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Fixed Points of Compact Quantum Groups
Actions on Cuntz Algebras

Olivier Gabriel

Abstract. Given an action of a Compact Quantum Group (CQG) on a
finite dimensional Hilbert space, we can construct an action on the associ-
ated Cuntz algebra. We study the fixed point algebra of this action, using
Kirchberg classification results. Under certain conditions, we prove that
the fixed point algebra is purely infinite and simple. We further identify it
as a C∗-algebra, compute its K-theory and prove a “stability property”:
the fixed points only depend on the CQG via its fusion rules. We apply
the theory to SUq(N) and illustrate by explicit computations for SUq(2)
and SUq(3). This construction provides examples of free actions of CQG
(or “principal noncommutative bundles”).

1. Introduction

Our original motivation for this article was to find an explicit construction of
free actions of Compact Quantum Groups (CQGs—see Woronowicz’ articles
[33,34,36]) in the sense of Ellwood’s work [14] (see also the recent article [9]
by De Commer and Yamashita).

Another motivation for the study of such fixed point algebras is provided
by the duality results of Doplicher and Roberts [11,12] for actions of (ordi-
nary) compact groups on C∗-algebras and the considerable amount of work
they generated (see for instance [3,26,27]). A basic step of Doplicher–Roberts’
duality theory is to consider “canonical actions” of compact groups on Cuntz
algebras (as defined in [7]).

These two motivations are combined by considering canonical actions
of quantum groups on Cuntz algebras. This direction was first explored using
Hopf algebras and multiplicative unitaries by Cuntz [8]. However, our approach
is closer to the article by Konishi et al. [18]. Starting with a unitary represen-
tation α of dimension d of a CQG G, we obtain an action of G on the Cuntz
algebra Od by a process extending that of Doplicher and Roberts.

The previous construction was studied by Marciniak [21], in the case
of the irreducible representation α of G = SUq(2) on C2. He gave an explicit
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description of the fixed point algebra by means of generators and relations. The
general case of the natural irreducible representation of G = SUq(d) on Cd was
treated explicitly by Paolucci in her article [23], relying on the Tannaka–Krein
duality for CQGs (as established by Woronowicz’ seminal article [35]) and the
analysis of the classical case expounded in [11]. She gave an explicit family
of generators based on the infinite braid group B∞. She further expanded
her results in joint work [6] with Carey and Zhang. Working in the algebraic
setting, they gave the same kind of description in the case of classical quantum
groups G = SUq(d), SOq(d) or SPq(d). Moreover, they managed to recover the
“q” in (0, 1) of G from the fixed point algebra.

We take a rather different approach to this problem. Indeed, we stay
strictly in the C∗-algebraic domain and try to obtain an abstract C∗-isomor-
phism. For this abstract identification, we depend on the remarkable classi-
fication results by Kirchberg and Phillips (see [16,19]) allowing to recover a
C∗-isomorphism from K-theoretic properties. In this article, our reference re-
garding classification theory is the book by Rørdam and Størmer [30].

To prove that the fixed point algebras are simple and purely infinite
and to perform the required K-theoretic computations, we use the notion of
“crossed product by endomorphism” (denoted A �σ N) which first appeared
in [24]. Rørdam elaborated on this notion in series of article (e.g. [13,29]) on
which we rely here.

In the course of this article, we resort to previous work by Banica [1] to
define R+-isomorphic CQGs and by Wassermann [31] for the computation of
K-theory.

The main results of this article come from two directions:

• Under some hypotheses, we prove that the fixed point algebra Oα is
simple and purely infinite (Theorem 4.6).

• The same hypotheses ensure that Oα is a crossed product by endomor-
phism (Corollary 4.7) and thus we can compute its K-theory (Theorem
5.4).

Combining these two threads of results, an unexpected “stability theorem”
(Theorem 6.5) appears, namely: as a C∗-algebra, the fixed point algebra Oα

only depends on G via its fusion rules. We show that these results apply to
the natural representation of SUq(d) and discuss two explicit examples, the
cases of G = SUq(2) and G = SUq(3). In this setting, this “stability result”
for C∗-algebras contrasts sharply with the algebraic case treated in [6], as we
discuss in Remark 8.6. Finally, we prove that this construction indeed yields
free actions of CQGs.

After reviewing the construction of the fixed point algebra Oα (Sect. 2),
stating properly the hypotheses of our theorems and introducing the notion
of crossed product by endomorphisms (Sect. 3), we prove the simplicity and
purely infiniteness properties in Sect. 4, which leads us to identify the fixed
points with such a crossed product. We proceed with the computation of
K-theory (Sect. 5). The next Sect. 6 focuses on the combination of the pre-
vious parts to obtain the main results. We then discuss our hypotheses, show
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how to apply our theory to SU(N) and study two explicit examples (Sect. 7).
Going back to our original motivation, we conclude in Sect. 8 with sufficient
conditions to get a free action and a comparison with the algebraic case.

2. Review of Fixed Points Algebras

In this article, all tensor products of C∗-algebras are minimal tensor products.
We consider a Compact Quantum Group (CQG) denoted by G, i.e. a separa-
ble unital C∗-algebra C(G) together with a unital ∗-algebra homomorphism
Δ : C(G) → C(G) ⊗ C(G) which satisfies coassociativity and cancellation
properties—for more details on these objects and their representations, see
[33,36].

We also fix a unitary representation α of G on a Hilbert space H of
finite dimension d i.e. a C(G)-valued d × d matrix (αij) ∈ Md(C(G)) sat-
isfying a coassociativity property as well as equations

∑
k α

∗
kiαkj = δij and∑

k αikα
∗
jk = δij . In particular, for any G, we have a trivial representation

denoted by ε, defined by the unit of C(G). In the rest of this article, we only
use unitary representations which we, therefore, simply call “representations”.

If (ei) is an orthonormal basis of H , we define the associated action of
G on H as the map δα : H → H ⊗C(G) given by δα(ei) =

∑
j ej ⊗αji. Note

that our conventions differ from those of [1,23].
Using this definition of representations for CQGs, Woronowicz introduced

several notions which are very similar to the case of compact groups. In par-
ticular, given two representations α ∈ Md1(C(G)) and β ∈ Md2(C(G)) acting
on the Hilbert spaces H1 and H2, respectively, a linear map T between H1

and H2 is an intertwiner (see Proposition 2.1 p. 629 of [33]) if

(T ⊗ 1)δα = δβT.

He also defined irreducible representations and proved a Schur’s lemma-type
theorem. Given two representations π1 and π2 of G on Hilbert spaces H1

and H2 respectively, he constructed the unitary tensor product representation
π1 ⊗ π2 on H1 ⊗ H2—see Section 2 of [33]. Furthermore, Woronowicz defined
and proved the existence of the Haar measures for general CQGs—see [36]
Theorem 1.3.

We denote by R+(G) the fusion semiring of (equivalence classes of) finite
dimensional representations of G equipped with addition and tensor product
(compare Definition 1.2, [1]). The following is an avatar of Definition 2.1 in [1]:

Definition 2.1. Given two CQGs G1 and G2, we say that they are R+-isomorp-
hic if an isomorphism of semirings R+(G1) � R+(G2) exists.

In other words, G1 and G2 have the same fusion rules, i.e. there is a bijec-
tion Φ between their irreducible representations and it is compatible with the
tensor product. As an example, the q-deformations SUq(N) are R+-isomorphic
to the original SU(N) (see [1], Theorem 2.1 and references therein).



1016 O. Gabriel Ann. Henri Poincaré

The Cuntz algebra Od is defined [7] as the universal unital C∗-algebra
generated by d elements (Sj)1�j�d which satisfy S∗

i Sj = δij and
∑

j SjS
∗
j = 1.

The case d = 1 yields the algebra C(S1), which is a very special case, thus we
assume from now on that d � 2. If (ei) is an orthonormal basis of a Hilbert
space H of dimension d, we define an injective linear map ϕ : H → Od by
ei �→ Si. This map preserves the scalar product in the sense that if v, w ∈ H ,
then

〈v, w〉 = ϕ(v)∗ϕ(w) ∈ C1 ⊆ Od.

Following [11], we extend this map to the iterated tensor products and set

H ⊗�(H ∗)⊗k

:= Span{Si1 . . . Si�
S∗

j1 . . . S
∗
jk

|1 � i1, . . . , i�, j1, . . . , jk � d} ⊆ Od.

Taking (�, k) = (1, 0) (resp. (�, k) = (0, 1)) we recover H (resp. H ∗). These
spaces satisfy H ∗H ⊆ C1 ⊆ Od. Thus, we can identify H ⊗�(H ∗)⊗k with
the space of linear operators from H ⊗k to H ⊗�. Moreover, an inclusion
H ⊗�(H ∗)⊗k ↪→ H ⊗(�+1)(H ∗)⊗(k+1) is defined by

Si1 . . . Si�
S∗

j1 . . . S
∗
jk

�→
∑

p

Si1 . . . Si�
SpS

∗
pS

∗
j1 . . . S

∗
jk
.

We make extensive use of these identifications. We denote by Oalg
d the algebraic

unital ∗-algebra generated by Sj . Its elements T ∈ Oalg
d are called algebraic

element.
A pointwise continuous S1-action γ on a C∗-algebra B is called a gauge

action. It yields the spectral subspaces B(k) defined by:

B(k) := {T ∈ B|∀z ∈ S1 ⊆ C, γz(T ) = zkT}.

If T ∈ B(k), we says that T is a gauge-homogeneous element of total gauge k.
In the case of Od, such a gauge action is defined on generators by γz(Sj) =

zSj , yielding spaces O(k)
d . We use the short hand notation F := O(0)

d and
call the elements of this set gauge-invariant. This algebra contains F� :=
H ⊗�(H ∗)⊗�, which can be identified with the algebra of matrices Md�(C)
by the previous discussion.

Actions of CQGs on C∗-algebras were first defined in [5,25].

Definition 2.2. An action δ of a CQG on a C∗-algebra B is a faithful unital
∗-homomorphism

δ :B → B ⊗ C(G)

satisfying the coaction condition (Id⊗Δ)◦δ = (δ⊗Id)◦δ as well as the density
condition

(1 ⊗ C(G))δ(B) = B ⊗ C(G).

We quote Theorem 1 of [18]:
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Theorem 2.3. For a given representation α of G on a Hilbert space H of
dimension d, there is an action δ : Od → Od ⊗ C(G) of G on Od defined by

δ(Si) =
d∑

j=1

Sj ⊗ αji.

By construction, δ preserves the spaces H ⊗�(H ∗)⊗k. It also induces
actions δk of G on H ⊗k. The associated representations are called α⊗k—
indeed, they are the iterated tensor products of α.

We now introduce our main object of interest:

Definition 2.4. The fixed point algebra Oα for the action δ is defined as:

Oα := {T ∈ Od : δ(T ) = T ⊗ 1} ⊆ Od.

In particular, if α is the trivial representation on Cd, given by αij = δij ,
then we recover Oα = Od.

It is readily checked [23] that just like in the “regular” group case [11],
the gauge action γ on Od “commutes” with the coaction of G on Od, therefore,
Oα also carries a gauge action and we set Fα := Oα ∩ F . We use the notation
Fα,� := Oα ∩H ⊗�(H ∗)⊗�. The following already appeared as Proposition 3.4
of [21], extending results of [11]:

Lemma 2.5. The elements of Oα ∩H ⊗�(H ∗)⊗k are precisely the intertwiners
of the representations α⊗� and α⊗k.

Denote by (α⊗�, α⊗k) the intertwiners between the representations α⊗�

and α⊗k. The previous Lemma states that Oα ∩ H ⊗�(H ∗)⊗k = (α⊗�, α⊗k).
We adapt Lemma 5 of [18]:

Definition 2.6. If G is a compact quantum group, the conditional expectation
E� associated with the action α is:

E�(T ) = (IdOd
⊗h)α(T ),

where h is the Haar measure on G.

E� defines a projection of norm 1 from Od onto Oα (see [21] p.611). It
sends algebraic elements to algebraic elements and H ⊗�(H ∗)⊗� to
H ⊗�(H ∗)⊗� ∩ Oα.

We refer to the book [30] (Definition 1.2.1) for a definition of Approxi-
mately Finite dimensional algebras or AF-algebras. The conditional expecta-
tion E� is used in the proof of the following Lemma 6 of [18]:

Lemma 2.7. If α is a representation of the CQG G, then the algebraic elements
of Oα are dense in Oα. Moreover,

• any positive T ∈ Oα can be approximated by a positive and algebraic
Tα ∈ Oα;

• Fα is an AF-algebra and Fα = lim→ Fα,�. Any positive T ∈ Fα can be
approximated by a positive algebraic Tα ∈ Fα,�, for � large enough.
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Remark 2.8. Using the notations introduced below Lemma 2.5, we can express
the second point as Fα = lim→(α�, α�). It is more generally true that for
k ∈ Z, (Oα)(k) = lim→(α�, αk+�).

Proof. Take an element T ∈ Oα ⊆ Od. By definition of Od, we can find an
algebraic element T ′ ∈ Od s.t. ‖T ′ −T‖ � ε. Using the conditional expectation
E� associated with α and setting Tα := E�(T ′) the following holds:

‖Tα − T‖ = ‖E�(T ′) − T‖ = ‖E�(T ′ − T )‖ � ‖T ′ − T‖ � ε. (2.1)

Hence Tα ∈ Oα is an algebraic approximation of T in Oα.
If T ∈ Oα is positive, we can consider its square root B ∈ Oα with

T = B∗B and B = B∗. Applying the above argument to B, we get an algebraic
approximation Bα of B. Finally, T = B∗B is approximated by the positive
algebraic element Tα := B∗

αBα ∈ Oα.
Since F is an AF-algebra and F = lim→ F�, for any T ∈ Fα ⊆ F and

any ε > 0, there is a T ′ ∈ F� for � large enough such that ‖T − T ′‖ � ε.
Considering then Tα := E�(T ′) and using the estimate (2.1), we see that Tα

is an algebraic approximation of T . Moreover, since T ′ ∈ F�, Tα ∈ Fα,�. For
positive elements, considering the square root as above proves the required
property. �

Remark 2.9. Any selfadjoint element T ∈ Fα can be written T = T+ − T−
where both T+ and T− are positive. It is, therefore, clear that any selfadjoint
T ∈ Fα can be approximated by a selfadjoint T0 ∈ Fα,� for � large enough.
Since the latter algebra is finite dimensional, T0 has finite spectrum and Fα

has real rank zero, according to Theorem V.3.2.9 p. 453 of [4].

The conditional expectation E� leads to the following, which we adapt
from the proof of Proposition 2.1 in [10]:

Lemma 2.10. The algebra Oα is nuclear and separable.

Proof. Separability is an immediate consequence of Lemma 2.7. Regarding
nuclearity, the argument is that Oα is a subalgebra of the nuclear algebra Od

and that there is a conditional expectation E� : Od → Oα. �

3. Conditions and Endomorphism Crossed Products

Notation 3.1. Given a representation α of G, we call Tα the set of (classes of)
irreducible representations appearing in the iterated tensor products α⊗� for
� ∈ N.

Our results rely on the following conditions:
(C1) For any β ∈ Tα, we can find β′ ∈ Tα s.t. the representation β ⊗ β′

possesses a nonzero invariant vector.
(C2) There are integers N, k0 ∈ N such that α⊗N is contained in α⊗(N+k0)

and for all integers k, � with 0 < k < k0, (α⊗�, α⊗(�+k)) = {0}.
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Condition (C2′) can alternatively be stated as (see Lemma 3.2 below):
(C2′) For any k ∈ N \ {0}, if (Oα)(k) is nontrivial, there is an isometry in it.

Moreover, not all (Oα)(k) are trivial.
A few comments on these conditions:

• In Condition (C1), saying that “β⊗β′ possesses a nonzero invariant vec-
tor” amounts to stating that the dual (or contragredient) β′ of β is in Tα.
In other words, Tα is closed under duality hence it is the representation
category of some quantum group quotient of G.

• Condition (C1) is non-trivial. Indeed some CQGs do not satisfy Condition
(C1): consider G = U(1) and its representation μ : z �→ z. Clearly, in Tμ

we get all the representations z �→ zn for n > 1 but we do not recover
the representation z �→ z−1 which would satisfy (C1).

• Condition (C1) is satisfied for semisimple Lie groups and finite groups,
as discussed in Sect. 7—see Propositions 7.2 and 7.4.

• Given an inclusion of representations α � β, it is clear that for any
representation γ, α⊗ γ � β ⊗ γ. Hence, if Condition (C2) is satisfied for
N0, then it is satisfied for any larger N � N0.

Lemma 3.2. Assuming (C2′), if k0 is the smallest strictly positive integer such
that (Oα)(k) is nontrivial, then the spectral subspace (Oα)(k) is nontrivial if
and only if k0 divides k.

Conditions (C2) and (C2′) are equivalent.

To prove the equivalence, we will need the following:

Definition 3.3. We define the Fourier coefficients maps mk : Oα → (Oα)(k) for
k ∈ Z by setting

mk(T ) :=
∫

S1

z−kγz(T )dz.

We have ‖mk(T )‖ � ‖T‖ and the restriction of mk to (Oα)(k) is the identity.

Some remarks on this definition:
• The conditional expectation associated with the gauge action is simply m0.
• The maps mk send algebraic expressions to algebraic expressions.

Proof. Under Condition (C2′), the integer k0 exists thus there is an isometry
ν ∈ H ⊗(N+k0)(H ∗)⊗N ∩ Oα. Considering νp and (ν∗)p for p ∈ N, this shows
that for all multiple k of k0, (Oα)(k) is nontrivial.

Conversely, if k � � and both (Oα)(k) and (Oα)(�) are nontrivial, denoting
u and v isometries in each of these spaces, vu∗ and uv are nontrivial elements of
(Oα)(�−k) and (Oα)(�+k), respectively. Indeed v∗(vu∗)u = 1 and (uv)∗(uv) = 1
since both u and v are isometries. This shows that the set of all k such that
(Oα)(k) is nontrivial is a subgroup of Z and thus has the form k0Z.

The next step is to prove that (C2′) implies (C2). The first point of
the lemma provides us with an integer k0 and an isometry ν ∈ (Oα)(k0).
We need to turn it into an algebraic element μ ∈ H ⊗(N+k0)(H ∗)⊗N ∩ Oα
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to recover (C2). Lemma 2.7 proves that there is an algebraic approximation
ν0 ∈ Oα of ν. We thus get an integer N large enough such that ν′ := mk0(ν0) ∈
H ⊗(N+k0)(H ∗)⊗N , we can estimate:

‖ν′ − ν‖ = ‖mk0(ν0 − ν)‖ � ‖ν0 − ν‖.
Consequently, (ν′)∗ν′ is close to ν∗ν = 1 and for a suitable choice of ν0, it is,
therefore, invertible in H ⊗(N+k0)(H ∗)⊗(N+k0) ∩ Oα in which both ν∗ν = 1
and (ν′)∗ν′ lie. Finally, setting μ = ν′((ν′)∗ν′)−1/2 yields the required isometry
in H ⊗(N+k0)(H ∗)⊗(N+k0) ∩ Oα. It remains to show that for all integers k, �
with 0 < k < k0, there are no nonzero intertwiners between α⊗� and α⊗(�+k),
but if such intertwiners exist, Lemma 2.5 implies that (Oα)(k) �= {0}. This
completes the proof of (C2′) =⇒ (C2).

Assuming (C2), it appears that (Oα)(k0) contains an algebraic isometry
ν ∈ H ⊗(N+k0)(H ∗)⊗N ∩ Oα. This proves that not all (Oα)(k) are trivial and
that if k0 divides k, then (Oα)(k) is nontrivial. It now suffices to prove that all
other (Oα)(k) are trivial. By the same process as above, if (Oα)(k) �= {0} then
using the maps mk, we can find � large enough such that there is a nonzero
algebraic intertwiner T ∈ H ⊗(�+k)(H ∗)⊗� ∩ Oα. Since ν is an isometry,

νT �= 0 ⇐⇒ T �= 0 ⇐⇒ Tν∗ �= 0.

Iterating this argument, we reduce the problem to the case of a nonzero al-
gebraic intertwiner T ∈ (Oα)(k) for 0 < k < k0. But such map cannot exist
according to Condition (C2) and, therefore, the equivalence is established. �

The previous conditions are related to those appearing in [29, Proposition
2.1] by the following:

Lemma 3.4. If α satisfies Condition (C2), then
• There is an isometry ν ∈ H ⊗(N+k0)(H ∗)⊗N ∩ Oα,
• the expression σ(T ) = νTν∗ defines an injective corner endomorphism

σ : F → F . It restricts to an injective corner endomorphism of Fα, also
denoted by σ.

Proof. Condition (C2) imposes the existence of a norm preserving map
ψ : H N → H N+k0 intertwining the G-action. In particular, ψ∗ψ = IdH N .
From Lemma 2.5, we see that we can interpret ψ as an element
ν ∈ H ⊗(N+k0)(H ∗)⊗N ∩ Oα. Moreover, ν∗ν corresponds to ψ∗ψ and thus
ν∗ν = 1.

Regarding σ, notice first that ν has gauge k0 thus σ(T ) as gauge 0, i.e. it
is an element of F . Since ν∗ν = 1, σ is an injective ∗-endomorphism. Moreover,
σ(1) = νν∗ thus for any T ∈ Fα,

σ(T ) = νTν∗ = νν∗νTν∗νν∗ ∈ σ(1)Fασ(1)

and the image of σ is precisely σ(1)Fασ(1).
Finally, ν ∈ Oα and thus if T ∈ Fα then σ(T ) ∈ Fα. �

Using this injective endomorphism, we can form the endomorphism
crossed product Fα

�σ N as defined in [13, Section 2, p. 327]:
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Definition 3.5. Given a C∗-algebra A and an injective endomorphism σ :A →
A, the endomorphism crossed product A �σ N is the universal C∗-algebra
generated by a copy of A and an isometry s such that sas∗ = σ(a) for all
a ∈ A.

To define such a universal C∗-algebra, all generators must have finite
bounds on their norms [4, II.8.3]. This property is satisfied for a ∈ A ⊆ A�N
and s is required to be an isometry thus ‖s‖ = 1.

4. Simple and Purely Infinite Algebras

In this section, we prove that under Conditions (C1) and (C2), the algebras
Oα are simple and purely infinite.

Definition 4.1. A C∗-algebra C is called simple and Purely Infinite (PI) if for
any nonzero T ∈ C and any ε > 0, there are A,B ∈ C s.t. ‖ATB − 1‖ � ε.

The above definition implies that C is simple. Indeed, when ATB is close
enough to 1, it is invertible and thus we can find A′, B′ such that A′TB′ = 1.

Proposition 4.2. If α is a representation of G which satisfies (C1), then for
any nonzero gauge-invariant projection P ∈ Oα ∩ H ⊗�(H ∗)⊗�, we can find
L large enough and y ∈ Oα ∩ H ⊗L s.t. Py = y, y∗Py = 1 and y∗y = 1.

Proof. A projection P ∈ Oα in H ⊗�(H ∗)⊗� always defines a α-invariant
Hilbert space in H ⊗�—and, therefore, a representation of G. Indeed, the finite
dimensional Hilbert space K := PH ⊗� satisfies:

δ(Px) = δ(P )δ(x) = (P ⊗ 1)δ(x) ∈ K ⊗ C(G), (4.1)

thereby inducing a representation of G by restriction. By construction, the re-
striction of δ to K has a decomposition into irreducible representations which
only involves (subrepresentations of) iterated tensor products of α, i.e. ele-
ments of Tα. Pick one such irreducible representation β ∈ Tα. From Condition
(C1), we get q ∈ N and β′ in the decomposition of α⊗q such that β ⊗ β′

possesses an invariant vector.
Using an argument similar to (4.1), it is easy to show that K ⊗ H ⊗q �

PH ⊗(�+q) carries a representation of G induced from α. If we decompose this
representation, using the tensor product K ⊗ H ⊗q we find:

(β ⊕ t) ⊗ (β′ ⊕ u) � (β ⊗ β′) ⊕ (β ⊗ u) ⊕ (t⊗ β′) ⊕ (t⊗ u)

where t and u are sums of irreducible representations. Property (C1) thus
implies that K ⊗ H ⊗q contains a nonzero invariant vector.

Let us pick such an invariant vector y �= 0 in K ⊗ H ⊗q � PH ⊗(�+q) ⊆
H ⊗(�+q). Without loss of generality, we can assume that ‖y‖ = 1, i.e. y∗y = 1.
By construction, δ(y) = y ⊗ 1 so y ∈ Oα. Since y is in PH ⊗(�+q), we have
Py = y. Hence

y∗y = 1 y∗Py = (Py)∗Py = y∗y = 1.

�
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Proposition 4.3. If α satisfies Condition (C1), then for any positive nonzero
T ∈ Fα, we can find an integer L large enough and z ∈ (Oα)(L) s.t.

z∗Tz = 1.

Proof. Given any nozero positive T ∈ Fα, we can find an ε-close positive
T0 ∈ Fα,� with T0 �= 0 using Lemma 2.7. Since T0 is a normal element of the
finite dimensional algebra Fα,�, we can write it as a finite sum:

T0 =
∑

j

λjPj ,

where the Pj are its spectral projections and the λi are its eigenvalues. Pick
λj , the largest (nonzero) eigenvalue and apply Proposition 4.2 to Pj to get
y ∈ H ⊗L ∩ Oα s.t. y∗Pjy = 1. Since Pj is orthogonal to the other spectral
projections, for i �= j, we have:

y∗Pi = (Pjy)∗Pi = y∗PjPi = 0

and thus:

y∗T0y = y∗

(
∑

i

λiPi

)

y = λjy
∗Pjy = λi1.

We just have to renormalise y to get 1. For simplicity, we also denote by y the
renormalised element of (Oα)(L), whose norm is ‖T0‖−1/2. Since ‖T −T0‖ � ε
we get

‖y∗Ty − 1‖ = ‖y∗Ty − y∗T0y‖ � (‖T‖ − ε)−1/2ε.

For ε small enough, y∗Ty is, therefore, an invertible positive element of Fα

and setting z := y(y∗Ty)−1/2, we get z ∈ (Oα)(L) and z∗Tz = 1. �

Corollary 4.4. If α satisfies Conditions (C1) and (C2), then for each non-zero
hereditary subalgebra B of Fα, there is a projection in B which is equivalent
(in Fα) to σL(1) for some L ∈ N.

In other words, for any nonzero positive T ∈ Fα, we can find z′ ∈ Fα

and L large enough such that z′T (z′)∗ = σL(1).

Proof. Using the same notations as in Proposition 4.3, the existence of the
nonzero element z ∈ (Oα)(L) together with Lemma 3.2 ensures that k0 divides
L. Writing L = pk0, we set z′ := νpz∗. This is gauge-invariant, i.e. an element
of Fα which satisfies z′T (z′)∗ = σL(1). �

To apply Theorem 2.1 of [13], it remains to prove that σm is outer for
all m ∈ N \ {0}. To fit our case within the setting of this article, we introduce
the inductive system

Fα σ−→ Fα σ−→ Fα σ−→ · · ·
as well as its inductive limit Fα := lim→ Fα. We denote by μα

n : Fα → Fα

the associated system of morphisms. An automorphism σ of Fα is defined by
σ(μα

n(a)) = μα
n(σ(a)) = μα

n−1(a).
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Lemma 4.5. Under Condition (C2), for all m ∈ N \ {0}, the automorphism
σm is outer.

Proof. Our proof of this fact will rely on the inductive system

F σ−→ F σ−→ F σ−→ · · ·
whose inductive limit we denote by F . It comes with a system of morphisms
denoted by μn : F → F . There is a natural map ϕ : Fα → F defined via the
natural inclusions ϕn : Fα → F applied to the defining inductive systems:

Fα σ ��

ϕ1

��

Fα σ ��

ϕ2

��

Fα σ ��

ϕ3

��

· · · �� Fα

ϕ

��
F σ �� F σ �� F σ �� · · · �� F .

The squares appearing in the above diagram are all commutative. The map
ϕ is characterised by ϕ ◦ μα

n = μn ◦ ϕn. To compute the K-theory of F , we
rely on the continuity of K-theory (Theorem 6.3.2 p. 98 of [28]), together with
an estimation of the action of σ∗ on the K-theory of F . It is well-known that
for F , i.e. the UHF algebra of type d∞,K1(F) = 0 and K0(F) is isomorphic
to Z

[
1
d

]
(see e.g. [4, V.1.1.16, p. 400]), with the isomorphism implemented by

the unique normalised trace τ on F : to a projection e we associate τ(e).
Since T �→ τ(σ(T )) is a trace on F , there must be a real constant ρ such

that τ(σ(T )) = ρτ(T ) for all T . Considering T = 1 leads to ρ = τ(νν∗). Since
by definition ν is an isometry between spaces of dimensions dN and dN+k0 , we
obtain ρ = d−k0 < 1. At the level of K-theory, it means that σ∗(K) = ρK.

As σ∗ is an automorphism of K0(F), it appears that the inductive limit
defining theK-theory of F is simplyK0(F) = Z[1/d] equipped with the system
of morphisms (μn)∗(K) = (σ∗)−(n−1)(K) (compare e.g. [28, Definition 6.2.2,
p. 92]). In particular, all maps (μn)∗ are injective. Moreover, the action of σ∗
on K0(F) is σ∗(K) = ρK and for m �= 0 the morphism σm

∗ leaves no point
fixed.

Now, if σm is an inner morphism of Fα for m �= 0, then its action on the
K-theory of Fα must be trivial. In particular, we must have ϕ∗(K0(Fα)) ⊆
ker(Id −(σm)∗). However, we know that for m �= 0, ker(Id −(σm)∗) = {0} and,
therefore, ϕ must vanish, which is false.

Indeed, taking the K-theory class [1] ∈ K0(Fα) the map ϕ1 sends it to
[1] ∈ K0(F). This K-theory class is nonzero in K0(F) and the map (μ1)∗ :
K0(F) → K0(F) is injective. The properties of inductive limits prove that

(μ1)∗ ◦ (ϕ1)∗([1]) = ϕ∗ ◦ (μα
1 )∗([1]) �= 0

and thus ϕ∗ does not vanish. �

Theorem 4.6. Let α be a representation of G which satisfies Conditions (C1)
and (C2), the crossed product Fα

�σ N is simple and PI.

Proof. Corollary 4.4 and Lemma 4.5 ensure that we can apply Theorem 2.1 of
[13]. �
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Corollary 4.7. If α satisfies Conditions (C1) and (C2), the fixed point algebra
Oα is isomorphic to Fα

�σ N and, therefore, simple and purely infinite.

Proof. Lemma 3.4 together with the universal property of Fα
�σ N appearing

in Definition 3.5 ensure that there is a C∗-morphism Φ : Fα
�σ N → Oα.

By Theorem 4.6, the crossed product Fα
�σ N is simple and, therefore, Φ is

injective.
To prove surjectivity, it suffices to prove that ν and Fα generate Oα.

This follows from the density of algebraic elements in Oα (Lemma 2.7) and
the observation that any gauge-homogeneous element can be written either
(ν∗)ka or νka for some k ∈ N and a ∈ Fα. �

5. Computation of K-Groups

In this section, we compute the K-theory of Oα—which only depends on G up
to R+-isomorphism. Very analogous results for Fα were first stated in the case
of (ordinary) compact groups by Antony Wassermann in his PhD thesis [31]
(see in particular III.3.(iii) p.103 and III.7. p.157). He also sketched a proof
of the results for Oα. Here we give complete proofs of the results in the CQG
setting.

To compute the K-theory of Oα, we start by describing the algebra Fα.
By Lemma 2.7, this is an AF-algebra determined by lim→ Fα,� and the associ-
ated Bratteli’s diagram (see for instance [30, p. 13]). In particular,K1(Fα) = 0.
To evaluate K0(Fα), fix � and consider the decomposition into irreducible rep-
resentations of α⊗�:

α⊗� �
⊕

dt(t), (5.1)

where all irreducible representations (t) are in Tα (by definition) and only a
finite number of dt are nonzero. From Lemma 2.5 together with the Schur’s
lemma for representations of G, we get that Fα,� is isomorphic to

Fα,� �
⊕

Mdt
(C). (5.2)

Hence, the different matrix components of Fα are determined by the irre-
ducible representations appearing in α�. The connecting maps ϕ� : Fα,� →
Fα,�+1 are fully determined by the fusion rules (t) ⊗ α for (t) appearing in
(5.1). Indeed, if

(t) ⊗ α = m1(τ1) ⊕ · · · ⊕mp(τp)

then the multiplicity of ϕ� between the (t) component of Fα,� and the (τp) com-
ponent of Fα,�+1 ismp. For a more concrete illustration, refer to Sect. 7.1 of the
present paper. Since K0 is continuous, we recover K0(Fα) = lim→K0(Fα,�)
and thus

Proposition 5.1. The K-theory of Fα is fully determined by the fusion rules
on G. In other words, it only depends on G up to R+-isomorphism (Definition
2.1).
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Remark 5.2. Of course, the K-theory of Fα also depends on the choice of α.
But if G and G′ are R+-isomorphic, then α is sent by the isomorphism to
some representation α′ of G′, giving a meaning to the above proposition.

We have K0(Fα,�) �
⊕

t∈T �
α
Z where T �

α is the set of irreducible repre-
sentations appearing in (5.1) with nonzero multiplicity. Hence, the elements
of K0(Fα,�) can be represented as formal sums

∑
t∈T �

α
nt(t). It is then natural

to consider Z[Tα], the formal sums on Tα with integer coefficients. It is obvi-
ous that if β and γ are irreducible representations in Tα, then the irreducible
representations appearing in the decomposition of β ⊗ γ are also in Tα. Thus,
there is a product in Tα induced by the tensor product and Z[Tα] inherits a
ring structure from it.

If the ring Z[Tα] is commutative—it is the case for compact groups and
their R+-deformations—further simplifications arise, involving the localised
ring Z[Tα]

[
1
α

]
. The definition of this set as inductive limit, together with the

expression of the connecting maps K0(ϕ�) :K0(Fα,�) → K0(Fα,�+1):

K0(ϕ�)

(
∑

nt(t)

)

=
∑

nt

(
(t) ⊗ α

)

shows thatK0(Fα) can be realised as a submodule of Z[Tα]
[

1
α

]
. More precisely

(compare [31], p.103):

Remark 5.3. If the ring Z[Tα] is commutative, K0(Fα) is the set of all frac-
tions (

∑
nt(t)) /α⊗� where all (t) in the sum appear with nonzero multiplicity

in (5.1).

Going back to the general case, we can determine the K-theory of Oα:

Theorem 5.4. If α satisfies Properties (C1) and (C2), the K-theory of Oα is

K0(Oα) = Coker(Id −σ∗) K1(Oα) = ker(Id −σ∗), (5.3)

where σ∗ is the endomorphism of Lemma 3.4. If moreover Z[Tα] is an integral
domain, then K1(Oα) = 0.

In any case, K∗(Oα) only depends on G up to R+-isomorphism, in the
sense of Remark 5.2.

Proof. The algebra Fα is unital and σ is a corner endomorphism of Fα

(Lemma 3.4), hence the K-theory of Fα
�σ N is determined by the six-term

exact sequence (see Corollary 2.2 in [29]):

K0(Fα)
Id −σ∗ �� K0(Fα)

ι∗ �� K0(Oα)

∂

��
K1(Oα)

∂

��

K1(Fα)
ι∗�� K1(Fα),

Id −σ∗��

(5.4)

where σ∗ is the map in K-theory induced by functoriality from σ. Since
K1(Fα) = 0, this sequence can actually be written:

0 → K1(Oα) → K0(Fα) 1−σ∗−−−→ K0(Fα) → K0(Oα) → 0,

yielding the equalities (5.3).
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To complete the computation, we describe the action of σ∗ on K0(Fα,�)
for � � N—where N is the integer of Lemma 3.4. Given a projection e =
(ei,j) ∈ Mn(Fα,�) its image under σ∗ is:

f = σ∗(e) = (νei,jν
∗)i,j ∈ Mn(Fα,�+k0).

This element acts naturally on Cn ⊗H ⊗(�+k0). We know from Condition (C2)
that there is an injection ψ : H ⊗� → H ⊗(�+k0) which preserves the G-action.
f is just the image of e by this injection. In particular, f decomposes into
precisely the same number of components as e, with the same multiplicities.
In other words, σ∗ sends

∑
nt(t) ∈ K0(Fα,�) to

∑
nt(t) ∈ K0(Fα,�+k0). Such a

map exists because of Condition (C2): indeed, if the irreducible representation
(t) appears in α⊗�, then it also appears in α⊗(�+k0).

The kernel of 1 − σ∗ is characterised as all elements x ∈ Z[Tα] such
that x = σ∗x or equivalently xα⊗k0 = x—where we chose a realisation of
x inside some Fα,� for � large enough. When Z[Tα] is an integral domain—
e.g. for compact connected Lie groups (see Corollary 2.8 p. 167 of [2]) and
their R+-deformations—the only solution to this equation is x = 0. Indeed
α⊗k0 �= ε (trivial rep.) because of the condition d > 1 and thus in this case
K1(Oα) = 0. �

6. Main Results and Bootstrap Class

We refer to [30] Definition 4.3.1 for the following:

Definition 6.1. A Kirchberg algebra is a PI, simple, nuclear and separable C∗-
algebra.

Under some hypotheses, these algebras are fully classified by their K-
theory, according to the Kirchberg–Phillips classification theorem. To make
this assumption precise, we need the following definition, borrowed from Black-
ader [4, V.1.5.4]:

Definition 6.2. The (large) bootstrap class or Universal Coefficient Theorem
(UCT ) class is the smallest class N of separable nuclear C∗-algebras s.t.

(i) C ∈ N ;
(ii) N is closed under inductive limit;
(iii) if 0 → J → A → A/J → 0 is an exact sequence, and two C∗-algebras

J,A or A/J are in N , then so is the third;
(iv) N is closed under KK-equivalence.

We can now state Kirchberg–Phillips classification theorem, which first
appeared in [16,19] (see also Theorem 8.4.1 (iv) p. 128 of [30]):

Theorem 6.3. Let A and B be unital Kirchberg algebras in the UCT class N .
A and B are isomorphic if and only if there are isomorphisms

α0 :K0(A) → K0(B) α1 :K1(A) → K1(B)

with α0([1A]0) = [1B ]0. For each such pair of isomorphisms, there is an iso-
morphism ϕ :A → B with K0(ϕ) = α0 and K1(ϕ) = α1.
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To apply the above Theorem to our situation, we need:

Lemma 6.4. If α satisfies Conditions (C1) and (C2), the fixed point algebra
Oα is in the bootstrap class N .

Proof. Our proof relies on the techniques used in Sect. 4. First of all, as men-
tioned in [30], Section 3 p. 76, the crossed product Fα

�σ N is strongly Morita
equivalent to the algebra Fα

�σZ. In this crossed product, Fα is an AF algebra
because it is a countable limit of AF algebras (see [4] II.8.3.24 p. 167). Conse-
quently, Fα is in the bootstrap class N . As taking crossed products by Z leaves
N invariant (see [4] V.1.5.4 p. 414), it follows that Fα

�σ Z ∈ N . Finally,
strong Morita equivalences areKK-equivalences and, therefore, Oα � Fα

�σN
(Corollary 4.7) is an element of N . �

Theorem 6.5. Let α be a representation of G. If α satisfies Properties (C1)
and (C2), then up to C∗-isomorphism, the fixed point algebra Oα only depends
on the R+-isomorphism class of G, in the sense of Remark 5.2.

Proof. The result is immediate by combining Theorem 5.4, Lemma 2.10, Corol-
lary 4.7 and Lemma 6.4 with Theorem 6.3. �

7. Discussion and Examples

In view of [11,12], the most interesting cases are the natural representations
of SU(N). In the following section, we show that Condition (C2) is satisfied
for natural representations of G = SU(N) and more generally that our theory
apply to these.

A crucial tool in applying our theory is the notion of chain group that
we adapt from Baumgärtel and Lledó [3] (see Theorem 5.5 therein), where it
was studied for (ordinary) compact groups:

Definition 7.1. The chain group C(G) is defined as the set of equivalence classes
[t] of irreducible representations of G under the relation ∼, where (t) ∼ (t′)
if and only if we can find irreducible representations (τ1), . . . , (τn) s.t. (t) and
(t′) appear in the decomposition of the tensor product (τ1) ⊗ · · · ⊗ (τn) into
irreducible components. The tensor product induces a group structure on this
set.

The proofs of Baumgärtel and Lledó [3] adapt seamlessly to the case
of CQGs. The only difference is that in general C(G) is no longer Abelian.
The identity element of C(G) is e := [ε], the class of the trivial representa-
tion. By construction, C(G) only depends on the fusion rules of G, i.e. on its
R+-isomorphism class.

If α is a single irreducible representation and (C1) is satisfied, then the
semigroup generated in C(G) by [α] is actually a group. This subgroup of C(G)
is then finite and Abelian. In the case of G = U(1), this property fails.

However, we can find two large classes on which (C1) is satisfied. First,
we have semisimple Lie groups:
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Proposition 7.2. If G is a compact semisimple Lie group (or a R+-deformation
thereof), then it satisfies (C1) for any irreducible representation α.

Remark 7.3. Under the hypothesis of the proposition, the chain group can be
identified with the character group of the center of G. The identification is
defined by the restriction of the irreducible representation to the center of G.
This fact was first proved in [22, Theorem 3.1] (see also [3, (5.2) and Theorem
5.5]).

Proof. Without loss of generality, we assume that G is a compact semisimple
Lie group. We are actually going to prove that for any representation β of
G, the tensor product β⊗N contains the trivial representation ε, where N is
the dimension of the representation β. Since G is a compact semisimple Lie
group, it has a unique dimension 1 representation. If β acts on H , β⊗N induces
a representation on

∧N H � C. This concludes the proof. �

The second large class which satisfies Condition (C1) is finite groups:

Proposition 7.4. If G is a finite group (or a R+-deformation thereof), then it
satisfies (C1) for any irreducible representation α.

Remark 7.5. Property (C1) actually holds more generally for semisimple Hopf
algebras over C as proved in the Theorem of paragraph 4.2 in [20].

Proof. For self-containment, we include a proof—which is similar to that of
Proposition 7.2. Without loss of generality, we assume that G is a finite group.
We start from any representation β and prove that some iterated tensor prod-
uct β⊗N contains the trivial representation.

If β acts on a n-dimensional Hilbert space H , then it induces a dimension
1 representation on

∧n H —which is included in β⊗n. Since this representation∧n
β has dimension 1, for any g ∈ G, we have:

(∧nβ(g))⊗k = ∧nβ(gk).

If we take k = N , the order of the group G, then (
∧n

β)⊗N is the trivial
representation. The result follows. �

For d � 2, we can describe the algebra associated with the natural rep-
resentation of G = SU(d):

Proposition 7.6. If G = SU(d) (or a R+-deformation thereof) and α = ν is the
natural representation of G on Cd, then Oα is both a unital Kirchberg algebra
in the UCT class N and an endomorphism crossed product whose K-theory
is described by Theorem 5.4.

Remark 7.7. This proposition complements the explicit description by gener-
ators of Oα provided for this case by Paolucci (see [23, Lemma 7]).

Proof. Proposition 7.2 ensures that Condition (C1) is satisfied. If ν is the nat-
ural representation of G = SU(d), it is readily checked that [ν] is a generator
of C(G) � Z/dZ. Consequently, [ν] has order d and which shows that for
0 < k < d and all � ∈ N, (α⊗�, α⊗(�+k)) = {0} since [ν]k �= e in C(G).
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Moreover, by definition of G = SU(d), the d-fold tensor product νd

contains the trivial representation. This way, we obtain an inclusion α⊗0 � α⊗d

thus proving Condition (C2). The result follows from Theorem 5.4, Lemma
2.10, Corollary 4.7 and Lemma 6.4. �

Our treatment of examples will rely on the following comparison of Oα

and Oα⊗M

for any integer M , which is also interesting per se:

Proposition 7.8. Let α be a representation of a CQG G.

(i) For any M � 1, there is an injection Oα⊗M → Oα.
(ii) If all irreducible representations in α have the same nontrivial class in

C(G), which we denote [α] �= e, and M is the order of [α] inside C(G),
then Oα⊗M → Oα is surjective.

Proof. Let us prove the injectivity: denote d ∈ N the dimension of the Hilbert
space H underlying the representation α. By definition, Oα ⊆ Od and Oα⊗M ⊆
OdM . There is a C∗-algebra morphism OdM → Od defined on generators by:

SK → Sk0Sk1Sk2 . . . SkM−1 ,

where K ∈ {1, 2, . . . , dM} and k0, k1, . . . , kM−1 ∈ {1, 2, . . . , d} are uniquely
determined by K = k0 + k1d + k2d

2 + · · · + kM−1d
M−1. Indeed, using the

properties of the generators of Od:

(Sk0Sk1Sk2 . . . SkM−1)
∗Sk′

0
Sk′

1
Sk′

2
. . . Sk′

M−1

= δk0,k′
0
δk1,k′

1
δk2,k′

2
. . . δkM−1,k′

M−1
1

and
∑

k0,k1,k2,...,kM−1

Sk0Sk1Sk2 . . . SkM−1(Sk0Sk1Sk2 . . . SkM−1)
∗ = 1.

The universal property of OdM then yields an injective morphism OdM → Od.
Next step, we restrict and corestrict to a morphism Oα⊗M → Oα.

To prove that the range of Oα⊗M → Od is included in Oα, we rely on
Lemma 2.7. It thus suffices to prove that the image of any algebraic element
T ∈ Oα⊗M

is in Oα. Without loss of generality, we can assume that T is
gauge-homogeneous of total gauge k. We can then find integers k0, k1 s.t.

T ∈ H ⊗k0
M (H ∗

M )⊗k1

where the difference k0 − k1 = k is the total gauge of T in Oα⊗M

and HM

is the M -fold tensor product (over C) of Hilbert spaces HM := H ⊗M . This
is the Hilbert space on which α⊗M is represented. In this setting, T is in
Oα⊗M

if and only if it intertwines H ⊗k1
M endowed with (α⊗M )⊗k1 and H ⊗k0

M

with (α⊗M )⊗k0 (Lemma 2.5). But identifying (HM )⊗ki with H ⊗Mki and
(α⊗M )⊗ki with α⊗Mki , it is clear that T can be seen as element of Oα—thus
the induced morphism Oα⊗M → Oα is well defined. Moreover, it is injective
since OdM → Od is.
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Note that the choice of the morphism OdM → Od dictates the explicit
form of the identification of HM with H ⊗M . Alternatively, (i) follows from
Remark 2.8.

Further assuming that all irreducible representations in α have the same
class [α] �= e in C(G) and that the order of [α] is M , we prove surjectivity
using the chain group. It suffices to show that any algebraic element T of Oα

which is homogeneous with total gauge k is reached. For such a T , we can
always find k0 and k1 large enough to have

T ∈ H ⊗k0(H ∗)⊗k1

with k = k0 − k1, total gauge of T . If such a nonzero intertwiner exists, then
in particular [α]k0 = [α]k1 i.e. [α]k0−k1 = e in C(G). By definition of M , this is
equivalent to k = k0 − k1 being a multiple of M . Upon iterating the inclusion

H ⊗k0(H ∗)⊗k1 ↪→ H ⊗(k0+1)(H ∗)⊗(k1+1),

we can further assume that k0 and thus k1 are multiples of M . In this case, it
is clear that T ∈ Oα can be lifted to T ′ ∈ Oα⊗M

. �

7.1. Example: SUq(2)
In this subsection, we perform detailed computations regarding the case of
G = SUq(2), when α is the natural representation of G on C2. This algebra of
fixed points was described explicitly in [18] and [21]. Our results complements
the previous ones by providing an identification up to C∗-isomorphism.

In the rest of this subsection, we denote the n+1-dimensional irreducible
representations of G by (n) for n ∈ N. Hence, (0) is the trivial representation,
(1) is the natural representation... We distinguish between odd and even rep-
resentations, depending on the parity of (n). This distinction corresponds to
the chain group C(SU(2)) = Z/2Z (see [3, 5.1.1, p. 794]). The tensor product
of irreducible representations in SUq(2) is determined by the Clebsch–Gordan
formula ([34, Theorem 5.11]):

(k) ⊗ (�) = (|k − �|) ⊕ (|k − �| + 2) ⊕ · · · ⊕ (k + �). (7.1)

Parity is “compatible” with (7.1) and (1) is odd, thus for all �, (α⊗�, α⊗(�+1))
= {0} and since (1) ⊗ (1) = (0) ⊕ (2) we get α⊗0 � α⊗2. This proves that
Condition (C2) is satisfied. Note that precisely the same argument would apply
to any (finite) sum of odd representations of SU(2).

However, to compute the K-theory of Oα in our case, it is more con-
venient to rely on Proposition 7.8 and reduce the problem to α = (1)⊗2 =
(0) ⊕ (2). As an explicit illustration of the method of Sect. 5, we compute
the Bratteli diagram corresponding to Fα = lim→ Fα,�. Since α contains only
even representations, no odd representation appears in Tα (see Notation 3.1).
Thus, there is no odd representation in the Bratteli diagram. Using (7.1), we
can compute the iterated tensor powers α⊗�:

α⊗0 = (0) α⊗2 = 2.(0) ⊕ 3.(2) ⊕ (4)
α⊗1 = (0) ⊕ (2) α⊗3 = 5.(0) ⊕ 9.(2) ⊕ 5.(4) ⊕ (6)
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From the above computations, we deduce as in (5.2) that

Fα,0 = C Fα,2 = M2(C) ⊕M3(C) ⊕M4(C)
Fα,1 = M2(C) ⊕ C Fα,3 = M5(C) ⊕M9(C) ⊕M5(C) ⊕ C

Hence, iterated tensor powers and Bratteli diagram correspond to the same
diagram:

(0) (2) (4) (6) (8)

� = 0 •1

������
��

� = 2 •1

������
��

•1

������
������

����
� = 4 •2

������
��

•3

������
������

����

•1

������
����

��
����

� = 6 •5

����
��

��

•9

����
��

����
��

����

•5

����
��

����
��

����

•1

����
��

����
��

����
� = 8 •14 •28 •20 •7 •1

It is well known that the representation ring of SU(2) can be identified with
Z[t] using (n) � Un(t/2) where Un are the Chebyshev polynomials of the
second kind. Explicitly

(0) � 1 (1) � t (2) � t2 − 1 (3) � t3 − 2t ...

One can easily check that the set Tα actually contains all even representation.
Moreover, the polynomials corresponding to even representations are even (as
functions). Thus, we can change the variable and use T := t2. In particular,
(0) ⊕ (2) � T .

From Remark 5.3, we see that K0(Fα) is a submodule of the fractions
Z(T ). It is easy to prove that ((0) ⊕ (2))⊗n contains all irreducible represen-
tations (2k) for 0 � k � n. Since the polynomial corresponding to (2k) has
degree k in T and leading coefficient 1, we get:

Lemma 7.9. K0(Fα) is the set of P (T )
T n where the polynomial P (T ) ∈ Z[T ] has

degree at most n.

We can now conclude:

Proposition 7.10. When G = SUq(2) and α = (1), the fixed point algebra Oα

is a Kirchberg algebra in the UCT class N whose K-theory is

K0(Oα) = Z K1(Oα) = 0.

Moreover, [1Oα ]0 = 1 and, therefore, Oα is C∗-isomorphic to the infinite Cuntz
algebra O∞.

Proof. From Proposition 7.6, we see that all conditions of Theorem 5.3 are
satisfied. Thus, we get K1(Oα) = 0 and K0(Oα) = Coker(1 − σ∗). In our
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situation, it is readily checked that σ∗
(

P (T )
T n

)
= P (T )

T n+1 . We are then left to
evaluate the cokernel of

P (T )
Tn

�→ P (T )(T − 1)
Tn+1

.

It is obvious from this expression that Q(T )
T n is in the image of 1−σ∗ if and only

if Q(1) = 0. Thus, the cokernel is the image of the evaluation map Q �→ Q(1),
i.e. Coker(1−σ∗) = Z. It is also clear that with this identification, [1Oα ]0 = 1.
Applying Theorem 6.3 and known properties of O∞, we get the result. �

7.2. Example: SUq(3)
In this subsection, we use the notations and results presented in Wesslén [32].
The matrix Lie group G = SU(3) is simply connected and thus its representa-
tions correspond precisely to those of su(3). We denote by (p, q) the represen-
tation with highest weight pλ1 + qλ2 where λi are the fundamental weights. In
particular, the trivial representation (1 in Physics notations) is (0, 0), the nat-
ural representation (3) is (1, 0), its contragredient representation (3) is (0, 1).
It follows from Wesslén [32] that:

Remark 7.11. For any irreducible representation β of G = SU(3), the tensor
product β⊗3 contains the trivial representation ε.

Therefore, if all irreducible representations in α have the same class [α] �=
e in C(G), then [α] generates C(G) � Z/3Z and all hypotheses of Proposition
7.8 are satisfied for M = 3. Moreover, from properties of the chain group
C(G) we see that for all 0 < k < 3 and � ∈ N, (α⊗�, α⊗(�+k)) = {0}. Therefore,
Condition (C2) is satisfied by α.

However, just like in the previous example, the computations are more
easily performed by relying on Proposition 7.8 and using α = (1, 0)⊗3 =
(0, 0) ⊕ 2.(1, 1) ⊕ (3, 0). The representation ring of G is Z[Λ1,Λ2] where Λ1

corresponds to (1, 0) and Λ2 corresponds to (0, 1) (see for instance [2], Sec-
tion 5 p.265). By construction, α⊗3 corresponds to (Λ1)3. Since (0, 1) is an
irreducible component of (1, 0) ⊗ (1, 0), we have:

Lemma 7.12. The group K0(Fα) is the set of P (Λ1,Λ2)
(Λ1)3n where the polynomial

P (Λ1,Λ2) ∈ Z[Λ1,Λ2] includes monomials of degree at most 3n,Λ1 counting
as degree 1 and Λ2 as degree 2, endowed with its usual addition.

For instance, for n = 1, the possible polynomials are:

c0 + c1Λ1 + c2(Λ1)2 + c3Λ2 + c4(Λ1)3 + c5Λ1Λ2

(Λ1)3

where c0, . . . , c5 ∈ Z. Let us now prove:

Proposition 7.13. When G = SUq(3) and α = (1, 0), the fixed point algebra
Oα is a Kirchberg algebra in the UCT class N whose K-theory is

K0(Oα) = Z3 ⊗ Z[Λ2] K1(Oα) = 0.
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Proof. Proposition 7.6 and Theorem 6.5 apply, thus it suffices to treat the case
of G = SU(3).

From Theorem 5.4, we get thatK1(Oα) = 0 andK0(Oα) = Coker(1−σ∗).
In our situation, it is readily checked that σ∗

(
P (Λ1,Λ2)
(Λ1)3n

)
= P (Λ1,Λ2)

(Λ1)3(n+1) . We are
then left to evaluate the cokernel of

P (Λ1,Λ2)
(Λ1)3n

�→ P (Λ1,Λ2)(1 − (Λ1)3)
(Λ1)3(n+1)

.

It is obvious from this expression that Q(Λ1,Λ2)
(Λ1)3(n+1) is in the image of 1 − σ∗ if

and only if

Q(1,Λ2) = 0 Q(j,Λ2) = 0 Q(j2,Λ2) = 0.

Thus, the cokernel is given by the evaluation map Φ :Z[Λ1,Λ2] → C3 ⊗Z[Λ2]:

Φ(Q) =
(
Q(1,Λ2), Q(j,Λ2), Q(j2,Λ2)

)
.

Considering Q(Λ1,Λ2) = (Λ1)p(Λ2)q for p = 0, 1, 2 and q ∈ N, we see that the
image of Φ is 〈v1, v2, v3〉 ⊗ Z[Λ2] where

v1 = (1, 1, 1) v2 = (1, j, j2) v3 = (1, j2, j).

These vectors are linearly independent over R and thus over Z. �

8. Final Remarks

We first comment on the case of finite groups:

Remark 8.1. For finite groups, there is another possibility to prove that the
fixed point algebra is purely infinite. Indeed, if the finite group G acts by outer
automorphisms, Lemma 10 of [17] applies, thereby proving that the crossed
product Od�G is simple and purely infinite. Now the unital fixed point algebra
Oα

d is isomorphic to a corner of Od�G (see [4] II.10.4.18 and references therein)
and thus Oα

d is simple and purely infinite. It would be interesting to draw a
more detailed comparison between the hypotheses of this argument and ours.

As a conclusion for this article, we discuss the consequences of our results
for semisimple compact Lie groups and their R+-deformations. We first recall
the following Proposition 9.3 from [15, p.125]:

Proposition 8.2. Let β be an irreducible representation of a semisimple compact
Lie group G. Each irreducible representation of G occurs in some tensor power
β⊗k if and only if β is faithful.

In particular, if G is simple, β is faithful if and only if the centre Z(G)
is faithfully represented on β.

The following first appeared as Definition 2.4 in [14] (see also [9]):

Definition 8.3. Given a CQG G, an action δ :A → A⊗C(G) on a C∗-algebra
A is called free if (A⊗ 1)δ(A) is dense in A⊗ C(G).

Going back to our initial motivations concerning free actions, we prove:
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Proposition 8.4. If G is a semisimple compact Lie group (or a R+-deforma-
tion thereof) and α is (a R+-deformation of) a faithful representation of G
on a d-dimensional Hilbert space H , then the induced action δ on Od is free.

Remark 8.5. This applies, in particular, to G = SU(d) and its natural repre-
sentation on Cd.

Proof. First assume that G is a semisimple compact Lie group. We can apply
Proposition 8.2 to G and α. In this way, all irreducible representations of
G appear in some tensor power α⊗k for k large enough. This is also true
for any R+-deformation of G, since they share the same fusion rules. Thus
for any irreducible representation defined by a matrix (βij), we can find an
orthonormal family of vectors vj ∈ H ⊗k s.t.

δ(vj) =
∑

i

vi ⊗ βij .

Realising these vectors in Od, and picking any T ∈ Od we get:

(Tv∗
i ⊗ 1)δ(vj) = (Tv∗

i ⊗ 1)

(
∑

k

vk ⊗ βkj

)

= T ⊗ βij .

Relying on Theorem 1.2 of [36], it follows that (Od ⊗ 1)δ(Od ⊗ 1) is dense in
the tensor product A⊗ C(G). �

We conclude with the following:

Remark 8.6. The stability result of Theorem 6.5 shows that the fixed point
C∗-algebra is not a very fine invariant: indeed, it only “sees” the fusion rules
of G. Concretely, in the setting of the natural representation ν of SUq(d), we
cannot retrieve the “q”.

This situation is the exact opposite of Theorem 2 of [6]. In an algebraic
version of the same setting, this result proves that the (algebraic) fixed point
algebra characterises the (algebraic) quantum group. In other words, we can
retrieve the “q” from the algebraic relations.
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