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Spectral Projections of the Complex Cubic
Oscillator
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Abstract. We prove the spectral instability of the complex cubic oscillator

− d2

dx2 + ix3 + iαx for non-negative values of the parameter α, by getting
the exponential growth rate of ‖Πn(α)‖, where Πn(α) is the spectral pro-
jection associated with the nth eigenvalue of the operator. More precisely,
we show that for all non-negative α

lim
n→+∞

1

n
log ‖Πn(α)‖ =

π√
3
.

1. Introduction

We consider the complex cubic oscillator

Aα = − d2

dx2
+ ix3 + iαx, α ∈ R (1.1)

on the real line. We define Aα by extension of the operator

A0
α = − d2

dx2
+ ix3 + iαx, D(A0

α) = C∞
0 (R),

which is accretive, so we can define Aα := A0
α as its closure. Aα is then

maximally accretive, with domain

D(Aα) = H2(R) ∩ L2(R;x6dx).

The cubic oscillator presented here has been studied in [11] and [21]. It also
belongs to the class of operators considered in [19]. Let us mention [14] as well,
which deals with a quadratic perturbation of the cubic ix3 potential.

The operator Aα has compact resolvent, and its eigenvalues (λn(α))n≥1

are simple in the sense of the geometric multiplicity.
The properties of the complex cubic oscillator and its variants (the poten-

tial x2 + ix3, for instance) have been widely studied in the past few years (see
[3–6,9–11,14,16,19,21,22]). As a non-selfadjoint operator, it has a surprising
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property: its spectrum is purely real for α ≥ 0 (see [4] for numerical observa-
tions and [19] for a rigorous proof). This property is suspected to be related
with the so-called PT -symmetry of the operator, namely

PT Aα = AαPT ,
where P and T , denoting, respectively, the spatial symmetry and time inver-
sion operators, act as follows:

(Pu)(x) = u(−x) and (T u)(x) = u(x).

The complex cubic oscillator is a toy model in the study of PT -symmetric
operators.

One of the main questions arising from this property of real spectrum is
the following: does Aα share some other similarities with selfadjoint operators?
More precisely, does the family of eigenfunctions form a basis of L2(R) in
some sense? Is the spectrum stable under perturbations of the operator? What
can one say about the behavior of the eigenvalues for negative values of α?
Some of these questions have already been answered, while other have been
stated as conjectures. For instance, it has been established in [16] that the
eigenfunctions of Aα do not form a Riesz basis, as well as the existence of
non-trivial pseudospectra.

The properties of the spectrum of Aα for negative α have not been
completely understood yet. Numerical simulations (see [9–11]), reproduced on
Fig. 1, suggest that, for any n ≥ 1, there exists a critical value αcrit

n < 0 of the
parameter such that λn(α) is real for α > αcrit

n . For α = αcrit
n , λn(αcrit

n ) seems
to cross an adjacent eigenvalue, forming for α < αcrit

n a complex conjugate
pair lying away from the real axis. Regarding the analysis for large eigenvalues

Figure 1. Real parts of the eigenvalues of Aα as functions
of α. Each pair of consecutive eigenvalues becomes non-real,
complex conjugate on the left of the branch point
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which we will perform in the following, the simulation suggests that, for any
fixed α < 0, the eigenvalues λn(α) are real for n large enough, but it does not
seem to be proved yet. Therefore, we will only consider non-negative values of
α in the following.

Our goal is to measure the spectral instability of the operator Aα. As men-
tioned above, the instability of the eigenvalues λn(α) has already been high-
lighted in [16] by proving the existence of non-trivial pseudospectra. We now
want to understand more accurately this phenomenon, following the approach
of [7,8] and [15].

To this purpose, we define the instability indices

κn(α) = ‖Πn(α)‖, (1.2)

where Πn(α) denotes the spectral projection of Aα associated with the eigen-
value λn(α) (the eigenvalues being labeled in increasing order). We shall first
consider the question of algebraic multiplicity for the eigenvalues λn(α), that
is, whether there exist associated Jordan blocks or not. The algebraic simplic-
ity of the eigenvalues has been proved for all n ≥ 1 in [14] in the case of a
potential of the form ax2 + i

√
βx3. Here, by an independent proof, we shall get

the algebraic simplicity of λn(α), but only for n large enough, which will be
enough to achieve the proof of our main statement. Hence, for n large enough,
the expression

κn(α) =
‖uα

n‖2

|〈uα
n, ū

α
n〉| (1.3)

will hold, where uα
n denotes an eigenfunction of Aα associated with the eigen-

value λn(α) (see [2]). We will use this formula to prove the following theorem,
which is the main statement of our work:

Theorem 1.1. For all α ≥ 0, we have

lim
n→+∞

1
n

log κn(α) =
π√
3
. (1.4)

Let us recall that the same question was considered in [7,8,15] in the
case of anharmonic oscillators − d2

dx2 + eiθ|x|m, m > 0, |θ| < min{(m+ 2)π/4,
(m+2)π/2m}. More precisely, it has been proved that the spectral projections
of these operators grow faster than any power of n as n → ∞ [7], and the
exponential growth rate was precisely obtained for m = 2 in [8] and for every
even exponent m in [15].

The proof of Theorem 1.1 lies on WKB estimates of the eigenfunctions
in the complex plane. This method has already been used in [15] in the even
anharmonic case. However, here we will have to manage the sub-principal term
iαx in the potential.

Some results from [16] can be recovered immediately from Theorem 1.1:

Corollary 1.2. For all α ≥ 0, the eigenfunctions of Aα do not form a Riesz
basis.
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Proof. Let (uα
n)n≥1 be a family of eigenfunctions for Aα associated with the

eigenvalues (λn(α))n≥1. Let us recall that (uα
n)n≥1 is said to be a Riesz basis

if it spans a dense subset of L2(R) and if there exists C > 0 such that, for all
φ ∈ L2(R),

C−1
+∞∑

n=1

|〈φ, uα
n〉|2 ≤ ‖φ‖2 ≤ C

+∞∑

n=1

|〈φ, uα
n〉|2. (1.5)

According to Lemma 3.1 and Proposition 3.2 (which provides algebraic sim-
plicity for large eigenvalues of Aα), we can choose the eigenfunctions uα

n such
that, for n,m ≥ 1 and n large enough, 〈uα

n, u
α
m〉 = δn,m. Hence according to

(3.1), we have κn(α) = ‖uα
n‖2 for n large enough. Using that κn(α) → +∞

as n → +∞, it is then straightforward to check that the sequence φn = uα
n

cannot satisfy (1.5). �

Furthermore, the pseudospectra in the neighborhood of an eigenvalue
are known to grow proportionally to the corresponding instability index (see
[2,20]). Hence the exponential growth obtained in Theorem 1.1 enables us to
confirm the presence of nontrivial pseudospectra [16] and to somehow describe
its shape near the eigenvalues.

Section 2 is devoted to the estimates on the eigenfunctions needed to
prove Theorem 1.1. The proof itself is achieved in Sect. 3.

2. Asymptotic Behavior of the Eigenfunctions

2.1. Preliminary Scale Change

Let us first perform the following scale change. Let us recall that for all α ≥
0, the spectrum of Aα is real, and let us denote the eigenvalues, labeled in
increasing order, by λn(α). We set

{
hn = λn(α)−5/6

x̃ = h
2/5
n x.

(2.1)

The operator (Aα − λn(α)) then writes

−h4/5
n

d2

dx̃2
+ ih−6/5

n x̃3 + iαh−2/5
n x̃− λn(α)

= h−6/5
n

(
−h2

n

d2

dx̃2
+ ix̃3 + iαh4/5

n x̃− 1
)
,

and we are reduced to the study of the kernel of

Aα(h) = −h2 d2

dx2
+ ix3 + iαh4/5x− 1.

An eigenfunction uα
n of Aα associated with λn(α) can be written as

uα
n(x) = ψα(h2/5

n x, hn) = ψα(λn(α)−1/3x, hn), (2.2)

where ψα(·, hn) is a solution of

Aα(hn)ψα(·, hn) = 0, ψα(·, hn) ∈ L2(R). (2.3)
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Notice that the condition ψα(·, hn) ∈ L2(R), together with (2.3), ensures that
ψα(·, hn) belongs to the domain D(Aα(hn)) = D(Aα) (see for instance Theo-
rem 2.1 below). Thus, we will now work on these solutions ψα.

From now on, α is assumed to be fixed and non-negative.

2.2. Behavior of the Eigenfunctions Away from the Turning Points

In this subsection, we determine the global asymptotic behavior of the solutions
ψα(x, h) of

Aα(h)ψα(x, h) = 0, ψα(·, h) ∈ L2(R) (2.4)

as h → 0.
More precisely, we want to understand the behavior of ψα in a domain of

the complex plane avoiding the zeroes (called turning points of the equation)
of the potential

Vα(x, h) = ix3 + iαh4/5x− 1.

Let xα
+(h), xα

−(h) and xα
i (h) denote the zeroes of Vα(·, h), respectively, starting

at h = 0 from the zeroes x0
+ = e−iπ/6, x0

− = e−5iπ/6 and x0
i = i of the potential

V0(x) = ix3 − 1.

Note that for h small enough, xα
±(h), xα

i (h) are simple zeroes of Vα(·, h).
To understand the asymptotic properties of the solutions of (2.4), it will

be useful to analyze the geometry of the level curves (Stokes lines) of the
function

x �→ Re

x∫

xα
+(h)

√
Vα(z, h) dz,

where
√
Vα is holomorphic in

Dα
h = C\

⋃

σ∈{+,−,i}
{(1 + r)xα

σ(h) : r > 0},

and
√
Vα(0, h) = i.

The path of integration is included in Dα
h .

Let us notice that xα
+(h) and xα

−(h) belong to a common, bounded Stokes
line, joining the two points

Re

xα
+(h)∫

xα
−(h)

√
Vα(z, h) dz = 0.

Let us denote this line by �αf (h). It is the only bounded Stokes line for Aα (see
Fig. 2).

On the other hand, there are seven unbounded Stokes lines starting from
xα

±(h), xα
i (h), with the five asymptotic directions as |x| → +∞,

Dk = arg−1

{
π

10
+

2kπ
5

}
, k = 0, . . . , 4.
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Figure 2. Stokes lines of the operator A0 = −h2 d2

dx2 +ix3−1.
Bold lines are those starting from the turning points. Dashed
lines are the asymptotic directions Dk, k = 0, . . . , 4

Among those Stokes lines, one is starting from xα
i (h) and has asymptotic

direction D1 = iR+ ; let us denote it by �αi (h). Notice that for h = 0, �αi (0) =
i[1,+∞[.

For ε > 0, let

�0f,ε = {x ∈ C : d(x, �0f (0)) < ε}, (2.5)

and

�0i,ε = {x ∈ C : d(x, i[1,+∞[) < ε}. (2.6)

Hence, for all ε > 0 fixed, there exists h0 > 0 such that, for all h ∈]0, h0[,

�αf (h) ⊂ �0f,ε, �
α
i (h) ⊂ �0i,ε. (2.7)

Finally, let

Γε = C\(�0f,ε ∪ �0i,ε). (2.8)

In the following theorem, (hn)n≥1 is the sequence defined in (2.1).

Theorem 2.1. Let ε > 0 be fixed. There exists N ≥ 1 such that, for all n ≥ N ,
there exists a unique solution ψα

1 (x, hn) ∈ L2(R) of

Aα(hn)ψα
1 (·, hn) = 0 (2.9)
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satisfying

ψα
1 (x, hn) =

e−iπ/8

x3/4
(1 + o(1)) exp

⎛

⎜⎝− 1
hn

x∫

xα
+(hn)

√
Vα(z, hn) dz

⎞

⎟⎠ (2.10)

as |x| → +∞ in Γε, uniformly with respect to n ≥ N .
Moreover, there exists a sequence (uα

j )j≥1 of functions, holomorphic on
Γε, such that, for every j0 ≥ 1 and x ∈ Γε,

ψα
1 (x, hn) =

1
Vα(x, hn)1/4

exp

⎛

⎜⎝− 1
hn

x∫

xα
+(hn)

√
Vα(z, hn) dz

⎞

⎟⎠

×

⎛

⎝1 +
j0∑

j=1

uα
j (x)hj

n +Rj0+1(x, hn)

⎞

⎠ , (2.11)

where |uα
j (x)| = O(|x|−5j/2) and |Rj0+1(x, h)| ≤ C|x|−5(j0+1)/2hj0+1.

In particular the expansion (2.11) holds uniformly for x ∈ R.

Proof. We apply Theorem 3.1, Chap. 10, p. 366 of [17].
Let

S(x) =

x∫

x0
+

√
iz3 − 1 dz,

where x0
+ = xα

+(0), and let Λ± be the set of points x ∈ C such that there exists
a path γx joining ±∞ to x such that ReS ◦ γx is increasing (canonical path).
Let Λ±(ε) = {x ∈ Λ± : d(x, ∂Λ±) ≥ ε} (see Fig. 3). We then notice that

Γε = Λ+(ε) ∪ Λ−(ε).

According to Theorem 3.1, Chap. 10, p. 366 of [17], there exists h0 > 0 such
that, for h ∈]0, h0[, any solution ψα

±(·, h) ∈ L2(R±) satisfies (2.10) and (2.11)
in Λ±(ε), up to a multiplicative constant c±(h) ∈ C, and with h → 0 instead
of the sequence (hn)n. Indeed, to check that the bound (3.04) in [17] on the
remainder term of order k is of size O(hk), we check that the conditions (i)–(iv)
p. 370 are satisfied, which can be done by observing that the function

σα(x, h) :=
1

Vα(x, h)3/4

[
1

Vα(x, h)1/4

]′′

satisfies, for some k > 0,

|σα(x, 0)| ≤ k

1 + |x|5 and σα(x, h) = σα(x, 0)(1 + O(h4/5))

uniformly for x ∈ Λ±(ε).
To conclude, we have seen in Sect. 2.1 that if λn(α) denotes the nth

eigenvalue of Aα, and if

hn = λn(α)−5/6, (2.12)
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Figure 3. The domain Λ+(ε) (unshaded domain). Λ−(ε) is
obtained from Λ+(ε) by applying the symmetry of axis iR

then there exists, for all n ≥ 1, a solution ψα
1 (·, hn) ∈ L2(R) of (2.9). Then,

according to the previous arguments, ψα
1 (·, hn) satisfies (2.10) and (2.11) in

Λ+(ε) and Λ−(ε) up to respective constants c+(h) and c−(h). Comparing
these expressions for x ∈ Λ+(ε) ∩ Λ−(ε), we see that c+(h) = c−(h), and the
statement follows by choosing c+(h) = c−(h) = 1. �

The asymptotic expansion (2.11) does not hold in the neighborhood of
the bounded Stokes line �αf (h). In order to determine the behavior of a solution
on �αf (h), we have to take into account the presence of terms of the form

Vα(x, h)−1/4 exp

⎛

⎜⎝+
1
h

x∫

xα
+(h)

√
Vα(z, h) dz

⎞

⎟⎠

in its expression. Those terms, exponentially small as h−1Re
∫ x

xα
+(h)√

Vα(z, h) dz → −∞, are significant on �αf (h). In the following subsection, we
consider solutions which oscillate along �αf (h). We will obtain an asymptotic
expression which also holds in a neighborhood of the turning points xα

±(h).

2.3. Behavior of the Eigenfunctions in the Neighborhood of the Turning Points

In the neighborhood of a turning point, the previous asymptotic expansions
are no longer available. We will now use an approximation of the solutions
involving the Airy function Ai.
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Figure 4. The domain D+(δ, η) (shaded domain). The line
joining xα

−(h) to xα
+(h) is the finite Stokes line �αf (h). The two

dashed lines represent the anti-Stokes lines �̃α−(h) (on the left)
and �̃α+(h) (on the right)

We introduce the anti-Stokes lines starting from xα
±(h), defined as the

level curves of the function

x �→ Im

x∫

xα
+(h)

√
Vα(z, h) dz

containing xα
±(h). A local analysis near the turning points shows that there

exist three anti-Stokes lines starting from xα
±(h), and we will denote by �̃α±(h)

(see Fig. 4) the one that satisfies

∀x ∈ �̃α±(h),

x∫

xα
±(h)

√
Vα(z, h) dz > 0.

As in the previous subsection, we define a neighborhood of the line �̃0±(0) by

�̃0±,δ = {x ∈ C : d(x, �̃0±(0)) < δ}, (2.13)

and we have �̃α±(h) ⊂ �̃0±,δ for h small enough.
Let η > 0 be such that η < |x0

+(0)−x0
−(0)|. Note that, for h small enough,

it implies η < |xα
+(h) − xα

−(h)|. Then, for δ > 0, we denote
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D±(δ, η) =
(
�0f,δ ∩ {x ∈ C : |x− x0

±(0)| < η}
)

∪ �̃0±,δ. (2.14)

This domain is represented on Fig. 4.
In the following statement and its proof, we use the notation

ζα
±(x, h) =

⎛

⎜⎝
3
2

x∫

xα
±(h)

√
Vα(z, h)dz

⎞

⎟⎠

2/3

(2.15)

and

σ̃± =
1

|Vα|1/4
∂2

x

(
1

|Vα|1/4

)
− 5|Vα|1/2

16|ζα±|3 , (2.16)

which is defined for x �= xα
±(h).

Theorem 2.2. Let α ∈ R. There exist positive constants δ > 0 and h1 > 0, and
two solutions ψα

±(x, h) of equation

Aα(h)ψα
±(x, h) =

(
−h2 d2

dx2
+ Vα(x, h)

)
ψα

±(x, h) = 0

such that, for all h ∈ (0, h1] and x ∈ D±(δ, η),

ψα
±(x, h) =

(
ζα
±(x, h)
Vα(x, h)

)1/4

Ai

(
ζα
±(x, h)
h2/3

)
+ hrα

±(x, h), (2.17)

where the function rα
± satisfies, for all h ∈ [0, h1],

{
∀x ∈ D±(δ, η)\�αf (h), |rα

±(x, h)| ≤ Cα
±(x)

∣∣∣Ai
(

ζα
±(x,h)

h2/3

)∣∣∣ ,
∀x ∈ D±(δ, η) ∩ �αf (h), |rα

±(x, h)| ≤ Kα
±,

(2.18)

for some constant Kα
± > 0, some function Cα

±(x) bounded in D±(δ±, η) outside
any open neighborhood of �0f (0).

Proof. We work in the domain D+(δ, η), and we will possibly drop the index
+ in the expressions. We shall apply Theorem 9.1, p. 417 in [17], with a h-
dependent potential here. We introduce the following change of variable in
D+(δ, η) (δ small enough will be determined in the following):

x �→ ζ = ζ(x, h) (2.19)

for a fixed h ∈ [0, h0]. We denote its inverse by

ζ �→ x = x(ζ, h). (2.20)

The three Stokes lines starting from xα
+(h) are mapped by (2.19) onto the

half-lines

Lj = arg−1

{
π

3
+

2jπ
3

}
,

and the anti-Stokes line �̃α+(h) is mapped onto the half-line [0,+∞[.
Let a = +∞, and let Z(a) be the set of points ζ ∈ C such that there exists

a complex path γζ joining ζ to a, which coincides at infinity with [0,+∞[, and
such that v �→ Re γζ(v)3/2 is non-decreasing.
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Then there exists δ > 0 such that, for h = 0, ζ(D+(2δ, η), 0) ⊂ Z(a).
Since Vα has the form

Vα(x, h) = V0(x) + h4/5vα(x, h), (2.21)

where |vα(x, h)| = o(|V0(x)|) uniformly with respect to h as |x| → +∞, there
exists h1 > 0 such that for all h ∈]0, h1[,

ζ(D+(δ, η), h) ⊂ Z(a).

Thus, Theorem 9.1, p. 417 in [17], which applies for all ζ ∈ Z(a), ensures that
there exists a solution

ψα(x, h) =
(
ζ(x, h)
Vα(x, h)

)1/4

W (ζ(x, h), h),

where W has the form

∀h ∈ (0, h1], ∀ζ ∈ ζ(D(δ, η), h), W (ζ, h) = Ai

(
ζ

h2/3

)
+ hε(ζ, h). (2.22)

In view of inequality (9.03), p. 418 in [17] (here applied with n = 0, u = h−1

and ε2n+1 replaced by hε(ζ, h)), to prove that the function

rα
+(x, h) :=

(
ζ(x, h)
V (x, h)

)1/4

ε(ζ(x, h), h) (2.23)

satisfies the bounds (2.18), it remains to check that there exists M > 0 such
that, for all h ∈]0, h1[ and ζ ∈ ζ(D+(δ, η), h),

∫

x(γζ ,h)

|σ̃(z, h)||dz| ≤ M, (2.24)

where σ̃ is the function defined in (2.16), and x(γζ , h) denotes the image
by (2.20) of the path γζ defined above. Here we used the notation |dz| =
|x(γζ , h)′(t)|dt.

Notice that the function σ̃(x, h) is integrable at x = xα
±(h), see for

instance Lemma 3.1, p. 399 in [17]. Moreover, one can easily check that there
exists k > 0 such that

|σ̃(x, 0)| ≤ k

1 + |x|7/2
(2.25)

for |x| large enough, x ∈ D+(δ, η). Thus, (2.24) follows from (2.21) and (2.25),
and (2.18) is then proved. �

We now want to integrate the solution ψα
± over a path on which ζ(x, h)

is real. In this purpose, we choose a C1 path γh = γα
h,± : [−d,+∞[→ C such

that γh(0) = xα
±(h),

γh([−d,+∞[) = D̄±(δ, η) ∩ (�αf (h) ∪ �̃α±(h)), (2.26)

and satisfying

∀t ∈ [−d,+∞[, |γ′
h(t)| = 1. (2.27)
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Such a smooth path exists because both lines �αf (h) and �̃α±(h) reach the point
xα

±(h) with the same angle − 2
3 arg

√
∂xVα(xα±(h), h) (modulo π).

Let us fix δ′ ∈]0, δ[, η′ ∈]0, η[, and χ± ∈ C∞(C, [0, 1]) with χ±(x) = 1 for
x ∈ D±(δ′, η′) and Supp χ± ⊂ D±(δ, η).

Lemma 2.3. There exists cα± �= 0 such that, as h → 0,
∫

γα
h,±

ψα
±(x, h)2χα

±(x)dx = cα±h
1/3(1 + o(1)). (2.28)

Proof. Let us consider the case of ψα
+. We set ζ = ζα

+, γh = γα
h,+, χ = χα

+ to
simplify the notation.

We first apply the following change of variable, for a fixed h ∈ [0, h1]:

[−d,+∞[� t �→ ζ := ζ(γh(t), h) ∈ [−bh,+∞[,

where [−bh,+∞[ is the range of this function. Note that we have γh(t) =
x(ζ, h), where x(·, h) is the inverse mapping (2.20).

Let b such that b > bh for all h ∈ [0, h1], and χh(ζ) = χ◦x(ζ, h), supported
in ] − b,+∞[. Then,

∫

γh

ψα
+(x, h)2χ(x)dx = I0(h) + hI1(h) + h2I2(h), (2.29)

where

I0(h) =

+∞∫

−b

ζ

Vα(x(ζ, h), h)
Ai

(
ζ

h2/3

)2

χh(ζ)dζ, (2.30)

I1(h) = 2

+∞∫

−b

ζ

Vα(x(ζ, h), h)
Ai

(
ζ

h2/3

)
ε(ζ, h)χh(ζ)dζ (2.31)

and

I2(h) =

+∞∫

−b

ζ

Vα(x(ζ, h), h)
ε(ζ, h)2χh(ζ)dζ. (2.32)

We recall that the Airy function is defined by

Ai(x) =
1
2π

∫

R

ei(xξ+ξ3/3)dξ;

hence

Ai

(
ζ

h2/3

)
=

1
2πh1/3

∫

R

e
i
h (ζξ+ξ3/3)dξ.

Thus,

I0(h) =
1

4π2h2/3

∫∫∫

[−d,+∞[×R2

ζ

Vα(x(ζ, h), h)
e

i
h Φ(ζ,η,ξ)χh(ζ)dζdηdξ, (2.33)
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where

Φ(ζ, η, ξ) = ζ(ξ − η) +
1
3
(ξ3 − η3).

It is then straightforward to check that for all ξ ∈ R, the function Φ(·, ·, ξ) has a
unique critical point (−ξ2, ξ), which is non-degenerate. Moreover, Φ(−ξ2, ξ, ξ)
= 0. Thus, the stationary phase method with ξ fixed in (2.33) yields

I0(h) = cα+h
1/3(1 + o(1)), h → 0, (2.34)

where

cα+ = −(2π)−3/2

∫

ξ∈R

ξ2

Vα(x(−ξ2, 0), 0)
χ0(−ξ2)dξ. (2.35)

Finally, using (2.18) and the asymptotic behavior of the Airy function as
z → ±∞ (see [1]), one can easily check that

hI1(h) + h2I2(h) = O(h7/6),

and the statement follows. �

2.4. Connection

In Sects. 2.2 and 2.3, we have determined the asymptotic behavior as h → 0 of
several solutions of (2.4). More precisely, we have built a solution ψα

1 (·, hn) ∈
L2(R) whose behavior is known in a domain Γε avoiding a neighborhood of
the bounded Stokes line �αf (h), and two solutions ψα

±(·, h) whose asymptotic
behavior is known in a neighborhood of �αf (h) avoiding the opposite turning
point (see Theorem 2.2). We now want to connect these solutions, comparing
their asymptotic expressions in the intersection of their domain of validity.

We first state the Bohr–Sommerfeld quantization rule, which gives a rela-
tion between the value of hn and the index n. We will then use it to determine
the coefficient relating the solutions ψα

1 and ψα
±. This lemma can be proved as

Formula (25) in [13].

Lemma 2.4 (Bohr–Sommerfeld quantization rule).

Im

xα
+(hn)∫

xα
−(hn)

√
Vα(z, hn) dz = π

(
n+

1
2

)
hn + O(h2

n). (2.36)

We are now going to compare the asymptotic expressions of ψα
1 and ψα

±,
for fixed h as |x| → +∞ along the lines �̃α±(h). Let n ≥ 1 be large enough
so that �̃α−(hn) ⊂ �̃0−,δ, and let x ∈ �̃α−(hn). We are then able to use the
asymptotic expansion of the Airy function as |z| → +∞ [1], | arg z| < π, with
z = ζα

−(x, hn). If we denote Sα
±(x, h) =

∫ x

xα
±(h)

√
Vα(z, h) dz, expression (2.17)
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then writes

ψα
−(x, hn) =

h
1/6
n

2
√
πVα(x, hn)1/4

exp
(

− 1
hn
Sα

−(x, hn)
)

(1 + O(Sα
−(x, hn)−3/2))

=
h

1/6
n

2
√
π

exp

⎛

⎜⎝− 1
hn

xα
+(hn)∫

xα
−(hn)

√
Vα(z, hn) dz

⎞

⎟⎠ψα
1 (x, hn)

×(1 + O(|x|−5/2)), (2.37)

where we used (2.11).
The two solutions ψα

− and ψα
1 , being both exponentially decreasing as

|x| → +∞ along �̃α−(hn), are necessarily colinear. Hence, (2.36) and (2.37)
yield

ψα
−(x, hn) =

(−1)n−1i

2
√
π

h1/6
n ψα

1 (x, hn)(1 + O(hn)), n → +∞. (2.38)

Similarly, comparing the asymptotic representations of ψα
1 and ψα

+ as |x| →
+∞ along �̃α+(hn), we get

ψα
+(x, hn) =

1
2
√
π
h1/6

n ψα
1 (x, hn). (2.39)

Due to these relations, we can integrate the square of the solution ψα
1

(x, hn) over the curve consisting in the union of the three lines �̃α−(hn), �αf (hn)
and �̃α+(hn),

Lα(hn) = �̃α−(hn) ∪ �αf (hn) ∪ �̃α+(hn). (2.40)

We choose η > 0 such that η < |x0
+(0)−x0

−(0)| and such that �0f,δ ⊂ D+(δ, η)∪
D−(δ, η). Let also η′ < |x0

+(0)−x0
−(0)|/2 and δ′ ∈]0, δ[. We choose a partition of

unity (χ−, χ+) such that, for all h ∈]0, h1] and all x ∈ Lα(h), χ−(x)+χ+(x) =
1, and such that χ±(x) = 1 for x ∈ D±(δ′, η′), and Supp χ± ⊂ D±(δ, η).

Then, according to (2.39) and (2.38), for all x ∈ Lα(hn),

ψα
1 (x, hn)2 = 4πh−1/3

n (ψα
+(x, hn)2χ+(x) − ψα

−(x, hn)2χ−(x))(1 + O(hn))
(2.41)

as n → +∞.
Thus, we deduce the following lemma from (2.28), where cα = cα++cα− �= 0

(see (2.35)):

Lemma 2.5. For all α ∈ R, there exists cα �= 0 such that
∫

Lα(hn)

ψα
1 (x, hn)2dx = cα(1 + o(1)) (2.42)

as n → +∞.

In the last section, we gather the previous results to prove Theorem 1.1.
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3. Estimate on the Instability Indices

Let us first recall the following general result, which will provide an explicit
formula for the instability indices κn(Aα), for n large enough (see [2]).

Lemma 3.1. Let A be a closed operator on the Hilbert space H, and λ ∈ σ(A)
a simple isolated eigenvalue. Let Πλ be the spectral projection associated with
λ, uλ an eigenvector associated with λ, and u∗

λ an eigenvector of A∗ associated
with the eigenvalue λ̄. Then
(i) Πλ has rank 1 if and only if 〈uλ, u

∗
λ〉 �= 0.

(ii) In this case, we have

κ(λ) := ‖Πλ‖ =
‖uλ‖‖u∗

λ‖
|〈uλ, u∗

λ〉| . (3.1)

We recall (see Sect. 2.1) that the eigenfunctions uα
n associated with the

nth eigenvalue λn(α) ∈ R of Aα have the form

uα
n(x) = ψα(h2/5

n x, hn), (3.2)

where

hn = λn(α)−5/6, (3.3)

and where ψα(·, hn) ∈ L2(R) is a solution of Aα(hn)ψα(·, hn) = 0.
We normalize uα

n so that

uα
n(x) = ψα

1 (h2/5
n x, hn), (3.4)

where ψα
1 is the solution introduced in Theorem 2.1.

We have

Proposition 3.2. Let α ≥ 0. There exists N ≥ 1 such that, for all n ≥ N , the
spectral projection Πn(α) of Aα associated with λn(α) has rank 1. Moreover,
there exists kα > 0 such that the nth instability index satisfies

κn(α) = kα‖ψα
1 (·, hn)‖L2(R)(1 + o(1)), n → +∞. (3.5)

Proof. By deformation of the integration path, and using the exponential
decay of ψα

1 (x, hn) as |x| → +∞ in the sectors arg−1(] − 3π/10, π/10[) and
arg−1(]9π/10, 13π/10[) (see Theorem 2.1), we get

∫

R

ψα
1 (x, hn)2dx =

∫

Lα(hn)

ψα
1 (x, hn)2dx. (3.6)

We then notice that A∗
αΓ = ΓAα, where Γ : u(x) �→ u(x). Hence, we have

(uα
n)∗(x) = uα

n(x), with the notation of Proposition 3.1. Thus, according to
(3.4),

〈uα
n, (u

α
n)∗〉 = h−2/5

n

∫

Lα(hn)

ψα
1 (x, hn)2dx.

Using (2.42) we then get, for n large enough, |〈uα
n, (u

α
n)∗〉| > 0, and the desired

statement on the rank of Πn(α) follows from Proposition 3.1, (i). Expression
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(3.5) follows from (2.42) and Proposition 3.1, (ii), after the change of variable
x �→ h

2/5
n x. �

Now it remains to determine an equivalent for the norm ‖ψα
1 (·, hn)‖L2(R)

appearing in (3.5). We will do so using the expansion (2.11). Let us recall that
this expansion is uniform with respect to x ∈ R; hence we integrate

‖ψα
1 (·, hn)‖2

L2(R) = (1 + o(1))
∫

R

a(x)e−ϕα(x,hn)dx (3.7)

as n → +∞, where

a(x) =
1

V0(x)1/4

and

ϕα(x, h) =
2
h

Re

x∫

xα
+(h)

√
Vα(z, h) dz.

Lemma 3.3. If α ≥ 0 then, as n → +∞,

‖ψα
1 (·, hn)‖2

L2(R) =
√

2
2

Γ(1/4)h1/4
n (1 + o(1)) exp

(
C

hn
+

αr

h
1/5
n

)
, (3.8)

where

C =

1∫

0

√
1 − t3 dt > 0 and r =

1
2

1∫

0

t√
1 − t3

dt. (3.9)

Proof. Let us first assume that α > 0. We shall apply the Laplace method
with two parameters in [18] to determine the behavior as h → 0 of the integral

Iα(h) =
∫

R

a(x)e−ϕα(x,h)dx

appearing in (3.7). We write ϕα(x, h) = 1
hgα(x, ε(h)) with ε(h) = h4/5 and

gα(x, ε) = 2Re

x∫

x̃α
+(ε)

√
Ṽα(z, ε) dz,

where we have denoted x̃α
+(ε) = xα

+(ε5/4) and Ṽα(x, ε) = Vα(x, ε5/4) = ix3 +
iαεx− 1.

The function gα is C∞ for x ∈ R and ε small enough. Moreover, gα(·, 0)
has a unique critical point x = 0. Indeed,

∂xgα(x, 0) = 2Re
√
ix3 − 1 = 0

if and only if arg(ix3 − 1) = π, that is x = 0.
We write

ϕα(x, h) =
1
h
gα(x, 0) +

ε(h)
h

∂εgα(x, 0) + O
(
ε(h)2

h

)
, (3.10)
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and we easily check that the remainder term is uniform with respect to x ∈ R.
We also check that

∂2
xgα(0, 0) = ∂3

xgα(0, 0) = 0 and ∂4
xgα(0, 0) = 6,

and that

∂x∂εgα(0, 0) = 0 and ∂2
x∂εgα(0, 0) = α.

Thus,

gα(x, 0) − gα(0, 0) =
x4

4
+ O(|x|5), ∂εgα(x, 0) − ∂εgα(0, 0) =

αx2

2
+ O(|x|3).

We can then apply Theorem 2 in [18], with φ(x) = gα(x, 0) − gα(0, 0), ψ(x) =
−∂εgα(x, 0), ν = 4, μ = 2, λ = 0, and replacing h by h−1 and k by ε(h)h−1 =
h−1/5. This yields

‖ψα
1 (·, hn)‖2

L2(R)

=
√

2
2

Γ(1/4)h1/4
n (1 + o(1)) exp

(
− 1
hn

(gα(0, 0) + h4/5
n ∂εgα(0, 0)

)

In order to get the desired statement, it only remains to notice that gα(0, 0) =
−C and ∂εgα(0, 0) = −αr, where C and r are the constants in (3.9).

In the case α = 0, we check similarly that the Laplace method applies
(see for instance [12]) and leads to the same statement. �

To conclude the proof of Theorem 1.1, we use the Bohr–Sommerfeld rule
(2.36), which gives an asymptotic expansion for hn. Let us compute the first
few terms. By expanding the left-hand-side of (2.36), we get

Im

xα
+(hn)∫

xα
−(hn)

√
Vα(z, hn) dz =

√
3C −

√
3αrh4/5

n + O(h8/5
n ),

where C and r are the constants in (3.9). Expression (2.36) then writes

hn =
√

3C
π

(
n+ 1

2

) − 39/10αrC4/5

π9/5
(
n+ 1

2

)9/5
+ O((n+ 1/2)−13/5). (3.11)

Gathering (3.5), (3.8) and (3.11), and replacing C and r by their values

C =
2
√

3π3/2

15Γ(2/3)Γ(5/6)
and r =

Γ(2/3)Γ(5/6)
2
√
π

,

we get the following statement, and Theorem 1.1 follows:

Theorem 3.4. For all α ≥ 0, there exists a positive constant Kα such that

κn(α) =
Kα

n1/4
(1 + o(1)) exp

(
π√
3
n+ αcn1/5

)
(3.12)

as n → +∞, where

c = (5/2)1/5π−3/5Γ(2/3)6/5Γ(5/6)6/5.



2042 R. Henry Ann. Henri Poincaré
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