C)

is bounded in length by a and the portion after by r, thus d(x,C) ≤ r + a,
so d(x,C) = r + a, i.e., x ∈ S−

r+a(C). Now let x ∈ S−
r+a(C). Then there is a

maximal C-segment α from x to C of length r+a. As any portion of α ending at
C must also be C-maximal, the point x′ ∈ α from which the remaining portion
of α has length r is a maximal C-segment of length r, and hence x′ ∈ S−

r (C), so
d(x, S−

r (C)) ≥ d(x, x′) = a. But, of course, d(x, S−
r (C)) ≤ a, since otherwise,

one could produce a curve from x to C of length greater than r + a. Thus,
d(x, S−

r (C)) = a, i.e., x ∈ S−
a (S−

r (C)). Hence, S−
a (S−

r (C)) = S−
r+a(C). From

this we see that for s > r, d(S−
s (C), S−

r (C)) = d(S−
s−r(S

−
r (C)), S−

r (C)) =
s − r. �

Future spheres S+
r (C), where C is future causally complete, are defined

in a similar fashion, namely, S+
r (C) := {x : d(C, x) = r}. If C consists of a

single point or is a Cauchy surface, then, as noted earlier, C is both future and
past causally complete and we call S±

r (C) a point sphere or Cauchy sphere,
respectively.

The following fact is basic to our development (see also [16]).

Lemma 3.15. Suppose M is future (resp. past) timelike geodesically complete.
Then future (resp. past) Cauchy spheres from a compact Cauchy surface are
(compact) Cauchy surfaces.

Proof. As the proof uses standard arguments, we shall be brief. Let C be a
compact Cauchy surface, and assume M is future timelike geodesically com-
plete. We show that S+

r (C) is compact. By continuity of the distance function,
it is a closed set. If it is not compact, then, fixing any complete Riemann-
ian metric h on M , there is a sequence of points xk ∈ S+

r (C) such that the
h-distance of xk to C tends to infinity. For each k, there is a maximal C-
segment αk : [0, tk] → M (parameterized with respect to h-arc length), from
ak ∈ C to xk, with tk → ∞. By compactness of C, ak has a limit point a ∈ C.
Passing to a subsequence if necessary, the αks converge to a future-inextendible
causal limit curve α : [0,∞) → M . As the limit of C-maximal segments, α is
a C-ray. Since α must enter the timelike future of C, it is timelike. As it is a
geodesic, the completeness assumption ensures that α meets S+

r (C) at some
point α(t0). By construction of α, αk(t0 + 1) (defined for sufficiently large k)
converges to α(t0 + 1) ∈ I+(S+

r (C)). Hence, αk(t0 + 1) ∈ I+(S+
r (C)) for large

k, but, since αk ends on S+
r (C), this contradicts the achronality of S+

r (C).
Thus, S+

r (C) must in fact be compact. But a compact edgeless achronal
set in a globally hyperbolic spacetime is easily seen to be a Cauchy surface
(for example, by showing that H(S) = ∅). �
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3.3. Generalized Horospheres

Let {S−
k = S−

rk
(Ck)} be a sequence of (non-empty) past spheres. By

Lemma 3.12, each S−
k is a past proper achronal boundary, and hence has

unique associated past and future sets, P−
k and F−

k , as in Proposition 2.1,
with P−

k = I−(S−
k ). Recall that we say {S−

k } is monotonic if either {P−
k } is

increasing or {F−
k } is increasing.

Definition 3.16. Let {S−
k = S−

rk
(Ck)} be a monotonic sequence of past spheres

with radii rk → ∞.
(1) If {P−

k } is an increasing sequence, we obtain the future achronal limit,

S−
∞ = ∂

(⋃
k

P−
k

)
= ∂

(⋃
k

I−(S−
k )

)
. (3.8)

(2) If {F−
k } is an increasing sequence, we obtain the past achronal limit,

S−
∞ = ∂

(⋃
k

F−
k

)
= ∂

(⋂
k

J−(S−
k )

)
. (3.9)

In either case, (if non-empty), we refer to S−
∞ = lim S−

k as the (generalized)
past horosphere associated to the sequence of prehorospheres, {S−

k }. Future
horospheres, S+

∞, are constructed time-dually, namely, as (past or future)
achronal limits of future spheres, {S+

k }.
We observe that, as they are achronal boundaries by construction,

horospheres (past or future) are edgeless achronal C0 hypersurfaces.
We present some further properties of (generalized) past horospheres.

Proposition 3.17. A past horosphere S−
∞ that is future bounded (i.e., S−

∞ ⊂
J−(S) for some Cauchy surface S) is a past Cauchy surface, H−(S) = ∅.
Proof. This follows immediately from Lemmas 3.6 and 3.8. �

The following result is essential to later geometric applications.

Theorem 3.18. Suppose S−
∞ is a past horosphere. Then S−

∞ admits a future
timelike or null S−

∞-ray from each of its points. Moreover if S−
∞ is future

bounded then each S−
∞-ray is timelike. In this case, S−

∞ is also acausal.

Theorem 3.18 is primarily a consequence of the following lemma.

Lemma 3.19 (The Sk-Segment Lemma). Let Sk be a sequence of subsets with
limit set S, whereby each s ∈ S is the limit of a sequence sk ∈ Sk. Suppose that
for each k, there is a maximal future Sk-segment, αk, of (Lorentzian) length lk
from a point xk ∈ Sk, with lk → ∞. If xk → x ∈ S, then there exists a future
S-ray from x.

Proof. Fix a complete Riemannian metric h on M and, for each k, let αk :
[0, Tk] → M be a maximal future Sk-segment of Lorentzian length lk from
αk(0) = xk ∈ Sk, parameterized with respect to h-arc length. As M is taken to
be global hyperbolic, d is continuous. This implies Tk → ∞. To see why, observe
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that for large k, the (convergent) initial points xk = αk(0) are contained in
a compact h-ball around x∞. If some subsequence Tkj

were bounded, the
endpoints αkj

(Tkj
) would also be contained in a compact h-ball around x∞.

Then by continuity, d being bounded on the product of such balls, we would
have lkj

= d(xkj
, αkj

(Tkj
)) ≤ C, contradicting lk → ∞.

Extending the αks arbitrarily to the future and applying the limit curve
lemma, there is a subsequence αkj

: [0,∞) → M and a future-inextendible
C0 causal limit curve α : [0,∞) → M from α(0) = x ∈ S, such that {αkj

}
converges to α uniformly with respect to h on compact parameter intervals.

Fix y ∈ S. By assumption there exists a sequence yk ∈ Sk, such that
yk → y. For any T > 0, αk(T ) is defined for large k, and by the upper semi-
continuity of arc length and (lower semi-)continuity of d, we have,

L(α|[0,T ]) ≥ lim sup L(αkj
|[0,T ])

≥ lim inf d(Skj
, αkj

(T ))

≥ lim inf d(ykj
, αkj

(T ))

≥ d(y, α(T )).

Since y ∈ S is arbitrary, we conclude that L(α|[0,T ]) = d(S, α(T )) for all
T > 0, and thus α is an S-ray. �

Proof of Theorem 3.18. By Proposition 2.5, each point x ∈ S−
∞ is a sequential

limit of points xk ∈ S−
k = S−

rk
(Ck). By Lemma 3.13, there is a maximal future

S−
k -segment of length rk based at xk. Thus, we may apply Lemma 3.19 to

conclude that there is a future S−
∞-ray from each point of S−

∞. Suppose now
that S−

∞ is future bounded by a Cauchy surface S, i.e., S−
∞ ⊂ J−(S). Letting

η be any future S−
∞-ray, then η must meet and enter the timelike future of S.

In particular, η must leave S−
∞ and hence by Lemma 3.9, η is timelike. That

S−
∞ is acausal in this case follows by corner cutting; let η : [0,∞) → M be a

timelike future S−
∞-ray from x ∈ S−

∞. Then, by definition, each initial segment
η : [0, T ] → M is a maximal S−

∞-segment, i.e., η|[0,T ] is the longest curve from
S−

∞ to η(T ). If there were a point y ∈ S−
∞ ∩ J−(x) − {x}, (then by cutting the

corner near x) one could produce a longer curve from y, and hence from S−
∞,

to η(T ). �

3.4. Cauchy and Ray Horospheres

In this section, we construct two important concrete classes of horospheres.
The ray horosphere is built as a limit of point spheres with centers taken
along a ray, and mimics the standard Busemann level set construction (see
further discussion of this below). The Cauchy horosphere is built instead from
a compact Cauchy surface, S, and its sequence of future Cauchy spheres.

3.4.1. Ray Horospheres. Let γ : [0,∞) → M be a future complete unit speed
timelike ray. Then the sequence of ray prehorospheres S−

k = S−
k (γ(k)) satisfies

S−
k ⊂ J−(S−

k+1) for all k. To see this, let a ∈ S−
k = {x : d(x, γ(k)) = k}. By

the reverse triangle inequality,

d(a, γ(k + 1)) ≥ d(a, γ(k)) + d(γ(k), γ(k + 1)) = k + 1 ,
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from which it follows that a ∈ J−(S−
k+1). Thus, by Remark 2.4, the sequence

P−
k = I−(S−

k ) is increasing, and we are led to make the following definition.

Definition 3.20 (Ray Horosphere). Let γ : [0,∞) → M be a future complete,
unit speed timelike geodesic ray. Then the sequence of ray prehorospheres,
{S−

k } := {S−
k (γ(k))} is monotonic, with increasing pasts {P−

k } = {I−(S−
k )},

and we define the ray horosphere associated to γ to be the future achronal
limit,

S−
∞(γ) = ∂

(⋃
k

P−
k

)
= ∂

(⋃
k

I−(S−
k )

)
. (3.10)

Note that S−
∞(γ) is non-empty: Since γ(0) ∈ S−

k for all k, it follows from
Proposition 2.5 that γ(0) ∈ S−

∞(γ). Future ray horospheres S+
∞(γ) are defined

in a time-dual manner.
Applying Proposition 3.17 and Theorem 3.18 one has the following.

Lemma 3.21. S−
∞(γ) is an edgeless achronal C0 hypersurface which admits

a future S−
∞(γ)-ray from each of its points. If S−

∞(γ) is future bounded by a
Cauchy surface, then each of these rays is timelike and S−

∞(γ) is an acausal
past Cauchy surface. In general, γ is itself an S−

∞(γ)-ray.

There is a basic circumstance under which ray horospheres are future
bounded.

Lemma 3.22. Let γ be a future complete timelike S-ray, for some Cauchy
surface S, and let S−

∞ = S−
∞(γ). Then:

(1) S−
k ⊂ J−(S), for all k, and hence S−

∞ ⊂ J−(S).
(2) S−

∞ ⊂ I−(γ) and S−
∞ admits a timelike future S−

∞-ray from each point.

Proof. To see (1), note that, parameterizing by arc length, the fact that γ
is an S-ray means that d(x, γ(k)) ≤ d(γ(0), γ(k)) = k, for all x ∈ S. Thus,
for any y ∈ I+(S), we have d(y, γ(k)) < k, so S−

k = S−
k (γ(k)) ⊂ J−(S).

Being the achronal limit of sets contained in the closed set J−(S), we have
also S−

∞ ⊂ J−(S). To see (2), note that each pre-horosphere S−
k is a past

sphere from a point on γ and is thus contained in I−(γ), from which it follows
that S−

∞ ⊂ I−(γ). By Theorem 3.18, S−
∞ admits a future ray from each point.

In the case of a ray horosphere, each such ray is realized as a limit curve of
a sequence of maximal S−

k -segments which are contained entirely in I−(γ).
Hence, each S−

∞-ray is contained in I−(γ). As S−
∞ is future bounded, all S−

∞-
rays are timelike. Suppose x ∈ S−

∞ ∩ ∂I−(γ). The future S−
∞-ray from x is

contained in I−(γ), hence must remain in ∂I−(γ). But as this ray is timelike,
this is impossible. Hence, S−

∞ ⊂ I−(γ). �

Remark on Busemann functions. Given a future complete unit speed timelike
geodesic ray, γ : [0,∞) → M , in a globally hyperbolic spacetime M , the
associated Busemann function b = bγ is defined as

b(x) = lim
k→∞

[k − d(x, γ(k))] .
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Contrary to the Riemannian case, although the pre-Busemann functions
bk(x) = k − d(x, γ(k)) are continuous everywhere, the limit above in gen-
eral is not (cf., [6]). In particular, while the 0-level sets of the pre-Busemann
functions {bk = 0} = S−

k (γ(k)) are well-behaved past spheres, little is known
about the Busemann level set {b = 0} without imposing additional assump-
tions. On regions where the so-called timelike co-ray condition holds, the pre-
Busemann functions bk converge uniformly on compact subsets to b, and hence
on such regions b is continuous, cf., [6,10,18]. In particular, if one assumes that
the timelike co-ray holds on I−(γ), then from the uniform convergence of bk

to b on I−(γ) one can show that the Busemann level set {b = 0} and the
ray-horosphere S−

∞(γ) agree. However, apart from special situations [6,12],
the timelike co-ray condition is known to hold in general only in a neighbor-
hood of γ((0,∞)) [10]. The philosophy of the present paper is to dispense
with Lorentzian Busemann functions and their analytic difficulties, and to
focus directly on the convergence properties of sequences of spheres. This ap-
proach is similar in spirit to the classical treatment of horospheres in hyperbolic
geometry. From the approach taken here, regularity of a limit of spheres is a
consequence of the causality of Lorentzian manifolds, specifically through the
properties of achronal boundaries.

3.4.2. Cauchy Horospheres. For this construction, we begin with a compact
Cauchy surface S in a future timelike geodesically complete spacetime M . The
idea is to replace the sequence of center points, {γ(k)}, in the construction of
the ray horosphere, with the sequence of future Cauchy spheres {S+

k (S)}, then
similarly take a limit of past spheres from this sequence. Note, by Lemma 3.15,
each S+

k (S) is a compact Cauchy surface, and, in particular, is past causally
complete.

We define the sequence of Cauchy prehorospheres by

S̃k := S−
k (S+

k (S)).

Again, each S̃k is a past proper achronal boundary, with corresponding past
and future sets, P̃k = I−(S̃k) and F̃k.

Like the ray prehorospheres, the sequence of Cauchy prehorospheres is
monotonic, but in the opposite direction. To see this, let x ∈ S̃k+1. Hence,
d(x, S+

k+1(S)) = k + 1. Let α be any future timelike curve from x to S+
k+1(S)

which realizes this distance. Then there is a unique point xk := α∩S+
k (S). Let

α−
k be the portion of α before xk and α+

k the portion after. By (the time-dual
of) Lemma 3.14, d(S+

k (S), S+
k+1(S)) = 1, and hence L(α+

k ) ≤ 1. Thus, we have,

L(α−
k ) = L(α) − L(α+

k ) ≥ (k + 1) − 1 = k

Hence, d(x, S+
k (S)) ≥ L(α−

k ) ≥ k, which implies x ∈ J−(S̃k). Since x was
arbitrary, this shows S̃k+1 ⊂ J−(S̃k). Hence, by Remark 2.4, {P̃k} = {I−(S̃k)}
is decreasing, or, equivalently {F̃k} increasing, and thus, we have a well-defined
achronal limit, S−

∞(S) = lim S̃k. This leads, in summary, to the following
definition.
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Definition 3.23 (Cauchy Horosphere). Suppose M is future timelike geodesi-
cally complete and admits a compact Cauchy surface S. Then the sequence
of past Cauchy prehorospheres, {S̃k} := {S−

k (S+
k (S))} is monotonic, with de-

creasing past sets {P̃k} = {I−(S̃k)}, or equivalently, increasing future sets
{F̃k}, and we define the past Cauchy horosphere associated to S to be the past
achronal limit,

S−
∞(S) := ∂

(⋃
k

F̃k

)
= ∂

(⋂
k

J−(S̃k)

)
. (3.11)

Since S is a compact Cauchy surface, by standard techniques one can
construct a future timelike S-ray γ (see e.g., [12, Lemma 4]). Then we have
γ(0) ∈ S̃k for all k and hence γ(0) ∈ S−

∞(S). In particular, S−
∞(S) is always

non-empty.
We consider some basic properties of S−

∞(S).

Lemma 3.24. Let S−
∞ = S−

∞(S).

(1) S−
∞ is future bounded by S.

(2) S−
∞ is an acausal past Cauchy surface which admits a timelike future S−

∞-
ray from each point.

(3) If γ is a future S-ray, then S−
k (γ(k)) ⊂ J−(S̃k) and S−

∞(γ) ⊂ J−(S−
∞(S)).

Proof. It is straightforward from the definitions that S̃k ⊂ J−(S) for all k.
Hence, (1) follows from Proposition 2.5. (2) then follows from (1), Proposition
3.17 and Theorem 3.18. Finally, to see (3), let γ be a future S-ray, which must
be timelike. Parameterizing γ by arc length, we see that γ(k) ∈ S+

k (S). One
then easily checks that the past point sphere S−

k (γ(k)) from γ(k) lies to the
past of the past Cauchy prehorosphere S̃k = S−

k (S+
k (S)). (If a ∈ S−

k (γ(k)),
then, since γ(k) ∈ S+

k (S), the distance from a to S+
k (S) is already least k.)

Thus, the prehorospheres satisfy, S−
k (γ(k)) ⊂ J−(S̃k) for all k. The horosphere

relation in (3) follows from this and Proposition 2.5. �

Remark. Suppose now that M is past, as well as future, timelike geodesically
complete. Then by Lemma 3.15, each past Cauchy sphere S̃k is a compact
Cauchy surface. In particular, each S̃k is future proper, F̃k = I+(S̃k), and
hence from Eq. (3.11),

S−
∞(S) = ∂

(⋃
k

I+(S̃k)

)
. (3.12)

By Proposition 2.5, S−
∞(S) is, in this case, the sequential limit of compact

Cauchy surfaces. However, in general S−
∞(S) may itself fail to be Cauchy, or,

equivalently, fail to be compact. Some criteria for compactness of S−
∞(S) are

considered in Sect. 4.3.
In the next section, we establish some convexity and rigidity properties

of generalized horospheres and Cauchy horospheres, in particular.
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4. Convexity and Rigidity

4.1. Weak Mean Curvature Inequalities

Motivated by several earlier works, in [11] Eschenburg introduced the notion
of mean curvature inequalities in the support sense for rough hypersurfaces
in Riemannian manifolds. In [2] Andersson, Howard and the first author con-
sidered the related situation for rough spacelike hypersurfaces in Lorentzian
manifolds and proved a geometric maximum principle for such hypersurfaces.
Before stating this result, we recall some basic definitions.

To set sign conventions, consider a smooth spacelike hypersurface Σ in
a spacetime M , with induced metric h and second fundamental form K. For
X,Y ∈ TpΣ, K(X,Y ) = h(∇Xu, Y ), where u is the future-pointing timelike
unit vector field orthogonal to Σ. Then H = the mean curvature of Σ =
trΣK = divΣu.

We adopt the weak version of spacelike hypersurfaces used in [2,12,18];
see also [5, Chapter 14]. A C0-spacelike hypersurface in M is a subset S ⊂ M
that is locally acausal and edgeless, i.e., for each p ∈ S, there is a neighborhood
U of p in M so that S ∩ U is acausal and edgeless in U . A C0-spacelike
hypersurface is necessarily an embedded C0 hypersurface in M , as follows
from [24, Proposition 5.8]. Note also that future bounded past horospheres
S−

∞, being (globally) acausal, are C0-spacelike hypersurfaces.
Let S and S′ be C0-spacelike hypersurfaces meeting at a point q ∈ S∩S′.

We say that S′ is locally to the future of S near q if, for some neighborhood
U of q in which S is acausal and edgeless, S′ ∩ U ⊂ J+(S,U). In this case, we
also call S′ a future support hypersurface for S at q.

We say that a C0-spacelike hypersurface S has mean curvature ≤ a in
the support sense if for all q ∈ S and ε > 0, there is a smooth (at least C2)
future support spacelike hypersurface Sq,ε to S at q with mean curvature Hq,ε

satisfying

Hq,ε(q) ≤ a + ε. (4.13)

Time-dually, we have the notion of a past support hypersurface for S at q ∈ S,
and we may speak of a C0-spacelike hypersurface S having mean curvature ≥ a
in the support sense (by requiring the reverse of inequality (4.13), Hq,ε(q) ≥
a − ε).

Theorem 4.1 [2]. Let S1 and S2 be C0 spacelike hypersurfaces such that, for
some constant a, we have,

(1) S2 is locally to the future of S1 near q ∈ S1 ∩ S2.
(2) S2 has mean curvature H2 ≤ a in the support sense.
(3) S1 has mean curvature H1 ≥ a in the support sense (with one-sided

Hessian bounds1).

Then there is a neighborhood U of q, such that S1 ∩ U = S2 ∩ U and this
intersection is a smooth spacelike hypersurface with mean curvature H = a.

1 See the appendix for a precise statement of this technical condition.



2258 G. J. Galloway and C. Vega Ann. Henri Poincaré

4.2. A Splitting Result for Generalized Horospheres

We begin by establishing a fundamental property of generalized horospheres.

Theorem 4.2. Suppose M is a future timelike geodesically complete spacetime
satisfying the timelike convergence condition, Ric(X,X) ≥ 0 for all timelike
vectors X. If S−

∞ is a past horosphere such that every future S−
∞-ray is timelike

(for example, if S−
∞ is future bounded), then S−

∞ has mean curvature ≥ 0 in
the support sense (with one-sided Hessian bounds).

Proof. Let x ∈ S−
∞. By Theorem 3.18, we have a future timelike S−

∞-ray, γ,
from x. By the completeness assumption, γ is future complete, and, parame-
terizing with respect to arc length, we have γ : [0,∞) → M . Since γ|[0,r] is
a maximal S−

∞-segment, one sees that the past distance sphere S−
r (γ(r)) is a

past support surface for S−
∞ at x. Since there are no cut points to γ(r) along

γ|[0,r], the distance function x → d(x, γ(r)) is smooth in a neighborhood of
γ([0, r)), and in particular, the past sphere S−

r (γ(r)) is smooth near x. Then,
using the curvature assumption, basic comparison theory (see e.g., [9]) implies
that S−

r (γ(r)) has mean curvature ≥ −n
r at x, (where M = Mn+1). Since

r can be taken arbitrarily large, and since x was arbitrary, we conclude that
S−

∞ has mean curvature ≥ 0 in the support sense. The part about one-sided
Hessian bounds follows from [2, Proposition 3.5] and the assumption that all
future S−

∞-rays are timelike; see the Appendix for a more detailed discussion
of this point. �

The following proposition generalizes to support mean curvature inequal-
ities Theorem C in [15].

Proposition 4.3. Let M be a globally hyperbolic and future timelike geodesically
complete spacetime satisfying the timelike convergence condition. Let S be a
connected, acausal, future causally complete, C0-spacelike hypersurface with
mean curvature ≤ 0 in the support sense. If S admits a future S-ray, then S is
a smooth, maximal, geodesically complete spacelike hypersurface, and the causal
future of S splits; i.e., (J+(S), g) is isometric, via the normal exponential map,
to ([0,∞) × S,−dt2 ⊕ h), where h is the induced metric on S.

Proof. By the time-dual of Lemma 3.6, S is a future Cauchy surface, H+(S) =
∅. Hence, J+(S) ⊂ D(S) and by restricting to the spacetime D(S), we may
assume without loss of generality that S is a Cauchy surface for M .

Fix a future S-ray γ, which must be timelike, and hence future complete.
Let S−

∞ = S−
∞(γ) be its associated past ray horosphere. By Lemmas 3.21 and

3.22, S−
∞ is acausal, with S−

∞ ⊂ J−(S), and all future S−
∞-rays are timelike.

Theorem 4.2 then implies that S−
∞ has mean curvature ≥ 0 in the support

sense, with one-sided Hessian bounds. Let S− be the connected component of
S−

∞ which contains γ(0). Then S ∩S− is non-empty and closed. Since S meets
S− locally to the future near any intersection point x ∈ S ∩ S−, Theorem 4.1
gives that, for some open neighborhood U of x, we have S ∩U = S− ∩U , with
this overlap being smooth, spacelike, and maximal. In particular, it follows that
S ∩S− is open in both S and S−, and hence that S = S− is smooth, spacelike,
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and maximal. Consequently, the timelike future S−
∞-rays from each point of

S− = S are also S-rays. Since S is smooth, these are precisely the future nor-
mal geodesics from S. The geodesic completeness of S and splitting of J+(S)
then follow as in Theorem C in [15]. (Alternatively, at this stage one could
apply directly standard Ricatti equation techniques to the smooth spacelike
hypersurfaces St = {p ∈ J+(S) : d(S, p) = t}; see [15, Lemma 3.1]). �

The previous results can now be used to establish the following splitting
result for generalized horospheres.

Theorem 4.4. Let M be a globally hyperbolic timelike geodesically complete
spacetime which satisfies the timelike convergence condition. Suppose S−

∞ is
a future bounded (generalized) past horosphere which admits a past S−

∞-ray.
Then S−

∞ is a smooth spacelike geodesically complete Cauchy surface, and M
splits along S−

∞, i.e., (M, g) is isometric to (R×S−
∞,−dt2 ⊕h), where h is the

induced metric on S−
∞.

Proof. By Theorem 3.18, S−
∞ is a globally acausal C0 spacelike hypersur-

face. Moreover, by Theorem 4.2, S−
∞ has support mean curvature ≥ 0 (with

one-sided Hessian bounds). Let S− be the connected component of S−
∞ from

which the past S−
∞-ray emanates. Lemma 3.8 implies that S− is past causally

complete. Then, by the time dual of Proposition 4.3, we have that S− is a
smooth, acausal, maximal, geodesically complete spacelike hypersurface, such
that (J−(S−), g) is isometric, via the normal exponential map, to ((−∞, 0] ×
S−,−dt2 ⊕ h), where h is the induced metric on S−. It follows from Theorem
3.18 and the smoothness of S− that all future normal geodesics from S− are
future complete timelike S−-rays. Consequently, one can similarly show that
the full normal exponential image N(S−) splits as (N(S−), g) ≈ (R × S−,
−dt2 ⊕ h). This product structure and the geodesic completeness of S− imply
that N(S−) is geodesically complete and globally hyperbolic (see e.g., [5, Sec-
tion 3.6]). It follows that N(S−) = M and that S− is a Cauchy surface for M .
Finally, if x ∈ S−

∞\S−, then x ∈ I±(S−), which would violate the achronality
of S−

∞. Thus, S− = S−
∞. �

As it is an edgeless achronal C0 hypersurface, a compact horosphere S−
∞ is

necessarily a (compact) Cauchy surface. As such it admits a past S−
∞-ray and is

trivially future bounded. Thus, we have the following corollary to Theorem 4.4.

Corollary 4.5. Let M be a globally hyperbolic timelike geodesically complete
spacetime which satisfies the timelike convergence condition. Suppose S−

∞ is a
compact past horosphere in M . Then S−

∞ is a smooth spacelike geodesically
complete Cauchy surface, and M splits along S−

∞. i.e., (M, g) is isometric to
(R × S−

∞,−dt2 ⊕ h), where h is the induced metric on S−
∞.

4.3. Application to Cauchy Horospheres

Let M be a timelike geodesically complete spacetime with compact Cauchy
surface S, and consider the associated Cauchy horosphere S−

∞ = S−
∞(S). We

summarize some properties of S−
∞, based on previous results.
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(i) S−
∞ is the (non-empty) sequential limit of compact Cauchy surfaces.

(ii) S−
∞ is future bounded by S, S−

∞ ⊂ J−(S).
(iii) S−

∞ is a past Cauchy surface and admits a timelike future S−
∞-ray from

each point.
(iv) If the timelike convergence condition holds, then S−

∞ has mean curvature
≥ 0 in the support sense (with one-sided Hessian bounds).
As can be seen from Corollary 4.5, compactness is a particularly con-

sequential property for horospheres. However, as noted earlier, although it is
a limit of compact Cauchy surfaces, a Cauchy horosphere need not itself be
compact in general. Here, we present a simple criterion for compactness via a
‘max–min condition’ on its base Cauchy surface.

Lemma 4.6. Let M be future timelike geodesically complete with compact
Cauchy surface S. Then S−

∞(S) is a compact Cauchy surface if and only if
it is past bounded.

Proof. A Cauchy surface is trivially past bounded. Suppose conversely that
S−

∞(S) is past bounded, i.e., S−
∞(S) ⊂ J+(S′) for some Cauchy surface S′,

which is necessarily compact. Then, by (ii) above, we have S−
∞(S) ⊂ J+(S′) ∩

J−(S). Hence, S−
∞(S) is a (closed) edgeless achronal C0 hypersurface contained

in compact set, and consequently must be a compact Cauchy surface. �
Definition 4.7 (Max–Min Condition). Let M be future timelike geodesically
complete with compact Cauchy surface S. For each positive integer k, let
Sk := S+

k (S). We say the max–min condition holds on S if there is an R > 0,
such that for all k,

max
x∈S

d(x, Sk) − min
x∈S

d(x, Sk) ≤ R.

We note that, by definition of Sk = S+
k (S), we have maxx∈S d(x, Sk) = k.

The max–min condition is easily seen to hold for any Cauchy surface in a
Lorentzian warped product (R × N,−dt2 + f2(t)h), with f : R → (0,∞) and
(N,h) compact Riemannian. In particular, it holds for any Cauchy surface in
de Sitter space.

Lemma 4.8. Let M be timelike geodesically complete with compact Cauchy
surface S. If the max–min condition holds on S, then S−

∞(S) is past bounded
and hence is a compact Cauchy surface.

Proof. Suppose that, for some R > 0, maxx∈S d(x, Sk) − minx∈S d(x, Sk) =
k − minx∈S d(x, Sk) ≤ R. Note that S−

R (S) is a compact Cauchy surface by
Lemma 3.15. Since S−

∞(S) is the sequential limit of the S̃ks, it is sufficient to
show that S̃k ⊂ J+(S−

R (S)). Suppose otherwise, that there is some x1 ∈ S̃k

and x2 ∈ S−
R (S), with x1 � x2. By definition of S−

R (S), there is a timelike
curve of length R from x2 to x3 ∈ S. Then, there is a timelike curve from
x3 to x4 ∈ S+

k (S) of length at least minx∈S d(x, S+
k (S)). Concatenating these

curves, we get a curve from x1 ∈ S̃k = S−
k (S+

k (S)) to x4 ∈ S+
k (S) of length

strictly greater than R + minx∈S d(x, S+
k (S)), and hence, k = d(x1, S

+
k (S)) >

R + minx∈S d(x, S+
k (S)), a contradiction. �
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Corollary 4.5 and Lemma 4.8 combine to give the following proof of the
Bartnik splitting conjecture, subject to the max–min condition.

Theorem 4.9. Let M be a timelike geodesically complete spacetime which sat-
isfies the timelike convergence condition. If S is a compact Cauchy surface
on which the max–min condition holds, then the Cauchy horosphere S−

∞ =
S−

∞(S) is a smooth compact spacelike Cauchy surface and (M, g) is isometric
to (R × S−

∞,−dt2 ⊕ h), where h is the induced metric on S−
∞.

Working in a similar context, we recall that a splitting result was obtained
in [12] from the following ‘S-ray condition’: For some future complete timelike
S-ray γ, S ⊂ I−(γ). We observe here that this condition implies the max–min
condition above.

Lemma 4.10. Let M be timelike geodesically complete, S ⊂ M a compact
Cauchy surface. If γ is a timelike future S-ray such that S ⊂ I−(γ), then the
max–min condition holds on S.

Proof. Parameterize γ with respect to arc length. Since S ⊂ I−(γ) and S is
compact, we have S ⊂ I−(γ(k0)) for some k0 ∈ N. Then, for any x ∈ S ⊂
I−(γ(k0)), and k0 ≤ k, the reverse triangle inequality gives d(x, γ(k0)) + (k −
k0) ≤ d(x, γ(k)), and rewriting, we get k−d(x, γ(k)) ≤ k0−d(x, γ(k0)). As the
right hand side is a continuous function on the compact set S, it is bounded
above by some 0 ≤ R, and we get, k − d(x, γ(k)) ≤ R, for all k0 ≤ k. Since
d(x, γ(k)) ≤ d(x, S+

k (S)), we have k ≤ d(x, S+
k (S)) + R. Taking the minimum

over x ∈ S gives the result. �
Within the class of spacetimes considered in Lemma 4.10 the S-ray con-

dition is strictly stronger than the max–min condition. For example, while the
max–min condition holds for any Cauchy surface S in de Sitter space, the
S-ray condition fails for all such S.

We conclude this section with one further splitting result. By using The-
orem 3.7 in [16], the requirement of the existence of a past S−

∞-ray in Theo-
rem 4.4 (specialized to Cauchy horospheres) can be replaced by a somewhat
different ray condition.

Theorem 4.11. Let M be a timelike geodesically complete spacetime which sat-
isfies the timelike convergence condition and has a compact Cauchy surface S.
Suppose there is a past timelike ray γ emanating from a point in I−(S−

∞(S))
such that the future ray horosphere S+

∞(γ) is past bounded by some Cauchy
surface S′. Then S−

∞(S) is a smooth compact Cauchy surface, and M splits
along S−

∞ as in Theorem 4.4.

Proof. By previous results (or their time-duals), Σ1 := S+
∞(γ) is an edgeless

acausal C0 hypersurface with mean curvature ≤ 0 in the support sense and
Σ2 := S−

∞(S) is a is an edgeless acausal C0 hypersurface with mean curvature
≥ 0 in the support sense. Since Σ1 ⊂ J+(S′) and Σ2 ⊂ J−(S), it follows
that J+(Σ1) ∩ J−(Σ2) is a subset of the compact set K = J+(S′) ∩ J−(S).
The equality J+(Σ1) ∩ J−(Σ2) = J+(Σ1 ∩ K) ∩ J−(Σ2 ∩ K) is easily verified
and shows that J+(Σ1) ∩ J−(Σ2) is compact. Since d(Σ1,Σ2) = δ > 0, it now
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follows from Theorem 3.7 in [16] that Σ1 and Σ2 are smooth compact spacelike
Cauchy surfaces and J+(Σ1) ∩ J−(Σ2) is isometric to a Lorentzian product
([0, δ] × Σ1,−dt2 ⊕ h), where h is the induced metric on Σ1. In particular, Σ2

is maximal (in fact totally geodesic). Theorem 4.11 now follows from, e.g., [4,
Corollary 1] (or apply Corollary 4.5). �

5. Lines

In this section, we present an alternative proof of Theorem 4.4, when special-
ized to Cauchy horospheres, based on the Lorentzian splitting theorem (see [5]
and references therein).

Theorem 5.1 (Lorentzian Splitting Theorem). If (M, g) is a globally hyper-
bolic spacetime which satisfies the timelike convergence condition and admits a
complete timelike line, then (M, g) splits isometrically as a product, (M, g) ≈
(R × N,−dt2 ⊕ h), where (N,h) is a complete Riemannian manifold.

Recall, a causal line in spacetime is an inextendible causal geodesic with
the property that every segment maximizes the Lorentzian distance between
its endpoints.

The approach taken here rests on the following basic property of gener-
alized horospheres.

Proposition 5.2. Let S−
∞ be a generalized past horosphere in a globally hyper-

bolic spacetime M . Then any past timelike S−
∞-ray γ extends to a timelike

line.

Proof. The proof is a direct consequence of Theorem 3.18. S−
∞ has a future S−

∞-
ray η extending from γ(0). By Proposition 2.1, any causal curve α : [a, b] → M
from x = γ(t) to y = η(s) must meet S−

∞ at some point p = α(c), say. But
then, because η and γ are S−

∞-rays, we have that

L(α) = L(α|[a,c]) + L(α|[c,b]) ≤ d(x, S−
∞) + d(S−

∞, y) = L(γ|[0,t]) + L(η|[0,s])

It follows that joining η and γ produces a causal line, which is necessarily
timelike since γ is. �

We shall also need the following lemma, which shows, in particular, that,
for the splitting in Theorem 5.4 below, compactness of the Cauchy horosphere
S−

∞(S) is both necessary and sufficient.

Lemma 5.3. Suppose (M, g) is isometric to the Lorentzian product (R × N,
−dt2 ⊕h), for some compact, connected Riemannian manifold (N,h). For any
Cauchy surface S in M , the associated Cauchy horosphere S−

∞ = S−
∞(S) is a

compact Cauchy surface.

Proof. Since N is compact, (M, g) is globally hyperbolic with compact
Cauchy surfaces. Hence, S is necessarily compact and there is some slice
N ′ := {a} × N which lies to the past of S, N ′ ⊂ J−(S). From the prod-
uct structure of (M, g) and the fact that N ′ is a slice, we have that Ñ ′

k = N ′.
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It follows that S̃k ⊂ J+(N ′) ∩ J−(S), and hence, by Proposition 2.5, that
S−

∞ ⊂ J+(N ′) ∩ J−(S). As an edgeless acausal C0 hypersurface contained in
a compact set, S−

∞ must itself be a compact Cauchy surface. �

Theorem 5.4. Let M be a future timelike geodesically complete spacetime, sat-
isfying Ric(X,X) ≥ 0 for all timelike vectors X. Suppose M admits a compact
Cauchy surface S and that its associated Cauchy horosphere S−

∞(S) admits a
complete past S−

∞(S)-ray. Then S−
∞(S) is a smooth, compact spacelike Cauchy

surface, along which M splits.

Proof. By assumption, we have a past S−
∞(S)-ray γ. Since S−

∞(S) is acausal,
this ray must be timelike. Joining this with any future S−

∞(S)-ray emanat-
ing from the base point of γ produces a timelike line, as in Proposition 5.2.
Then, by Theorem 5.1, M splits isometrically as a product, (M, g) ≈ (R × N,
−dt2 ⊕h), where (N,h) is a complete Riemannian manifold. Since the Cauchy
surfaces of M are compact, N must be compact. Hence, by Lemma 5.3, S−

∞(S)
is a compact Cauchy surface. It remains to observe that S−

∞(S) is a t-slice.
Along S−

∞(S), the time coordinate t achieves a maximum value, t = b, say, at
some point p ∈ S−

∞(S). The slice Nb = {b} × N has zero mean curvature and,
by Theorem 4.2, S−

∞(S) has mean curvature ≥ 0 in the support sense. The
geometric maximum principle, Theorem 4.1, then implies that S−

∞(S) and Nb

agree near p. In fact, by a straightforward continuation argument, one has,
S−

∞(S) = Nb. Theorem 5.4 follows. �

6. The Case of a Positive Cosmological Constant

6.1. Rigid Singularity Result for Asymptotically dS Spacetimes

In this section, we consider spacetimes (Mn+1, g) which obey the Einstein
equation,

Rij − 1
2
Rgij + Λgij = 8πTij , (6.14)

with positive cosmological constant Λ, where the energy-momentum tensor Tij

is assumed to satisfy the strong energy condition,(
Tij − 1

n − 1
Tgij

)
XiXj ≥ 0 (6.15)

for all timelike vectors X, where T = Ti
i.

Setting Λ = n(n−1)/2
2, the strong energy condition (6.15) is equivalent
to, Ric (X,X) = RijX

iXj ≥ − n
�2 for all unit timelike vectors X. By rescaling

the metric, we may set 
 = 1 so that Λ = n(n − 1)/2 and the spacetime Ricci
tensor satisfies,

Ric(X,X) ≥ −n for all unit timelike vectors X. (6.16)

In [1,17] results are presented which establish connections between the
geometry and topology of spacelike conformal infinity I + and the occurrence
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of past singularities in future asymptotically de Sitter (dS) spacetimes. A re-
lated result is obtained here, which does not require the explicit introduction
of conformal infinity.

As described in [1,17], there is a connection between the occurrence of
past singularities in an asymptotically dS spacetime and the scalar curvature of
its Cauchy surfaces. Let Σ be a smooth compact Cauchy surface in (Mn+1, g)
which has positive mean curvature, H > 0. If (M, g) satisfies the dominant
energy condition, the Hamiltonian constraint implies,

H2 ≥ 2Λ + |K|2 − SΣ , (6.17)

where SΣ and K are the scalar curvature and second fundamental form of Σ,
respectively. Using Λ = n(n−1)/2, and |K|2 ≥ H2/n (by the Cauchy–Schwartz
inequality) in the above implies,

H ≥
√

n2 − n

n − 1
SΣ. (6.18)

Thus, if Σ has negative scalar curvature then H > n. Assuming (6.16)
holds, a straightforward generalization [1,7] of the Hawking singularity theo-
rem then implies that all timelike geodesics are past incomplete. If Σ is only
assumed to have nonpositive scalar curvature, then one obtains a rigid sin-
gularity result [1, Proposition 3.4]: either the normal geodesics to Σ are past
incomplete, or else the metric assumes a particular warped product structure,
as exemplified by the ‘de Sitter cusp’ discussed in [17]. In either case, M is
past timelike geodesically incomplete.

Consider, on the other hand, standard de Sitter space,

M = R × Sn, ds2 = −dt2 + cosh2 t dΩ2, (6.19)

which is timelike geodesically complete. The constant t-slices St = {t}×Sn are
round spheres and hence have positive scalar curvature. The mean curvature
Ht of the slice St is given by,

Ht = n
(cosh t)′

cosh t
= n tanh t. (6.20)

Thus, Ht < n but approaches n rapidly as t → ∞; a brief computation shows,

Ht = n + O(e−2t). (6.21)

The following theorem (which was motivated, in part, by the Riemannian
result, Theorem 3 in [8]) shows in effect that if the mean curvature converges
any more rapidly to the value n then there will be past singularities.

Theorem 6.1. Let (Mn+1, g) be a future timelike geodesically complete space-
time satisfying the energy condition (6.16). Let S be a compact Cauchy surface
such that the future Cauchy spheres S+

k (S) have support mean curvature ≥ ak,
where, letting nk := min{ak, n}, we have

nk = n + o(e−2k). (6.22)

Let S−
∞ = S−

∞(S) be the past Cauchy horosphere associated to S, and suppose
that S−

∞ admits a past S−
∞-ray γ. Then either
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(1) S−
∞ has a past incomplete timelike S−

∞-ray, or
(2) S−

∞ is a smooth, compact spacelike Cauchy surface, and (M, g) is isometric
to the warped product (R×S−

∞,−dt2⊕e2th), where h is the induced metric
on S−

∞.
In either case, M is timelike past incomplete.

As the setting of Theorem 6.1 presents some (interesting) new obstacles,
a bit more work is needed before proceeding to its proof. The comparison
techniques used to prove the splitting results in Sect. 4 no longer directly
apply: they lead in the present setting to (weak) mean curvature inequalities
for which the maximum principle (in any form) is not relevant. Moreover, in
proving this past singularity result, we are forced to do without the assumption
of (full) past completeness.

To establish Theorem 6.1, we will again work with horospheres, but
in order to deal with the aforementioned issues, we introduce the notion of
‘limit mean curvature’, which is adapted from an approach taken in [8]. In
Lemma 6.7, we establish a maximum principle (of sorts) for this setting as a
consequence of a key convexity result, Lemma 6.5, taken together with Bart-
nik’s [3] solution to the Dirichlet problem for prescribed mean curvature with
rough boundary data. We develop this basic framework for general achronal
limits first before specializing to horospheres in Theorem 6.1.

6.2. Limit Mean Curvature and the Proof of Theorem 6.1

We begin by observing that the convergence of Proposition 2.5 is locally uni-
form.

Lemma 6.2. Let A∞ be the (future or past) achronal limit of a sequence of
achronal boundaries, {Ak}. For any neighborhood U of A∞ and any compact
set K, there is a k0 ∈ N, such that, for all k ≥ k0,

Ak ∩ K ⊂ U ∩ K.

Proof. Otherwise, for each j ∈ N, we can find xj ∈ Akj
∩ K with xj 
∈ U . As

{xj} ⊂ K, the sequence {xj} has a limit point x ∈ K. But by Proposition
2.5, we have x ∈ A∞, which contradicts the fact that {xj} never enters the
neighborhood U . �

The following definition is adapted from [8]. We note that an achronal
boundary is a C0 spacelike hypersurface, (i.e., locally acausal and edgeless), if
and only if it is (globally) acausal.

Definition 6.3. Let A∞ be the (future or past) achronal limit of a sequence
of achronal boundaries, {Ak}, each of which is acausal. We say that A∞ has
limit mean curvature ≥ a (resp. ≤ a) if Ak has mean curvature ≥ ak (resp.
≤ ak) in the support sense, with ak → a.

Lemma 6.4. Suppose (Mn+1, g) is globally hyperbolic and satisfies (6.16). Then
any future point sphere S+

r (p) has mean curvature ≤ n · coth(r) in the support
sense. Similarly, any past point sphere S−

r (p) has mean curvature ≥ −n ·
coth(r) in the support sense. Consequently, any future horosphere S+

∞ has limit
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Figure 1. Σ is depicted here as meeting the timelike past of W

mean curvature ≤ n and any past horosphere S−
∞ has limit mean curvature

≥ −n.

Proof. Let x ∈ S+
r (p) and let α : [0, r] → M be a future-directed maximal unit

speed geodesic from p = α(0) to x = α(r). For 0 < ε < r, let ρε(y) = d(α(ε), y).
Then ρε is smooth near α|(ε,r]. Letting θ(t) be the mean curvature of the level
set {ρε = t} at the point α(t + ε), then θ = θ(t) satisfies the Raychaudhuri
inequality:

θ′ ≤ −Ric(α′, α′) − θ2

n
≤ n − θ2

n
.

Letting Θ(t) := θ(t)/n, we have Θ′ ≤ 1 − Θ2. With the initial condition,
limt→0+ Θ(t) = ∞, the elementary comparison solution is coth(t) (see espe-
cially [21, Corollary 1.6.3]). Thus,

θ(r − ε) = n · Θ(r − ε) ≤ n · coth(r − ε).

As {ρε = r − ε} is a future support hypersurface for S+
r (p) at α(r) = x, this

shows that S+
r (p) has support mean curvature ≤ n · coth(r − ε) at x. But

since, x ∈ S+
r (p) and ε > 0 were arbitrary, S+

r (p) has support mean curvature
≤ n · coth(r) at each point. �
6.2.1. A Limit Mean Convexity Lemma. We now establish a key convexity
result which will be used to prove Lemma 6.7.

Lemma 6.5. Let Mn+1 be a globally hyperbolic spacetime such that
Ric(X,X) ≥ −n for all timelike unit vectors X. Let A∞ ⊂ M be an achronal
limit with limit mean curvature ≥ n, (resp. ≤ n), and suppose that W is
a domain in A∞ with W acausal and D(W ) compact. Let Σ ⊂ D(W ) be
a smooth, achronal spacelike hypersurface with edge Σ = edge W and mean
curvature HΣ = n. Then Σ ⊂ J+(W ). In particular, Σ ⊂ J+(A∞), (resp.
Σ ⊂ J−(W ) ⊂ J−(A∞)).

Proof. Suppose to the contrary that Σ meets I−(W ). Hence, we have the
(schematic) picture as in Fig. 1.

The idea of the proof is as follows. We perturb (part of) Σ to get a
smooth hypersurface with mean curvature strictly less than n. That A∞ has
limit mean curvature ≥ n, means Ak has support mean curvature ≥ n + ck,
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Figure 2. Σ is approximated by Σ0 with smooth boundary

with ck → 0. Then, ‘sliding down’ a past support hypersurface for Ak, for large
enough k, gives a past support hypersurface for the perturbed Σ, with lower
mean curvature bound arbitrarily close to n, producing a contradiction. (The
curvature condition is used to control the mean curvature during sliding.) This
will involve a bit of careful setup first.

Since Σ,W ⊂ D(W ), the closures Σ and W are compact, and hence the
distance 
 := d(Σ,W ) ≥ d(Σ,W ) > 0 is realized by points p ∈ Σ and q ∈ W .
But since Σ = Σ ∪ edge Σ and W = W ∪ edge W , and since edge Σ = edge W ,
we must have p ∈ Σ and q ∈ W and thus,


 = d(p, q) = d(Σ,W ).

Since W is acausal and compact, its ‘signed distance function’,

δ(x) := d(W,x) − d(x,W ),

is continuous on all of M , and we have:

δ(x) =

⎧⎨
⎩

+ x ∈ I+(W )
0 x 
∈ I−(W ) ∪ I+(W )
− x ∈ I−(W ).

Hence, for any a > 0, the set {|δ| < a} is an open neighborhood of W (and
by achronality, all of A∞). Consider an exhaustion of Σ by smooth compact
domains. Then, using the fact that Σ∩{|δ| ≥ 
/4} = Σ∩{|δ| ≥ 
/4} is compact,
let Σ0 ⊂ Σ, as in Fig. 2, be a smooth compact domain with ∂Σ0 ⊂ {|δ| < 
/4}
and p ∈ Σ0. Hence, one still has d(Σ0,W ) = d(p, q) = 
.

For sufficiently small f ∈ C∞(Σ0), with f |∂Σ0 = 0, let H(f) denote the
mean curvature of the surface Σf : x → expxfNx where N is the future unit
normal to Σ0. The mean curvature operator H has linearization (cf. [4]):

H′(0) = � − (Ric(N,N) + |B|2) ,

where B denotes the second fundamental form of Σ0. Since, Ric(N,N)+|B|2 ≥
−n + H2

n = 0, H′(0) is invertible. Thus, by the inverse function theorem, for
sufficiently small ε > 0, there exists a smooth compact spacelike hypersurface
Σε ⊂ D(W ), as in Fig. 3, with ∂Σε = ∂Σ0 and mean curvature HΣε

= n(1−ε),
and such that


ε := d(Σε,W ) = d(pε, qε) ≥ 7
8

,

for some pε ∈ int Σε and qε ∈ W .
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Figure 3. Σ0 is perturbed to Σε having mean curvature n(1 − ε)

Since Σε and D(W ) are compact, with Σε ⊂ D(W ), the set J+(Σε) ∩
∂D(W ) is compact and contained in I+(W ). Hence, the signed distance func-
tion δ of W achieves a positive minimum δ0 > 0 on J+(Σε) ∩ ∂D(W ). Let
δ1 := min{δ0, 
/4}. By Lemma 6.2, we may choose k1 sufficiently large so that

Ak ∩ D(W ) ⊂ {|δ| < δ1} ∩ D(W ), for all k ≥ k1.

Thus, for all k ≥ k1, we have,

J+(Σε) ∩ (Ak ∩ ∂D(W )) ⊂ (J+(Σε) ∩ ∂D(W )
) ∩ (Ak ∩ ∂D(W ))

⊂ {δ ≥ δ0} ∩ {|δ| < δ1}
⊂ {δ ≥ δ1} ∩ {|δ| < δ1}
= ∅.

Hence, for all k ≥ k1,

J+(Σε) ∩
(
Ak ∩ D(W )

)
⊂ Ak ∩ D(W ). (6.23)

We now show that, for large k, the distance between the compact sets
Σε and Ak ∩ D(W ) remains bounded away from 0 and ∞, and is realized by
points pk ∈ int Σε and qk ∈ Ak∩D(W ). Let σ : [0, 
ε] → M be a future-directed
maximal timelike unit-speed geodesic segment from σ(0) ∈ Σε to σ(
ε) ∈ W ,
realizing the distance d(Σε,W ) = 
ε. Since W ⊂ A∞, σ is a timelike curve
from Σε to A∞.

Recall, A∞ may be either a past or a future achronal limit. To cover both
cases, extend σ slightly to the future to a timelike curve, σ : [0, L] → M , with

ε < L. Then, as in Proposition 2.5, there is an integer kε ≥ k1 such that
(the extended) σ meets Ak for all k ≥ kε. Hence, for k ≥ kε ≥ k1, we have
σ ∩ Ak ∩ D(W ) ⊂ {|δ| < δ1} ⊂ {|δ| < 
/4}, and it follows that:

d(Σε, Ak ∩ D(W )) ≥ 
ε − 


4
≥ 7


8
− 


4
=

5


8
.

Now, for each k ≥ kε, by compactness, we may find points pk ∈ Σε and
qk ∈ Ak ∩ D(W ) such that 
k := d(pk, qk) = d(Σε, Ak ∩ D(W )). But since
kε ≥ k1, it follows from (6.23) that we must have qk ∈ Ak∩D(W ). Furthermore,
since ∂Σε ⊂ {|δ| < 
/4}, it follows that we must have pk ∈ int Σε. Then, letting

W := d(Σε,D(W )), we have, for all k ≥ kε,


k = d(pk, qk) = d(Σε, Ak ∩ D(W )) = d(int Σε, Ak ∩ D(W )),
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with,
5


8
≤ 
k ≤ 
W .

Again, the idea of the last part of the proof is to take the support hy-
persurfaces for Ak at qk, and ‘slide them down’ to support hypersurfaces for
Σε at pk. Hence, let Vk ⊂ J−(Ak) ∩ D(W ) be a (small) smooth spacelike past
support hypersurface for Ak at qk. Since A∞ has limit mean curvature ≥ n,
by choosing k ≥ kε sufficiently large, we can take HVk

(qk) ≥ n(1 − 1
2εk), for

εk > 0 arbitrarily small. Let σk : [0, 
k] → M be a maximal past-directed unit
speed timelike geodesic from σk(0) = qk ∈ Ak to σk(
k) = pk ∈ Σε. Since σk

maximizes the distance to Ak, and Vk ⊂ J−(Ak), then σk also maximizes the
distance to Vk. Consequently, Vk has no focal points along σk, except possibly
the endpoint σk(
k). We may, in fact, push this (potential) focal point into the
past by ‘bending’ Vk slightly to the past, keeping pk fixed. To carry this out,
one can, for example, let V̂k ⊂ J−(Vk) be a small spacelike paraboloid (in ap-
propriate coordinates near Vk) which opens to the past from qk ∈ Vk ∩ V̂k. This
gives a strict inequality on the corresponding second fundamental forms, and
one may apply Proposition 2.3 in [9], for example, to see that this inequality
ensures that the first focal point along σk, if any, comes strictly later, (further
in the past), for V̂k than for Vk. Furthermore, by taking this paraboloid to be
sufficiently flat, (relative to Vk), we can ensure that HV̂k

(qk) ≥ n(1 − εk).

It follows then that the past normal exponential map E of V̂k is a dif-
feomorphism on some neighborhood of [0, 
k] × {pk}, and hence, for some
neighborhood Ṽk of pk in V̂k, the past slice E({t} × Ṽk) is a smooth space-
like hypersurface for all t ∈ [0, 
k]. Letting θ(t) denote the mean curvature
of this slice at σk(t), the Raychaudhuri equation, together with the curvature
condition, give:

θ′(t) − θ2(t)
n

≥ Ric(∂t, ∂t) ≥ n.

Using the initial condition, θ(0) ≥ n(1 − εk), a basic comparison argument
gives: θ(t) ≥ n tanh(ck − t) for all t ∈ [0, 
k], where ck := tanh−1(1 − εk),
(see [9,28]). Hence, letting V ′

k := E({
k}× Ṽk), then the mean curvature of V ′
k

satisfies:

HV ′
k
(pk) ≥ n tanh(ck − 
k) ≥ n tanh(ck − 
W ).

Furthermore, for every x ∈ V ′
k, we have, d(x,Ak) ≥ d(x, V̂k) ≥ 
k, by con-

struction. Hence, V ′
k cannot meet I+(Σε). Consequently, V ′

k serves as a smooth
past support hypersurface for Σε at pk. But by taking εk sufficiently small, we
can make ck − 
W arbitrarily large so as to ensure that HV ′

k
(pk) > n(1 − ε)

= HΣε
(pk), contradicting the basic second fundamental form inequality

BΣε
(pk) ≥ BV ′

k
(pk). �

6.2.2. A Limit Maximum Principle. We will use the following notation below.
By a (timelike) diamond neighborhood, Ip, around p ∈ M , we mean a diamond
Ip := I+(p−) ∩ I−(p+), for some p− � p � p+. We denote the corresponding
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Figure 4. V0 and its domain of dependence compactly con-
tained in U0

causal diamond by Jp, i.e., Jp := J+(p−)∩J−(p+). Hence, always p ∈ Ip ⊂ Jp,
so that p ∈ int Jp.

In a globally hyperbolic spacetime, each point admits arbitrarily small
causally convex neighborhoods [24]. Together with the existence of convex
normal neighborhoods, this may be used to establish the following.

Lemma 6.6. Let M be globally hyperbolic and fix p ∈ M . Then for any neigh-
borhood U of p in M , there is a diamond neighborhood Ip of p, with p ∈ Ip ⊂ U
such that for any achronal set A ⊂⊂ Ip, we have D(A) ⊂⊂ Ip.

Our present aim is to establish the following ‘maximum principle’ for
limit mean curvature:

Lemma 6.7 (Limit Maximum Principle). Let (Mn+1, g) be a globally hyperbolic
spacetime satisfying Ric(X,X) ≥ −n for all timelike unit vectors X. Let A∞
and B∞ be two achronal limits meeting at p ∈ A∞∩B∞ such that, near p, both
achronal limits are acausal, with B∞ locally to the future of A∞ (see proof).
If A∞ has limit mean curvature ≥ n and B∞ has limit mean curvature ≤ n,
then for some neighborhood U of p in M , A∞ ∩ U = B∞ ∩ U is a smooth,
acausal spacelike hypersurface with H = n.

Proof. Explicitly, we assume that there is a neighborhood U0 of p in M such
that A∞ ∩ U0 and B∞ ∩ U0 are acausal, and B∞ ∩ U0 ⊂ J+(A∞ ∩ U0).

As with Lemma 6.5, the proof involves some careful setup. We first es-
tablish a domain of dependence within U0. Let I0 be a diamond neighborhood
of p with p ∈ I0 ⊂ U0 satisfying Lemma 6.6. Let V0 be a domain in A∞ around
p with V0 ⊂⊂ A∞ ∩ I0. Then, as in Fig. 4, we have D(V0) ⊂⊂ U0.

Since V0 ⊂ A∞ ∩ I0 ⊂ A∞ ∩ U0, we have that V0 is acausal, and hence
D(V0) is an open, globally hyperbolic subspacetime, with Cauchy surface V0.
Let T be a smooth future-pointing timelike vector field on M . Let T ′ be the
restriction of T to D(V0) and set T0 := T ′/||T ′||h, where h is a complete
Riemannian metric on D(V0). It follows that T0 is a smooth, complete timelike
vector field on D(V0). Hence, we have a diffeomorphism Φ : R × V0 → D(V0),
where, for each q0 ∈ V0, the t-curve, φq0(t) = Φ(t, q0) is the T0-integral curve
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Figure 5. The sets VA ⊂ A∞ and VB ⊂ B∞, whose points
are in one-to-one correspondence via the integral curves of T0

through q0. This map will be used throughout the proof to relate various
(achronal) sets in D(V0).

Now let I1 be a diamond around p with p ∈ I1 ⊂ D(V0) satisfying
Lemma 6.6. Let VB be a small domain around p in B∞, with VB homeomorphic
to an open ball in R

n, and VB ⊂⊂ B∞ ∩ I1. Hence, D(VB) ⊂⊂ I1. The
projection π2◦Φ−1|VB

: VB → V0 is continuous, and one-to-one, by achronality.
It follows by invariance of domain that its image, VA := π2 ◦ Φ−1|VB

(VB), is
a domain in V0 around p. By shrinking VB if necessary, (as a ball), we may
suppose also VA ⊂⊂ A∞ ∩ I1. Hence, also D(VA) ⊂⊂ I1; see Fig. 5.

We emphasize that the points of VA and VB are in one-to-one correspon-
dence via the (timelike) integral curves of T0. Hence, fixing any q ∈ VA, there
is a unique point q′ ∈ VB on the T0-integral curve through q (including the
possibility q′ = q). We will denote this kind of correspondence via the integral
curves of T0 by VB ≈T0 VA, and will use it below on other sets.

We will show VA = VB . We have p ∈ VA ∩ VB . Fix x ∈ VA − {p}. Then,
since VA is homeomorphic to VB , which is homeomorphic to a (hyper)-ball, we
can choose a domain WA in VA with WA ⊂ VA and x ∈ WA −WA = edge WA.
Let WB be the corresponding domain in VB , i.e., WB ≈T0 WA. In fact, since
WA ⊂ VA and WB ⊂ VB, we have also edge WB ≈T0 edge WA.

Since D(WA) ⊂ D(VA) ⊂⊂ J1, with J1 globally hyperbolic, it follows that
(WA, J1) is a ‘standard data set’ as defined by Bartnik in [3]. Then, since WA

is acausal [3, Theorem 4.1] produces a smooth, achronal spacelike hypersurface
ΣA ⊂ D(WA) of constant mean curvature HΣA

= n, with edge ΣA = edge WA

and ΣA ≈T0 WA. By Lemma 6.5, we have ΣA ⊂ J+(WA). Similarly, now
using (WB , J1) as the ‘standard data set’ [3, Theorem 4.1] and Lemma 6.5
give a smooth, achronal spacelike hypersurface ΣB ⊂ D−(WB) of constant
mean curvature HΣB

= n, with edge ΣB = edge WB and ΣB ≈T0 WB . Note
that, since edge WA = edge ΣA and edge WB = edge ΣB , we have edge ΣB ≈T0

edge ΣA.
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Figure 6. The hypersurfaces ΣA and ΣB , both of constant
mean curvature n. ΣB is depicted here as meeting the timelike
past of ΣA

We now show that ΣB cannot enter I−(ΣA). Suppose otherwise, as in
Fig. 6, and let pB ∈ ΣB and qA ∈ ΣA such that 
 = d(ΣB ,ΣA) = d(pB , qA) > 0.
By the achronality of ΣA and ΣB , and the causal relations on the boundaries,
it follows that pB 
∈ edge ΣB and qA 
∈ edge ΣA, so pB ∈ ΣB , qA ∈ ΣA and

 = d(ΣB ,ΣA) = d(ΣB ,ΣA) = d(pB , qA).

Hence, the past sphere S−
� := S−

� (ΣA) meets ΣB at pB ∈ ΣB ∩ S−
� . Fix

an arbitrary intersection point z ∈ ΣB ∩S−
� . Since S−

� is acausal and edgeless,
D(S−

� ) is an open neighborhood of z. If ΣB entered I−(S−
� ), we could produce a

timelike curve from ΣB to S−
� of positive length, and hence a curve from ΣB to

ΣA of length strictly greater than 
. Hence, ΣB cannot enter I−(S−
� ), and near

z ∈ ΣB ∩ S−
� ⊂ D(S−

� ), we have ΣB locally to the future of S−
� . Furthermore,

for such a z, there is some y ∈ ΣA such that 
 = d(z,ΣA) = d(z, y). But since
y ∈ edge ΣA ⊂ J−(edge ΣB) would lead to a violation of the achronality of
ΣB , we have y ∈ ΣA. Then, by an argument similar to that in Lemma 6.5,
(starting with ΣA as a past support hypersurface for itself, bending to the past,
and sliding down to S−

� ), we can show that S−
� has support mean curvature

≥ n at z ∈ ΣB ∩ S−
� . In fact, this is true for all points z′ ∈ S−

� near z. It
follows from Theorem 4.1, that the intersection ΣB ∩ S−

� is open in ΣB . Since
S−

� is closed, this intersection is also closed in ΣB . Since ΣB is homeomorphic
to the (connected) domain WB , ΣB is connected, and hence, ΣB ∩ S−

� = ΣB ,
i.e., ΣB ⊂ S−

� . But since S−
� is closed, this implies edge ΣB ⊂ S−

� ⊂ I−(ΣA),
which again leads to an achronality violation.

Hence, ΣB does not meet I−(ΣA). It follows that ΣA and ΣB are ‘sand-
wiched’ between WA and WB , as in Fig. 7, with p ∈ ΣA ∩ ΣB , and ΣB to the
future of ΣA.

Figure 7. ΣA and ΣB ‘sandwiched’ between WA and WB
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The (smooth) maximum principle then gives that ΣA ∩ ΣB is open in
both ΣA and ΣB . Suppose ΣA ∩ ΣB is not closed in ΣA. Then ΣA ∩ ΣB

has a limit point p0 ∈ ΣA\ΣB . Then p0 ∈ ΣB\ΣB = edge ΣB . But since
edge ΣB ⊂ J+(edge ΣA), p0 ∈ ΣA ∩ edge ΣB leads to an achronality violation.
Hence, ΣA∩ΣB is closed in ΣA, and by connectedness, ΣA ⊂ ΣB . By symmetry,
we have ΣA = ΣB . Hence, edge WA = edge ΣA = edge ΣB = edge WB . Thus,
the above procedure ‘sews’ A∞ and B∞ together along the edges of WA and
WB . In particular, we have x ∈ edge WA = edge WB ⊂ VB . Since x ∈ VA −{p}
was arbitrary, (and since p ∈ VA∩VB), we have VA ⊂ VB , and since VA ≈T0 VB ,
this means VA = VB. It follows that WA = WB = ΣB = ΣA. Hence, near p,
A∞ and B∞ agree and are smooth and spacelike, with mean curvature n. �

Remark. We note that in Lemma 6.7, both achronal limits are independently
allowed to be future or past limits, with the Aks and Bks possibly approaching
their limits from the same side, and indeed this is precisely the situation which
arises in the proof of Theorem 6.1.

6.2.3. Proof of Theorem 6.1. The following lemma establishes the key con-
sequence of the mean curvature assumption (6.22) imposed on the Cauchy
spheres S+

k (S).

Lemma 6.8. Let Mn+1 be a future timelike geodesically complete spacetime
satisfying (6.16). Suppose S is a compact Cauchy surface for M such that
each future Cauchy sphere S+

k (S) has support mean curvature ≥ ak, where,
letting nk := min{n, ak}, (6.22) holds. Then the Cauchy horosphere S−

∞(S)
has limit mean curvature ≥ n.

Remark. For a constant t-slice St in de Sitter space, one observes that S−
∞(St) =

St. Hence, the conclusion of this lemma does not hold under the slightly slower
asymptotic fall-off of (6.21).

Proof. Let Sk := S+
k (S) and recall that the sequence of Cauchy prehorospheres

is defined by S̃k := S−
k (S+

k (S)). Fix any x̃k ∈ S̃k. Hence, d(x̃k, Sk) = k, and x̃k

is joined to some xk ∈ Sk by a past-directed Sk-maximal unit speed timelike
geodesic segment αk : [0, k] → M , with αk(0) = xk and αk(k) = x̃k.

Let Σk be a smooth past support hypersurface for Sk at xk with mean
curvature HΣk

(x) ≥ ak − 1
2e−3k. Perturbing Σk slightly to the past, keeping xk

fixed, as in Lemma 6.5, we obtain a smooth past support hypersurface Σ̂k for
Sk at xk with mean curvature HΣ̂k

(x) ≥ ak − e−3k ≥ nk − e−3k, such that Σ̂k

has no focal points along αk, and hence, such that the past normal exponential
map E from Σ̂k is smooth on [0, k] × Σ̃k, for some neighborhood Σ̃k of xk in
Σ̂k. Letting θk(t) be the mean curvature of the slice E({t}× Σ̃k) at αk(t), then
θ = θk(t) satisfies the Raychauduri inequality θ′ ≥ Ric(α′

k, α′
k) + θ2/n. By the

curvature condition this gives θ′ ≥ θ2/n − n, or, letting Θ := θ/n,

Θ′(t) ≥ Θ2(t) − 1, Θ(0) ≥ nk − e−3k

n
.
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Since, for large k, |(nk − e−3k)/n| < 1, the elementary comparison solution is
tanh(bk − t), with

bk = tanh−1

(
nk − e−3k

n

)
=

1
2

ln
(

n + nk − e−3k

n − nk + e−3k

)
.

Thus we have,

θk(k) ≥ n tanh(bk − k)

= n
e2bk − e2k

e2bk + e2k

= n
(n + nk − e−3k) − (n − nk + e−3k)e2k

(n + nk − e−3k) + (n − nk + e−3k)e2k

= n
(n + nk − e−3k) − (n − nk)e2k − e−k

(n + nk − e−3k) + (n − nk)e2k + e−k
=: θ̃k

Note that using the asymptotic assumption (6.22), we have limk→∞ θ̃k =
n. Because Σ̂k ⊂ J−(Sk), it follows that the slice E({k}×Σ̃k) is a smooth past
support hypersurface for S̃k at αk(k) = x̃k. Since x̃k was arbitrary, we have
shown that S̃k has mean curvature ≥ θ̃k in the support sense. Since θ̃k → n,
the conclusion follows. �

The following result is integral to the proof of Theorem 6.1. It is in some
sense analogous to Proposition 4.3 and is closely related to [1, Proposition 3.4].

Proposition 6.9. Let Mn+1 be a globally hyperbolic spacetime such that (6.16)
holds. Let S∞ ⊂ M be a past causally complete achronal limit and suppose that
S∞ is acausal with limit mean curvature ≥ n. Suppose also that S∞ admits a
past S∞-ray, γ, and let S0

∞ be the connected component of S∞ containing γ(0).
Then either S∞ admits a past incomplete timelike S∞-ray, or S0

∞ is a smooth,
geodesically complete spacelike past Cauchy surface with mean curvature H = n
and J−(S0

∞) splits as:

(J−(S0
∞), g) ≈ ((−∞, 0] × S0

∞,−dt2 + e2th),

where h denotes the induced metric on S0
∞.

Proof. Observe that, since S∞ is acausal, every S∞-ray, future or past, is
timelike. Assume all past S∞-rays are past complete. Hence, γ is timelike
and past complete. Consider the future horosphere S+

∞(γ). By Lemma 6.4,
S+

∞(γ) has limit mean curvature ≤ n. Let S+ be the connected component
of S+

∞(γ) containing γ(0). Hence, the intersection S0
∞ ∩ S+ is nonempty and

closed. Since S0
∞ is itself acausal and edgeless, it follows (as in the proof of

Proposition 4.3) that S+ must be locally acausal and to the future of S0
∞

near any intersection point x ∈ S0
∞ ∩ S+. Hence, using Lemma 6.7, S0

∞ = S+

is a smooth spacelike hypersurface with mean curvature H = n. Thus, by
a simple modification of the proof of [1, Proposition 3.4], we have that the
normal past N−(S0

∞) (generated by the past-directed S0
∞-normal geodesics)

splits as ((−∞, 0]×S0
∞,−dt2+e−2th). Then by adapting the proof of Theorem

3.68 in [5], using the past causal completeness of S0
∞ and the warped product
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structure, we get that S0
∞ is geodesically complete. Finally, note that S0

∞ is a
past Cauchy surface by Lemma 3.6. Hence, D−(S0

∞) = J−(S0
∞), from which

it follows that N−(S0
∞) = J−(S0

∞). �

We now proceed to the proof of Theorem 6.1.

Proof of Theorem 6.1. Since S−
∞(S) is inherently future bounded by S, it is

acausal and all S−
∞(S)-rays, future or past, are timelike. We will suppose every

past S−
∞-ray is complete and show (2) in the statement of Theorem 6.1 holds.

By Lemma 6.8, S−
∞(S) has limit mean curvature ≥ n. Then, letting S− be

the connected component of S−
∞(S) which contains γ(0), Proposition 6.9 gives

that S− is a smooth, geodesically complete, spacelike past Cauchy surface,
with mean curvature H = n, and gives the isometry

(J−(S−), g) ≈ ((−∞, 0] × S−,−dt2 + e2th).

Note that the future radial rays from S−
∞ are all timelike and future

complete. Since S− is smooth, there must only be one such ray from each
point p ∈ S−, and it must be the future normal geodesic from p ∈ S−. Hence,
the future normal exponential map E is a diffeomorphism onto the future
image N+(S−) = E([0,∞) × S−). The standard comparison argument via
the Raychaudhuri equation gives Ht ≤ n for the future normal slice Nt :=
E({t}×S−) (see e.g., [28, Theorem 7]). But the usual argument does not give
Ht = n. To get the splitting to the future, we will instead identify Nt with
a portion of (what is essentially) the Cauchy horosphere associated to the
Cauchy surface St := S+

t (S). Like S−
∞, this horosphere will inherit limit mean

curvature ≥ n from the sequence {S+
k (S)}, and we can run our arguments

again to get H = n for this horosphere, (locally), and hence Ht = n for the
slice Nt.

Fix t > 0. As in (the time dual of) Lemma 3.14, we have S+
k (S) =

S+
k−t(S

+
t (S)) = S+

k−t(St), and hence, S−
k−t(S

+
k (S)) = S−

k−t(S
+
k−t(St)). The

same monotonicity argument for the usual Cauchy prehorospheres shows that
the sequence {J−(S−

k−t(S
+
k (S)))} = {J−(S−

k−t(S
+
k−t(St)))} is decreasing. Let-

ting S̃k−t := S−
k−t(S

+
k (S)), consider the horosphere

S−
∞−t := ∂

(⋂
k

J−(S̃k−t)

)
.

We want to show Nt ⊂ S−
∞−t. We first note that, as with the usual pre-

horospheres, S̃k−t = S−
k−t(S

+
k−t(St)) is future bounded by St. Let x∞ ∈

S− ⊂ S−
∞ and fix a sequence xk ∈ S̃k with xk → x∞. Since xk ∈ S̃k =

S−
k (S+

k (S)), there is a future maximal unit speed timelike geodesic segment,
σk : [0, k] → M , joining σk(0) = xk to σk(k) ∈ S+

k (S). Then xk−t := σk(t) ∈
S−

k−t(S
+
k (S)) = S̃k−t. Letting x−1 ∈ I−(x∞), we have xk−t ∈ J+(x−1) ∩

J−(St), for large k. Hence, by passing to a subsequence if necessary, the se-
quence {xk−t} has a limit, x∞−t, which must be contained in S−

∞−t, by Propo-
sition 2.5. Since S−

∞−t is future bounded, it admits a timelike future S−
∞−t-ray
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η from x∞−t. Since t = d(σk(0), σk(t)) = d(xk, xk−t) → d(x∞, x∞−t), there
is a maximal unit speed geodesic segment β : [0, t] → M from x∞ to x∞−t.
Finally, since d(S̃k, S̃k−t) = t, we have d(S−

∞, S−
∞−t) = t. It follows that the

concatenation σ = β+η is an S−
∞-ray from x∞ ∈ S−. Since σ is also an S−-ray,

parameterizing σ as a unit speed geodesic, we have σ(t) = β(t) = x∞−t. This
shows Nt ⊂ S−

∞−t.
Replacing e2k by e2(k−t) = e2k−2t in the calculation in Lemma 6.8, that

is, sliding the past support hypersurface for S+
k (S) down for a time k − t

instead of k, shows that S−
∞−t has limit mean curvature ≥ n. Recall that

Nt ⊂ S−
∞−t has (smooth) mean curvature Ht ≤ n. Hence, working locally, and

viewing Nt as the (constant) achronal limit of itself, Lemma 6.7 gives that Nt

has constant mean curvature Ht = n. Since t > 0 was arbitrary, all future
normal slices have constant mean curvature H = n. Plugging this back into
the Raychaudhuri equation, the characterization of the equality case gives that
each slice Nt is totally umbilic with Bt = ht, where ht is the induced metric
on Nt. From this it easily follows that N+(S−) ≈ ([0,∞) × S−,−dt2 + e2th).
As in Remark 3.71 of [5], and the related discussion, which cites also [25],
this warped product structure means that N+(S−) is future null and timelike
geodesically complete. Hence, any future causal geodesic starting from S− can
never leave N+(S−). Since any y ∈ J+(S−) is joined to some s ∈ S− by a
future causal geodesic segment from s ∈ S−, we have y ∈ N+(S−). Hence,
J+(S−) = N+(S−), and J(S−) = N(S−), with

(J(S−), g) ≈ ((−∞,∞) × S−,−dt2 + e2th).

In particular, H+(S−) ⊂ J+(S−) = N+(S−), but by Theorem 3.69 in [5], S−

is a Cauchy surface for N(S−) = J(S−). Hence, H+(S−) = ∅. Recalling that
also H−(S−) = ∅, we have that S− is a Cauchy surface for M . By achronality,
this means S−

∞ = S−, which gives the conclusion. �
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7. Appendix

The following is part of Definition 3.3 in [2]:

Definition 8.1 (Support Mean Curvature with One-Sided Hessian Bounds).
Let S be a C0 spacelike hypersurface in a spacetime M and a ∈ R. We say
S has support mean curvature ≥ a with one-sided Hessian bounds if, fixing
any compact subset K ⊂ S, there is a compact set K̂ ⊂ TM and a constant
CK > 0 such that for all q ∈ K and all ε > 0, there is a C2 past support
hypersurface Sq,ε for S at q such that

(i) The future unit normal field, ηq,ε, of Sq,ε satisfies: ηq,ε(q) ∈ K̂
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(ii) The mean curvature, Hq,ε, of Sq,ε satisfies: Hq,ε(q) ≥ a − ε
(iii) The second fundamental form, Bq,ε, of Sq,ε satisfies: Bq,ε(q) ≥ −CK

The “one-sided Hessian bounds” refers to condition (iii), which requires
the second fundamental forms associated to the family of support hypersur-
faces to be locally uniformly bounded below, as specified. As discussed in [2],
this condition insures the uniform ellipticity of the mean curvature operator
with respect to the family of support hypersurfaces.

Proposition 3.5 in [2] guarantees that when the support surfaces Sq,ε are
smooth past point spheres, the one-sided bound on the second fundamental
forms holds provided that the set of support normals is locally compact in
the following sense: a set of vectors X ⊂ TM is locally compact if, over any
compact K ⊂ M , the subset X ∩ π−1(K) is compact, where π : T (M) → M
is the natural projection.

Proposition 8.2. Let M be a globally hyperbolic spacetime and suppose that
S−

∞ is a past horosphere such that all future S−
∞-rays are timelike and future

complete. Let N be the set of the initial tangent vectors of all future S−
∞-rays,

parameterized as unit speed geodesics. Then N is locally compact.

A detailed proof of this is given in [29, Section 5.1]. The argument is
essentially as follows. If N is not locally compact, then there is a sequence of
initial directions which approaches a null direction. Since the limit of S−

∞-rays
is an S−

∞-ray, the null geodesic in the direction of this limit null direction will
be an S−

∞-ray, contradicting the fact that all S−
∞-rays are timelike.

References

[1] Andersson, L., Galloway, G.J.: dS/CFT and spacetime topology. Adv. Theor.
Math. Phys. 6(2), 307–327 (2002)

[2] Andersson, L., Galloway, G.J., Howard, R.: A strong maximum principle for
weak solutions of quasi-linear elliptic equations with applications to Lorentzian
and Riemannian geometry. Commun. Pure Appl. Math. 51(6), 581–624 (1998)

[3] Bartnik, R.: Regularity of variational maximal surfaces. Acta Math. 161(3-4),
145–181 (1988)

[4] Bartnik, R.: Remarks on cosmological spacetimes and constant mean curvature
surfaces. Commun. Math. Phys. 117(4), 615–624 (1988)

[5] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, 2nd edn.
Monographs and Textbooks in Pure and Applied Mathematics, vol. 202. Marcel
Dekker Inc., New York (1996)

[6] Beem, J.K., Ehrlich, P.E., Markvorsen, S., Galloway, G.J.: Decomposition the-
orems for lorentzian manifolds with nonpositive curvature. J. Differ. Geom. 22,
29–42 (1985)

[7] Borde, A.: Open and closed universes, initial singularities, and inflation. Phys.
Rev. D 50(6), 3692–3702 (1994)

[8] Cai, M., Galloway, G.J.: Boundaries of zero scalar curvature in the AdS/CFT
correspondence. Adv. Theor. Math. Phys. 3(6), 1769–1783 (2000)



2278 G. J. Galloway and C. Vega Ann. Henri Poincaré
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