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Abstract. We define a generalized mass for asymptotically flat manifolds
using some higher order symmetric function of the curvature tensor. This
mass is non-negative when the manifold is locally conformally flat and
the σk curvature vanishes at infinity. In addition, with the above assump-
tions, if the mass is zero, then, near infinity, the manifold is isometric to
a Euclidean end.

1. Introduction

Let (M, g) be an n-dimensional Riemannian manifold. Assume that (M, g) is
asymptotically flat, i.e., there is a compact set K ⊂ M , some R ≥ 1 and a
diffeomorphism Φ : M\K → R

n\BR such that

(Φ∗g)ij(x) = δij + o(|x|−τ ) as |x| → ∞.

If τ ≥ n−2
2 and the scalar curvature Rg is integrable, then the so-called ADM

mass of (M, g) is defined by (see [1,2])

m =
∫

S∞

(gij,j − gjj,i)dSi,

where gij,k denotes a partial derivative and dSi is the normal surface element
of S∞, the sphere at infinity.

That m is a geometric invariant of (M, g) is a consequence of the following
expansion of the Hilbert–Einstein action:

Rg ∗ 1 = d(gab ωa
c ∧ ηcb) + gab ωd

c ∧ ωa
d ∧ ηbc (1)

Y. Y. Li was partially supported by NSF Grant DMS-1203961.



1734 Y. Y. Li and L. Nguyen Ann. Henri Poincaré

where Rg is the scalar curvature, ∗1 is the volume form, ωa
b is the Levi–Civita

connection one-form with respect to a frame {ea} and ηab = (ea ∧ eb)� ∗ 1. See
Bartnik [2] for more details.

Mass and its properties have attracted much attention since it was intro-
duced. One of the reason is its wide range of applications in mathematical
relativity and in geometric analysis. For example, consider the Yamabe prob-
lem which asks to find on a compact Riemannian manifold a conformal metric
with constant scalar curvature. Its solutions are critical points of the Hilbert–
Einstein functional in a fixed conformal class. Thus, it is not too surprising
that the notion mass is useful in the study of the Yamabe problem. In fact, it
is very important in the solution of the Yamabe problem [23] as well as in the
resolution of compactness issue of the Yamabe problem [8,13,17–20,26].

In recent years, fully nonlinear versions of the Yamabe problem have
received much attention after the work of Viaclovsky [30–32] and of Chang,
Gursky and Yang [3–6]; see e.g., [9,11,12,14–16,27–29]. For a metric g, let Ag

be the Schouten tensor of g, i.e.,

Ag =
1

n − 2

(
Ricg − 1

2(n − 1)
Rg g

)
,

where Ricg and Rg denote the Ricci curvature and the scalar curvature of
g. Let λ(Ag) = (λ1, . . . , λn) denote the eigenvalues of Ag with respect to g.
For 1 ≤ k ≤ n, let σk(λ) =

∑
1≤i1<···<ik≤n λi1 · · · λik

, λ = (λ1, . . . , λn) ∈ R
n,

denote the kth elementary symmetric function, and let Γk denote the con-
nected component of {λ ∈ R

n|σk(λ) > 0} containing the positive cone {λ ∈
R

n|λ1, . . . , λn > 0}.

Question 1.1. Let (N,h) be a compact, smooth Riemannian manifold of dimen-
sion n ≥ 3 satisfying λ(Ah) ∈ Γ on N and 1 ≤ k ≤ n. Is there a smooth positive
function u on N such that ĥ = u

4
n−2 h satisfies

σk(λ(Aĥ)) = 1, λ(Aĥ) ∈ Γk, on N? (2)

Equation (2) is a second order fully nonlinear elliptic equation of u. The
special case of Question 1.1 for k = 1 is the Yamabe problem in the so-called
positive case.

The problem is in general not a variational one when k ≥ 3. Natural vari-
ants of Eq. (2) which are of variational form have been introduced by Chang
and Fang [7]; see also a subsequent paper of Graham [10] on the algebraic
structure of these equations under conformal transformations.

From the discussion on the relation between the ADM mass and the
Yamabe problem, it is natural to ask if there is some notion of mass associ-
ated with the σk Yamabe problem. The main goal of this note is to give some
generalization along this line. While we have not been able to identify such a
notion that is directly related to the σk curvature, we are able to do so for a
variant for 2 ≤ k < n

2 , which coincides with the σk curvature when (M, g) is
locally conformally flat. This is motivated by a relation between the Pfaffian
and the σn/2 curvature (see Viaclovsky [30]). See Theorem 3.1 for a precise
definition.
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We note that a generalization of mass was studied earlier by Michel in
[21,22]. In these works, mass is defined with respect to each member of a large
class of differential operators. However, the definition of mass therein uses
either the linear structure of the corresponding operator or of its linearization.
Our approach is very different.

After our work was done, Yanyan Li heard a talk by Guofang Wang
in the conference on ‘Geometric PDEs’ in the trimester on ‘Conformal and
Kähler Geometry’ at IHP, Paris (held during 5–9 November 2012) in which he
announced that he together with Yuxin Ge and Jie Wu had also developed a
notion of higher order mass. After the talk, Yanyan informed Guofang that we
had defined a mass by using an invariant of the σk curvature which agrees with
the σk curvature when the manifold is locally conformally flat and proved that
the mass is non-negative under the assumption that the manifold is locally
conformally flat and the σk curvature is zero near infinity, together with a
rigidity in that case.

The rest of the paper is organized as follows. In Sect. 2, we define a curva-
ture invariant Λk which coincides with the σk curvature when (M, g) is locally
conformally flat. We also provide a decomposition for Λk which is a general-
ization of the decomposition (1) for the Hilbert–Einstein action; see Eq. (3).
In Sect. 3, we used the decomposition developed in Sect. 2 to define a mass,
called the kth mass. In Sect. 4, we announce a very restrictive version of the
positive mass theorem for the kth mass.

2. A Curvature Invariant

Consider an n-dimensional Riemannian manifold (M, g). Let {e1, . . . , en} be
a local orthonormal frame and {θ1, . . . , θn} its dual coframe. Let (ωi

j) be the
skew-symmetric matrix of Levi–Civita connection one-forms:

∇ξei = ωi
j(ξ) ej .

(Here and below, upper indices label rows while lower indices label columns.)
The first structural equations read

dθj = θi ∧ ωi
j .

The curvature tensor is viewed as a skew-symmetric matrix of two-forms,

Ωi
j(X,Y ) = θj(R(X,Y )ei).

The second structural equations read

Ωi
j = dωi

j − ωi
k ∧ ωk

j .

Also, the first and second Bianchi identities read

θi ∧ Ωi
j = 0 and dΩi

j = −Ωi
k ∧ ωk

j + ωi
k ∧ Ωk

j .

For a multi-index I = (i1, . . . , im), let θI = θi1 ∧ · · · ∧ θim and θ[I] = ∗θI

where ∗ is the Hodge dual operator.
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For 1 ≤ k ≤ n
2 , define the n-form

Λk =
1

2k k!

∑
I=(i1,...,i2k)∈Sn,2k

Ωi1
i2 ∧ · · · ∧ Ωi2k−1

i2k ∧ θ[I],

where

Sn,2k :=
{

(i1, . . . , i2k) : 1 ≤ ip ≤ n, ip �= iq whenever p �= q
}

.

It is useful to observe that

Λk =
1

2k k!

∑
1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−1

i2k ∧ θ[I].

For k = 1, ∗Λ1 is half the scalar curvature. For n even and k = n/2,Λn/2

is the Pfaffian. Those quantities are frame independent. We claim that this
is true for all Λks. Indeed, let P be an orthonormal matrix function, ẽi =
Pi

j ej , θ̃
j = (P−1)i

j θi. We have

ω̃i
j = Pi

k ωk
l (P−1)l

j + P k
i d(P−1)k

j and Ω̃i
j = Pi

k Ωk
l (P−1)l

j .

We then have

2k k!Λ̃k =
∑

1≤i1,...,i2k≤n

Ω̃i1
i2 ∧ · · · ∧ Ω̃i2k−1

i2k ∧ θ̃[I]

=
∑

1≤i1,...,i2k≤n

[
Pi1

p1 (P−1)p2
i2Ωp1

p2
]

∧ · · · ∧ [
Pi2k−1

p2k−1 (P−1)p2k

i2kΩp2k−1
p2k

]
∧ ∗

([
(P−1)q1

i1 θq1
] ∧ · · · ∧ [

(P−1)q2k

i2k θq2k
])

=
∑

1≤i1,...,i2k≤n

Pi1
p1 (P−1)q1

i1 (P−1)p2
i2 (P−1)q2

i2 . . .

· · · P−1
i2k−1

p2k−1 (P−1)q2k−1
i2k−1 (P−1)p2k

i2k (P−1)q2k

i2k

Ωp1
p2 ∧ · · · ∧ Ωp2k−1

p2k ∧ ∗(θq1 ∧ · · · ∧ θq2k)

=
∑

1≤p1,...,p2k≤n

Ωp1
p2 ∧ · · · ∧ Ωp2k−1

p2k ∧ ∗(θp1 ∧ · · · ∧ θp2k)

= 2k k!Λk,

where in the second-to-last identity we have used the orthogonality of P .
When g is conformally flat, ∗Λk is proportional to the σk-curvature. This

was noticed by Viaclovsky [30] in case k = n/2. The argument for general
k is similar. We include it here for completeness. Recall that the Riemann
curvature tensor Riem admits the decomposition

Riem = Wg + Ag 
 g
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where 
 is the Kulkarni–Nomizu product and Wg is the Weyl tensor of g.
When (M, g) is locally conformally flat, Wg ≡ 0. Fix a point p ∈ M . The local
orthonormal frame {e1, . . . , en} is chosen so that Ag is diagonalized at p with
eigenvalue λ1, . . . , λn; in particular, Ai

j = λi δij . We have at p that

Ωi
j = Riemi

j
kl θ

k ∧ θl

= (Ag 
 g)i
j
kl θ

k ∧ θl

= (Aik δjl − Ajk δil + Ajl δik − Ail δjk) θk ∧ θl

= 2(λi + λj) θi ∧ θj .

It follows that, also at p,

Λk =
1

2k k!

∑
I=(i1,...,i2k)∈Sn,2k

Ωi1
i2 ∧ · · · ∧ Ωi2k−1

i2k−2 ∧ θ[I]

=
1
k!

∑
I=(i1,...,i2k)∈Sn,2k

(λi1 + λi2) · · · (λi2k−1 + i2k) θI ∧ θ[I]︸ ︷︷ ︸
=dvg

=
1
k!

∑
I=(i1,...,i2k)∈Sn,2k

(λi1 + λi2) · · · (λi2k−1 + i2k)dvg

=
2k(n − k)!
k!(n − 2k)!

∑
J=(j1,...,jk)∈Sn,k

λj1 · · · λjk
dvg

=
2k(n − k)!
(n − 2k)!

σk(Ag) dvg,

i.e., Λk is proportional to σk(Ag) dvg.
To finish this section, we derive a decomposition of Λk which we will need

later. By the second structural equations,

2k k!Λk =
∑

1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ dωi2k−1
i2k ∧ θ[I]

−
∑

1≤i1,...,i2k≤n

dΩi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
pk ∧ ωpk

i2k ∧ θ[I]

=
∑

1≤i1,...,i2k≤n

d
(
Ωi1

i2 ∧ · · · ∧ Ωi2k−3
i2k−2 ∧ ωi2k−1

i2k ∧ θ[I]
)

−
∑

1≤i1,...,i2k≤n

d
(
Ωi1

i2 ∧ · · · ∧ Ωi2k−3
i2k−2

)
∧ ωi2k−1

i2k ∧ θ[I]

+
∑

1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
i2k ∧ dθ[I]

−
∑

1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
pk ∧ ωpk

i2k ∧ θ[I].
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Note that, by symmetry,

∑
1≤i1,...,i2k≤n

dΩi1
i2 ∧ Ωi3

i4 · · · ∧ Ωi2k−3
i2k−2 ∧ ωi2k−1

i2k ∧ θ[I]

= · · · =
∑

1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−5

i2k−4 ∧ dΩi2k−3
i2k−2

∧ωi2k−1
i2k ∧ θ[I],

which, by the second Bianchi identity and anti-symmetry, is equal to

∑
1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−5

i2k−4 ∧

∧(−Ωi2k−3
rk−1 ∧ ωrk−1

i2k−2 + ωi2k−3
rk−1 ∧ Ωrk−1

i2k−2) ∧ ωi2k−1
i2k ∧ θ[I]

= −2
∑

1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−5

i2k−4 ∧ Ωi2k−3
rk−1 ∧ ωrk−1

i2k−2

∧ωi2k−1
i2k ∧ θ[I].

Next, we compute dθ[I]. Assume first that I = (i1, . . . , i2k) ∈ Sn,2k.
We supplement I with i2k+1, . . . , in so that (i1, . . . , in) is a permutation of
(1, . . . , n). We have

θ[I] = δi1...in
1...n θi2k+1 ∧ · · · ∧ θin .

In view of the first structural equations, this implies that

dθ[I] = δi1...in
1...n

n∑
s=2k+1

2k∑
t=1

(−1)s−1θi2k+1 ∧ · · · ∧ θis−1 ∧ (θit ∧ ωit

is)

∧θis+1 ∧ · · · ∧ θin

= δi1...in
1...n

2k∑
t=1

n∑
s=2k+1

(−1)sωit

is ∧ θit ∧ θi2k+1 ∧ · · · ∧ θis−1

∧θis+1 ∧ · · · ∧ θin

=
2k∑

t=1

n∑
s=2k+1

ωit

is ∧ θ[I:it→is]

=
2k∑

t=1

n∑
s=1

ωit

s ∧ θ[I:it→s],

where I : it → is denotes (i1, . . . , it−1, is, it+1, . . . , i2k). This continues to hold
for general multi-index I = (i1, . . . , i2k) ∈ {1, . . . , n}k. Indeed, if I /∈ Sn,2k, we
have dθ[I] = 0 and
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2k∑
t=1

n∑
s=1

ωit

s ∧ θ[I:it→s]

=
∑

special t′s

n∑
s=1

ωit

s ∧ θ[I:it→s]

=
1
2

∑
special t′s

n∑
s=1

(ωit

s ∧ θ[I:it→s] + ωit̃

s ∧ θ[I:it̃→s])

= 0.

where the set of special ts are those such that there is a unique t̃ �= t such that
it = it̃. It thus follows that∑

1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
i2k ∧ dθ[I]

=
∑

1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
i2k ∧

2k∑
t=1

n∑
s=1

ωit

s ∧ θ[I:it→s]

= 2(k − 1)∑
1≤i1,...,i2k,s≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
i2k ∧ ωi2k−2

s ∧ θ[I:i2k−2→s]

+2
∑

1≤i1,...,i2k,s≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
i2k ∧ ωi2k

s ∧ θ[I:i2k→s]

= −2(k − 1)∑
1≤j1,...,j2k,i2k−2≤n

Ωj1
j2 ∧ · · · ∧ Ωj2k−3

i2k−2 ∧ ωi2k−2
j2k−2 ∧ ωj2k−1

j2k ∧ θ[J]

+2
∑

1≤j1,...,j2k,i2k≤n

Ωj1
j2 ∧ · · · ∧ Ωj2k−3

j2k−2 ∧ ωj2k−1
i2k ∧ ωi2k

j2k ∧ θ[J].

We thus get

2k k!Λk =
∑

1≤i1,...,i2k≤n

d
(
Ωi1

i2 ∧ · · · ∧ Ωi2k−3
i2k−2 ∧ ωi2k−1

i2k ∧ θ[I]
)

+
∑

1≤i1,...,i2k,pk≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
pk ∧ ωpk

i2k ∧ θ[I].

Thus, if we set

Λ1
k =

1
2k k!

∑
1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
i2k ∧ θ[I],

Λ2
k =

1
2k k!

∑
1≤i1,...,i2k,pk≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
pk ∧ ωpk

i2k ∧ θ[I],

then we obtain the following generalization of (1):

Λk = dΛ1
k + Λ2

k. (3)
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It should be noted that, unlike Λk,Λ1
k and Λ2

k are frame dependent and only
defined over parallelizable subsets of M .

3. Higher Order Mass

Let (Mn, g) be a Riemannian manifold and assume that there is a compact
set K ⊂ M such that M\K has an asymptotic flat structure of order τ : there
are some R ≥ 1 and a diffeomorphism Φ : M\K → R

n\BR such that

(Φ∗g)ij(x) = δij + o3(|x|−τ ) as |x| → ∞, (4)

where x = (x1, . . . , xn) is the coordinate function with respect to Φ and we
write f = ol(|x|−τ ) if ∂i1 . . . ∂ip

f = o(|x|−τ−p) for any 1 ≤ p ≤ l. We also
assume that

Λk ∈ L1(M).

For simplicity, we only consider the case where M has one end; the general
case requires minor modification.

With respect to the asymptotic structure Φ, let êi = ∂xi and θ̂i = dxi.
The connection one-forms and curvature two-forms are defined by

∇X êi = ω̂i
j(X) êj and Ω̂i

j(X,Y ) = θ̂j(R(X,Y )êi).

Define the (n − 1)-form

Λ̂1
k(Φ) =

1
2k k!

∑
1≤i1,...,i2k≤n

Ω̂i1
i2 ∧ · · · ∧ Ω̂i2k−3

i2k−2 ∧ ω̂i2k−1
i2k ∧ θ̂[I]

and the associate “kth order mass”

mk(Φ) = lim
R→∞

∫

SR

(−1)k Λ̂1
k(Φ).

Here, SR denotes the coordinate sphere of radius R centered at the origin. The
factor of (−1)k is to ensure the positivity of mass in favorable situations.

To show that mk(Φ) is well-defined, we use the decomposition of Λk which
we derived earlier (in an orthonormal frame). We first use the Gram–Schmidt
orthogonalization to construct an orthonormal frame:

e1 =
ê1

|ê1| ,

e2 =
ê2 − g(ê2, e1) e1

|ê2 − g(ê2, e1) e1| ,
. . .

en =
ên − g(ên, e1) e1 − · · · − g(ên, en−1)en−1

|ên − g(ên, e1) e1 − · · · − g(ên, en−1)en−1| .

Evidently,

ei = êi + o3(|x|−τ ).
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Let {θi} be the dual frame to {ei} and define the connection one-forms ωi
j

and curvature two-forms Ωi
j accordingly. Set

Λ1
k =

1
2k k!

∑
1≤i1,...,i2k≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
i2k ∧ θ[I],

Λ2
k =

1
2k k!

∑
1≤i1,...,i2k,pk≤n

Ωi1
i2 ∧ · · · ∧ Ωi2k−3

i2k−2 ∧ ωi2k−1
pk ∧ ωpk

i2k ∧ θ[I].

Then, by (3), Λk = dΛ1
k + Λ2

k.
To relate ωi

j and Ωi
j to ω̂i

j and Ω̂i
j , we write

ei = Pi
j êj and θj = (P t)i

j θ̂i

where the matrix P satisfies

Pi
j = δij + o1(|x|−τ ).

(In fact, Pi
j = δij + o3(|x|−τ ), but the above suffices.)

We have

∇Xei = ∇X(Pi
j êj) = (dPi

j(X) + Pi
k ω̂k

j(X))êj

= (dPi
j(X) + Pi

k ω̂k
j(X))(P−1)j

l el,

which implies that

ωi
j = ω̂i

j + dPi
j + o(|x|−2τ−1).

Likewise

Ωi
j = θj(R(X,Y )ei) = (P t)j

kPi
l θ̂k(R(X,Y )êl)

= (P t)j
kPi

l Ω̂k
l = Ω̂i

j + o1(|x|−2τ−2).

From the above computation, we see that

Λ2
k = O(|x|−(τ(k+1)+2k)) ∈ L1(M) provided τ >

n − 2k

k + 1
, (5)

and

Λ1
k − Λ̂1

k

= d
( 1

2k k!

∑
1≤i1,...,i2k≤n

[Pi2k−1
i2k − δi2k−1i2k

]Ω̂i1
i2 ∧ · · · ∧ Ω̂i2k−3

i2k−2 ∧ θ̂[I]
)

+o(|x|−(τ(k+1)+2k)+1). (6)

From (6), we obtain for R � N � R0 that∫

SR

Λ̂1
k =

∫

SR

Λ1
k + o(Rn−(τ(k+1)+2k)), (7)

which, in view of (3), leads to∫

SR

Λ̂1
k =

∫

SN

Λ1
k +

∫

BR\BN

[
Λk + Λ2

k

]
+ o(Rn−(τ(k+1)+2k)).



1742 Y. Y. Li and L. Nguyen Ann. Henri Poincaré

Recalling (5), we conclude that the mass mk(Φ) is well-defined when

τ >
n − 2k

k + 1
.

In fact, the argument above shows that if Dj is an exhaustion of M by
closed sets such that

Rj = inf{|x| : x ∈ ∂Dj} → ∞ and R
−(n−1)
j |∂Dj |

remains bounded as j → ∞
then

mk(Φ) = lim
j→∞

∫

Sj

(−1)k Λ̂1
k.

We would like to show next that mk(Φ) is independent of the asymptotic
structure Φ. Assume that Φ̃ is another asymptotic structure of (M, g) and let
x̃ = (x̃1, . . . , x̃n) denote the coordinate function with respect to Φ̃. To show
that mk(Φ) = mk(Φ̃), we appeal to a theorem of Bartnik [2, Theorem 3.1] to
find harmonic coordinates y = (y1, . . . , yn) and ỹ = (ỹ1, . . . , ỹn) such that

|xi − yi| + |x̃i − ỹi| = o(|x|1−τ ) = o(|x̃|1−τ ),
|g(∂xi , ∂xj ) − g(∂yi , ∂yj )| + |g(∂x̃i , ∂x̃j ) − g(∂ỹi , ∂ỹj )| = o(|x|−τ ) = o(|x̃|−τ ),

yi = Aj
i ỹj + ci,

where Aj
i and ci are constants. Note that the second relation and that the met-

ric g is asymptotically flat implies that the matrix A = (Aj
i) is orthonormal.

We would like to apply the proof of (7) to show that

in defining mk(Φ)

we can use the coordinate functions yis instead of the xis. (8)

Assuming the correctness of this statement, we proceed as follows. By (8),
mk(Φ) and mk(Φ̃) can be computed using yis and ỹis, respectively. On the
other hand, the frames ∂yi and ∂ỹi differ from one another by a rigid rotation:
∂yi

= Ai
j ∂ỹj . The argument proving that Λk is frame independent applies

showing that Λ̂1
k(∂yi) = Λ̂1

k(∂ỹi). This proves that mk = mk(Φ) is independent
of Φ.

We now prove (8). To apply the proof of (7), it is enough to establish

∂xi
= ∂yi

+ o1(|x|−τ ). (9)

Recall that yi is harmonic, i.e., Δgyi = 0. It follows that

Δg(xi − yi) = o2(r−1−τ ).

Also, xi − yi = o(r1−τ ). Applying standard elliptic estimates, we obtain
xi − yi = o3(r1−τ ), which implies (9). (In fact, we have ∂xi

= ∂yi
+ o2(|x|−τ ).)
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We have thus shown that

Theorem 3.1. Let (M, g) be a complete n-dimensional Riemannian manifold
which is asymptotically flat of order τ , i.e., there is a compact set K and a
diffeomorphism Φ : M\K → R

n\BR0 for some R0 > 0 such that in such coor-
dinate system the metric g satisfies gij = δij + o3(|x|−τ ). Assume further that
the curvature Λk belongs to L1(M). Fix 1 ≤ k < n

2 . If τ > n−2k
k+1 , then the

mass

mk = lim
R→∞

∫

SR

(−1)k Λ̂1
k

is well-defined and is independent of the asymptotic structure at infinity.

To finish this section, we give an example. Fix some 1 ≤ k < n
2 . Consider

an asymptotically flat manifold where the metric takes the following form at
infinity

gij = exp
(

2m

r
n−2k

k

)
δij + o2(r− n−2k

k ).

The connection one-forms and the curvature two-forms are

ωi
j = Γj

ik dxk = − (n − 2k)
k

m

r
n
k

(δij r dr + xi dxj − xj dxi) + o(r1− n
k ),

Ωi
j = dωi

j − ωi
t ∧ ωt

j

=
(n − 2k)n

k2

m

r
n+k

k

dr ∧ (xi dxj − xj dxi)

−2(n − 2k)
k

m

r
n
k

dxi ∧ dxj + o(r− n
k ).

Thus,

Λ1
k�SR = c(n, k)

(−1)k mk

Rn

∑
1≤i,j≤n

(xidxj − xjdxi) ∧ ∗(dxi ∧ dxj)

and so

mk = c(n, k)mk.

where c(n, k) is some positive constant.
The above computation also shows that, for the time symmetric slice of

the Schwarzschild spacetime in higher dimensions, only the first mass (which
is the same as the ADM mass) is nonzero. All the higher order masses, if
well-defined, vanish.

4. On the Non-Negativity of the kth Mass

It is of interest to see if the kth mass is non-negative under some assumption
on either the Λk or the σk curvature. We are only able to do so under a very
restrictive hypothesis that (M, g) is locally conformally flat and that λ(Ag)
is asymptotically on the boundary of the Γk cone. Of the two assumptions,
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we believe the local conformal flatness assumption is more severe. The second
hypothesis should be compared to the ADM case where, in Schoen and Yau’s
[24,25] proof of the positive mass theorem, one can assume without loss of
generality that the manifold is asymptotically scalar flat (i.e., λ(Ag) ∈ ∂Γ1).

Theorem 4.1. Let (M, g) be a complete Riemannian manifold of dimension
n ≥ 4 and 2 ≤ k < n

2 . Assume that (M, g) is asymptotically flat of order
τ > n−2k

k+1 . If, near a given end, g is locally conformally flat, Ag belongs to
the Γ̄k cone and the Λk curvature vanishes, then the kth mass of that end is
non-negative. Furthermore, if the kth mass is zero, then, near that end, (M, g)
is isometric to a Euclidean end.

The proof of this theorem has a different flavor from what is presented
in this paper and will be published elsewhere.
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[21] Michel, B.: Masse des opérateurs GJMS (2010). http://arxiv.org/abs/1012.4414

[22] Michel, B.: Geometric invariance of mass-like asymptotic invariants. J. Math.
Phys. 52(5), 052504, 14 (2011)

[23] Schoen, R.M.: Conformal deformation of a Riemannian metric to constant scalar
curvature. J. Differ. Geom. 20(2), 479–495 (1984)

[24] Schoen, R.M., Yau, S.-T.: On the proof of the positive mass conjecture in general
relativity. Comm. Math. Phys. 65(1), 45–76 (1979)

[25] Schoen, R.M., Yau, S.-T.: Proof of the positive mass theorem. II. Comm. Math.
Phys. 79(2), 231–260 (1981)

[26] Schoen, R.M.: On the number of constant scalar curvature metrics in a confor-
mal class. Differential geometry, Pitman Monogr. Surveys Pure Appl. Math.,
vol. 52, pp. 311–320. Longman Sci. Tech., Harlow (1991)

[27] Sheng, W.-M., Trudinger, N.S., Wang, X.-J.: The Yamabe problem for higher
order curvatures. J. Differ. Geom. 77(3), 515–553 (2007)

[28] Trudinger, N.S., Wang, X.-J.: On Harnack inequalities and singularities of admis-
sible metrics in the Yamabe problem. Calc. Var. Partial Differential Equa-
tions 35(3), 317–338 (2009)

[29] Trudinger, N.S., Wang, X.-J.: The intermediate case of the Yamabe problem for
higher order curvatures. Int. Math. Res. Not. IMRN (13), 2437–2458 (2010)

[30] Viaclovsky, J.A.: Conformal geometry, contact geometry, and the calculus of
variations. Duke Math. J. 101(2), 283–316 (2000)

http://arxiv.org/abs/0911.3366v1
http://arxiv.org/abs/0911.3366v1
http://arxiv.org/abs/1012.4414


1746 Y. Y. Li and L. Nguyen Ann. Henri Poincaré
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